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When there is an interest in tracking longitudinal trends of student educational

achievement using standardized tests, the most common linking approach generally

involves the inclusion of a common set of items across adjacent test administrations.

However, this approach may not be feasible in the context of high-stakes testing due to

undesirable exposure of administered items. In this paper, we propose an alternative

design, which allows for the equating of multiple operational tests with no items in

common based on the inclusion of common items in an anchor test administered in

a post-test condition. We tested this approach using data from the assessment program

implemented in Italy by the National Institute for the Educational Evaluation of Instruction

and Training for the years 2010–2012, and from a convenience sample of 832 8th grade

students. Additionally, we investigated the impact on functioning of common items of

varying item position and orders across test forms. Linking of tests was performed

using multiple-group Item Response Theory modeling. Results of linking indicated that

operational tests showed little variation in difficulty over the years. Investigation of item

position and order effects showed that changes in item position closer to the end of the

test, as well as the positioning of difficult items at the beginning or in the middle section

of a test lead to a significant increase in difficulty of common items. Overall, findings

indicate that this approach represents a viable linking design, which can be useful when

the inclusion of common items across operational tests is not possible. The impact of

differential item functioning of common items on equating error and the ability to detect

ability trends is discussed.

Keywords: educational measurement, test linking, test equating, Rasch model, differential item functioning

INTRODUCTION

When there is an interest in tracking longitudinal trends of student educational achievement at
the population level, the most common approach employed by national and international Large-
Scale Assessment Programs (LSAPs)–such as the PISA [1] and IEA Trends in Mathematical
and Science Study (TIMSS, [2]) programs–is to include a common set of items across adjacent
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test administrations. In the absence of common examinees,
the common item set provides the statistical link between
administered test forms, which require equating, hereafter
referred to as the operational test forms. Based on examinees’
responses on the common-item set, equating procedures, such
as those provided in the framework of Item Response Theory
(IRT; [3–5])–can be implemented on collected data to estimate
the equating parameters required to put the operational tests, and
the population ability estimates, on a common metric scale. This
equating approach, which is generally referred to as the Non-
Equivalent groups Anchor Test (NEAT) design, is one of themost
popular and flexible tools for linking examinations in educational
LSAPs [6]. The implementation of longitudinal NEAT designs,
however, may not be feasible in the context of high-stakes
testing due to test security concerns related to the inclusion
of common items across multiple operational test forms (e.g.,
undesired item exposure), in particular when the common items
are required to contribute to test scores (i.e., internal common
items). When administered more than one time, items may lose
their original psychometric properties, and cause a decrease in
the test’s validity and fairness (e.g., only some examinees may
have learned the correct response). The use of external common-
item sets, that is the inclusion of common items that do not
contribute to test scores but are only used for equating purposes,
is a common alternative to the use of internal common items.
However, use of external items can also be problematic due
the differences in “stakes” and test conditions (e.g., external
items are usually administered as a separately timed section)
associated with the internal and external portion of the test which
may introduce unwanted variations in examinees’ test-taking
behaviors and motivation [6, 7]. Further, alternative equating
designs using sample matching of non-equivalent groups based
on relevant selection variables (e.g., [8, 9]) is also not always
feasible due to the by-design lack of collateral information about
examinees linked with privacy regulations. In similar situations,
the preferred equating approach is often the so-called “common
item equating to a calibrated item pool” design ([6]; equating-
to-a-pool design, for short). As in NEAT designs, the equating-
to-a-pool design involves the administration of an anchor form
that can provide the necessary statistical adjustment to put
multiple operational test forms on a common metric scale. In
the equating-to-a-pool design, the operational test forms are
not required to be linked to each other by a common-item set,
but instead share a set of common items with a common base
form (e.g., a previously calibrated item pool), which remains
undisclosed prior to the administration of the operational tests.
This common base form is generally administered prior to
the administration of the operational tests for item calibration
purposes. Then, items are selected from this previously calibrated
item pool (i.e., the base form) and included in the operational
tests as anchor items. Multiple versions of this equating approach
are implemented in the Netherlands in the context of the annual
statewide high-stakes examinations administered at the end of
both the primary and lower-secondary education cycles [10–
12]. Due to security reasons, administered tests are required to
not share items with each other. Instead, set of items belonging
to different operational test forms are included into an anchor

test forms which are administered either before the operational
forms (i.e., pre-equating design), or in a post-test condition
(e.g., post-equating design), to one or more non-equivalent
groups of examinees, namely, the linking groups. Hence, in
pre-equating, the operational test forms are administered after
the data necessary for equating is collected. In post-equating,
operational test forms are administered before anchor data
is available, which is collected to groups of non-participating
examinees. One advantage of using the post-equating approach
over the pre-equating design is that its allows the security of all
items to be preserved as the administration of allowing equating
takes place post-hoc, and all items included in the operational test
are allowed to contribute to the examinees’ scores.

Furthermore, one possible drawback of using post-test anchor
data is the risk that unwanted item exposure might influence the
performance of examinees taking the anchor test (i.e., the linking
group) and introduce bias in the linking procedure. Under this
design, the anchor test serves the role of a base form providing
the link between the operational tests forms. The anchor test data,
then, may be combined with the data collected administering the
operational test forms and calibrated to a measurement model
in a single calibration run (e.g., by using multiple-group IRT
modeling techniques, [13, 14]), resulting in the operational test
forms being scaled on a common metric scale.

The use of anchor data collected on linking groups either
prior or after the administration of operational test forms has
some limitations, the most obvious being the potential presence
of differences in examinees’ motivation between the high-stakes
condition of the operational tests and the low-stakes condition
of the anchor assessment. This difference in test conditions
may introduce bias in the equating results due to differential
performance of examinees, especially in the final section of the
tests, due to fatigue, lack of motivation, or test speededness effects
[15–17]. Another limitation is linked to the inevitable presence
of differences in item position across both operational and
anchor test forms. Due to its negative impact on stability of item
parameters [18], changes in the context and order in which items
are presented are expected to be a relevant source of equating
error for large-scale assessment programs using common-
items equating approaches [19, 20]. Traditionally, a common
recommendation for test construction has generally been to
present items in ascending order of difficulty, as this is expected
to mitigate test anxiety effects and lead to an improvement in
test scores (easy-to-hard order; [21–23]). Arranging item using
a random difficulty order has been shown to have similar effects
to the easy-hard order approach (for a review, see [21]). In turn,
findings indicate the arrangement of test items in descending
order of difficulty (i.e., hard-easy order) as the most disruptive
for students’ performance, favoring both an increase in missing
responses and a decrease of correct responses when compared
to both easy-to-hard and random order [21, 24, 25]. Further,
Meyers et al. [26] found the implementation of an item order
in which the most difficult items were placed in the middle of
a test while easier items were placed toward the beginning and
the end of the test (i.e., easy-hard-easy order) to result in low
equating error. The authors however only compared different
random implementations of the easy-hard-easy approach, thus
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they were not able to report about the relative improvement
in equating error due its use compared to the use of other
order approaches. Using data from two statewide assessments of
reading and mathematics, the authors also showed that changes
in the location of an item across parallel test forms would have
significant impact on the difficulty of the item as estimated under
the Rasch model [27]. In particular, the relocation of an item
closer to the end of a test would result in an overestimation of
item difficulty, while the itemwould appear easier when relocated
near the start of the test. Similar results were also reported
concerning PISA reading assessments, and indicate a decrease
in performance, and a concurrent increase in estimated item
difficulty, as item gets closer to the end of the test [28], an effect
which seems to be linked to changes in test taking effort over the
course of the test [29]. The existence of significant differences in
item difficulty across test forms challenges the assumption of item
parameter invariance across test forms, which is a fundamental
requisite of equating procedures based on the exploitation of
common items [6]. The practical consequence of the presence
of Differential Item Functioning (DIF) on the common-item set
is a significant increase in the error associated with the equating
procedure, in particular when the common items are limited in
number [30].

The INVALSI Case
Introduced in Italy in 2003 by the National Institute for the
Educational Evaluation of Instruction and Training (INVALSI),
the INVALSI LSAP include a statewide high-stakes assessment
of proficiency in mathematics which is administered annually
as part of the state exam marking the end of the lower-
secondary cycle of education (i.e., 8th grade). The 8th grade
examination is particularly relevant since it represents the last
statewide assessment of learning achievement in the framework
of a common Italian national curriculum. Starting from grade
9, in fact, Italian students attend upper secondary schools
with different curricula, thus rendering comparisons in terms
of academic achievement more difficult. Since 2010, the math
tests contribute to the score on the state exam; because of
specific regulations concerning the Italian state exams, the
administered tests are not allowed to share common items
over the years. In fact, the test is constructed by INVALSI
for the sole purpose of the annual administration: after each
administration, the included items are retired from use and
released to the public domain. The INVALSI test administration
design, thus, does not allow the direct implementation of
equating procedures based on common items (e.g., NEAT
design). The implementation of other equating approaches, such
as common-person equating [31], sample-matching equating [8],
random groups equating designs [6], is also not feasible due to the
tests being administered to different individuals and populations,
and the lack of collateral information collected about examinees.
Further, to our knowledge, neither pre-test data nor post-test
data is regularly collected for the purpose of equating the
tests1. As a result, no information is available allowing for a

1An equating procedure aiming at linking the 8th grade reading and mathematics

assessment for the years 2008-2009 was performed and documented by INVALSI

comparison of the average difficulty of the tests administered
over the years, nor concerning student achievement trends.
INVALSI has repeatedly stressed the need for the implementation
of an equating design for the administered tests [33–35]. Indeed,
INVALSI has recently introduced an equating design for the low-
stakes examinations administered at other levels of educations
(i.e., at grade 5, 6, and 9, [36]); at this time, however, an equating
procedure for the 8th grade high-stakes examinations is still not
available.

Aims of the Study
The main aim of the present study is to present and discuss the
implementation of a linking procedure allowing for the equating
of test administrations sharing no common items or persons that
is based on the administration of an anchor test in a post-test
condition. This approach can be useful in situations in which
security concerns prevent the implementation of NEAT and pre-
equating designs. For the purpose of the present study, we use
data from the INVALSI 8th grade high-stakes math assessment
program from 2010 to 2012 and data collected administering
an anchor test to a convenience sample of examinees in a
low-stakes condition. Given the potential difference in test
condition and sample characteristics (e.g., examinees’ motivation
and math proficiency) between the INVALSI (high-stakes) and
the anchor test (low-stakes) administration, we expect that
significant differences in estimated ability might emerge in the
examined groups. In particular, we expect that the examinees
taking the test in the low-stakes condition will show lower ability
when compared to examinees taking the tests in the high-stakes
condition.

As a secondary aim, we investigate the impact of differences
in item position and item-orders across test forms on the DIF
computed on the common-item set by also controlling for the
effect of time of item exposure. Based on previous findings, we
expect that results will highlight a significant impact of item
position and different item orders on estimated item difficulty.
In particular, we expect that positioning items closer to the end of
the test, might lead to a significant increase in the items’ estimated
difficulty.

METHOD

Equating Design
The equating design employed in this study consists of a variation
of the equating-to-a-pool design [6] which instead uses data
collected administering an anchor test in a post-test condition,
i.e., a post-equating non-equivalent groups design. Figure 1

illustrates the employed design. In the example, three non-
equivalent groups of examinees (Groups A, B, C) are each
administered operational test forms sharing no common items
(Test forms 1, 2, and 3), resulting in the lack of internal linking
allowing the equating of the tests. To resolve this issue, an anchor
test comprised of subsets of common items (Blue blocks in

personnel using a post-test approach [32]. In the study, however, no information

concerning the quality of the equating results was disclosed. The equating results

were also not included in the technical reports for the tests.
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FIGURE 1 | Linking design employed in the current study.

Figure 1) are extracted from each operational test form (Test
forms 1, 2, 3) and administered to a new group of non-equivalent
examinees in a post-test condition (i.e., the linking group, Group
D). Under the assumption of measurement invariance of the
selected anchor items, the data collected on group Dmay provide
the external statistical link to equate test forms 1, 2, and 3.

The INVALSI Math Tests
The INVALSI 8th grade math assessment is intended to assess
students’ proficiency across multiple math content and cognitive
domains; for the development of the tests, INVALSI used as
reference the math assessment framework proposed for the
IEA-TIMSS 2003 tests [37], with minor differences in the
definition and number of the domains. Students’ proficiency is
evaluated across four math domains: Relations and functions
(RF), Numbers (N), Geometry (GEO) (redefined in 2009 as
Space and figures, SF); Measures, data and predictions (MDP)
(redefined in 2011 as Data and predictions, DP; for an in-depth
explanation of math domains and cognitive processes involved
in the INVALSI assessment, see [38]). The booklets are presented
as mixed-format tests including closed-ended, multiple-choice
(MC) items and both open-ended and closed constructed-
response (CR) questions. In spite of the inclusion of items with
different response formats and assessing multiple math domains,
the tests have shown good fit to the unidimensional Rasch model
[39, 40].

Over the years, INVALSI has provided teachers with slightly
different scoring instructions for the tests. Inconsistencies
between the years concerned specifically the scoring rubrics
of items comprising multiple questions sharing a common
passage/stimulus, such as Brief Constructed-Response (B-CR)
items (i.e., items requiring students to provide an answer
and its demonstration/explanation) and item bundles of Short-
Answer Constructed-Response (SA-CR) and Multiple-Choice
(MC) items. In order to achieve congruence across years, the
following dichotomous scoring rubric was implemented in this
study:

• Multiple-Choice Items: A score of 1 was awarded to students
indicating the correct option, otherwise a score of 0 was
assigned;

• SA-CR: A score of 1 was assigned to students providing the
correct answer, otherwise a score of 0 was assigned;

• Multiple true-false MC or SA-CR items: Item bundles of k
items were scored 1 for a number of correct responses ≥k –
1, otherwise were scored 0;

• B-CR: A score of 1 was awarded to students providing both the
correct answer and its explanation or solution steps, otherwise
a score of 0 was assigned.

• We also distinguished in the scoring procedure between the
following responses to items:

• Invalid responses and omitted responses were scored 0;
• As suggested by many authors (e.g., [23, 41]), unreached items

(i.e., items that students were not able to complete in the time
given) were scored as non-administered items.

The Anchor Test
For the construction of the anchor test, we selected 31 items from
the INVALSI [33–35] operational forms and combined them
together in a single test form, i.e., the anchor test. That is, from
each operational test, an adequately numbered subset of items
was selected for inclusion in the anchor test, i.e., to serve as
common item. As suggested by many scholars ([6, 42, 43]), each
set of common items was selected as to represent a mini-version
of the operational tests from which they were extracted, both in
terms of mean and standard deviation of the difficulty estimates,
and item content/format representation. Findings indicate that
the length of the common-item set is a key factor in assuring the
accuracy of equating results between two test-forms [44, 45]. As
a general indication, the length of the common-item set should
be at least 20% of the operational test (e.g., considering a test
of 40 items, [3, 6, 46], although some authors suggest that fewer
items may also be adequate for IRT linking [47, 48]. Correlation
between the raw scores computed on the anchor test and on the
full test should be high: the common knowledge on this matter is
that “higher correlation leads to better equating” [42, 46, 49].

Preliminary to the selection of the anchor items, the difficulty
estimates for operational tests were obtained implementing
the Rasch model on INVALSI sample data for each year of
administration of the tests. Due to potential issues related to
the scoring procedure (i.e., potential variability between raters
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in applying the scoring rubric), brief constructed-response (B-
CR) items were not included in the common-item sets. Table 1
provides a comparison of the characteristics of the full tests and
the selected common item sets, while full information for each
considered year of the test, the full test and the selected item
set shows similar distribution of item format and investigated
domains, as well as average difficulty. Rasch difficulty estimates
for both the full tests and the common item sets selected for
inclusion in the anchor test, along with information about item
characteristics (Item format and domain) are reported in full in
Tables A1–A3 of the Appendix. The length of the selected item
sets ranged from 30 to 35 percent of each INVALSI test ([33]: 8
out of 27 items; [34]: 9 out of 29 items; [35]: 14 out of 38 items).
Further, the Pearson correlation coefficients computed between
the raw scores on the full tests and the common-item sets were
0.84, 0.82, and 0.87, respectively for the INVALSI [33–35] forms.
Knowing that raw score reliabilities of the 2010–2012 operational
tests are in the range of 0.8–0.9, and that reliabilities of the
selected item sets are in the range 0.6–0.7, then the corresponding
disattenuated correlations all exceed the well-known rule-of-
thumb of 0.85 for lack of discriminant validity, as well as the
more stringent cut-off of 0.95 for score equality between full
and shortened version of tests [50]. The high value of these
correlations suggests that the operational tests and the common
item sets are in fact measuring the same construct.

In order to ensure item parameter invariance of the common
item set, a generally advised practice in equating is to administer
the common items in an identical order across test forms [6, 26].
However, this may often be unfeasible when multiple test forms
are linked to a common base form. In order to mitigate this
issue and investigate the impact of change in item position
and orders across test forms on DIF, four parallel forms of the
anchor test were randomly administered to the examinees. Each
parallel form was characterized by a specific item order based on

the item difficulty parameters as estimated in the independent
calibration of the three operational tests to the Rasch model. The
following item-orders were implemented in the parallel forms of
the anchor test: easy-to-hard, hard-to-easy, easy-hard-easy and
random order (i.e., as in the INVALSI test forms).

Data Sources
Response data for the INVALSI operational tests were obtained
by completing an online request through the INVALSI
institutional site. Provided data consisted of responses for the
entire 8th grade population who took the INVALSI standardized
math tests for the years 2010–2012 in their basic unedited
version and with no extra time added for test completion. For
the purpose of the present study, analyses were performed on
random samples extracted from the total 8th grade population
taking the INVALSI tests in the Piedmont and Aosta Valley
regions of Italy (2010: N = 1819; 2011: N = 1794; 2012: N
= 1813). This choice is related to the need to maintain the
highest possible comparability with the linking sample, which
consisted of 832 8th grade students (49.6% females; 89.8%
Italians) attending schools in urban areas of the Piedmont and
Aosta Valley regions. Sample size was balanced across different
order forms (easy-hard-easy:N = 204; easy-hard:N = 216; hard-
easy: N = 206; random: N = 206). Test administration took
place at the end of the school year as to assure students had
reached the necessary level of proficiency for test completion.
To mitigate the issue of possible item exposure, teachers from
participating classrooms were required to not administer the
items included in the anchor test prior to the anchor-test
administration. To reduce the possibility of student cheating,
proctors were present in the classroom during the administration
of the test, and students were allowed 75min to complete the
test.

TABLE 1 | Characteristics of INVALSI full test and selected item sets: percentage of items by item format and math domain, and mean item difficulty.

INVALSI [33] INVALSI [34] INVALSI [35]

Full test Selected items Full test Selected items Full test Selected items

N. items 27 8 29 9 38 14

Math domain % % % % % %

MDP/DP 25.9 25.0 24.1 22.2 23.7 21.4

N 18.5 12.5 27.6 33.3 26.3 28.6

RF 33.3 37.5 24.1 22.2 26.3 21.4

SF 22.2 25.0 24.1 22.2 23.7 28.6

Format % % % % % %

B-CR 11.1 0.0 17.2 0.0 5.3 0.0

MC 44.4 50.0 48.3 55.6 52.6 50.0

MTF-MC 14.8 12.5 6.9 11.1 2.6 0.0

SA-CR 29.6 37.5 27.6 33.3 39.4 50.0

Difficulty M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

0.00 (1.20) −0.01 (0.95) 0.00 (1.12) −0.22 (1.05) 0.00 (1.12) −0.05 (0.95)

MC, multiple-choice; MTF-MC, multiple true-false MC; SA-CR, short-answer constructed response; B-CR, brief constructed response; MDP/DP, measurement, data and predictions;

N, numbers RF, relations and functions; SF, space and figures.
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Data Analysis
Equating the Tests
In order to equate the INVALSI operational tests, a multiple-
group IRT equating procedure was implemented in this study.
As a first step, all available response data (i.e., INVALSI sample
data for the years 2010–2012 + anchor test data; N = 6258) was
combined in a single dataset by scoring the non-common items
as not administered items (i.e., as missing items). The combined
response data was then calibrated to the Rasch model using the
concurrent calibration approach available within the multiple-
group IRT modeling framework [13]. More specifically, BILOG-
MG version 3 was used to implement the Rasch model for
dichotomous data withmarginalmaximum likelihood estimation
(MMLE) by distinguishing in the analysis the existence of four
non-equivalent groups of examinees–the INVALSI samples for
the years 2010–2012 and the post-test sample [51]. In the
concurrent calibration the empirical prior ability distributions
for the INVALSI samples were estimated concurrently with
item parameters, while the ability distribution was fixed to
the standard normal for the post-test sample (i.e., the linking
group) for the purpose of model identification. By using the
concurrent calibration approach, all the item difficulty estimates
and the ability estimates for the four groups were placed on
a common metric scale in a single analytical step. The choice
of implementing the equating of the tests using a concurrent
calibration approach was supported by findings indicating that
this approach ismore accurate than approaches based on separate
calibrations when the data fit the IRT model, overall resulting in
lower equating errors ([6, 44, 52]).

As a preliminary step to implementation of the equating
procedure we investigate the presence of DIF between the
INVALSI tests and the anchor test. When conducting equating
based on common items, the presence of differences in
item difficulty across test forms is evaluated visually by
inspection of cross-plots of the common-item parameters across
test conditions [53–55], by computing correlations between
parameter estimates, and by computing DIF statistics across
the test administration on the common-items. In this study,
for each INVALSI test, the functioning of the common-item
set across the operational and anchor test forms was evaluated
based on the significance and size of DIF, and by visual
inspection of the plot of the difficulty parameters of the common
items across the test forms. DIF estimates were obtained by
implementing a single-item anchor estimation approach, and
by using the Mean test statistic threshold selection strategy to
select the anchor items [56, 57]. The single-anchor method
has been shown to represent a viable, valid alternative to
more traditional approaches, such as the equal-mean-difficulty
and all-other anchor classes, whose requirements (i.e., DIF-
free or balanced-DIF tests) have been shown to be unrealistic
for most practical assessment situations [56–58]. Analyses were
performed with R using the psychotools package [59]. For the
purpose of this study, and in accordance with the well-known
Educational Testing Service DIF classification rules [60, 61],
items reporting absolute DIF estimate ≥0.43 logit units and a
significant item-wise Wald test statistic (z-values, p < 0.05) [62]
were flagged for non-negligible DIF. As an additional diagnostic

step, the cross-plot of the difficulty parameters as estimated
under the two test conditions was inspected: items positioning
far from the identity line were considered as problematic.
Hence, flagged items were dropped from the common-item sets
for the purpose of implementing the concurrent calibration.
The adequacy of the equating procedure was evaluated by
examining the equating error2 associated with the item difficulty
and person ability estimates as obtained with the concurrent
calibration. The scoring of the test was performed by computing
the Expected-A-Posteriori (EAP) person ability estimates [63].
The reliability coefficients and average Standard Error of
Measurement (SEM)3 for the ability scores were also computed
and examined.

Examining Item Position and Item Order Effects on

DIF
In order to investigate the impact of changes in item position
and item orders across test forms, on the presence of common-
item DIF, we performed a three-step procedure. First, DIF
analyses were performed on the common-item sets data by
comparing the INVALSI administration condition to the four
parallel administration of the anchor test. In this way, the
single-anchor DIF estimation approach described above was
implemented on the data, resulting in 124 DIF estimates (i.e., 31
items × 4 orders) comparing the difficulty estimates obtained in
the anchor test compared to those emerging from the INVALSI
operational samples. Then, for each common item, four distinct
position change values were also obtained by subtracting the
position of the item in the INVALSI test to the position of
the same item in each of the four parallel forms of the anchor
test: a value of 0 indicate no position change across test forms,
while positive and negative values would indicate, respectively
an increase or decrease in position. Finally, a multilevel analysis
was implemented to evaluate the impact on DIF estimates of
both changes in position of the common items and different
item orders while controlling for a proxy indicator of item
exposure (i.e., items’ year of public release). We chose to perform

2For the purpose of the present, the computation of equating error was performed

by employing the procedure presented by Monseur and Berezner [30]. By

referencing the methodology implemented by the PISA 2003 program, Monseur

and Berezner [30] provide the following formula for the computation of equating

error in common-items design:

σlink =

√

σ
2

n
(1)

where σ
2 is the variance of the item parameter differences (i.e., the DIF size) across

test forms on the common item set, and n is the number of common items used

to link the test forms. Under this formulation, it is easy to see that the degree of

equating error in liking two forms is positively related the amount of DIF on the

common items and inversely related to the number of common items included in

the anchor test.
3Given a sample of examinees taking a test, a well-known formula [64] for the

calculation of the average SEM is the following:

SEM = Sx
√

1− rxx′ (2)

where Sx represents the standard deviation of the test scores observed in the

sample, and rxx′ represent the reliability of the test. Under this formulation, it

is easy to note the presence of a significant relationship linking test reliability to

measurement error.
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analyses using a multilevel approach given the presence of
clustering in the data due to the inclusion in the model of four
distinct DIF estimates for each item (31 items × 4 forms =

124 observations). More specifically, analyses were performed
using a random intercept model [65], in which the intercept
parameter was included as a random effect to control for the
non-independence present among level-1 outcomes (i.e., item
DIF estimates) clustered according to a level-2 grouping variable
(i.e., the item). The items’ year of public release, change in item
position, and order form were included in the model as fixed
effects, and DIF estimates served as dependent variable. Prior to
the estimation of the model, in order to evaluate the amount of
clustering in the data at the item level and the appropriateness
of analyzing data using the chosen multilevel approach, we
examined the Intra-Class Correlation (ICC, [66]) for the DIF
estimates, and used the ICC value to compute the design effect
for the null model. Using single level analysis on multilevel data
characterized by a design effect >2 has been shown to lead to
misleading results in the estimation and testing of fixed effects
[67].

The random intercept model was implemented with R using
the Lmer package [68]. Estimates of marginal and conditional
R2 [69] were obtained using the r.squaredGLMM procedure of
the MuMIn package ([70], p. 18). Marginal R2 informs about
variance explained by fixed factors, while conditional R2 concerns
both fixed and random factors. Effects were deemed significant if
p < 0.05.

RESULTS

Parameter Invariance
The results of the DIF analyses revealed the presence of
significant violations of measurement invariance when
comparing the functioning of the common items in the
INVALSI operational samples and the post-test sample. The
cross-plots in Figures 2–4 provide a visual representation of the
results: overall, the difficulty parameters for the 2010 and 2011
items showed good stability across test conditions, the majority
of the items being located near the identity line. The inspection of
the cross-plot for the 2012 items showed a more varied situation,
with many items sitting far from the identity line. Table 2 reports
the DIF estimates for all the items. Overall, nine items showed
non-negligible DIF across the two test conditions. By looking at
Table 2, it’s easy to note that the majority of the common items
flagged for non-negligible DIF were those originally included
in the INVALSI [35] test (6 items), while respectively only 1
and 2 item from the INVALSI [33] and INVALSI [34] tests were
flagged for DIF. For all test, the removal of flagged items from
the common-item sets resulted in an increase in correlation
between the item difficulty estimates as obtained in the two test
conditions. More specifically, the correlation of the difficulty
estimates for the full common-item sets ranged from 0.93 to 0.97,
while for all the tests the correlation computed on the reduced
common-item sets was 0.98. After the removal of the flagged
items, the length of the common-item sets still accounted for at
least 20% of the operational test.

Equating the Tests: Concurrent Calibration
Tables 3, 4 report the estimates of item difficulty parameters,
student ability distributions and EAP ability scores for the three
INVALSI examinations as obtained implementing the concurrent
calibration procedure on the dataset. Overall, the results
indicated the existence of only minor variations in the mean
difficulty of the INVALSI math assessment over the years under
focus (Range = −0.16–0.13 logit). Comparably, the mean ability
of the INVALSI samples for the INVALSI [33–35] examinations
also showed limited variability over the years (Range= 0.01–0.32
logit); as expected, the post-test sample reported the lowest mean
ability score (−0.06 logit). For each year of administration of the
INVALSI test, Table 3 also reports the equating error associated
with equating procedure, as well as the Rasch person reliability
and the average SEM associated with the EAP ability scores.
Due to the limited number of common items used to perform
the linking of the tests, the amount of error associated with the
equating procedure estimates was relatively high, and ranged
from 0.06 to 0.07 logit. Still, upon examination of Table 3, it
is easy to note that the largest source of measurement error is
the average SEM associated with the EAP ability scores, which
in turn is strongly related to the relatively low reliability of the
administered tests. For example, when comparing the ability
scores of examinees from the 2011 and 2012 examinations, on
average the standard error of the difference4 in ability due only to
SEM would be as large as 0.48 logit, while the standard error of
the difference due to equating error would be as low as 0.08 logit.

Item Order and Position Effects on DIF
Estimates
The results of the random intercept model implemented to
examine the effect of both different item orders and item position
changes on DIF across test forms are reported in Table 5. The
inspection of the ICC for the model confirmed the existence of
significant clustering in the data: the ICC was 0.54, indicating
a moderate correlation among the DIF estimates computed for
the same item. Based on the computed ICC, the design effect was
found to be 2.63, thus supporting the use of a hierarchical model
for the analysis of the data [67]. Results of multilevel analyses are
reported in Table 5. Overall, the fixed component of the model
accounted for 25% of the variance of DIF estimates (Marginal R2:
0.25), while the random component accounted for an additional
46% (Conditional R2

= 0.71), indicating significant clustering in
DIF estimates for the same item, and thus further supporting the
appropriateness of the multilevel approach. Upon examination
of the parameters for the fixed effects included in the model,
both item position changes [F(1,114.32) = 27.194, p = 0.00] and
the presence of difference in item order [F(3,89.12) = 14.92, p =

0.00] across test forms was found to have a significant impact
on the presence of DIF on the common items. In particular, the

4As suggested byWu [20], the SEM associated with individual differences in ability

can be computed by using the following formula:

Standard error of a difference =

√

SEM2
1 + SEM2

2 (3)

where SEM1 and SEM2 respectively indicate the standard error of measurement

for individual 1 and 2.
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FIGURE 2 | Cross-plot: Difficulty (logit) of common items as estimated in the INVALSI [33] and anchor test forms (full set: r = 0.96; reduced set: r = 0.98).

FIGURE 3 | Cross-plot: Difficulty (logit) of common items as estimated in the INVALSI [34] and anchor test forms (full set: r = 0.97; reduced set: r = 0.98).
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FIGURE 4 | Cross-plot: Difficulty (logit) of common items as estimated in the INVALSI [35] and anchor test forms (full set: r = 0.93; reduced set: r = 0.98).

relocation of an item closer to the end of the anchor test form
when compared to their original position in the INVALSI tests
was associated with a significant (positive) increase in the DIF
estimate, i.e., an increase in the estimated difficulty of the item.
Based on the estimated effect (B= 0.01, p < 0.001), relocating an
item 30 positions further in the test would result in an increase
in difficulty of 0.30 logit. Concurrently, by using the random
item order as a reference group, a significant increase in item
difficulty was associated with the administration of the common-
items using the easy-hard-easy (B = 0.24, p < 0.001) and hard-
easy (B = 0.19, p < 0.001) orders, while no significant difference
was observed by implementing the easy-hard order. The results
of an additional descriptive analyses also indicated that, when
compared with the item order in the INVALSI operational test,
the easy-hard-easy order was associated with the largest bias
(Average absolute DIF value = 0.32 logit). In turn, at 0.25
logit, the random order showed the lowest average absolute
DIF, while both the easy-hard and hard-easy orders showed an
intermediate position (Range = 0.27–0.28 logit). No significant
effects [F(2,28.24) = 0.74, p = 0.49] emerged from the analysis
concerning the year of release of the common items to the public.

DISCUSSION

The aim of the present study was 2-fold. As a first aim, we
investigated the feasibility of a tentative equating procedure
aiming at providing a link for the INVALSI 8th grade assessments

of mathematical proficiency for the years 2010–2012. By design,
The INVALSI 8th grade examinations are not internally linked
to each other–i.e., the tests do not share common items or
examinees–thus requiring an external link to be equated. Further,
the tests are administered yearly to non-equivalent groups,
rendering the use of equivalent-group equating approaches
unfeasible. For the purpose of this study, we instead employed
an equating procedure based on a post-test administration of an
anchor test comprised of block of items originally included in the
INVALSI tests to a convenience sample of 8th grade students. The
data collected in this post-test condition served as a common base
form providing the external link required to equate the tests. As a
preliminary diagnostic step to the equating, the existence of DIF
on the items included in the anchor test when comparing the
post-test administration and the INVALSI test administrations
was investigated. The degree of error associated with the equating
procedure was also examined.

Equating the Tests
Overall, results of linking analyses indicate that the employed
design could represent a viable approach to link adjacent high-
stakes test sharing no common items or persons. In spite of
differences in testing conditions between the INVALSI and
anchor test administrations (i.e., high-stakes vs. low-stakes),
the difficulty parameters of common items showed remarkable
stability, with correlations on the final common-item sets
approaching 1 after removal of items showing non-negligible
parameter instability across groups. At the same time, by
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decreasing the length of the common item sets, the identification
and exclusion from the equating procedure of a few misbehaving
items had a relevant impact on the amount of error associated
with the ability estimates; in part compromising the possibility to
detect small differences in the accuracy of the estimated person
ability trend. In light of these considerations, an increase in
the number of common items to be included in the anchor
test would be advisable to reduce the impact of the removal

TABLE 2 | Post-test vs. INVALSI administration: DIF estimates, z statistic, and DIF

diagnosis for the common items.

Test Item DIF SE Z p DIF flag

2010 D1 0.51 0.12 4.36 <0.001 ×

2010 D5A 0.21 0.09 2.20 0.03

2010 D6 0.04 0.11 0.32 0.75

2010 D17 −0.13 0.11 −1.11 0.27

2010 D19 −0.30 0.12 −2.45 0.01

2010 D20 −0.17 0.08 −2.10 0.04

2010 D24 0.33 0.11 2.97 <0.001

2010 D7* 0.00

2011 D1A 0.16 0.10 1.62 0.11

2011 D2 −0.33 0.10 −3.18 <0.001

2011 D3A 0.50 0.11 4.61 <0.001 ×

2011 D12 −0.50 0.11 −4.49 <0.001 ×

2011 D13 −0.18 0.11 −1.72 0.09

2011 D16 0.12 0.10 1.27 0.20

2011 D20 −0.12 0.09 −1.40 0.16

2011 D23 0.06 0.08 0.74 0.46

2011 D25* 0.00

2012 E4A 0.25 0.08 3.20 <0.001

2012 E4B 0.48 0.11 4.54 <0.001 ×

2012 E4C 0.44 0.11 3.92 <0.001 ×

2012 E6 −0.28 0.12 −2.41 0.02

2012 E8A −0.10 0.08 −1.29 0.20

2012 E8B 0.15 0.11 1.36 0.17

2012 E15 0.48 0.11 4.49 <0.001 ×

2012 E18 −0.21 0.08 −2.52 0.01

2012 E20A −0.43 0.11 −3.86 <0.001 ×

2012 E20B −0.15 0.10 −1.49 0.14

2012 E22A −0.52 0.11 −4.70 <0.001 ×

2012 E22B −0.64 0.10 −6.34 <0.001 ×

2012 E25 −0.03 0.11 −0.30 0.77

2012 E24* 0.00

*Anchored item.

of misbehaving items on the accuracy of the equating, and
thus to the use of the equating results for practical purposes.
Assuming only a small portion of problematic data is detected,
this approach would be helpful in reducing the bias in the anchor
test data when compared to operational response data, mitigating
the DIF on common items and improving the accuracy of the
equating.

Regarding the INVALSI tests, the results of the equating
procedure suggested the existence of a relative stability in the
average difficulty of the math tests administered by INVALSI
as part of the 8th grade examinations for the period 2010–
2012. This is a relevant finding; given the high-stakes nature
of the INVALSI 8th grade math examination, it is important
that the administered tests provide a stable and comparable
assessment of proficiency over the years. When comparing
individual ability across examinations, the standard error of
measurement associated with the ability estimates emerged
as the most significant source of error. This issue is mainly
due to the limited number of items included in INVALSI
assessments, resulting in low score reliability at the individual
level. To mitigate this problem, and allow for an accurate
ranking of examinees, the length of the tests should be
increased.

Item Order and Position Effects
As a secondary aim of the study, we examined the impact of
position changes and different item orders across test forms on
the presence of DIF in the common item sets. In the present
study, the variation of item position across test forms was a
significant source of violation of measurement invariance for
common items. As reported by other authors [26], we found
the existence of changes in item position across test forms to
be positively related to changes in item difficulty as estimated
using the Rasch model. In particular, a shift in their position
closer to the end of the anchor test when compared to the
original location in the INVALSI tests was associated with an
increase in the difficulty of the items, while a decrease in
difficulty was observed when items where placed closer to the
start of the test. Next, we found the item orders characterized
by the positioning of difficult items at the beginning of the
test (i.e., hard-easy order) and in the middle section of a
test (i.e., easy-hard-easy order) to be both associated with
a significant increase in difficulty of common items when
compared with the random item order. Conversely, the random
order was characterized by lower levels of absolute DIF on the
common-item sets. These results are compatible with findings
indicating the hard-easy order to be the most difficult for

TABLE 3 | Concurrent calibration equating: distribution of the ability scores and estimated equating errors.

Sample Mean ability (SD) EAP scores (SD) Equating error Reliability Average SEM

INVALSI [33] 0.01 (0.91) 0.01 (0.83) 0.07 0.80 0.36

INVALSI [34] 0.32 (0.89) 0.32 (0.81) 0.06 0.80 0.36

INVALSI [35] 0.16 (0.86) 0.16 (0.81) 0.06 0.84 0.32

Post-test sample −0.06 (0.86) −0.06 (0.84) 0.83 0.35
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TABLE 4 | Concurrent calibration equating: item difficulty estimates for the INVALSI tests.

INVALSI [33] INVALSI [34] INVALSI [35]

Item Measure SE Item Measure SE Item Measure SE

D23AB 2.09 0.08 D11AB 2.41 0.08 E11 1.71 0.08

D21AB 1.93 0.08 D6AB 1.81 0.07 E14A 1.71 0.08

D5B 1.71 0.08 D12 1.5 0.06 E6 1.62 0.06

D8AB 1.66 0.08 D8AB 1.24 0.07 E10B 1.44 0.07

D5A 1.65 0.07 D10AB 1.08 0.07 E8B 1.29 0.06

D17 0.69 0.05 D14 0.92 0.07 E14B 1.18 0.07

D11 0.65 0.06 D20 0.76 0.05 E13 1.09 0.06

D16 0.47 0.06 D21B 0.51 0.06 E9A 1.04 0.07

D15E 0.3 0.06 D22 0.31 0.06 E16AB 1.03 0.07

D20 0.22 0.05 D25 0.21 0.05 E18 1.01 0.05

D2 0.18 0.07 D17 0.14 0.06 E3A 0.81 0.06

D7 0.17 0.05 D9 0.12 0.06 E8A 0.77 0.05

D13 0.16 0.06 D3BC −0.11 0.06 E12AB 0.65 0.06

D10 0.04 0.06 D18 −0.29 0.06 E9B 0.6 0.06

D24 <0.001 0.05 D19 −0.29 0.07 E15 0.57 0.07

D3 −0.08 0.06 D23 −0.38 0.06 E20B 0.49 0.05

D15 −0.4 0.06 D2 −0.44 0.05 E20C 0.47 0.06

D6 −0.45 0.05 D5 −0.52 0.06 E19B 0.31 0.06

D4 −0.53 0.07 D15 −0.56 0.07 E22B 0.27 0.06

D22 −0.55 0.07 D21A −0.58 0.07 E17C 0.2 0.06

D14 −0.94 0.06 D13 −0.78 0.06 E7 0.18 0.06

D18 −1.1 0.07 D24 −0.97 0.07 E10A 0.09 0.06

D12 −1.15 0.07 D3A −1.21 0.08 E24 0.08 0.05

D19 −1.17 0.06 D7 −1.44 0.08 E5 <0.001 0.06

D1 −1.39 0.07 D16 −1.47 0.07 E4A −0.03 0.05

D9 −1.58 0.07 D1A −1.49 0.07 E17B −0.2 0.06

D25 −3.00 0.13 D4 −1.6 0.08 E17A −0.22 0.06

D1B −1.75 0.09 E2 −0.48 0.06

D26 −1.78 0.09 E3B −0.53 0.06

E21 −0.6 0.07

E22A −0.71 0.06

E23 −0.75 0.07

E20A −0.88 0.07

E4B −0.98 0.07

E25 −1.07 0.06

E4C −1.33 0.07

E19A −1.61 0.08

E1 −4.12 0.22

M (SD) −0.02 (1.20) M (SD) −0.16 (1.11) M (SD) 0.13 (1.12)

students, while the random and easy-hard orders to be the
less disruptive [21]. Findings concerning the easy-hard-easy
order appear to be in contradiction with what was reported
by Meyers et al. [26] concerning its mitigating effect on DIF
detect on common items linking two test forms. Still, in their
study, the authors did not compare the performance of the
easy-hard-easy order to other approaches, but only compared
alternative implementations of the same order approach, i.e., the
easy-hard-easy item order. Similarly, in the present study we

found the lowest amount of DIF when comparing the anchor
form implementing the random difficulty order approach and
the INVALSI test forms, which also implement a positioning
of items based on a random distribution of item difficulty.
Combined, these findings seem to indicate that, when equating
two test forms sharing a set of common items, a reduction
of the DIF on the common item set may be observed when
the items included in the two forms are positioned according
to a similar item order approach. On the other hand, the
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TABLE 5 | Random intercept model: DIF estimate on item position changes and item orders controlling for year of exposure (N = 124).

Fixed effects 95% Confidence interval

t p Estimate SE Lower bound Upper bound

Change in item position 5.21 <0.001 0.01 <0.001 0.01 0.01

Easy-Hard-Easy 4.58 <0.001 0.24 0.05 −0.27 −0.07

Easy-Hard −1.00 0.32 −0.05 0.05 −0.12 0.08

Hard-Easy 3.69 <0.001 0.19 0.05 −0.11 0.09

Random (Reference group) <0.001

2010 −1.15 0.26 −0.15 0.13 −0.41 0.11

2011 −0.09 0.93 −0.01 0.12 −0.26 0.24

2012 (Reference group)

Variance components

Level-2 (Item-level) 0.07 0.02

Level-1 (Residual) 0.04 0.01

amount of detected DIF may increase when different item orders
approaches are implemented [6]. As for the study of Meyer
and colleagues, however, findings from the present study should
not be generalized to other equating situations. To achieve
generalizability, future research should examine the functioning
of common items in the equating of test forms characterized
by implementations of the different order approaches by also
ensuring randomization of item position changes both within
and across item orders. Due to limitations related to the
employed design (item position did vary only between orders),
the interaction of these two aspects was not investigated in this
study.

Strength and Limitations
This study has several strengths. First, results from this study
suggest that, with only minor improvements, the employed
equating could represent a viable and cost-effective approach
for the linking of adjacent high-stakes examinations sharing
no common items. In particular, this approach can be useful
in situations in which test security concerns prevent the
implementation of NEAT and pre-equating designs. Second,
we provide practitioners with valuable information about
potential biases in the comparability of difficulty parameters of
common items due to changes in position across test forms.
Nonetheless, the present study has also several limitations.
First, the use of a non-random sampling approach does not
allow generalization of the results to the full population of
8th graders taking the INVALSI tests for the period 2010–
2012. Moreover, the anchor test was administered as a low-
stake assessment having no real consequences on students,
while the INVALSI tests are originally administered as high-
test tests, resulting in presence of potential differences in
student motivation across the two test conditions. For the
purpose of this study, this issue was partially taken in account
by recoding unreached items as not administered items, and
thus treated as “by-design” missing data in the analyses [23].
Still, more sophisticated approaches (e.g., the implementation
of mixed Rasch models allowing for the identification latent
classes of examinees characterized by different test taking

behaviors, [71, 72]) could be implemented to evaluate (and
control for) the bias introduced in the equating procedure
due to the presence of examinees with different levels of
motivation. This will be the aim of a future publication based
on the data presented in this study. Next, as stated in the
introduction, B-CR items were not included in the common-
item set, due to their subjective scoring procedure. Indeed, we
expected that the variability in scoring procedure due to the
differences in raters’ characteristics (e.g., leniency, adherence
to scoring procedure, etc.) would have led to an increase in
overall linking error, worsening the linking procedure outcomes
[6]. However, due to the employed linking design, we were
not able to test this hypothesis empirically. Future studies
should address this issue more in detail, by comparing stability
of difficulty parameter (and resulting linking error) estimates
obtained using linking designs characterized by the inclusion or
exclusion of extended constructed response items in the common
items set.
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