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Random-field Solutions of Linear Parabolic
Stochastic Partial Differential Equations with
Polynomially Bounded Variable Coefficients

Alessia Ascanelli, Sandro Coriasco, and André Süß

To Massimo and Michael, on occasion of their 60th birthday

AbstractWe study random-field solutions of a class of stochastic partial differential
equations, involving operators with polynomially bounded coefficients. We consider
linear equations under suitable parabolicity hypotheses, and we provide conditions
on the initial data and on the stochastic term, namely, on the associated spectral
measure, so that these kind of solutions exist in suitably chosen functional classes.
We also give a regularity result for the expected value of these solutions.
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1 Introduction

We consider linear stochastic partial differential equations (SPDEs in the sequel) of
the general form
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!D(C, G) = [mC + �(C)]D(C, G) = W(C, G) + f(C, G) ¤Ξ(C, G), (1)

where:

- �(C) is a continuous family of linear partial differential operators that contain
partial derivatives in space (G ∈ R3 , 3 ≥ 1),

- W, f are real-valued functions, subject to certain regularity conditions,
- Ξ is an S′(R3)-valued Gaussian process, white in time and coloured in space,
with correlation measure Γ and spectral measureM (see Section 2 for a precise
definition),

- D is an unknown stochastic process called solution of the SPDE.

To give meaning to (1) we rewrite it in its corresponding integral form and look for
mild solutions of (1), that is, stochastic processes D(C, G) satisfying

D(C, G) = E0 (C, G) +
∫ C

0

∫
R3
Λ(C, B, G, H)W(B, H)3H3B

+
∫ C

0

∫
R3
Λ(C, B, G, H)f(B, H) ¤Ξ(B, H)3H3B,

(2)

where:

- E0 is a deterministic term, taking into account the initial condition;
- Λ is a suitable kernel, associated with the fundamental solution of the partial
differential equation (PDE in the sequel) !D = [mC + �(C)]D = 0;

- the first integral in (2) is of deterministic type, while the second is a stochastic
integral, and both are distributional integrals since Λ(C, B, G, H) is, in general, a
distribution with respect to the variables (G, H) ∈ R23 .

The kind of solution D we can construct for equation (1) depends on the approach
we employ to make sense of the stochastic integral appearing in (2).

In the present paper we are looking for a random-field solution of (1), that is,
we rely on the theory of stochastic integration with respect to a martingale measure
developed in [8, 11, 21]. We are so going to define the stochastic integral in (2)
through the martingale measure derived from the random noise ¤Ξ. Consequently, we
are going to obtain a random-field solution, that is, a solution D defined as a map
associating a random variable with each (C, G) ∈ [0, )0] × R3 , where )0 > 0 is the
time horizon of the solution of the equation.

Recently, the existence of a random-field solution in the case of linear and semi-
linear hyperbolic SPDEs, involving operators with (C, G)-dependent coefficients, has
been shown: first for linear operators with uniformly bounded coefficients [7], and
subsequently for operators with polynomially bounded coefficients, both for linear
equations [4] as well as for semilinear equations [5]. The main tools used for achiev-
ing this objective, namely, pseudodifferential and Fourier integral operators, come
from microlocal analysis. To our knowledge, those are the first times that their full
potential has been rigorously applied within the theory of random-field solutions to
hyperbolic SPDEs.
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Coming now to parabolic SPDEs, Dalang [11] studied random field solutions to
parabolic equations with C-continous coefficients of the form

mCD(C, G) −
©«
=∑

8, 9=1
08, 9 (C)m2

G8 G 9
+

=∑
8=1

18 (C)mG8 + 2(C)
ª®¬ D(C, G)

= W(D(C, G)) + f(D(C, G)) ¤Ξ(C, G)

(3)

under the coercivity assumption

=∑
8, 9=1

08, 9 (C)b8b 9 ≥ n |b |2, (C, b) ∈ [0, )] × R3 ,

for some constant n > 0. He obtained a random field solution of (3) under the
condition ∫

R3

M(3b)
1 + |b |2

3b < ∞.

Furthermore, Sanz-Solé and Vuillermont [19] proved the existence and unique-
ness of a variational random-field solution to a class of initial-boundary value prob-
lems for second order parabolic equations with variable coefficients of the form

mCD(C, G) = div (: (C, G)∇D(C, G))+W(D(C, G))+f(D(C, G)), (C, G), (C, G) ∈ [0, )]×�,

with � a sufficiently regular bounded domain in R3 , : a positive definite symmetric
matrix,, (C, G) a Wiener process.

In the present paper we deal with the existence of a random-field solution to
linear parabolic SPDEs of the form (1) with (C, G)-dependent coefficients admitting,
at most, a polynomial growth as |G | → ∞. More precisely, here we treat parabolic
equations of arbitrary order <, ` > 0 of the form (1), whose coefficients are defined
on the whole space R3 , that is

! = mC + �(C), �(C)D(C, G) =
∑
|U | ≤`

0U (C, G) (�UG D) (C, G), (4)

� = −8m, where ` ≥ 1, 0U ∈ � ( [0, )], �∞ (R3)) for |U | ≤ `, and, for all V ∈ N30 =
(N ∪ {0})3 , there exists a constant �UV > 0 such that

|mVG 0U (C, G) | ≤ �UV 〈G〉<−|V | ,

for all (C, G) ∈ [0, )] × R3 , where 〈G〉 := (1 + |G |2)1/2. The parabolicity of ! means
that the parameter-dependent symbol 0(C, G, b) of the (�-operators family �(C),
defined here below, satisfies

0(C, G, b) :=
∑
|U | ≤`

0U (C, G)bU ≥ �〈G〉<
′ 〈b〉`′ , (5)



4 Alessia Ascanelli, Sandro Coriasco, and André Süß

with � > 0, < ≥ <′ > 0, ` ≥ `′ > 0, that is, 0 is (�-hypoelliptic. Postponing to
the next Section 3 the precise characterization, we give here an example.

Example 1 An example of a (�-parabolic operator ! is given by the generalized
(�-heat operator, defined for every <, ` ∈ N \ {0} by

! = mC + 〈G〉2<〈�〉2`, G ∈ R3 .

In this case < = <′, ` = `′, that is, 0 is (�-elliptic.

We study SPDEs of the form (1), (4), (5), and we derive conditions on the right-
hand side terms W and f, and on the spectral measure M (hence, on ¤Ξ), such that
there exists a random-field (mild) solution to the corresponding Cauchy problem.

As customary for the classes of the associated deterministic PDEs, we are inter-
ested in the present paper in both the smoothness, as well as the decay/growth at
spatial infinity of the solutions. Here we also obtain an analog of such global regu-
larity properties, employing suitable weighted Sobolev spaces, namely, the so-called
Sobolev-Kato spaces �I,Z (R3), I, Z ∈ R defined by

�I,Z (R3) = {D ∈ S′(R3) : ‖D‖I,Z = ‖〈·〉I 〈�〉Z D‖!2 < ∞}. (6)

The results proved in this paper expand the theory developed in [4, 7] to the cases of
operators ! which are parabolic and whose coefficients are not uniformly bounded,
and expand the results of [11] to the case of space-depending coefficients with
polynomial growth and of higher order equations (there, second order operators are
considered). Our main result reads as follows (see Sections 3 and 4, and Theorem 6
below, for the precise definitions and statement).

Theorem Let us consider the Cauchy problem{
!D(C, G) = W(C, G) + f(C, G) ¤Ξ(C, G), (C, G) ∈ (0, )] × R3 ,
D(0, G) = D0 (G), G ∈ R3 ,

(7)

for a SPDE associated with an SG-parabolic operator ! of the form (4) with < ≥
<′ > 0, ` ≥ `′ > 0. Let D0 ∈ �I,Z (R3), with I ≥ 0 and Z > 3/2, and assume
that W ∈ � ( [0, )];�I,Z (R3)), f ∈ � ( [0, )], �0,Z (R3)), B ↦→ Ff(B) = aB ∈
!2 ( [0, )],M1 (R3)), whereM1 (R3) is the space of complex-valued measures with
finite total variation. Assume that one of the following conditions on the spectral
measureM, associated with the random noise ¤Ξ, holds:

(H0) either, for every C ∈ [0, )],

sup
0≤B<C

sup
[∈R3

∫
R3
|4(C, B, G, b + [) |2M(3b) < ∞

and for every 0 ≤ B < C
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lim
ℎ↓0

sup
[∈R3

∫
R3

sup
A ∈(B,B+ℎ)

|4(C, B, G, b + [) − 4(C, A, G, b + [) |2M(3b) = 0,

where 4(C, B) is the (parameter-dependent) symbol of the fundamental solution
of the operator !,

(H1) or ∫
R3
M(3b) < ∞,

(H2) orM is absolutely continuous, |aB |tv ∈ !∞ (0, )), and∫
R3

M(3b)
〈b〉`′ < ∞.

Then, there exists a random-field solution D of (7). Moreover, for any ^ ∈ [0, 1),

E[D] ∈ � ( [0, )], �I,Z (R3)) ∩ �1 ( [0, )], �I−<,Z−` (R3))∩
∩ �1 ((0, )],S(R3)) ∩ !1 ( [0, )], �I+^<′,Z+^`′ (R3)),

and also mCE[D] ∈ !1 ( [0, )], �I−<+^<′,Z−`+^`′ (R3)), ^ ∈ [0, 1).

Remark 1 Notice that we find, for general parabolic SPDEs with coefficients in (C, G),
possibly polynomially growing as |G | → ∞, in the case of an absolutely continuous
spectral measure and |aB |tv bounded, the same condition given in [11] on the spectral
measure, with ` = `′ = 2, see (H2).

The main tools for proving the existence of random-field solutions to (1) will be
pseudodifferential operators with symbols in the so-called (� classes. Such symbol
classes have been introduced in the ’70s by H.O. Cordes (see, e.g. [9]) and C. Parenti
[17] (see also R. Melrose [16]). The strategy to prove the main theorem consists of
the following steps:

1. construction of the fundamental solution of ! in (4), and then (formally) of the
solution D to (7);

2. proof of the fact that E0 and the stochastic and deterministic integrals, appearing
in the (formal) expression (2) of D, are well-defined.

For point (1) we need, on one hand, to perform compositions between pseudodiffe-
rential operators, using the theory developed, e.g., in [9], and, on the other hand, the
construction of the fundamental solution of parabolic operators in the (� environ-
ment. The latter can be achieved in analogy to the theory developed in [14, Chapter
7, §4], but here, in addition, we obtain more precise information about the order of
the pseudodifferential operator family � (C, B) that defines the fundamental solution
of !. For point (2) we rely on (a variant of) results proved in [7].

With the aim of giving a presentation as self-contained as possible, for the con-
venience of the reader, we provide various preliminaries from the existing literature.
The paper is organized as follows.
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In Section 2 we recall some notions about stochastic integration with respect to
martingale measures and the corresponding concept of random-field solution to a
SPDE. Since, in contrast to the classical references [11, 21], here we have to deal
with integrands of the form Λ(C, B, G, H)f(B, H) with (C, G) fixed, we directly present
here the conditions that Λ and f have to satisfy to let the stochastic integral with
respect to a martingale measure in (2) be well-defined.

In Section 3 we first give a brief summary of the main tools, coming from
microlocal analysis, that we use for the construction of the fundamental solution
operator and of its kernel Λ(C, B, G, H) (these results come mainly from [9, 15]).
Subsequently, we perform the construction of the fundamental solution of the (�-
parabolic operator !. To our best knowledge, compared with the previously existing
literature, such construction for this operator class, which is essential to us to prove
our main theorem, has not appeared elsewhere.

In Section 4 we focus on the parabolic SPDE (1), (4), (5), and prove our main
theorem, under appropriate assumptions (see Theorem 6). Finally, we mention that
the results illustrated in Section 4 about the structure of the kernel Λ(C, B, G, H)
appearing in (2) are employed also in [6], wherewe look for function-valued solutions
to the semilinear parabolic SPDEs

!D(C, G) = W(C, G, D(C, G)) + f(C, G, D(C, G)) ¤Ξ(C, G) (8)

associated with (1).

2 Stochastic integration with respect to a martingale measure.

Let us consider a distribution-valued Gaussian process {Ξ(q); q ∈ C∞0 (R+ × R
3)}

on a complete probability space (Ω,ℱ, P), withmean zero and covariance functional
given by

E[Ξ(q)Ξ(k)] =
∫ ∞

0

∫
R3

(
q(C) ∗ k̃(C)

)
(G) Γ(3G)3C, (9)

where k̃(C, G) := k(C,−G), ∗ is the convolution operator and Γ is a nonnegative,
nonnegative definite, tempered measure on R3 usually called correlation measure.
Then [20, Chapter VII, Théorème XVIII] implies that there exists a nonnegative
tempered measure M on R3 , usually called spectral measure, such that FΓ = M,
where F denotes the Fourier transform. By Parseval’s identity, the right-hand side
of (9) can be rewritten as

E[Ξ(q)Ξ(k)] =
∫ ∞

0

∫
R3
[F q(C)] (b) · [Fk(C)] (b)M(3b)3C.

Definition 1 We call (mild) random-field solution to (1) an !2 (Ω)-family of random
variables D(C, G), (C, G) ∈ [0, )] × R3 , jointly measurable, satisfying the stochastic
integral equation (2).
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In this section we provide conditions to show that the stochastic integral in (2)
is meaningful. This will be enough for our purposes, since the other two terms in
(2) are deterministic, and will turn out to be well-defined by the theory of parabolic
partial differential equations in our setting. For a complete set of conditions such that
each term on the right-hand side of (2) is meaningful, when a general distribution Λ
is involved, see [7].

We want to give a precise meaning to the stochastic integral in (2) by defining∫ C

0

∫
R3
Λ(C, B, G, H)f(B, H) ¤Ξ(B, H)3B3H:=

∫ C

0

∫
R3
Λ(C, B, G, H)f(B, H)"(3B, 3H),(10)

where, on the right-hand side, we have a stochastic integral with respect to the mar-
tingale measure " related to Ξ. As explained in [12], by approximating indicator
functions with C∞0 -functions, the process Ξ can indeed be extended to a worthy mar-
tingale measure " = ("C (�); C ∈ R+, � ∈ ℬ1 (R3)), where ℬ1 (R3) denotes the
bounded Borel subsets of R3 . The stochastic integral with respect to the martingale
measure " of stochastic processes 5 and 6, indexed by (C, G) ∈ [0, )] × R3 and
satisfying suitable conditions, is constructed by steps (see [8, 11, 21]), starting from
the class E of simple processes, and making use of the pre-inner product (defined
for suitable 5 , 6)

〈 5 , 6〉0 = E
[ ∫ )

0

∫
R3

(
5 (B) ∗ 6̃(B)

)
(G) Γ(3G)3B

]
= E

[ ∫ )

0

∫
R3
[F 5 (B)] (b) · [F 6(B)] (b)M(3b)3B

]
,

(11)

with corresponding semi-norm ‖ · ‖0. For a simple process

6(C, G;l) =
<∑
9=1

1(0 9 ,1 9 ] (C)1� 9 (G)- 9 (l) ∈ E

(with < ∈ N, 0 ≤ 0 9 < 1 9 ≤ ) , � 9 ∈ ℬ1 (R3), - 9 bounded, and ℱ� 9 -measurable
random variable for all 1 ≤ 9 ≤ =), the stochastic integral with respect to " is given
by

(6 · ")C :=
<∑
9=1

(
"C∧1 9 (� 9 ) − "C∧0 9 (� 9 )

)
- 9 ,

where G ∧ H := min{G, H}, and the fundamental isometry

E
[
(6 · ")2C

]
= ‖6‖20 (12)

holds for all 6 ∈ E. The Hilbert spaceP0 of integrable stochastic processes is defined
as the completion of E with respect to 〈·, ·〉0. On P0, the stochastic integral with
respect to " is constructed as an !2 (Ω)-limit of simple processes via the isometry
(12). Moreover, by Lemma 2.2 in [18] we know that P0 = !2

? ( [0, )] × Ω,H),
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where here !2
? (. . .) stands for the predictable stochastic processes in !2 (. . .) andH

is the Hilbert space which is obtained by completing the Schwartz functions with
respect to the inner product 〈·, ·〉0. Thus, P0 consists of predictable processes which
may contain tempered distributions in the G-argument (whose Fourier transforms are
functions, P-almost surely).

Now, to give a meaning to the integral (10), we need to impose conditions on the
distribution Λ and on the coefficient f such that Λf ∈ P0. To this aim, we introduce
the following space.

Definition 2 S′(R3)∞ is the space of all the tempered distributions) ∈ S′(R3) such
that, for every : , 〈·〉:) is a bounded distribution on R3 , i.e. it belongs to the dual
space of {i ∈ �∞ (R3) |∀U ∈ N3 mUi ∈ !1 (R3)}.

It can be shown that S′(R3)∞ = O ′� (R
3), where O ′

�
is the widest class of distribu-

tions such that the convolution with elements of S′ is well-defined. A necessary and
sufficient condition for ) ∈ S′(R3)∞, which is useful for us, is the following:

) ∈ O ′� (R
3) ⇐⇒ ∀j ∈ C∞0 (R

3) ) ∗ j ∈ S(R3). (13)

For more details, see [20] and the recent paper [3].

In [7], sufficient conditions for the existence of the integral on the right-hand
side of (10) have been given, in the case that f depends on the spatial argument H,
assuming that the spatial Fourier transform of the function f is a complex-valued
measure with finite total variation. Namely, we assume that, for all B ∈ [0, )],

|Ff(·, B) | = |Ff(·, B) | (R3) = sup
c

∑
�∈c
|Ff(·, B) | (�) < ∞,

where c is any partition on R3 into measurable sets �, and the supremum is taken
over all such partitions. Let, in the sequel, aB := Ff(·, B), and let |aB |tv denote
its total variation. We summarize such conditions in the following theorem (see
[2, 4, 5, 7] for details).

Theorem 1 Let Δ) be the simplex given by 0 ≤ C ≤ ) and 0 ≤ B ≤ C. Let, for
(C, B, G) ∈ Δ) × R3 , Λ(C, B, G) be a deterministic function with values in S′(R3)∞,
and let f be a function in !2 ( [0, )], �1 (R3)), where �1 stands for the space of
continuous and bounded functions, such that:

(A1) the function (C, B, G, b) ↦→ [FΛ(C, B, G)] (b) is measurable, the function B ↦→
Ff(B) = aB belongs to !2 ( [0, )],M1 (R3)), and, for every C ∈ [0, )],∫ C

0

(
sup
[∈R3

∫
R3
| [FΛ(C, B, G)] (b + [) |2M(3b)

)
|aB |2tv 3B < ∞; (14)

(A2) Λ and f are as in (A1) and, for every C ∈ [0, )],
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lim
ℎ↓0

∫ C

0
j[0,C−ℎ) (B)

×
(

sup
[∈R3

∫
R3

sup
A ∈(B,B+ℎ)

| [F (Λ(C, B, G) − Λ(C, A, G))] (b + [) |2M(3b)
)

× |aB |2tv 3B = 0.

Then Λf ∈ P0. In particular, the stochastic integral on the right-hand side of (10)
is well-defined and

E
[
((Λ(C, ·, G, ∗)f(·, ∗)) · ")2C

]
≤

≤
∫ C

0

(
sup
[∈R3

∫
R3
| [FΛ(C, B, G)] (b + [) |2M(3b)

)
|aB |2tv 3B.

Remark 2 In [7] conditions (A1) and (A2) are given in a slightly different way.
Namely, an integral on [0, )] appears there, in place of integrals on [0, C] for every
C ∈ [0, )]. Moreover, in (A2) a characteristic function naturally appears in the proof
Theorem 2.3 in [7]. The present formulation is actually the minimal requirement
needed to prove that theorem, see the corresponding proof.

Remark 3 If f = f(B), then Ff(B) = (2c)3f(B)X0, where X0 is the Dirac delta
distribution with total variation 1. In such case, the necessary condition becomes∫ )
0 f(B)2

∫
R3
| [FΛ(C, B, G)] (b) |2M(3b)3B < ∞,which is actuallyweaker than (14),

in the sense that there is no supremum over [, and corresponds to the one given in
[11, Example 9].

3 Microlocal analysis and fundamental solution to parabolic
equations with polynomially bounded coefficients

3.1 Elements of the YM-calculus

We recall here the basic definitions and facts about the so-called (�-calculus of
pseudodifferential operators, through standard material appeared, e.g., in [4, 5], and
elsewhere (sometimes with slightly different notational choices). In the sequel, we
will often write � . � when |�| ≤ 2 · |� |, for a suitable constant 2 > 0.

The class (<,` = (<,` (R3) of (� symbols of order (<, `) ∈ R2 is given by all
the functions 0(G, b) ∈ �∞ (R3 × R3) with the property that, for any multiindices
U, V ∈ N30 , there exist constants �UV > 0 such that the conditions

|�UG �
V

b
0(G, b) | ≤ �UV 〈G〉<−|U | 〈b〉`−|V | , (G, b) ∈ R3 × R3 , (15)

hold. For <, ` ∈ R, ℓ ∈ N0, 0 ∈ (<,`, the quantities
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‖0‖<,`
ℓ

= max
|U+V | ≤ℓ

sup
G, b ∈R3

〈G〉−<+|U | 〈b〉−`+|V | |mUG m
V

b
0(G, b) | (16)

are a family of seminorms, defining the Fréchet topology of (<,`. The corresponding
classes of pseudodifferential operators Op((<,`) = Op((<,` (R3)) are given, for
0 ∈ (<,` (R3), D ∈ S(R3), by

(Op(0)D) (G) = (0(·, �)D) (G) = (2c)−3
∫

4iG b 0(G, b)D̂(b)3b, (17)

where D̂ stands for the Fourier transform of D, extended by duality to S′(R3). The
operators in (17) form a graded algebra with respect to composition, i.e.,

Op((<1 ,`1 ) ◦ Op((<2 ,`2 ) ⊆ Op((<1+<2 ,`1+`2 ).

The symbol 2 ∈ (<1+<2 ,`1+`2 of the composed operator Op(0) ◦Op(1), 0 ∈ (<1 ,`1 ,
1 ∈ (<2 ,`2 , admits the asymptotic expansion

2(G, b) ∼
∑
U

8 |U |

U!
�Ub 0(G, b) �UG 1(G, b), (18)

which implies that the symbol 2 equals 0 · 1 modulo (<1+<2−1,`1+`2−1.
The residual elements of the calculus are operators with symbols in

(−∞,−∞ = (−∞,−∞ (R3) =
⋂

(<,`) ∈R2

(<,` (R3) = S(R23),

that is, those having kernel in S(R23), continuously mapping S′(R3) to S(R3).
For any 0 ∈ (<,`, (<, `) ∈ R2, Op(0) is a linear continuous operator from S(R3)
to itself, extending to a linear continuous operator from S′(R3) to itself, and from
�I,Z (R3) to �I−<,Z−` (R3), where �I,Z (R3), (I, Z) ∈ R2, denotes the Sobolev-
Kato (or weighted Sobolev) space defined in (6) with the naturally induced Hilbert
norm. When I ≥ I′ and Z ≥ Z ′, the continuous embedding �I,Z ↩→ �I

′,Z ′ holds
true. It is compact when I > I′ and Z > Z ′. Since �I,Z = 〈·〉I �0,Z = 〈·〉I �Z , with
�Z the usual Sobolev space of order Z ∈ R, we find Z > : + 3

2
⇒ �I,Z ↩→ �: ,

: ∈ N0.
One also actually finds⋂

I,Z ∈R
�I,Z (R3) = �∞,∞ (R3) = S(R3),⋃

I,Z ∈R
�I,Z (R3) = �−∞,−∞ (R3) = S′(R3),

(19)

as well as, for the space of rapidly decreasing distributions, see [3, 20],
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S′(R3)∞ =
⋂
I∈R

⋃
Z ∈R

�I,Z (R3) = �+∞,−∞ (R3). (20)

The continuity property of the elements of Op((<,`) on the scale of spaces
�I,Z (R3), (<, `), (I, Z) ∈ R2, is expressed more precisely in the next Theorem 2.

Theorem 2 Let 0 ∈ (<,` (R3), (<, `) ∈ R2. Then, for any (I, Z) ∈ R2, Op(0) ∈
L(�I,Z (R3), �I−<,Z−` (R3)), and there exists a constant � > 0, depending only
on 3, <, `, I, Z , such that

‖Op(0)‖ℒ (� I,Z (R3) ,� I−<,Z−` (R3)) ≤ �‖0‖
<,`

[ 32 ]+1
, (21)

where [C] denotes the integer part of C ∈ R and ℒ(-,. ) stands for the space of
linear and continuous maps from a space - to a space . .

Cordes introduced the class O(<, `) of the operators of order (<, `) as follows,
see, e.g., [9].

Definition 3 A linear continuous operator � : S(R3) → S(R3) belongs to the class
O(<, `), of the operators of order (<, `) ∈ R2 if, for any (I, Z) ∈ R2, it extends to
a linear continuous operator �I,Z : �I,Z (R3) → �I−<,Z−` (R3). We also define

O(∞,∞) =
⋃

(<,`) ∈R2

O(<, `), O(−∞,−∞) =
⋂

(<,`) ∈R2

O(<, `).

Remark 4 1. Trivially, any � ∈ O(<, `) admits a linear continuous extension
�∞,∞ : S′(R3) → S′(R3). In fact, in view of (19), it is enough to set
�∞,∞ |� I,Z (R3) = �I,Z .

2. Theorem 2 implies Op((<,` (R3)) ⊂ O(<, `), (<, `) ∈ R2.
3. O(∞,∞) and O(0, 0) are algebras under operator multiplication, O(−∞,−∞)

is an ideal of both O(∞,∞) and O(0, 0), and O(<1, `1) ◦ O(<2, `2) ⊂ O(<1 +
<2, `1 + `2).

The following characterization of the class O(−∞,−∞) is often useful, see [9].

Theorem 3 The class O(−∞,−∞) coincides with Op((−∞,−∞ (R3)) and with the
class of smoothing operators, that is, the set of all the linear continuous operators
� : S′(R3) → S(R3). All of them coincide with the class of linear continuous
operators � admitting a Schwartz kernel  � belonging to S(R23).

An operator � = Op(0) and its symbol 0 ∈ (<,` are called elliptic (or (<,`-elliptic)
if there exists ' ≥ 0 such that

�〈G〉<〈b〉` ≤ |0(G, b) |, |G | + |b | ≥ ',

for some constant � > 0. If ' = 0, 0−1 is everywhere well-defined and smooth, and
0−1 ∈ (−<,−`. If ' > 0, then 0−1 can be extended to the whole of R23 so that the
extension 0̃−1 satisfies 0̃−1 ∈ (−<,−`. An elliptic (� operator � ∈ Op((<,`) admits
a parametrix �−1 ∈ Op((−<,−`) such that
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�−1� = � + '1, ��−1 = � + '2,

for suitable '1, '2 ∈ Op((−∞,−∞), where � denotes the identity operator. In such
a case, � turns out to be a Fredholm operator on the scale of functional spaces
�I,Z (R3), (I, Z) ∈ R2.

Proposition 1 Let � = Op(0) be a (� pseudodifferential operator, with symbol
0 ∈ (<,` (R3), (<, `) ∈ R2, and let  � denote its Schwartz kernel. Then, the
Fourier transform with respect to the second argument of  �, F·↦→[ �(G, ·), is
given by

F·↦→[ �(G, ·) = e−iG ·[0(G,−[). (22)

The proof of Proposition 1 can be found, e.g., in [9]. The next Lemma 1 is a special
case of the similar, more general result for the kernel of (� Fourier integral operators
proved, for instance, in [5]. We give its direct proof here, for the convenience of the
reader.

Lemma 1 Let � = Op(0) be a (� pseudodifferential operator with symbol 0 ∈
(<,` (R3), (<, `) ∈ R2, and let  � denote its Schwartz kernel. Then, for every
G ∈ R3 ,  �(G, ·) ∈ S′(R3)∞. More precisely, we find  � ∈ �∞ (R3 ,S′(R3)∞).

Proof Given a fixed G ∈ R3 , by [3, Theorem 3.3], to see that  �(G, ·) ∈ S′(R3)∞ it
suffices to show that for every j ∈ D(R3),  �(G, ·) ∗ j ∈ S(R3).We already know
[20, p. 244/245] that  �(G, ·) ∗ j is a �∞ function of slow growth. Computing now
its Fourier transform (in the distributional sense), using Proposition 1 we see that

F·↦→[ ( �(G, ·) ∗ j) ([) = F·↦→[ �(G, ·) · ĵ([) = e−iG ·[0(G,−[) ĵ([) ∈ S(R3[).

It follows that, for its inverse Fourier transform,  �(G, ·) ∗ j ∈ S(R3), too. Finally,
the fact that the map

G ↦→  �(G, H) =
∫
R3
48 (G−H) ·b 0(G, b)đb

belongs to�∞ (R3 ,S′(R3)∞) is a consequence of the general properties of oscillatory
integrals, taking into account that G · b and 0(G, b) are smooth functions with respect
to G. This completes the proof. �

3.2 Construction of the fundamental solution of YM-parabolic
operators

We work here with a class of operators with more general symbols than the (poly-
nomial) ones appearing in (4). Namely, we consider operators of the form

! = mC + �(C) = mC + Op(0(C)), (23)
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where, for <, ` > 0, �(C) = Op(0(C)) are (� pseudodifferential operators with
parameter-dependent symbol 0 ∈ � ( [0, )], (<,` (R3)). Notice that, of course, (4) is
a special case of (23). The parabolicity condition on ! is here expressed by means
of the ((�-)hypoellipticity of �(C), namely,

∃� > 0 Re 0(C, G, b) ≥ �〈G〉<′ 〈b〉`′ ,

∀U, V ∈ N3 ∃�UV > 0

������m
U
G m

V

b
0(C, G, b)

Re 0(C, G, b)

������ ≤ �UV 〈G〉−|U | 〈b〉−|V | . (24)

where 0 < <′ ≤ <, 0 < `′ ≤ `, C ∈ [0, )], G, b ∈ R3 . �(C) is ((�-)elliptic if
< = <′, ` = `′, see above. Elements of the microlocal analysis of (�-parabolic
operators can be found in [9, 15]. As customary, �(C), C ∈ [0, )], is considered as
an unbounded operator in !2 with dense domain �<,` (see [9, Ch. 3, Sec. 3-4]; see
also [15] for the spectral theory of corresponding self-adjoint elliptic operators).

Definition 4 We say that ! = mC + Op(0(C)), 0 ∈ � ( [0, )], (<,` (R3)) is ((�-)
parabolic, with respect to <, <′, `, `′, 0 < <′ ≤ <, 0 < `′ ≤ `, if 0 satisfies the
((�-)hypoellipticity condition (24).

We now prove our first main result, namely, the existence of the fundamental
solution operator of a (�-parabolic operator !.

Theorem 4 Let ! = mC + Op(0(C)), 0 ∈ � ( [0, )], (<,` (R3)) be ((�-)parabolic,
with respect to <, <′, `, `′, 0 < <′ ≤ <, 0 < `′ ≤ `. Then, ! admits a fundamental
solution operator � (C, B), 0 ≤ B ≤ C ≤ ) , 0 ≤ B < ) , that is, an operator family
� (C, B) = Op(4(C, B)) with 4(·, B) ∈ � ((B, )], (0,0 (R3)) ∩ �1 ((B, )], (<,` (R3)),
with the following properties:

1. � satisfies the equation

!� (C, B) = 0, 0 ≤ B < C ≤ ) ; (25)

2. the symbol family 4(C, B) satisfies

4(C, B, G, b) → 1 weakly in (0,0 (R3) for C → B+; (26)

3. writing 4(C, B) as

4(C, B, G, b) = exp
(
−

∫ C

B

0(g, G, b) 3g
)
+ A0 (C, B, G, b), (27)

the symbol family A0 (C, B) satisfies

A0 (C, B, G, b) → 0 weakly in (−1,−1 (R3) for C → B+, (28){
A0 (C, B, G, b)

C − B

}
0≤B<C≤)

is a bounded set in (<−1,`−1 (R3). (29)
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Remark 5 1. It is enough that (24) is satisfied for |G | + |b | ≥ ' > 0. In fact,
if this is the case, there exists " > 0 such that 0" (C, G, b) = 0(C, G, b) + "
satisfies (24) everywhere. Let then �" (C, B) be the fundamental solution of
!" = mC + Op(0" (C)). Then, � (C, B) = 4" (C−B)�" (C, B) is the fundamental
solution of ! and

4" (C−B)4−
∫ C
B
[0 (g)+" ] 3g = 4−

∫ C
B
0 (g) 3g ,

so � (C, B) has the properties stated in Theorem 4.
2. Similarly to the analogous result which holds true for parabolic operators defined

by means of the Hörmander’s symbols (<
d,X
(R3), 0 ≤ X < d ≤ 1, found in [14],

Theorem 4 holds true, with simple modifications, for the generalized class of
(�-symbols (<,`A ,d (R3), A, d ≥ 0, A + d > 0, considered, e.g., in [10].

The next Theorem 5 is an immediate consequence of Theorem 4, by a Duhamel’s
argument and the properties of the fundamental solution � .

Theorem 5 Let D0 ∈ �I,Z (R3), 5 ∈ � ( [0, )], �I,Z (R3)), I, Z ≥ 0, and ! =

mC + �(C) satisfy the same assumptions as in Theorem 4. Then, the Cauchy problem{
!D(C, G) = 5 (C, G), (C, G) ∈ (B, )] × R3 ,
D(B, G) = D0 (G), G ∈ R3 , B ∈ [0, )),

(30)

admits a solution given by

D(C, G) = � (C, B)D0 (G) +
∫ C

B

� (C, g) 5 (g, G) 3g, B ≤ C ≤ ), (31)

with � (C, B) the fundamental solution operator obtained in Theorem 4. Moreover,
such solution satisfies

D ∈ � ( [B, )], �I,Z (R3)) ∩ �1 ( [B, )], �I−<,Z−` (R3)).

Remark 6 Recall that the initial condition in (30) is understood as

lim
C→B+

D(C) = D0 in !2 (R3).

We prove Theorem 4 by extending to the (� setting the argument given in [14] for
the analogous result in the (<

d,X
setting. Similarly to the mentioned proof scheme,

we rely on the next three technical lemmas, which are, essentially, consequences of
the (�-calculus. In particular, the proof of Lemma 4 requires the properties of the
multiproducts of (� pseudodifferential operators (see [1]). For the sake of brevity,
we only sketch the corresponding arguments.

Lemma 2 Assume that 0 ∈ � ( [0, )], (<,` (R3)) satisfies (24), 0 < <′ ≤ <, 0 <

`′ ≤ `, C ∈ [0, )], G, b ∈ R3 . Set
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40 (C, B, G, b) = exp
(
−

∫ C

B

0(g, G, b) 3g
)
,

and define inductively {4 9 (C, B)}∞9=1, {@ 9 (C, B)}
∞
9=1, 0 ≤ B ≤ C ≤ ) by

@ 9 (C, B, G, b) =
9−1∑
:=0

∑
|U |+:= 9

1
U!
mUb 0(C, G, b) · �UG 4: (C, B, G, b), 9 ≥ 1, (32)

and {
[mC + 0(C, G, b)]4 9 (C, B, G, b) = −@ 9 (C, B, G, b),

4 9 (B, B, G, b) = 0, 9 ≥ 1.
(33)

Then, for any U, V ∈ N3 , there exist �UV , � ′UV > 0 such that

|mUG m
V

b
4 9 (C, B, G, b) | ≤

{
�UV 〈G〉−|U | 〈b〉−|V | , 9 ≥ 0
� ′
UV
(C − B)〈G〉<−|U |− 9 〈b〉`−|V |− 9 , 9 + |U + V | ≥ 1.

(34)

The proof of Lemma 2 follows from an accurate usage of the trivial estimate B^4−B ≤
�^ < ∞ for every B ≥ 0, with constants �^ > 0, ^ ∈ [0, +∞), and from condition
(24). By explicitly writing

@1 (C, B, G, b) = −
=∑
9=1
mb 90(C, G, b) 40 (C, B, G, b)

∫ C

B

mG 90(g, G, b) 3g,

observing that

|40 (C, B, G, b) | = 4−
∫ C
B

Re 0 (g,G, b ) 3g ≤ 4−� (C−B) 〈G 〉<
′ 〈b 〉`′ ≤ 1, (35)

����40 (C, B, G, b)
∫ C

B

mG 90(g, G, b) 3g
���� . 4− ∫ C

B
Re 0 (g,G, b ) 3g

∫ C

B

〈G〉−1Re 0(g, G, b) 3g

≤ �1〈G〉−1 . 〈G〉−1,

and similarly estimating derivatives, one can prove @1 (C, B, G, b) ∈ (�<−1,`−1 (and,
inductively, @ 9 (C, B, G, b) ∈ (�<− 9 ,`− 9 ). Now, solving (33), it follows

4 9 (C, B, G, b) = −40 (C, B, G, b)
∫ C

B

@ 9 (g, B, G, b)
40 (g, B, G, b)

3g, 9 ≥ 1. (36)

On one hand, we can estimate

|4 9 (C, B, G, b) | ≤
∫ C

B

|@ 9 (g, B, G, b) | 3g ≤ � (C − B)〈G〉<− 9 〈b〉`− 9 , 9 ≥ 1.

On the other hand, by explicitly writing @1 and using (24) twice, we get
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|41 (C, B, G, b) | . 〈G〉−1〈b〉−14−
∫ C
B

Re 0 (g,G, b ) 3g
(∫ C

B

Re 0(g, G, b) 3g
)2

≤ �2〈G〉−1〈b〉−1 . 〈G〉−1〈b〉−1.

Similar arguments work for the derivatives of 4 9 , 9 ≥ 2, so that we can actually
conclude 4 9 (C, B, G, b) ∈ (�− 9 ,− 9 , 9 ≥ 1.

Lemma 3 Let, for # ≥ 1,

�# (C, B) =
#−1∑
9=0

Op(4 9 (C, B)),

and
'# (C, B) = Op(A# (C, B)) = !�# (C, B), (37)

with ! from Theorem 4 and {4 9 (C, B)}∞9=1 from Lemma 2. Then,

A# (·, B) ∈ � ((B, )], (<−# ,`−# (R3)), 0 ≤ B < ), (38){
A# (C, B)
C − B

}
0≤B<C≤)

is bounded in (2<−# ,2`−# (R3). (39)

The proof of Lemma 3 is straightforward, in view of Lemma 2. Indeed, by the (�-
calculus, employing the asymptotic expansion of the symbol of op(0(C))� 9 (C, B),

!�# (C, B) =
#−1∑
9=0

op(mC4 9 (C, B) + 0(C)4 9 (C, B))

+
#−1∑
9=0

#− 9∑
|U |=1

8 |U |

U!
op(�Ub 0(C)�UG 4 9 (C, B)) +

#−1∑
9=0

'# , 9 (C, B),

with A# , 9 (C, B, G, b) ∈ (�<−#−1,`−#−1, since 4 9 ∈ (�− 9 ,− 9 for every 9 ≥ 0, and
A# , 9 (C, B, G, b) ∈ (�2<−#−1,2`−#−1, for every 9 ≥ 1, by the second inequality in
(34). By the choice of @ 9 in (32) and by equation (33), we see that !�# (C, B) =∑#−1
9=0 '# , 9 (C, B) = '# (C, B), and formulae (38) and (39) hold.

Lemma 4 Let '# (C, B) = Op(A# (C, B)) be defined by (37), with

# ≥ 1 such that max{<, `} − # ≤ 0. (40)

Define inductively the sequence of operator families {,a (C,B)}∞a=1= {Op(Fa (C,B))}∞a=1,
0 ≤ B ≤ C ≤ ) , by

,1 (C, B) = −'# (C, B) = −Op(A# (C, B)), (41)

,a (C, B) =
∫ C

B

,1 (C, g) ◦,a−1 (g, B) 3g, a ≥ 2. (42)
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Then, for ; ≥ 1, 0 ≤ B ≤ C ≤ ) ,

;∑
a=1

,a (C, B) = −'# (C, B) −
∫ C

B

'# (C, g)
;−1∑
a=1

,a (g, B) 3g, (43)

and, for any U, V ∈ N3 , there exist constants �UV , �′UV > 0 such that, for 0 ≤ B ≤
C ≤ ) , G, b ∈ R3 ,

|mUG m
V

b
Fa (C, B, G, b) | ≤ (�UV)a

(C − B)a−1

(a − 1)! 〈G〉
<−#−|U | 〈b〉`−#−|V | , (44)

|mUG m
V

b
Fa (C, B, G, b) | ≤ (�′UV)a

(C − B)a
(a − 1)! 〈G〉

2<−#−|U | 〈b〉2`−#−|V | . (45)

Formula (43) follows readily by definitions (41) and (42). To get (44) and (45) we
need to write

,a (C, B) =
∫ C

B

∫ C1

B

· · ·
∫ Ca−2

B

,1 (C, C1) · · ·,1 (Ca−1, B)3Ca−1 · · · 3C1.

By the choice of # , we can look at ,1 (C, C1) as an operator of order either (< −
#, ` − #) or (2< − #, 2` − #) according to (37) or (38), respectively, and we can
look at,1 (C1, C2), . . . ,,1 (Ca−1, B) as operators of order (0, 0). By integrating on the
symplex B ≤ Ca−1 ≤ · · · ≤ C1 ≤ C, formulae (44) and (45) follow.

Proof (of Theorem 4) Lemma 4 implies that

, (C, B) =
∞∑
a=1

,a (C, B)

converges in the topology of Op((<−# ,`−# ), since, by (44),
∑
a Fa (C, B) converges

in the topology of (<−# ,`−# , for any fixed # satisfying (40) and 0 ≤ B ≤ C ≤ ) .
With �# (C, B) fromLemma 3, define, for 0 ≤ B < C ≤ ) , # ≥ 1,max{<, `}−# ≤ 0,

� (C, B) = �# (C, B) +
∫ C

B

�# (C, g) ◦, (g, B) 3g. (46)

Then, by (37),

!� (C, B) = !�# (C, B) +, (C, B) +
∫ C

B

[!�# (C, g)] ◦, (g, B) 3g

= '# (C, B) +, (C, B) +
∫ C

B

'# (C, g) ◦, (g, B) 3g.
(47)

By letting ; → +∞ in (43), we find, for any # satisfying (40),

, (C, B) = −'# (C, B) −
∫ C

B

'# (C, g) ◦, (g, B) 3g,
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so that, by (47), it follows !� (C, B) = 0, 0 ≤ B < C ≤ ) , as claimed. All the properties
of the symbol 4(C, B) of the operator family � (C, B) are then consequences of (46)
and Lemmas 2, 3, and 4. �

Remark 7 Clearly, by construction, 4(C, B) (and � (C, B)) are continuous also with
respect to B, 0 ≤ B ≤ C ≤ ) (see Lemmas 2, 3, and 4, and the proof of Theorem 4).

In the next Lemma 5, we obtain further estimates for the symbol family 4(C, B),
showing that, actually, for 0 ≤ B < C ≤ ) , it gives rise to (a�1 family of) operators in
O(−∞,−∞). This, of course, cannot be extended by continuity up to C = B, but some
!1 regularity with respect to C, that we employ in Section 4, can still be achieved.

Lemma 5 For every 9 ∈ N, U, V ∈ N3 , we have, for suitable constants � ′
9 UV

> 0,

|mUG m
V

b
4 9 (C, B, G, b) | ≤ � ′9 UV

√
|40 (C, B, G, b) | 〈G〉− 9−|U | 〈b〉− 9−|V | , (48)

with 0 ≤ B ≤ C ≤ ) , (G, b) ∈ R3 . Moreover, for every 9 ∈ N, 0 ≤ B < ) ,
4 9 (·, B) ∈ �1 ((B, )],S(R23)) and 4(·, B) ∈ !1 ( [B, )], (−^<′,−^`′ (R3)) , mC4(·, B) ∈
!1 ( [B, )], (<−^<′,`−^`′ (R3)), for every ^ ∈ [0, 1).

Proof From (35), for every <′, `′ > 0 we see that, for every ^ ∈ [0, 1),

|40 (C, B, G, b) | ≤

≤ 4−� (C−B) 〈G 〉<
′ 〈b 〉`′ (� (C − B)〈G〉<′ 〈b〉`′)^ (� (C − B)〈G〉<′ 〈b〉`′)−^

.
�^

(C − B)^ 〈G〉
−^<′ 〈b〉−^`′ . (C − B)−^ 〈G〉−^<′ 〈b〉−^`′ ,

(49)

where�^ is the upper bound of B^4−B , B ≥ 0, which gives 〈G〉^<′ 〈b〉^`′40 (·, B, G, b) ∈
!1 ( [B, )]), and similarly for the derivatives with respect to G and b. By induction,
(48) follows. Let us perform part of the induction step for 9 = 1, leaving the remaining
details to the reader. We have:

|41 (C, B, G, b) | ≤
3∑
9=1
|40 (C, B, G, b) |

����∫ C

B

mb 90(g, G, b) · �G 9 40 (g, B, G, b)
40 (g, B, G, b)

3g

����
≤

3∑
9=1
|40 (C, B, G, b) |

∫ C

B

|mb 90(g, G, b) | ·
����∫ g

B

�G 9Re 0(A, G, b) 3A
���� 3g

. 〈b〉−1〈G〉−1 |40 (C, B, G, b) |
∫ C

B

|Re 0(g, G, b) | ·
(∫ g

B

Re 0(A, G, b) 3A
)
3g

≤ 〈b〉−1〈G〉−1 |40 (C, B, G, b) |
1
2

[
|40 (C, B, G, b) |

(∫ C

B

Re 0(g, G, b) 3g
)4

] 1
2

≤
√
�4 〈b〉−1〈G〉−1 |40 (C, B, G, b) |

1
2 . 〈b〉−1〈G〉−1 |40 (C, B, G, b) |

1
2 ,

with �4 the upper bound of the function B44−B , B ≥ 0. This implies
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|41 (C, B, G, b) | .
√
40 (C, B, G, b) ≤ 4−

�
2 (C−B) 〈G 〉

<′ 〈b 〉`′ . (C − B)−^ 〈G〉−^<′ 〈b〉−^`′ ,

for every ^ ∈ [0, 1), and similar estimates hold for the derivatives of 41, and for 4 9 ,
9 ≥ 2. From the definition of �# in Lemma 3, we have �# (C, B) ∈ Op((−^<′,−^`′).
Again, reading, (C, B) as an operator of order (0, 0), from equation (46) we now see
that � (·, B) ∈ !1 ( [B, )],Op((−^<′,−^`′)), that is, 4(·, B) ∈ !1 ( [B, )]; (−^<′,−^`′).
That mC4(·, B) ∈ !1 ( [B, )], (<−^<′,`−^`′) follows then by the result for 4(·, B),
recalling mC� (C, B) = −Op(0(C))� (C, B), 0 ≤ B < C ≤ ) , by Theorem 4, and
0 ∈ � ( [0, )], (<,`), by hypothesis.

Arguing similarly, using (24), (48), and (49), it follows, that, for all 9 , " ∈ N,
U, V ∈ N3 , there exists � ′′

9" UV
> 0 such that, for any G, b ∈ R3 , 0 ≤ B < C ≤ ) ,

| (〈G〉〈b〉)" mUG m
V

b
4 9 (C, B, G, b) | ≤ � ′′9" UV (C − B)

− "
min{{<′,`′} ,

and analogous estimates for mC4 9 (C, B, G, b), which imply 4 9 (·, B) ∈�1 ((B, )],S(R3)),
as claimed. �

Corollary 1 Under the same hypothesis of Theorem 5, the solution of the Cauchy
problem (30) described there satisfies, for any ^ ∈ [0, 1),

D ∈ � ( [B, )], �I,Z (R3)) ∩ �1 ( [B, )], �I−<,Z−` (R3))∩
∩ �1 ((B, )],S(R3)) ∩ !1 ( [B, )], �I+^<′,Z+^`′ (R3)).

It also satisfies !1 ( [B, )], �I−<+^<′,Z−`+^`′ (R3)), ^ ∈ [0, 1).

Proof The claim is an immediate consequence of Lemma 5 and Duhamel’s formula
(31) from Theorem 5, using (19) and Theorem 2. �

4 Existence of a random-field solution

In the next Theorem 6 we prove our second main result, the existence of a random-
field solution of the SPDE (1), under the assumptions of ((�-)parabolicity for
the operator !, see Definition 4. We consider, in the !2 (R3) environment, the
corresponding Cauchy problem{

!D(C, G) = 5 (C, G) = W(C, G) + f(C, G) ¤Ξ(C, G), (C, G) ∈ (0, )] × R3 ,
D(0, G) = D0 (G), G ∈ R3 ,

(50)

with the aim of finding conditions on !, on the stochastic noise ¤Ξ, and on f, W, D0,
such that (50) admits a random-field solution. The conditions on the stochastic noise
will be given on the spectral measureM corresponding to the correlation measure Γ
related to the noise ¤Ξ.



20 Alessia Ascanelli, Sandro Coriasco, and André Süß

Theorem 6 Let us consider the Cauchy problem (50) for a SPDE associated with
a (�-parabolic operator ! of the form (23). Assume also, for the initial con-
ditions, that D0 ∈ �I,Z (R3), with I ≥ 0 and Z > 3/2. Furthermore, assume
that W ∈ � ( [0, )];�I,Z (R3)), f ∈ � ( [0, )], �0,Z (R3)), B ↦→ Ff(B) = aB ∈
!2 ( [0, )],M1 (R3)). Assume that one of the following conditions on the spectral
measureM, associated with the random noise ¤Ξ, hold true:

(H0) either, for every C ∈ [0, )],

sup
0≤B<C

sup
[∈R3

∫
R3
|4(C, B, G, b + [) |2M(3b) < ∞ (51)

and

lim
ℎ↓0

sup
[∈R3

∫
R3

sup
A ∈(B,B+ℎ)

|4(C, B, G, b+[)−4(C, A, G, b+[) |2M(3b) = 0, 0 ≤ B < C,

(52)
where 4(C, B) is the (parameter-dependent) symbol of the fundamental solution
of the operator !,

(H1) or ∫
R3
M(3b) < ∞, (53)

(H2) orM is absolutely continuous, |aB |tv ∈ !∞ (0, )), and∫
R3

M(3b)
〈b〉`′ < ∞. (54)

Then, there exists a random-field solution D of (7). Moreover, for any ^ ∈ [0, 1),

E[D] ∈ � ( [0, )], �I,Z (R3)) ∩ �1 ( [0, )], �I−<,Z−` (R3))∩
∩ �1 ((0, )],S(R3)) ∩ !1 ( [0, )], �I+^<′,Z+^`′ (R3)).

It also satisfies mCE[D] ∈ !1 ( [0, )], �I−<+^<′,Z−`+^`′ (R3)), ^ ∈ [0, 1).

Remark 8 The class of the stochastic noiseswhich are admissible, if wewant to obtain
a random-field solution of the Cauchy problem for a SPDE through our method, is
described by (51) and (52) for all (�-parabolic operators !, by (53) or (54) under
some additional assumptions. Conditions (51), (53), and (54) can be understood as
compatibility conditions between the noise and the equation.

Proof (of Theorem 6) Let us insert 5 (C, G) = W(C, G) +f(C, G) ¤Ξ(C, G) in (31), so that,
formally,
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D(C, G) = E0 (C, G) +
∫ C

0

∫
R3
Λ(C, B, G, H)W(B, H) 3H3B

+
∫ C

0

∫
R3
Λ(C, B, G, H)f(B, H) ¤Ξ(B, H) 3H3B

= E0 (C, G) + E1 (C, G) + E2 (C, G),

(55)

where we indicated by Λ(C, B) the Schwartz kernel of � (C, B) and E0 = � (C, B)D0.

In view of the special structure of Λ (kernel of a smooth family of certain (�-
pseudodifferential operators, as described in the previous section), the fact that the
deterministic integral in (55) and E0 are well-defined directly follows by the general
theory of (� equations, under the assumptions on W given in the statement of
Theorem 6. By Theorem 5, recalling also Theorem 2 and (26), we find, for any
^ ∈ [0, 1),

E0 ∈ � ( [0, )], �I,Z ) ∩ �1 ( [0, )], �I−<,Z−`)∩
∩ �1 ((0, )],S) ∩ !1 ( [0, )], �I+^<′,Z+^`′) ⊂ � ( [0, )], !2),

which is a continuous function in (C, G) ∈ [0, )] × R3 . This implies that E0 (C, G) is
finite for every (C, G) ∈ [0, )] × R3 . Since W ∈ � ( [0, )], �I,Z ), by the properties of
� (C, B) wefind that E1 is of the same regularity class of E0, namely, it is a well-defined,
continuous function in (C, G) ∈ [0, )]×R3 . For this term, since we also have � (C, ·) ∈
!1 ( [0, )],O(−^<′,−^`′)), we additionally find E1 ∈ � ( [0, )], �I+^<

′,Z+^`′). We
can rewrite E2 in (55) as

E2 (C, G) =
∫ C

0

∫
R3
Λ(C, B, G, H)f(B, H)" (3B, 3H),

where" is the martingale measure associated with the stochastic noise Ξ, as defined
in Section 2. Then, we prove that conditions (A1), (A2), from Section 2 hold true,
to achieve that such stochastic integral is well-defined. To this aim, we first observe
that, by Proposition 1 and Theorem 4,

|FH ↦→[Λ(C, B, G, ·) ([) |2 =
��e−iG ·[4(C, B, G,−[)

��2 = |4(C, B, G,−[) |2 ≤ �C ,B , (56)

where �C ,B can be chosen to be continuous in B and C, in view of the properties of
4(C, B), see Lemmas 2-5.

1. Using (56), we get that condition (A1), with Λ(C, B) being the Schwartz kernel
of � (C, B), is satisfied if for every C ∈ [0, )]

� =

∫ C

0

(
sup
[∈R3

∫
R3
|4(C, B, G, [ + b) |2M(3b)

)
|aB |2tv 3B < ∞.

If we assume the hypothesis (H0), we find, by the assumptions on f, for every
C ∈ [0, )],
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� ≤
(

sup
0≤B<C

sup
[∈R3

∫
R3
|4(C, B, G, [ + b) |2M(3b)

) ∫ C

0
|aB |2tv 3B < ∞,

and (A1) holds true.
If we assume the hypothesis (H1), we find, again by the assumptions on f,
taking into account that 4(C, B) ∈ (0,0, 0 ≤ B ≤ C ≤ ) ,

� .

∫ C

0

(
sup
[∈R3

∫
R3
M(3b)

)
|aB |2tv 3B =

(∫
R3
M(3b)

) ∫ C

0
|aB |2tv 3B < ∞,

showing that (A1) holds true as well in this second case.
Finally, if we assume the hypothesis (H2), using the absolute continuity of
M, the uniform boundedness of |aB |tv, and Lemma 5, first we observe that
(46) implies 4(C, B) = 4# (C, B) mod � ( [B, )], (−∞,−∞), and compute, for any
" ≥ max{<′, `′} > 0, and a suitable �C ,B , continuous with respect to B, C,
0 ≤ B ≤ C ≤ ) ,∫ C

0

∫
R3
|4(C, B, G, b) |2M(3b) |aB |2tv 3B

.

∫ C

0

∫
R3

[
|4# (C, B, G, b) |2 mod �C ,B · (−∞,−∞

]
M(3b) 3B

.

∫
R3

∫ C

0

[
40 (C, B, G, b) +

�C ,B

(〈G〉〈b〉)"

]
3BM(3b)

.

∫
R3

[
1 − 4−�C 〈G 〉<

′ 〈b 〉`′

〈G〉<′ 〈b〉`′ + 1
(〈G〉〈b〉)"

]
M(3b)

.

∫
R3

M(3b)
〈b〉`′ < ∞,

⇒ � =

∫ C

0

(
sup
[∈R3

∫
R3
|4(C, B, G, b + [) |2M(3b)

)
|aB |2tv 3B

=

∫ C

0

(
sup
[∈R3

∫
R3
|4(C, B, G, b) |2M(3b)

)
|aB |2tv 3B

.

(∫
R3

M(3b)
〈b〉`′

) ∫ C

0
|aB |2tv 3B < ∞,

proving that (A1) holds true also in this last case.

2. Using (56), we get that condition (A2), with Λ(C, B) being the Schwartz kernel
of � (C, B), is satisfied if
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 = lim
ℎ↓0

∫ C

0
j[0,C−ℎ) (B)

×
(

sup
[∈R3

∫
R3

sup
A ∈(B,B+ℎ)

|4(C, B, G, b + [) − 4(C, A, G, b + [) |2M(3b)
)

× |aB |2tv 3B = 0.

If we assume the hypothesis (H0), we find, by regularity of 4 with respect to
(C, B), (52), the assumptions on f, and, recalling (51), Lebesgue’s Dominated
Convergence Theorem, for every C ∈ [0, )],

 = lim
ℎ↓0

∫ C

0
j[0,C−ℎ) (B)

×
(

sup
[∈R3

∫
R3

sup
A ∈(B,B+ℎ)

|4(C, B, G, b + [) − 4(C, A, G, b + [) |2M(3b)
)

× |aB |2tv 3B

=

∫ C

0
lim
ℎ↓0

j[0,C−ℎ) (B)

×
(

sup
[∈R3

∫
R3

sup
A ∈(B,B+ℎ)

|4(C, B, G, b + [) − 4(C, A, G, b + [) |2M(3b)
)

× |aB |2tv 3B = 0,

and (A2) holds true.
If we assume the hypothesis (H1), it suffices to show that

sup
A ∈(B,B+ℎ)

|4(C, B, G, b + [) − 4(C, A, G, b + [) |2 ≤ �2
C ,B,ℎ , (57)

with �C ,B,ℎ a continuous function with respect to B, C, ℎ, such that �C ,B,ℎ → 0 as
ℎ ↓ 0 and �C ,B,ℎ ≤ �) for every ℎ ∈ [0, C − B], 0 ≤ B < C ≤ ) . Indeed, since
4(C, B) is regular with respect to B and C, if (57) holds true we find, for 0 ≤ C ≤ ) ,∫ C

0
j[0,C−ℎ) (B)

×
(

sup
[∈R3

∫
R3

sup
A ∈(B,B+ℎ)

|4(C, B, G, b + [) − 4(C, A, G, b + [) |2M(3b)
)

× |aB |2tv 3B

≤
∫ C

0
�2
C ,B,ℎ

(
sup
[∈R3

∫
R3
M(3b)

)
|aB |2tv 3B=

( ∫
R3
M(3b)

) ∫ C

0
|aB |2tv �2

C ,B,ℎ 3B,

which implies
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0 ≤  

= lim
ℎ↓0

∫ C

0
j[0,C−ℎ) (B)

×
(

sup
[∈R3

∫
R3

sup
A ∈(B,B+ℎ)

|4(C, B, G, b + [) − 4(C, A, G, b + [) |2M(3b)
)

× |aB |2tv 3B

≤
( ∫
R3
M(3b)

)
lim
ℎ↓0

∫ C

0
|aB |2tv �2

C ,B,ℎ 3B

=

( ∫
R3
M(3b)

) ∫ C

0
|aB |2tv

(
lim
ℎ↓0

�2
C ,B,ℎ

)
3B = 0,

via Lebesgue’s Dominated Convergence Theorem, showing that (A2) holds true
as well in this second case. The proof of (57) is actually a simpler version of the
analogous inequality proved in [4, 5], so we omit it here.
If we assume hypothesis (H2), it suffices to show that

sup
A ∈(B,B+ℎ)

|40 (C, B, G, b) − 40 (C, A, G, b) |2 ≤ �B,ℎ 4−� (C−B) 〈G 〉
<′ 〈b 〉`′ , (58)

where �B,ℎ is a positive function, continuous with respect to ℎ, B, ℎ ∈ [0, C − B],
0 ≤ B < C ≤ ) , and such that �B,ℎ → 0 as ℎ → 0, while � is the costant which
appears in (24). Indeed, if (58) hods true, writing as above 4(C, B) = 4# (C, B)
mod � ( [B, )], (−∞,−∞), choosing " ≥ max{<′, `′} > 0, with �C ,B a suitable
continuous function of B, C, 0 ≤ B ≤ C ≤ ) , we find, for 0 ≤ B < C ≤ ) ,∫ C

0
j[0,C−ℎ) (B)

×
(

sup
[∈R3

∫
R3

sup
A ∈(B,B+ℎ)

|4(C, B, G, b + [) − 4(C, A, G, b + [) |2M(3b)
)

× |aB |2tv 3B

≤
∫ C

0
j[0,C−ℎ) (B)

( ∫
R3

sup
A ∈(B,B+ℎ)

|4(C, B, G, b) − 4(C, A, G, b) |2M(3b)
)
|aB |2tv 3B

.

∫ C

0
j[0,C−ℎ) (B)

×
[∫
R3

sup
A ∈(B,B+ℎ)

(
|40 (C, B, G, b) − 40 (C, A, G, b) |2+

|�C ,B − �C ,A |2

(〈G〉〈b〉)2"

)
M(3b)

]
× |aB |2tv 3B
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.

∫ C

0

[∫
R3

(
�B,ℎ4

−� (C−B) 〈G 〉<′ 〈b 〉`′ +
�C ,B,ℎ

(〈G〉〈b〉)2"

)
M(3b)

]
3B

. �̃C ,ℎ

∫
R3

[ ∫ C

0

(
4−� (C−B) 〈G 〉

<′ 〈b 〉`′ + 1
(〈G〉〈b〉)2"

)
3B

]
M(3b)

. �̃C ,ℎ

∫
R3

(
1 − 4−�C 〈G 〉<

′ 〈b 〉`′

〈G〉<′ 〈b〉`′ + 1
(〈G〉〈b〉)2"

)
M(3b)

. �̃C ,ℎ

∫
R3

M(3b)
〈b〉`′ ,

where �̃C ,ℎ = max0≤B≤C (�B,ℎ + �C ,B,ℎ), �̃C ,ℎ → 0 for ℎ ↓ 0. This implies, by
(54),

0 ≤  

= lim
ℎ↓0

∫ C

0
j[0,C−ℎ) (B)

×
(

sup
[∈R3

∫
R3

sup
A ∈(B,B+ℎ)

|4(C, B, G, b + [) − 4(C, A, G, b + [) |2M(3b)
)

× |aB |2tv 3B

.

(∫
R3

M(3b)
〈b〉`′

)
lim
ℎ↓0

�̃C ,ℎ = 0,

proving that (A2) holds true also in this last case. Let us then show that (58)
holds true. We have:

|40 (C, B, G, b) − 40 (C, A, G, b) |

=

���4− ∫ C
B
0 (g,G, b ) 3g − 4−

∫ C
A
0 (g,G, b ) 3g

���
= 4−

∫ C
B

Re 0 (g,G, b ) 3g
���1 − 4∫ AB 0 (g,G, b ) 3g ���

≤ 4−
∫ C
B

Re 0 (g,G, b ) 3g
∫ A

B

Re 0(g, G, b) 3g

≤ 4−
1
2
∫ C
B

Re 0 (g,G, b ) 3g
(
4−

1
2
∫ A
B

Re 0 (g,G, b ) 3g
∫ A

B

Re 0(g, G, b) 3g
)

≤ 4−�2 (C−B) 〈G 〉<
′ 〈b 〉`′�B,A

with a function �B,A , continuous in B, A and such that �B,A ≤
√
�2, �2 the

supremum of B24−B , B ≥ 0. This implies

sup
A ∈(B,B+ℎ)

|40 (C, B, G, b) − 40 (C, A, G, b) |2 ≤ �B,ℎ 4−� (C−B) 〈G 〉
<′ 〈b 〉`′
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with �B,ℎ = supA ∈(B,B+ℎ) �2
B,A , which clearly has all the requested properties.

Summing up, E2 in (55) is well-defined, as a stochastic integral with respect
to the martingale measure canonically associated with M, under either one of the
hypotheses (H0), (H1), or (H2). Since E[E2] = 0, the regularity of E[D] is the same
as the one of the solution of the associated deterministic Cauchy problem, described
in Theorem 5. The proof is complete. �
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