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Via Trieste 63, I-35121 Padova (Italy)

E-mail address: bianchini@dmsa.unipd.it
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Abstract
1 In this work, we study the existence problem for positive solutions of the

Yamabe type equation

∆u+ q(x)u− b(x)uσ = 0, σ > 1, (Y)

on complete manifolds possessing a pole, the main novelty being that b(x) is
allowed to change signs. This relevant class of PDEs arises in a number of
different geometric situations, notably the (generalized) Yamabe problem, but
the sign-changing case has remained basically unsolved in the literature, with
the exception of few special cases. This paper aims at giving a unified treatment
for (Y), together with new, general existence theorems expressed in terms of the
growth of |b(x)| at infinity with respect to the geometry of the manifold and to
q(x). We prove that our results are sharp and that, even for Rm, they improve
on previous works in the literature. Furthermore, we also detect the asymptotic
profile of u(x) as x diverges, and a detailed description of the influence of q(x)
and of the geometry of M on this profile is given. The possibility to express the
assumptions in an effective and simple way also depends on some new asymptotic
estimates for solutions of the linear Cauchy problem (vh′)′ +Avh = 0, h(0) = 1,
h′(0) = 0, of independent interest.

Introduction

Let (M, 〈 , 〉) be a connected, non-compact Riemannian manifold of dimension m ≥ 2,
and let q(x), b(x) ∈ C∞(M), σ > 1. In recent years, the Yamabe type equation

∆u+ q(x)u− b(x)uσ = 0 on M (1)

1Mathematic subject classification 2010: primary 58J05, 35B40; secondary 53C21, 34C11,
35B09.

Keywords: Yamabe equation, sign-changing nonlinearity, Schrödinger operator, comparison,
monotone iteration, ODE methods.
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has been an important subject of investigation for many authors. One of the main
geometric motivations comes from the (generalized) Yamabe problem, that is, that of

finding a metric 〈̃ , 〉, conformally related to 〈 , 〉, and with assigned scalar curvature
s̃(x). When m ≥ 3 and writing the conformal deformation as

〈̃ , 〉 = u
4

m−2 〈 , 〉, for some u ∈ C∞(M), u > 0, (2)

the relation between the background scalar curvature s(x) and s̃(x) (first considered
from an analytical point of view in [36]) is expressed by the equation

∆u− s(x)

cm
u+

s̃(x)

cm
u
m+2
m−2 = 0, (3)

where cm = 4(m−1)
m−2 and ∆ is the Laplace-Beltrami operator in the metric 〈 , 〉. Thus,

the original geometric task translates into that of the existence of a positive smooth
solution u of (3). The case where s̃(x) (more generally, b(x) in (1)) is allowed to
change signs reveals to be the most challenging, and very little is known either about
the existence or the non-existence of positive solutions.

In this paper, we shall study in detail this problem on manifolds (M, 〈 , 〉) possessing
a pole o, and whose radial sectional curvature with respect to o satisfies either

Krad(x) ≤ −G
(
r(x)

)
r(x) = dist(x, o) (4)

or the two-sided bound

−Ḡ
(
r(x)

)
≤ Krad(x) ≤ −G

(
r(x)

)
, (5)

for some continuous functions G, Ḡ. We recall that Krad(x) is defined as the restriction
of the sectional curvature to the 2-planes at x containing ∇r(x). As we shall see, G
and Ḡ will be subjected to mild assumptions: eventually, the sole requirement we need
on G is that the model manifold Mg, constructed from G and to which M is compared,
be non-parabolic. Therefore, the class of manifolds to which our techniques apply is
large (for instance, it includes every Cartán-Hadamard manifold of dimension m ≥ 3,
as well as hyperbolic spaces of any dimension), and enables us to formulate a sound
judgement on the influence of geometry on the problem. In particular, the critical
growth of b(x) will naturally appear, and the reasons for its criticality will become
evident. Specializing to manifolds close, in a broad sense, to the hyperbolic space, our
results reveal quite appealing, and show in full strength their sharpness; for instance,
see Theorem 2 below.

In the case when σ ≤ (m + 2)/(m − 2) and b(x) < 0 somewhere, the existence
problem for (1) has often been studied via a combination of concentration-compactness
methods and variants of the mountain pass theorem inspired by the seminal paper [4].
Among the literature we limit ourselves to quote the work of Q.S. Zhang, [37], for both
a sharp result and an up-to-date account on the problem, suggesting the interested
reader to consult the references therein for further insight. As in all the variational
approaches to the non-compact Yamabe problem we are aware of, the method in
[37] requires the validity of a global Sobolev-Poincaré type inequality on M via the
positivity of a Yamabe type invariant, and the non-positivity of the term q(x) in (1).
Furthermore, to obtain uniform L∞ estimates one has to assume that the volume
growth of geodesic balls is at most Euclidean. Although the method works at its
best in the Euclidean setting, on general non-compact manifolds the combination of
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the above requirements seem quite demanding, if only because they exclude manifolds
close to the hyperbolic space. For such manifolds, to the best of our knowledge, the
existence problem for (1) with sign-changing b(x) is basically unsolved. In this paper,
we follow a different approach via radialization arguments and the monotone iteration
scheme, inspired by a pioneering work of W.M. Ni. In the Euclidean setting, and for
q(x) = 0, in [24] Ni has given optimal conditions for the existence of positive solutions
of (1) in terms of the growth of |b(x)|, and in the subsequent joint paper with W.Y.
Ding, [6], they describe a whole variety of phenomena to illustrate how subtle is the
dependence of u upon the behaviour of b(x). Ni’s result have subsequently been refined
and extended by M. Naito, [23] and N. Kawano, [12]. Summarizing, they have proved
the following

Theorem 1 ([24], Theorem 1.4, and [23], [12]). Consider the Euclidean space Rm,
m ≥ 3, and let s̃(x) ∈ C∞(Rm) be a function satisfying

|s̃(x)| ≤ B(r(x)), (6)

for some function B ∈ C0(R+
0 ) such that

rB(r) ∈ L1(+∞). (7)

Then, for each Γ2 > 0 and sufficiently small, the Euclidean metric 〈 , 〉 can be con-

formally deformed to a complete, smooth metric 〈̃ , 〉 of scalar curvature s̃(x) and
satisfying

Γ1〈 , 〉x ≤ 〈̃ , 〉x ≤ Γ2〈 , 〉x ∀x ∈ Rm, (8)

for some 0 < Γ1 ≤ Γ2, and

〈̃ , 〉x → C〈 , 〉x as r(x)→ +∞, (9)

for some constant C ∈ [Γ1,Γ2].

Remark 1. Ni stated the theorem under the requirement

|s̃(x)| ≤ C

r(x)l
, (10)

for some C > 0 and l > 2, but he himself observed, already in [24], that

|s̃(x)| ≤ C

r(x)2 log2 r(x)
for r(x) >> 1. (11)

is sufficient.

Remark 2. The case C = 0 in (9), that is, when the conformal factor u → 0 as
r(x) → +∞, reveals to be subtle, and the sole (7) is not sufficient to ensure the
existence of a positive u decaying to 0, as it has been shown in [18].

Condition (7) is essentially sharp. In fact, by Theorem 1.13’ of [24] or Theorem A
of [2], no conformal deformation of Rm exists whenever the new scalar curvature s̃(x)
is required to satisfy

s̃(x) ≤ 0 on Rm, s̃(x) ≤ − C

r(x)2 log r(x)
for r(x) >> 1. (12)

for some constant C > 0.
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Remark 3. By virtue of Theorem 1, one could expect that the condition

s̃(x) ≤ −B(r(x)) ≤ 0 and rB(r) 6∈ L1(+∞) (13)

prevents the existence of any positive solution of ∆u = −s̃(x)uσ on Rm. This claim
is stated as a conjecture in [5] and, to the best of our knowledge, remains an open
problem. In [19], [15] and [5], a number of steps have been moved towards the solution
of this conjecture, giving rise to non-existence conditions slightly more demanding
than (13), see in particular Theorems 2.2 and 2.3 in [5].

Investigating the generalized Yamabe problem on manifolds different from Eu-
clidean space (with particular emphasis on the hyperbolic space), forces us to face
three different kinds of problems. Firstly, these manifolds are (usually) not scalar flat,
hence the term q(x) in (1) must be taken into account and makes the matter more
delicate. Secondly, in the course of their proofs Ni and Naito have exploited some
ad-hoc functions that, for spaces other than Rm, appear to be extremely difficult to
construct. Thirdly, it is not clear whether Ni’s radialization techniques can be coupled
with standard comparison results for the Laplacian in order to obtain conclusions on
manifolds which are not radially symmetric. Therefore, although Ni’s approach looks
promising, his method is insufficient to deal with the general case, and calls for the
use of new techniques. This is the starting point of the present work. We remark that
one of the main difficulties in the study of (1) is that, since b(x) is allowed to change
signs, we cannot use comparison arguments. Therefore, a challenging task will be to
make sure that the subsolution we construct lies below the supersolution, in order for
the monotone iteration scheme to be applicable. As we shall see, this problem will be
made much more difficult due to the presence of nonradial q(x).

Via the Laplacian comparison theorem, under assumptions (4) or (5) the Laplacian
of the distance function r(x) in our manifold (M, 〈 , 〉) will be compared with that of
a model manifolds in the sense of Greene and Wu, [9]. As we shall see, a substantial
part of our investigation will be devoted to model manifolds, of which Euclidean and
hyperbolic spaces are particular cases. For this reason, we feel convenient to recall
their definition and basic properties.

Definition 1. A complete Riemannian manifold (M, 〈 , 〉) is called a model if there
exists a point o ∈ M such that expo : ToM → M is a diffeomorphism and the metric
〈 , 〉 writes, in polar geodesic coordinates (r, θ) on M\{o}, as

〈 , 〉 = dr2 + g(r)2dθ2, (14)

where dθ2 is the standard metric on the unit sphere Sm−1 ⊆ Rm and g ∈ C∞(R+
0 )

satisfies g > 0 on R+,

g(0) = 0, g′(0) = 1, g(2k)(0) = 0 for k = 1, 2, 3, . . . , (15)

where g(j) stands for the j-th iterated derivative of g.

Such a model will be denoted by Mg. If g is only required to be C2(R+
0 ) and

g satisfies the first two requests in (15), then the model will be called a C2-model.
Note that (15) is a necessary and sufficient condition for 〈 , 〉 defined in (14) to extend
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smoothly at o. We recall that

Krad = −g
′′(r)

g(r)
, v(r)

.
=

vol(∂Br)

ωm−1
= g(r)m−1,

∆r(x) = (m− 1)
g′(r(x))

g(r(x))
=
v′(r(x))

v(r(x))
,

(16)

where ωm−1 is the (m−1)-volume of the unit sphere Sm−1 and ∂Br is the boundary of
the geodesic ball Br = {x ∈Mg : r(x) < r}. As the first equation in (16) suggests, one
can also construct a model by specifying the radial sectional curvature −G ∈ C0(R+

0 )
and recovering g as the solution of the Cauchy problem{

g′′ −Gg = 0

g(0) = 0, g′(0) = 1.
(17)

In this case, we say that Mg is constructed from G. As important examples, the
Euclidean space Rm can be obtained with the choices G(r) = 0, g(r) = r, while for
the hyperbolic space HmH of constant sectional curvature −H2 < 0 one can choose
G(r) = −H2, and consequently g(r) = H−1 sinh(Hr).

We now describe our main results. The first regards the Yamabe problem on asymp-
totically hyperbolic manifolds and, in some sense, can be thought as a “hyperbolic”
analogue of Theorem 1. Even for M = HmH , we underline that the next theorem seems
to be, to the best of our knowledge, the first existence result for the Yamabe problem
on HmH that allows the new scalar curvature s̃(x) to change signs. Furthermore, condi-
tions (21) and (22) below enable s̃(x) to have very ample oscillations between positive
and negative values and, as we will see below, (21) and (22) are sharp.

Theorem 2. Let (M, 〈 , 〉) be a complete manifold of dimension m ≥ 3, with a pole o
and sectional curvature K satisfying

−H2 −K
(
r(x)

)
≤ K(x) ≤ −H2, (18)

for some non-negative K ∈ C0(R+
0 ) with the property that

K(r) ∈ L1(+∞). (19)

Suppose that the scalar curvature s(x) of M is such that

s(x) ≥ − (m− 1)3H2

m− 2
on M. (20)

Then, for each smooth function s̃(x) ∈ C∞(M) satisfying

|s̃(x)| ≤ B(r(x)), (21)

for some B(r) ≥ 0 for which

e−2HrB(r) ∈ L1(+∞), (22)

the metric 〈 , 〉 can be conformally deformed to a smooth metric 〈̃ , 〉 of scalar curvature
s̃(x), satisfying

Γ1e
−2Hr(x)〈 , 〉x ≤ 〈̃ , 〉x ≤ Γ2e

−2Hr(x)〈 , 〉x ∀x ∈M, (23)

for some 0 < Γ1 ≤ Γ2. Furthermore, Γ2 and consequently Γ1 can be chosen to be as
small as we wish.
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Remark 4. The hyperbolic space HmH satisfies all the requirements in the above
theorem. Indeed, it is enough to choose K(r) ≡ 0 and to observe that the scalar
curvature of HmH is −m(m − 1)H2. As Theorem 11 below will show, in this case we
also have the asymptotic relation

〈̃ , 〉x ∼ Ce
−2Hr(x)〈 , 〉x as r(x)→ +∞, (24)

for some C ∈ [Γ1,Γ2].

Remark 5. In view of the gap theorems in [10], one might ask if the couple of
conditions (18) and (19) automatically imply that M is isometric to the hyperbolic
space. The problem has been considered in a recent paper of H. Seshadri, [34]. His
main result states that, if (18) holds and e2HrK(r) → 0 as r → +∞, then M is
isometric to HmH . In fact, following the proof of Theorem A in [34], one can easily
weaken the condition to

lim inf
r→+∞

e2HrK(r) = 0. (25)

The clean method in [34] may suggest that (25) is sharp, though we do not know
examples to support this assertion. However, condition (19) is skew with (25).

The requirement (22) is sharp. Indeed, regarding the case s̃(x) ≤ 0 on HmH , a
considerable amount of work has been done in [31] both for existence and for non-
existence of solutions of (1). The condition on s̃(x) in [31] yielding non-existence
(condition (1.2), Case II in [31], see also Remark 1.1 therein) has subsequently been
refined in Corollary B of [2]. This latter result states that no solutions of the Yamabe
problem on HmH exist whenever

s̃(x) ≤ 0 on HmH , s̃(x) ≤ −C e2Hr(x)

r(x) log r(x)
for r(x) >> 1 (26)

and some constant C > 0, and shows the sharpness of (22). In Corollary 6, at the
end of this paper, we will determine a mildly more demanding non-existence condition
with a technique different from that of [2]. In the spirit of Naito’s improvement of Ni’s
result, we feel motivated to ask the following:

question: suppose that

s̃(x) ≤ −B(r(x)) ≤ 0 and e−2HrB(r) 6∈ L1(+∞),

is it true that the Poincaré metric of HmH cannot be conformally deformed
to a new metric of scalar curvature s̃(x)?

Unlike (8) for Euclidean space, property (23) implies that the new metric is far
from being geodesically complete. This is a consequence of the presence of the linear
term s(x) in (3). It would be desirable to find conformal deformations of 〈 , 〉 such that
the new metric gives rise to a complete manifold. For s̃(x) ≤ 0, the problem has been
investigated in [31]. Their main result is that there exists a conformal deformation of
the Poincaré metric, having scalar curvature s̃(x) and giving rise to a complete metric,
provided that

−Cr(x)2 ≤ s̃(x) < 0 outside some ball

(see Case I, Theorem 1.1 and Remark 1.1 in [31]). The next natural question arises:
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question: if
|s̃(x)| ≤ Cr(x)2 outside some ball,

can the Poincaré metric of HmH be conformally deformed to a complete
metric of scalar curvature s̃(x)?

Notational conventions. For a function B on R, we define B+ and B−, respectively,
to be the positive and negative parts of B. Having fixed the reference origin o ∈ M ,
we denote with r(x) = dist(x, o). Moreover, we agree on writing w(x) ∈ Höljloc(M) if,
for every relatively compact open set Ω bM , there exists α = α(Ω) ∈ (0, 1] such that
w ∈ Cj,α(Ω). For j = 0, we simply write w(x) ∈ Hölloc(M).

Theorem 2 is one of the various applications of two general existence results for Yam-
abe type equations, Theorems 9 and 10 below. In order to put them into the right
perspective, we introduce some terminology. As a general observation, the analysis of
(1) heavily depends on the spectral properties of the linear Schrödinger operator

L = −∆− q(x),

in particular on the sign of the bottom of its spectrum λL1 (M). If this latter is negative,
then the situation is more ”rigid”. In fact, on any Riemannian manifold,

- if λL1 (M) < 0 and b(x) ≤ 0, then there are no positive solutions of (1). This
follows from a simple spectral argument. Indeed, by contradiction, if u > 0 solves
(1), then u would be a positive solution of Lu ≥ 0. By a result in [7] and [22],
this is equivalent to λL1 (M) ≥ 0, against our assumption;

- if λL1 (M) < 0, b(x) ≥ 0 and the zero set of b is small in a spectral sense, then
there always exists a minimal and a maximal positive solutions of (1). See for
instance [28] and Section 2.4 in [1].

The case λL1 (M) ≥ 0 seems to be the most challenging, and we will focus on it in the
sequel. Sufficient conditions on q(x), related to the geometry of M , yielding λL1 (M) ≥ 0
have been obtained in [1]. In particular, our setting will be that of a complete manifold
(M, 〈 , 〉) possessing a pole o and with radial sectional curvature satisfying

Krad(x) ≤ −G
(
r(x)

)
, (27)

for some continuous G on R+. We construct a model Mg based on G, and we suppose
that the solution g of (17) is positive on R+ and satisfies the assumption

1

v
∈ L1(+∞), where v(r) = g(r)m−1. (VL1)

This is equivalent to assume that Mg is a non-parabolic manifold (see [11] for details).
Note that G is not required to have a sign. Indeed, some reasonable negativity of G is
allowed, as the examples in (38) below show. Under condition (VL1), the critical curve

χ(r) =

(
2v(r)

∫ +∞

r

ds

v(s)

)−2

=

[(
−1

2
log

∫ +∞

r

ds

v(s)

)′]2

on R+

is well defined. Hereafter, when we will need to emphasize the dependence of χ on the
volume v, we shall write χv. In many instances, including those leading to Euclidean
and hyperbolic spaces, the integral in the definition of χ can be explicitly computed,
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and a closed expression for χ can be found, see the next section and the Appendix for
further details. For instance, if Mg is the m ≥ 3 dimensional Euclidean space,

χ(r) =
(m− 2)2

4r2
(28)

is the weight of the standard Hardy inequality, also called the Uncertainty Principle
lemma. By Theorem 5.17 in [1], λL1 (M) ≥ 0 whenever

q(x) ≤ χ(r(x)), (29)

as a consequence of the next non-Euclidean Hardy inequality:∫
M

(χ ◦ r)φ2 ≤
∫
M

|∇φ|2 for every φ ∈ Lipc(M).

The upper bound (29) will always be assumed throughout the paper.
It is worth to stress here that the expression of χ can be written as

χ(r) =
|∇ log G|2

4
,

where

G(r) =

∫ +∞

r

ds

g(s)m−1

is, up to a constant, the minimal positive Green kernel of the model Mg when the
second point is the fixed origin o. There is a deep link between Green kernels and the
techniques described in this paper and in our previous work [1]. However, to keep the
length of the paper reasonably contained, we do not go into this fascinating subject
any further, and we postpone its analysis to future work.

We are ready to state our first main result.

Theorem 3. Let (M, 〈 , 〉) be a complete, m-dimensional Riemannian manifold with
a pole o and radial sectional curvature Krad with respect to o satisfying

Krad(x) ≤ −G
(
r(x)

)
, (30)

for some G ∈ C0(R+
0 ). Let g ∈ C2(R+

0 ) be a solution of{
g′′ −Gg ≤ 0 on R+,

g(0) = 0, g′(0) = 1.
(31)

Suppose that g > 0 on R+ and that v = gm−1 satisfies (VL1), and set χ = χv as usual.
Let q(x), b(x) ∈ Hölloc(M) be such that

|q(x)| ≤ A(r(x)), |b(x)| ≤ B(r(x)), (32)

for some non-negative A,B ∈ L∞loc(R+
0 ) with

A(r) ≤ χ(r) on R+,
A(r)√
χ(r)

∈ L1(+∞),
B(r)√
χ(r)

∈ L1(+∞). (33)
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Fix σ > 1. Then, there exists a constant β > 0, depending on σ, g,A,B such that, for
each γ∞ ∈ (0, β), there exist 0 < Γ1 ≤ Γ2 and a solution u ∈ Höl2loc(M) of

∆u+ q(x)u− b(x)uσ = 0 (34)

satisfying
Γ1 ≤ u(x) ≤ Γ2 on M (35)

and
lim

r(x)→+∞
u(x) = γ∞. (36)

Moreover, Γ2 → 0 as γ∞ → 0.

We spend few words to comment on Theorem 3.

Remark 6. The choiceG(r) = 0 allows us to include each Cartán-Hadamard manifold
of dimension m ≥ 3, and in particular Euclidean space. By the simple expression (28)
for χ(r), conditions (32) and (33) read

|q(x)| ≤ A(r(x)) ≤ (m− 2)2

4r(x)2
, rA(r) ∈ L1(+∞);

|b(x)| ≤ B(r(x)), rB(r) ∈ L1(+∞).

(37)

Thus, Theorem 3 improves on Ni-Naito-Kawano result even in the very special case
of Euclidean space, as it enables q(x) to be nonzero. On the other hand, also the
case q(x) = 0 seems to be worth of interest for a general G, see Corollary 2 and the
subsequent discussion.

Remark 7. Theorem 3 has a particular feature: as can be seen in (33), the value of
the exponent σ > 1 in the nonlinearity plays no role in conditioning the growth of
A and B. This is tightly related to the integrability requirement on A. Indeed, in
Corollary 1 below (see also the general Theorem 10) we will see that, when A/

√
χ is

non-integrable, the role of σ in the growth condition for B will be essential.

As a matter of fact, we can find solutions g of (31) for two interesting classes of
functions G(r):

(i) G(r) = H2(1 + r2)α/2 for H > 0, α ≥ −2,

(ii) G(r) = − H2

(1 + r)2
for H ∈ [0, 1/2] .

(38)

Note that Euclidean space is in the second class by choosing H = 0, while the hyper-
bolic space HmH is in the first class by choosing α = 0. Model manifolds constructed
from a function G in the first class are negatively curved in the radial direction, while
those in the second class are positively curved. For most of these G, we can find
a closed, simple expression for the critical curve via explicit integration. We collect
relevant computations in the Appendix.

Specializing Theorem 3 to the hyperbolic space, the second condition in (33) is
equivalent to A(r) ∈ L1(+∞). Unfortunately, in the geometric case of the Yamabe
problem on HmH the coefficient of the linear part is

q(x) = −s(x)

cm
=
m(m− 2)H2

4
,
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thus |q(x)| ≤ A(r(x)) and A(r) ∈ L1(+∞) cannot be satisfied at the same time. This
calls for a generalization of the previous result, which will be accomplished in Theorem
10 below. There, we deal with the case when q(x) is close, in an appropriate integrable
sense, to kχ(r(x)), for some k ∈ (0, 1) (see (190)). In this respect, Theorem 3 considers
the case k = 0.

As outlined before, the strategy of proof of Theorems 3 and 10 is based on the ap-
plication of the monotone iteration scheme. Sub- and supersolutions are constructed
via radialization and ODE arguments of independent interest. However, while in the
first case the monotonicity of sub- and supersolutions well matches with the bounds
of the Laplacian of the distance function coming from (30), when k ∈ (0, 1) the con-
struction of the subsolution requires a tricky argument for which a lower bound on the
sectional curvature of the type

Krad ≥ −Ḡ(r)

is also needed. This is by no means a simple change of monotonicity of the subsolution
that agrees with the opposite bound on the Laplacian of the distance function, but
indeed requires a delicate construction based on refined asymptotic estimates for the
solutions of two associated linear Cauchy problems. For more details, see the discussion
before Theorem 10. We postpone the statement of the general result, and we present
here its consequence for manifolds close to the Euclidean space.

Corollary 1. Let (M, 〈 , 〉) be a complete manifold of dimension m ≥ 3, with a pole o
and radial sectional curvature satisfying

−Ḡ
(
r(x)

)
≤ Krad(x) ≤ 0,

for some non-negative Ḡ(r) with

rḠ(r) ∈ L1(+∞).

Let q(x) ∈ Hölloc(M) be such that

0 ≤ A1

(
r(x)

)
≤ q(x) ≤ A2

(
r(x)

)
,

for some Aj ∈ L∞loc(R+
0 ), j ∈ {1, 2} with

A2(r) ≤ (m− 2)2

4r2
= χ(r).

Suppose that there exists k ∈ (0, 1) for which

r [Aj(r)− kχ(r)] ∈ L1(+∞) (39)

for each j. Let σ > 1, B ∈ L∞loc(R+
0 ) and suppose that

B(r)r−
m−2

2 (1−
√

1−k)(σ−1)+1 ∈ L1(+∞). (40)

Then, for each b(x) ∈ Hölloc(M) satisfying

|b(x)| ≤ B(r(x)) on M,

there exists a positive solution u ∈ Höl2loc(M) of

∆u+ q(x)u− b(x)uσ = 0 on M (41)

with the property that

Γ1r(x)−
m−2

2 (1−
√

1−k) ≤ u(x) ≤ Γ2r(x)−
m−2

2 (1−
√

1−k) for r(x) ≥ 1, (42)

for some 0 < Γ1 ≤ Γ2. Furthermore, Γ2 can be chosen to be as small as we wish.
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Remark 8. The restriction k ∈ (0, 1) in Corollary 1 above and in Theorem 10 is due
to the lack of radial symmetry of the manifold. We underline that, for models, we
can cover the entire range k ∈ (−∞, 1], see Theorem 11 below. More precisely, if M
in Corollary 1 is indeed a model, we can extend the range of k in (39), (40), (42) to
(−∞, 1), while, for k = 1, (39) and (40) are replaced, respectively, by

r log r [Aj(r)− χ(r)] ∈ L1(+∞)

and
B(r)r−

m−2
2 (σ−1)+1(log r)σ ∈ L1(+∞).

The behaviour (42) of u, in the conclusion of the theorem, in this latter case becomes

Γ1r(x)−
m−2

2 log r(x) ≤ u ≤ Γ2r(x)−
m−2

2 log r(x) for r(x) ≥ 2.

A proof of these facts can be found in Remark 30.

We conclude this Introduction by stating a corollary of our first main Theorem 3
dealing with the case q(x) = 0 on negatively curved manifolds. A discussion on its
sharpness gives us the possibility to illustrate some subtle phenomena.

Corollary 2. Let M be a complete manifold of dimension m ≥ 2, with a pole and
radial sectional curvature satisfying

Krad(x) ≤ −H2
(
1 + r(x)2

)α
2 , for some α ≥ −2, H > 0. (43)

Let σ > 1, and let B ∈ Liploc(R+
0 ) be such that

B(r)r−
α
2 ∈ L1(+∞). (44)

Suppose that b(x) ∈ Hölloc(M) satisfies |b(x)| ≤ B(r(x)) on M . Then, there exists a
constant β > 0, depending on σ, α,H,B such that, for each γ∞ ∈ (0, β), there exist
0 < Γ1 ≤ Γ2 and a solution u ∈ Höl2loc(M) of

∆u = b(x)uσ (45)

satisfying
Γ1 ≤ u(x) ≤ Γ2 on M (46)

and
lim

r(x)→+∞
u(x) = γ∞. (47)

Moreover, Γ2 → 0 as γ∞ → 0.

By Corollary 2, the mild requirement (44) on B ensures the existence of positive,
bounded nonzero solutions of

∆u = b(x)uσ on M. (48)

Now, suppose that b(x) > 0 on M . By Theorem 3.11 in [26], and the subsequent
remark after Definition 3.12, the existence of bounded, non-negative and non-constant
solutions of (48) is equivalent to say that the operator b(x)−1∆ does not satisfy the
weak maximum principle (see [26] for relevant definitions and results, and also [21],
Theorem 2.12 for generalizations). On the other hand, by Proposition 3.18 in [26],
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b(x)−1∆ satisfies the weak maximum principle (hence no bounded, non-negative, non-
constant solutions of (48) can exist) provided that the following conditions are satisfied:

b(x) ≥ B(r(x)) > 0 on Mg, B(r) =
C

rµ
for r >> 1,

r1−µ

log vol(Br)
6∈ L1(+∞),

(49)
for some C > 0, µ ∈ R. Suppose that, for simplicity, M = Mg is a model satisfying

Krad ≤ 0 on Mg, and Krad ∼ −H2rα as r → +∞, (50)

for some H > 0, α ≥ −2. Then, by Propositions 2.27 and 2.28 in [1] and some
computations,

log vol(Br) ∼

{
Cr1+α

2 if α > −2

C log r if α = −2,

Therefore
r1−µ

log vol(Br)
6∈ L1(+∞) if and only if µ ≤ 1− α

2
.

For this choice of µ,

B(r)r−
α
2 =

C

rµ+α
2
6∈ L1(+∞),

thus (44) barely fails to be satisfied. This proves the sharpness of (44). It is important
to stress that, for the existence of bounded positive solutions of (48), the particular
form f(u) = uσ of the nonlinearity plays no role. Indeed, uσ could be replaced by any
continuous nonlinearity f(u) which is positive for u > 0, see [21], Theorem 2.12 for a
general statement, and [30].

On the contrary, the growth of the nonlinearity in a neighbourhood of +∞ is
extremely important when investigating the existence of possibly unbounded, positive
solution of (48). In this setting, a key role is played by the Keller-Osserman condition
(which we label (KO)), independently discovered in [14] and [25] for the differential
inequality ∆u ≥ f(u) on Rm. In a manifold setting and for general inequalities of the
form

Qu ≥ b(x)f(u)l(|∇u|), (51)

where Q is a quasilinear operator belonging to some large class, sharp generalizations
of the Keller-Osserman condition have been given in [20]. As it is apparent from the
results in [20], the explicit expression of (KO) only involves the functions f, l and the
structure of the operator Q. However, both the geometry of the underlying manifold
and the weight b(x) still play a role, which reflects into some restrictions on the range
of applicability of (KO). The origin of these restrictions is still somehow obscure, and
we are planning to investigate it in the future. Here, we are going to use a result in
[20] to prove that, under the conditions b(x) ≥ B(r(x)) > 0 on Mg in (50), with

B(r) =
C

rµ
for r >> 1, and µ ≤ 1− α

2
, (52)

(so that (49) are met, and thus b(x)−1∆ satisfies the weak maximum principle on Mg)
there do not exist positive solutions of (48) at all, not even unbounded. Indeed, we
apply Corollary A1 of [20] with the choices β = α, p = 2, q = 0, f(t) = tσ. Condition
(KO) is satisfied since σ > 1, and the inequality for µ in (52) is exactly the last
requirement on the parameters in Corollary A1. Therefore, a direct application of the
corollary asserts that each non-negative solution u of (48) is constant, hence zero. We
suggest the interested reader to look at Proposition 3 in the last part of this paper for
a result strictly related to Corollary A1 in [20].
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By way of summary, we point out the three main novelties of the paper.

(1) From the PDE’s and ODE’s point of view, the extension, from Euclidean space to
models, of Ni and Naito’s idea used to generate radial sub- and supersolutions of
Yamabe type equations. This requires the different and new procedures described
in Theorems 6 and 7 below, in order to deal both with the linear term and with
the sign-changing nonlinearity. To the best of our knowledge, the two issues
together have not been considered in the literature even in the particular case of
Rm.

(2) Theorems 9 and 10, which are the first existence results for Yamabe type equa-
tions with a sign-changing nonlinearity on a general non-compact ambient space.
Their validity requires the only assumptions that the manifold possesses a pole
and a control on the radial sectional curvature.

(3) The asymptotic estimates for the solutions of the linear ODE, contained in Theo-
rem 5. Besides being interesting in their own, they allow us to effectively express
the various assumptions of Theorems 6 and 7 in terms of the bounds on the
curvature for instance expressed in (38) (see the Appendix for detailed compu-
tations).

As a matter of fact, the role of the critical curve will be central and ubiquitous in this
work. In this spirit, the present paper constitutes a natural continuation of our previous
[1]. There, the interested reader can find a number of other geometric problems where
the study of χ(r) turns out to be extremely useful.

Estimates for the linear Cauchy problem

Let Mg be a model of dimension m ≥ 2. Set v = gm−1, and let A ∈ L∞loc(R+
0 ). This

section is devoted to the proof of asymptotic estimates for a solution h ∈ Liploc(R+
0 )

of the Cauchy problem {
(vh′)′ +Avh = 0 on R+

h(0) = 1, h′(0) = 0.
(53)

The existence and uniqueness theory for solutions of (53) is quite classical, and the
reader can find the basic results for the Liploc class in Section 3 of [1].
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As we shall see, sharp conditions on b(x) establishing existence or non-existence
for positive solutions of the Yamabe type equation (1) will be given in terms of the
behaviour of positive solutions h of the linear part ∆h + q(x)h = 0. This is the case,
for instance, of (133) in Theorem 7, in the radial setting. The search for a precise
control of the asymptotic behaviour of h is thus necessary to rewrite our conditions
in a more effective, but still sharp, form. The analysis of (53) heavily depends on
whether we are in a parabolic setting or not. Hereafter, we suppose that v(r) satisfies
the following assumption:

1

v
∈ L1(+∞). (VL1)

As stressed in the Introduction, this is equivalent to require that Mg be non-parabolic
(see [11] for instance). The study of (53) in the non-parabolic setting turns out to be
more delicate and rich of subtleties than in the parabolic case. In [1] we have shown
the key role played, in this analysis, by the critical curve of v, χ = χv, defined as

χ(r) =

(
2v(r)

∫ +∞

r

ds

v(s)

)−2

=

[(
−1

2
log

∫ +∞

r

ds

v(s)

)′]2

on R+.

Note that, by a first integration, √
χ(r) 6∈ L1(+∞) (54)

Example 1. In the particular cases of Euclidean and hyperbolic space, χ has the
following expressions:

- For Rm, where g(r) = r, (VL1) is satisfied if and only if m ≥ 3, and

χ(r) =
(m− 2)2

4r2
.

- In the hyperbolic space HmH , where g(r) = H−1 sinh(Hr), denote with χm the
critical curve for HmH . A recursive formula, which can be easily proved integrating
by parts the definition of χm, enables us to compute χm from χ2 and χ3; indeed:

m− 1

2
√
χm(r)

=
coth(Hr)

H
− 1

sinh2(Hr)

m

2
√
χm+2(r)

.

By explicit integration,

χ2(r) = H2

[
2 sinh(Hr) log

(
eHr + 1

eHr − 1

)]−2

;

χ3(r) =
H2

(1− e−2Hr)2
.

(55)

Details can be found in [1], Example 3.15. For future use, we remark that the
following properties hold (see [1], Remark 3.19 and Proposition 3.23):

χm(r) >
H2(m− 1)2

4
on R+, χm(r)→ H2(m− 1)2

4
as r → +∞. (56)

Moreover, a tedious but straightforward computation shows that

χ(r) =
1

4

{
1

(m− 1)H
+

m− 1

(m+ 1)H
e−2Hr + o

(
e−2Hr

)}−2

(57)
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For notational convenience, for k ∈ (−∞, 1], we define the function Hk(r) as follows:

H1(r) = −

√∫ +∞

r

ds

v(s)
log

∫ +∞

r

ds

v(s)
k = 1

Hk(r) =

[∫ +∞

r

ds

v(s)

](1−
√

1−k)/2

k ∈ (−∞, 1)

(58)

Note that the first one is positive only for sufficiently large r.

Remark 9. We observe that, for each k ≤ 1, (H2
kv)−1 ∈ L1(+∞). Clearly, it is

enough to prove the result for k = 1, and the assertion can be checked by changing
variables in the integral∫ +∞ dt

H1(t)2v(t)
= −

∫ +∞ 1

v(t)

(∫ +∞

t

ds

v(s)

)−1

log−2

(∫ +∞

t

ds

v(s)

)
dt

according to

x(t) =

(∫ +∞

t

ds

v(s)

)−1

.

The above remark enables us to construct the critical curve with respect to the
weighted volume H2

kv,

χH2
kv

(r) =

(
2H2

k(r)v(r)

∫ +∞

r

ds

H2
k(s)v(s)

)−2

.

With a simple computation, one can check that
χH2

kv
(r) = (1− k)χ(r) if k < 1,

χH2
1v

(r) = χ(r)

(
log

∫ +∞

r

ds

v(s)

)−2

for k = 1.
(59)

Our starting point is the following result (see Theorem 5.2 and Proposition 5.7 of
[1])

Theorem 4. Suppose that A(r) ∈ L∞loc(R+
0 ), and let v(r) be as above and satisfying

(VL1). Let χ be the critical curve of v and assume that

A(r) ≤ kχ(r) on R+
0 , for some k ∈ (−∞, 1]. (60)

Then, the solution h(r) ∈ Liploc(R+
0 ) of{

(vh′)′ +Avh = 0 on R+

h(0) = 1, h′(0) = 0
(61)

is positive on R+
0 and there exist r1 > 0 sufficiently large and a constant C = C(r1) > 0

such that
h(r) ≥ CHk(r) (62)

on [r1,+∞). If A ≡ kχ for some [r2,+∞), then we can replace (62) with

h(r) ∼ CHk(r) as r → +∞ (63)

for some constant C > 0.

15



Remark 10. Before the recent [1], in the literature result of this type that we are
aware of have only been obtained in [3] (Lemma 2.3 and Remark 2.4), for Euclidean
type v(r), and in [2] (Theorem 3.2) in a hyperbolic setting.

Although we shall not presently prove the above theorem in its full strength, we
nevertheless give a sketch of a geometrical proof of the fact that h > 0 on R+ via an
argument which relies on an observation of P. Li and J. Wang [17]. Consider on Mg,
with coordinates (r, θ), θ ∈ Sm−1, the minimal positive Green function evaluated on
the pair (o, (r, θ)):

G
(
(r, θ)

)
= G(r) =

∫ +∞

r

ds

v(s)

(up to multiplication by an unessential constant). Then, G is positive, harmonic on
Mg\{o} and with a singularity at o. Note that G exists by the non-parabolicity condi-
tion (VL1). Then, for every a ∈ R+ the function Ga = min{G, a} is positive, bounded
on Mg and it is a weak solution of ∆Ga ≤ 0. A computation shows that f =

√
Ga is a

positive, weak solution of

∆f +
|∇ log Ga|2

4
f ≤ 0.

By a result in [7] and [22], for every φ ∈ Lipc(M)∫
|∇ log Ga|2

4
φ2 ≤

∫
|∇φ|2, (64)

and letting a→ +∞, by monotone convergence we get∫
|∇ log G|2

4
φ2 ≤

∫
|∇φ|2 ∀φ ∈ Lipc(Mg). (65)

It is immediate to verify that

|∇ log G|2

4
= χ(r).

By Rayleigh characterization it follows that, for any A(r) ≤ χ(r), inequality (65)
implies

λL1 (Mg) ≥ 0, where L = ∆ +A(r). (66)

If a solution h(r) of (61) has a first zero, say at some R > 0, then the function
u
(
(r, θ)

)
= h(r) would be a solution of{

∆u+A(r)u = 0 on BR

u = 0 on ∂BR,

with u > 0 on BR, proving that λL1 (BR) ≤ 0. By the strict monotonicity property of
eigenvalues, λL1 (Mg) < 0, contradicting (66).

Estimates (62) and (63) are sharp. However, for (63) to hold, the requirement
A = kχ after some r2 is definitely too demanding, thus it would be desirable to relax
the assumption. However, simple examples show that A ∼ kχ is far from being enough
to guarantee (63). We report here one of them
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Example 2. On Euclidean space Rm, choose A(r) satisfying A(r) ≥ χ(r) on [1,+∞)
and

A(r) =

(√
χ(r) +

1

r log r

)2

on [2,+∞).

Then,
√
A − √χ 6∈ L1(+∞), thus by Theorem 5.5 in [1] h oscillates, that is, it has

infinitely many zeroes. On the other hand, A ∼ χ as r → +∞.

We begin with a simple observation that will be repeatedly used throughout the
paper.

Remark 11. By Remark 9, for each k ≤ 1 it holds

1

H2
kv
∈ L1(+∞). (67)

In particular, if h solves {
(vh′)′ +Avh = 0 on R+

h(0) = 1, h′(0) = 0,

and A ≤ χ, then by Theorem 4 h > 0 on R+
0 and h(r) ≥ CH1(r) on [r1,+∞), for

some r1 >> 1, and thus
1

h2v
≤ C−2

H2
1v
∈ L1(+∞).

The next Proposition allows to compare the asymptotic behaviour of the solution
h of (53) with that of the solution ĥ of another Cauchy problem, obtained perturbing
the potential A to a new potential Â.

Proposition 1. Let v = gm−1 and suppose that (VL1) is met. Let h, ĥ be solutions,
respectively, of{

(vh′)′ +Avh = 0

h(0) = 1, h′(0) = 0
,

{
(vĥ′)′ + Âvĥ = 0

ĥ(0) = 1, ĥ′(0) = 0.

Assume that A ≤ χ on R+. Having defined

Λ± =
1

2

∫ +∞

0

(
A(s)− Â(s)

)
±√

χh2v(s)
ds, (68)

suppose that Λ+ < 1 and Λ− < 1. Then, h, ĥ are positive on R+
0 and there exists

C ∈ [1− Λ−, (1− Λ+)−1] such that

ĥ(r) ∼ Ch(r) as r → +∞. (69)

Proof. Since A ≤ χ, then h > 0 by Theorem 4. Define

ṽ(r) = h(r)2v(r),

and note that, by Remark 11, A ≤ χ implies that 1/ṽ ∈ L1(+∞), thus χṽ = χh2v is

well defined. Setting B(r) = A(r)−Â(r), ĥ solves (vĥ′)′+Avĥ = Bvĥ. Then, ξ = ĥ/h
solves {

(h2vξ′)′ = Bh2vξ on R+

ξ(0) = 1, ξ′(0) = 0.
(70)
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By definition,

Λ± =
1

2

∫ +∞

0

B±(r)√
χṽ(r)

dr. (71)

The idea is to construct a sub and a supersolution for (70) that squeeze at infinity to
a constant C. To do so, we operate the change of variables

s(r) =

(∫ +∞

r

dt

ṽ(t)

)−1

, (72)

s : R+ → R+, s′ > 0. Denoting with r(s) its inverse,

ṙ(s) = ṽ(r(s))

(∫ +∞

r(s)

dt

ṽ(t)

)2

=

[
χṽ(r(s))

]−1/2

2s
, (73)

where · means the derivative with respect to s. It can be checked that ξ is a solution
of (70) if and only if y(s) = sξ(r(s)) solves ÿ(s) =

ṽ2(r(s))

s3
B(r(s))

y(s)

s
on R+.

y(0) = 0, ẏ(0) = 1.

(74)

Define γm, γM according to

γM =
1

1− Λ−
∈ [1,+∞), γm = 1− Λ+ ∈ (0, 1]. (75)

Next, we consider the problem ÿ(s) = − ṽ
2(r(s))

s3
B−(r(s))γM on R+

y(0) = 0, ẏ(0) = γM .

(76)

Thus, integrating once, changing variables using (73) and recalling (72) we obtain

ẏ(s) = γM − γM
∫ r(s)

0

ṽ(ρ)
B−(ρ)

s(ρ)
dρ = γM

[
1− 1

2

∫ r(s)

0

B−(ρ)√
χṽ(ρ)

dρ

]
. (77)

Therefore,
ẏ(s) ≥ γM (1− Λ−) = 1

and, since r(s) → +∞ as s → +∞, ẏ(s) ↓ 1 as s → +∞. The function y is thus
increasing and, since y(0) = 0, y is positive on R+. From (77), integrating we also
deduce

s ≤ y(s) ≤ γMs on R+ (78)

and, from De l’Hopital’s rule, y(s) ∼ s as s→ +∞. Setting

ξ+(r) =
y(s(r))

s(r)
, (79)

ξ+ is positive on R+, and

ξ′+(r) =
s′(r)

s2(r)

{
ẏ(s(r))s(r)− y(s(r))

}
=
s′(r)

s2(r)
µ(s(r)). (80)
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Studying the function µ(s) = sẏ(s) − y(s) we have µ(0) = 0 and µ̇(s) = sÿ(s) ≤ 0
on R+. It follows that µ ≤ 0 and so ξ+ is non-increasing on R+. Furthermore,
ξ+(0+) = γM and ξ+(r) ↓ 1 as r → +∞. From the change of variables (72) and the
fact that ξ+ is positive it also follows that ξ+ satisfies{

(ṽξ′+)′ = −B−ṽγM ≤ −B−ṽξ+ ≤ Bṽξ+ on R+

ξ+(0) = γM , ξ′+(0) = 0.
(81)

Analogously, consider the problem ÿ(s) =
ṽ2(r(s))

s3
B+(r(s)) on R+

y(0) = 0, ẏ(0) = γm.

(82)

Integrating the equation on [0, s] and using (75) we get

ẏ(s) = γm +
1

2

∫ r(s)

0

B+(ρ)√
χṽ(ρ)

dρ ≤ γm + Λ+ = 1,

and ẏ(s)→ 1 as s→ +∞, from which we deduce y(s) ∼ s as s→ +∞ via De l’Hopital
theorem. From y(0) = 0, ẏ(0) = γm and since ẏ is non-decreasing being ÿ ≥ 0, we
argue that

γms ≤ y(s) ≤ s.

We define ξ−(r) = y(s(r))/s(r). Then, proceeding as in the case of ξ+ , ξ− turns out
to be positive, non-decreasing, ξ−(0) = γm and ξ−(r) ↑ 1 as r → +∞. From our
change of variables, ξ− satisfies{

(ṽξ′−)′ = B+ṽ ≥ B+ṽξ− ≥ Bṽξ− on R+

ξ−(0) = γm, ξ′−(0) = 0.
(83)

Furthermore,
γm ≤ ξ−(r) ≤ 1 ≤ ξ+(r) ≤ γM .

By the monotone iteration scheme, [33], there exists γ0 ∈ [γm, γM ] and a solution ξ of{
(ṽξ′)′ = Bṽξ on R+

ξ(0) = γ0, ξ′(0) = 0

such that
ξ− ≤ ξ ≤ ξ+.

In particular, ξ > 0 and ξ(r) → 1 as r → +∞. By uniqueness of solutions of linear

ODE, ξ(r)/γ0 coincides with the solution ĥ/h of (70). Thus

lim
r→+∞

ĥ(r)

h(r)
=

1

γ0
∈
[
γ−1
M , γ−1

m

]
=

[
1− Λ−,

1

1− Λ+

]
,

and (69) is met. Furthermore, since ĥ = hξ/γ0, ĥ > 0 on R+, completing the proof.
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Remark 12. We spend a few words to comment on the relations Λ+ < 1 and Λ− < 1.
Indeed, there is another way to prove that these inequalities imply ĥ > 0 on R+. Let
z be a solution of (v̄z′)′ + Āv̄z = 0, z(0) = 1, z′(0) = 0. According to [1], Corollary
5.42, the number n(z) of zeroes of z is bounded above as follows:

n(z) ≤ inf
p∈[1,+∞)

[(
2p− 1

2p

)2p−1 ∫ +∞

0

Ā+(s)p

χv̄(s)p−1/2
ds

]
. (84)

In particular, applying the corollary with the choices v̄ = h2v, z = ξ = ĥ/h, Ā = −B,
and choosing p = 1 we deduce that

n(ξ) ≤ 1

2

∫ +∞

0

(
−B(s))+√
χh2v(s)

ds = Λ−.

Hence, if Λ− < 1 then z is positive on R+, so ĥ = hz is positive. However, the
asymptotic relation ĥ ∼ Ch seems hard to deduce from the method used to prove
(84).

Conditions Λ+ < 1 and Λ− < 1, to be verified, require the knowledge of h, as
well as the explicit expression of χh2v, on the whole R+. In the general case such a
precise information is hardly available, thus it would be highly desirable to weaken
the assumption while maintaining the asymptotic conclusion (69), perhaps with a less
stringent control on the constant C. This will be achieved in the next theorem, which
constitutes the main result of this section.

Theorem 5. Let v = gm−1 and suppose that (VL1) is met. Let A ≤ χ on R+, and let
h be the positive solution of{

(vh′)′ +Avh = 0 on R+,

h(0) = 1, h′(0) = 0.

If, for some k ≤ 1,
A(r)− kχ(r)√

χH2
kv

(r)
∈ L1(+∞), (85)

then there exists C > 0 such that h(r) ∼ CHk(r) as r → +∞.

Proof. Note that h > 0 on R+ is a consequence of A ≤ χ and Theorem 4. The proof
is divided in two main steps. First, we prove the result under the further assumption

A(r) ≤ kχ(r) on R+.

For each j = 1, 2, . . ., choose a function Aj ∈ C0(R+
0 ) such that

A(r) ≤ Aj(r) ≤ kχ(r) on R+
0

Aj(r) = A(r) on (0, j]

Aj(r) = kχ(r) on [j + 1,+∞).

(86)

Observe that {Aj} is a monotone decreasing sequence of functions. We let hj be the
solution of {

(vh′j)
′ +Ajvhj = 0

hj(0) = 1, h′j(0) = 0.
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Then, again by Theorem 4, hj > 0 on R+
0 . Moreover, by Sturm type arguments, {hj}

is a monotone non-decreasing sequence of functions, hj ≤ h for every j, and

h′1
h1
≤
h′j
hj
≤ h′

h
. (87)

One can simply see this by integrating the derivative of (vh′jh− vh′hj) and using the
initial conditions. Furthermore, from the inequalities in (87) we obtain that

hj
h
,

h1

hj
, are non-increasing on R+,

so that
h2
jv

h2v
,

h2
1v

h2
jv

are non-increasing on R+.

By Remark 11, the critical curves χh2
1v

, χh2
jv

and χh2v are well defined and, further-

more, we can apply Proposition 4.13 of [1] to deduce that

χh2
1v

(r) ≤ χh2
jv

(r) ≤ χh2v(r) on R+. (88)

Note that, by (86) and Theorem 4, for each j,

hj(r) ∼ CHk(r) as r → +∞, (89)

for some positive constant C clearly depending on j. Our aim is to show that, for an
appropriate choice of j large, the quantities

(Λ±)j =
1

2

∫ +∞

0

(
A(s)−Aj(s)

)
±√

χh2v(s)
ds,

satisfy (Λ+)j < 1, (Λ−)j < 1. Trivially (Λ+)j = 0 because of our choice of Aj . We are
thus left to analyze (Λ−)j . By (88),

(Λ−)j ≤
1

2

∫ +∞

0

Aj(s)−A(s)√
χh2

1v
(s)

ds = Λj . (90)

We first prove that, for each j, Λj < +∞. From (89) we know that h1(r) ∼ CHk(r)
as r → +∞. Whence, χh2

1v
∼ χH2

kv
follows by the very definition of χ, and

Aj(r)−A(r)√
χh2

1v
(r)

∼ Aj(r)−A(r)√
χH2

kv
(r)

=
kχ(r)−A(r)√

χH2
kv

(r)
,

the last equality being true for r ≥ j+1. Now, Λj < +∞ follows from assumption (85).
Since the sequence of integrands in the definition of Λj is monotone non-increasing,
and Λ1 < +∞, we can apply Lebesgue convergence theorem to deduce that Λj → 0
as j → +∞. Fix j0 such that Λj0 < 1. Then, (Λ−)j0 < 1 by (90), and applying

Proposition 1 with the choice Â = Aj0 we deduce the existence of a constant C > 0
such that h(r) ∼ Chj0(r) as r → +∞. Combining with (89) the conclusion follows.

In the general case, that is, when A ≤ kχ is not guaranteed, we set

Ā(r) = min
{
A(r), kχ(r)

}
,
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and we define h̄ to be the solution of the linear Cauchy problem with potential Ā. By
Sturm comparison, h ≤ h̄ and, since Ā ≤ kχ, by the previous case

h̄(r) ∼ CHk(r) as r → +∞. (91)

We would like to apply Proposition 1 with the “reversed” choices h = h̄ and ĥ = h.
This would be directly possible if we knew that Λ± are less than 1 in (68). Since we
do not, we proceed as before and we construct the decreasing sequence of functions
{Aj} satisfying 

Ā(r) ≤ Aj(r) ≤ A(r) on R+
0

Aj(r) = Ā(r) on (0, j]

Aj(r) = A(r) on [j + 1,+∞),

(92)

and the corresponding set {hj} of solutions of linear Cauchy problems. As before,
{hj} is monotone non-decreasing and, by Sturm arguments and Proposition 4.13 in
[1],

χh2v(r) ≤ χh2
1v

(r) ≤ χh2
jv

(r) ≤ χh̄2v(r).

We consider the quantities

(Λ±)j =
1

2

∫ +∞

0

(
Ā(s)−Aj(s)

)
±√

χh̄2v(s)
ds.

From the definition of Aj(r), (Λ+)j = 0 and from (92) the functions Aj(r)− Ā(r) are
bounded above by

A(r)− Ā(r) =
(
A(r)− kχ(r)

)
+
.

By (91),

Aj(s)− Ā(s)√
χh̄2v(s)

≤
(
A(s)− kχ(s)

)
+√

χh̄2v(s)
∼
(
A(s)− kχ(s)

)
+√

χH2
kv

(s)

as s → +∞. Using assumption (85), we can apply Lebesgue convergence theorem to
deduce that (Λ−)j → 0+ as j → +∞. Choosing j0 large enough that (Λ−)j0 < 1, and
applying Proposition 1 we conclude

hj0(r) ∼ Ch̄(r) ∼ CHk(r) as r → +∞.

We are left to prove that hj0 ∼ Ch. To do this, observe that the potential Aj0 coincides
with A on [j0 + 1,+∞). Consider the function ξ = hj0/h. Then,

(h2vξ′)′ = Bh2vξ, where B = A−Aj0 ≥ 0

and B has compact support. A first integration using ξ′(0) = 0 shows that ξ is
non-decreasing, and for r ≥ j0 + 1

(h2vξ′)(r) = (h2vξ′)(j0 + 1),

thus,

ξ′(r) =
C

h2(r)v(r)
on [j0 + 1,+∞).

Integrating again,

ξ(r) = ξ(j0 + 1) + C

∫ r

j0+1

ds

h(s)2v(s)
.
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Letting r → +∞ and using Remark 11, we conclude that ξ is bounded. Being non-
decreasing, there exists C > 0 such that ξ(r)→ C as r → +∞. Therefore,

hj0(r) ∼ Ch(r) as r → +∞,

concluding the proof.

Remark 13. The case k = 0 is particularly important. By Theorem 5, h tends to a
positive constant provided that

A(r) ≤ χ(r) on R+, and
A(r)√
χ(r)

∈ L1(+∞).

In the Euclidean case v(r) = rm−1, m ≥ 3, the condition reads

A(r) ≤ (m− 2)2

4r2
on R+, and rA(r) ∈ L1(+∞).

We remark that, for the very special case of a Euclidean type v(r), in Lemma 2.6 of
[3] (specialized to the case A ≥ 0) the weaker bound 1 ≥ h ≥ C > 0 has been obtained
under the stronger requirement

0 ≤ A(r) ≤ min

{
(m− 2)2

4r2
,
C̄

r2+ε

}
,

for some C̄ > 0 and ε > 0. We stress that Theorem 5, besides being more general and
suited for non-Euclidean environments, is proved with a much simpler technique than
the one developed to get Lemma 2.6 in [3].

Remark 14. When k < 1, by (59) condition (85) is equivalent to

A(r)− kχ(r)√
χ(r)

∈ L1(+∞), (93)

whence there is no need to actually compute the asymptotic behaviour of χH2
kv

(r).

Note that A cannot simultaneously satisfy (93) for two different values of k < 1, say,
k1 and k2. Indeed, otherwise, subtracting

A(r)− k2χ(r)√
χ(r)

from
A(r)− k1χ(r)√

χ(r)
,

we would have (k1 − k2)
√
χ(r) ∈ L1(+∞), contradicting (54). With a little more

effort, it is not hard to see that condition (85) for k = 1 is not contained in any of the
ones with k < 1.

To better appreciate the above result, we specialize it to the Euclidean setting:

Corollary 3. Let v = rm−1, m ≥ 3. Let A ∈ L∞loc(R+
0 ) satisfying

A(r) ≤ (m− 2)2

4r2
= χ(r) on R+.

and either
i) r log r [A(r)− χ(r)] ∈ L1(+∞)
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or, for some k ∈ (−∞, 1),

ii) r [A(r)− kχ(r)] ∈ L1(+∞).

Let h be a solution of {
(vh′)′ +Avh = 0 on R+,

h(0) = 1, h′(0) = 0.

Then, there exists C > 0 such that

h(r) ∼ Cr−
m−2

2 log r in case i);

h(r) ∼ Cr−
m−2

2 (1−
√

1−k) in case ii)

as r → +∞.

Proof. It follows from Theorem 5 by an explicit computations of Hk(r) and χH2
kv

(r).

These can be found in the Appendix, Class (ii), in the case H = 0.

We now state the next corollary of Theorem 5, which will be one of the cornerstones
in the proof of our existence Theorem 10.

Corollary 4. Let G, Ḡ ∈ C0(R+
0 ), and let g, ḡ be solutions of{

g′′ −Gg = 0

g(0) = 0, g′(0) = 1,

{
ḡ′′ − Ḡḡ = 0

ḡ(0) = 0, ḡ′(0) = 1,
(94)

Suppose that g is positive on R+, and that g−2 ∈ L1(+∞). If

G(r)− Ḡ(r) ≤ χg2(r),
G(r)− Ḡ(r)√

χg2(r)
∈ L1(+∞), (95)

Then ḡ > 0 on R+ and ḡ(r) ∼ Cg(r) as r → +∞, for some C > 0.

Proof. Setting h = ḡ/g, h solves{
(vh′)′ +Avh = 0

h(0) = 1, h′(0) = 0
where v(r) = g(r)2, A(r) = G(r)− Ḡ(r).

Now, we apply Theorem 5 with the choice k = 0. Note that the first requirement in
(95) is equivalent to A ≤ χ, whence h > 0 on R+ and thus ḡ > 0. The conclusion
h(r)→ C > 0 as r → +∞ proves the desired asymptotic relation.

Remark 15. A mild sufficient condition to guarantee that both g > 0 on R+ and
g−2 ∈ L1(+∞) is given by the inequality

G(r) ≥ − 1

4r2
on R+. (96)

This claim is a consequence of Proposition 1.21 in [1], which enables us to deduce both
the positivity of g and the bound g(r) ≥ C

√
r log r, for some constant C > 0 and

r >> 1, whenever (96) is met.
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Remark 16. By a way of example, suppose that G(r) = 0, that is, that we are in a
Euclidean setting. Then, (95) reads

Ḡ(r) ≥ − 1

4r2
on R+, rḠ(r) ∈ L1(+∞). (97)

On the other hand, in the hyperbolic case G(r) = H2 > 0, by the expression (55) for
χg2(r) (which coincides with χ3(r)) the first formula in (95) translates into

Ḡ(r) ≥ H2 − H2

(1− e−2Hr)2
= −H2e−2Hr 2− e−2Hr

(1− e−2Hr)2
on R+, (98)

while the second one is simply

Ḡ(r)−H2 ∈ L1(+∞).

We underline that (98) is a very mild requirement, as it is satisfied, for instance, by
every Ḡ(r) ≥ 0.

We conclude this section with another estimate for the solution of the linear Cauchy
problem. This will be used in the proof of the non-existence result, Theorem 12 below,
that complements and prove sharpness of the general existence Theorems 9 and 10.
We begin with the following version of Gronwall’s inequality

Lemma 1. Let ϕ,ψ ∈ L1
loc(R+

0 ), and let η ∈ Liploc(R+
0 ) be a solution of the differential

inequality
η′ ≤ ϕη + ψ on R+. (99)

Then,

η(r) ≤ η(0) exp

{∫ r

0

ϕ(t)dt

}
+

∫ r

0

ψ(t) exp

{∫ r

t

ϕ(ξ)dξ

}
dt on R+

0 . (100)

Proof. Observe that, for each s ∈ R+
0 , by (99)(

η(r) exp

{
−
∫ r

s

ϕ(ξ)dξ

})′
= exp

{
−
∫ r

s

ϕ(ξ)dξ

}[
η′(r)− ϕ(r)η(r)

]
≤ ψ(r) exp

{
−
∫ r

s

ϕ(ξ)dξ

}
.

Integrating this inequality on [0, r] gives

η(r) exp

{
−
∫ r

s

ϕ(ξ)dξ

}
− η(0) exp

{
−
∫ 0

s

ϕ(ξ)dξ

}
≤
∫ r

0

ψ(t) exp

{
−
∫ t

s

ϕ(ξ)dξ

}
dt,

from which we immediately deduce the validity of (100) by setting s = r.

Remark 17. In the assumptions of the lemma, if η′ ≥ −ϕ(r)η + ψ(r) on R+, for
some ψ,ϕ ∈ L1

loc(R+
0 ), then

η(r) ≥ η(0) exp

{
−
∫ r

0

ϕ(t)dt

}
+

∫ r

0

ψ(t) exp

{
−
∫ r

t

ϕ(ξ)dξ

}
dt on R+

0 .

Using Lemma 1 we obtain
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Proposition 2. Let Mg be a model of dimension m ≥ 3 and with Krad ≤ 0, and
define as usual v = gm−1. Let A ∈ L∞loc(R+

0 ) be and let h be a positive solution of the
problem {

(vh′)′ +Avh = 0 on R+

h(0) = 1, h′(0) = 0.
(101)

Then,

h(r) ≤ exp

{
1

m− 2

∫ r

0

g(t)

g′(t)
A−(t)dt

}
on R+

0 (102)

Remark 18.

i) Note that, sinceKrad = −g′′/g, the request thatKrad is non-positive is equivalent
to assume that g′′ ≥ 0. Consequently, in the above assumption g′(r) ≥ g′(0) = 1
and the RHS of (102) is well defined.

ii) We stress that we have not required A(r) ≤ χ(r), thus the positivity of h is not
guaranteed “a priori”.

Proof of Proposition 2. We integrate (101) and we use the initial conditions to see that
h satisfies

h(r) = 1 +

∫ r

0

g(t)1−m
(∫ t

0

gm−1(s)
[
−A(s)

]
h(s)ds

)
dt

≤ 1 +

∫ r

0

g(t)1−m
(∫ t

0

gm−1(s)A−(s)h(s)ds

)
dt

on R+
0 . Since g′′ ≥ 0, g′ is non-decreasing on R+, thus integrating by parts we have

h(r) = 1 +

∫ r

0

g′(t)g(t)1−m
(∫ t

0

gm−1(s)

g′(t)
A−(s)h(s)ds

)
dt

≤ 1 +

∫ r

0

g′(t)g(t)1−m
(∫ t

0

gm−1(s)

g′(s)
A−(s)h(s)ds

)
dt

= 1 +

[
−g(t)2−m

m− 2

∫ t

0

gm−1(s)

g′(s)
A−(s)h(s)ds

]r
0

+

+

∫ r

0

h(t)

m− 2

g(t)

g′(t)
A−(t)dt,

that is,

h(r) ≤ 1 +
1

m− 2

∫ r

0

g(t)

g′t)
A−(t)h(t)dt. (103)

We set

η(r) =
1

m− 2

∫ r

0

g(t)

g′t)
A−(t)h(t)dt. (104)

Differentiating and using (103) we get

η′ =
1

m− 2

g′

g
A−h ≤

1

m− 2

g′

g
A− +

1

m− 2

g′

g
A−η
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on R+
0 . We observe that η(0) = 0, thus applying Lemma 1 we obtain

h(r) = 1 + η(r) ≤ 1 +

∫ r

0

1

m− 2

g(t)

g′(t)
A−(t) exp

{∫ r

t

1

m− 2

g(ξ)

g′(ξ)
A−(ξ)dξ

}
dt

= 1−
∫ r

0

d

dt

(
exp

{∫ r

t

1

m− 2

g(ξ)

g′(ξ)
A−(ξ)dξ

})
dt

= exp

{∫ r

0

1

m− 2

g(ξ)

g′(ξ)
A−(ξ)dξ

}
,

which proves the desired inequality.

A first insight: generalizing Ni’s result

In this section, we show a first existence theorem for Yamabe type equations on model
manifolds, recovering, as a side product, Ni’s result quoted in the Introduction. Its
proof will be accomplished via a generalization of the arguments in [24] in order to
deal with the linear term. However, we underline that next results, on non-Euclidean
spaces, seem to be hardly obtainable from Ni’s original approach, which is based on
the construction of some special functions suitable only for Rm. In carefully revising
Ni’s technique, we give a first glance into the core of the problems, and devise some
of the new strategies that will be presented in the next section of the paper, when we
will deal with the most general case. We first need the following

Lemma 2. Let Mg be a model, set v = gm−1 and suppose that (VL1) is met. Let
A ∈ L∞loc(R+

0 ) be such that A < kχ on R+, for some k ∈ (−∞, 1]. Let B ∈ L∞loc(R+
0 ),

B ≥ 0, and σ > 1. For each fixed α > 0, consider a Liploc solution zα of{
(vz′α)′ +Avzα +Bv|zα|σ−1zα = 0 on [0, εα)

zα(0) = α > 0, z′α(0) = 0,
(105)

for some εα > 0. Let h and h̄ be positive solutions of{
(vh′)′ +Avh ≥ 0

h(0) = 1, h′(0) = 0
,

{
(vh̄′)′ +Avh̄ ≤ 0

h̄(0) = 1, h̄′(0) = 0
(106)

on R+
0 . Suppose that B(r) satisfies

B(r) ≤ C kχ(r)−A(r)

h(r)σ
Hk(r) (107)

for r ≥ r1, sufficiently large and for some constant C > 0, the function Hk(r) being
defined in (58). Then, there exists α0 > 0 such that, for every α ∈ (0, α0), zα can be
extended to a positive, locally Lipschitz solution on R+

0 of (105) satisfying

α

2
h̄(r) ≤ zα(r) ≤ αh(r) on R+

0 . (108)

Moreover, if A ≥ 0, then z′α ≤ 0 on R+.
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Remark 19. The local existence for (105) is achieved, for instance, via Picard iter-
ation procedure or a modification of Proposition 4.3 in [1]. This last argument also
shows that z′α(0) = 0, and positivity follows from the initial data and continuity. Fur-
thermore, since A ≤ χ, Theorem 4 guarantees the existence of positive solutions h, h̄
of (106).

Proof of Lemma 2. On the interval [0, εα) we consider the function ξ = zα/h. From
(105), (106) and B ≥ 0 we deduce{

(h2vξ′)′ ≤ 0 on (0, εα)

ξ(0) = α, ξ′(0) = 0.

Integrating we obtain ξ′ ≤ 0, and therefore ξ(r) ≤ ξ(0) = α. In other words,

zα(r) ≤ αh(r) on [0, εα), (109)

We now look for a lower bound of zα on [0, εα). Towards this aim we observe that,

since A(r) < kχ(r) on R+
0 , we can define Ã ∈ Liploc(R+

0 ) in such a way that

A < Ã ≤ kχ on R+, Ã ≡ kχ on [r1,+∞),

for some r1 >> 1. Next, let w be the solution of{
(vw′)′ + Ãvw = 0 on R+

w(0) = 1, w′(0) = 0.
(110)

Then, by Theorem 4, w > 0 on R+ and it satisfies the estimate

w(r) ∼ CHk(r) as r → +∞ (111)

for some constant C > 0. Hence, using assumption (107) we deduce the existence of a
constant C1 > 0 sufficiently large such that

B(r) ≤ C1

[
Ã(r)−A(r)

]
w(r)

h(r)σ
on R+

0 . (112)

Note that, for the existence of C1, it is necessary that A < Ã on R+ and therefore
that the strict inequality A < kχ holds.

For any β > 0 we set wβ = βw, and consider ϕ = zα − wα/2. Then, by the initial
conditions for zα and wα/2, ϕ > 0 on some maximal interval [0, ε̄α) ⊆ [0, εα). From
(105), (110), (112) and (109) we get

(vϕ′)′ = −Bv|zα|σ −Avzα + Ãvwα/2

= −Avϕ+ (Ã−A)vwα/2 −Bv|zα|σ

≥ −Avϕ+ (Ã−A)vwα/2 − C1v
(Ã−A)w

hσ
(αh)σ

= −Avϕ+ (Ã−A)vwα/2
(
1− 2C1α

σ−1
)
,

(113)

hence (vϕ′)′ + Avϕ ≥ 0 on [0, ε̄α) provided α ≤ (2C1)−1/(σ−1) = α0. Next, on [0, ε̄α)
we define η = ϕ/h̄. Using (106) and ϕ > 0 we get{

(h̄2vη′)′ ≥ 0 on (0, ε̄α)

η(0) = α/2, η′(0) = 0.
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Integrating, we have η′ ≥ 0, hence from η(r) ≥ η(0) = α/2 we finally get η ≥ α/2.
Since, by construction, η(ε̄α) = 0 whenever ε̄α < εα, we deduce that necessarily
ε̄α = εα and thus

zα ≥ wα/2 +
α

2
h̄ on [0, εα), (114)

completing the proof of (108) restricted to [0, εα). Since h, h̄, w are defined and positive
on R+, zα cannot explode in a finite time and can therefore be extended to a positive
solution on the whole R+.

We are left to prove that z′α ≤ 0 whenever A ≥ 0. This follows immediately from
a first integration of (105), recalling that B ≥ 0 and zα > 0 on R+.

Remark 20. Following the argument of the proof we see that C1, and therefore α0,
depends on our choice of r1. We also observe that, without loss of generality, in the
above proof we could have taken h = h̄ = y solution of (vy′)′ + Avy = 0 with initial
condition y(0) = 1, y′(0) = 0. Indeed, from Sturm-type arguments, h̄ ≤ y ≤ h, and
hence (107) implies

B(r) ≤ C kχ(r)−A(r)

y(r)σ
Hk(r), (115)

and zα turns out to satisfy the more stringent condition α/2y ≤ zα ≤ αy. We have
preferred to keep h, h̄ distinct since condition (107) only needs an explicit h that solves
a differential inequality.

Remark 21. Suppose that h = h̄ = y as in the above remark, and assume that

kχ(r)−A(r)√
χH2

kv
(r)

∈ L1(+∞), (116)

for some k ∈ (−∞, 1]. Then, applying Theorem 5 we infer the asymptotic relation
y(r) ∼ CHk(r) as r diverges, for some C > 0. Therefore, condition (115) is equivalent
to

B(r) ≤ C kχ(r)−A(r)

Hk(r)σ−1
for r >> 1. (117)

We stress that the above condition implies

0 ≤ B(r)Hk(r)σ−1√
χH2

kv
(r)

≤ C kχ(r)−A(r)√
χH2

kv
(r)

∈ L1(+∞). (118)

This enables us to compare, in the specific case when (116) is met, Lemma 2 with the
next Theorem 7

Remark 22. It is reasonable to question whether the restriction of the initial condi-
tion α to (0, α0), for the desired solution of (105), is of a technical nature or properly
pertains to the setting we are considering. As a matter of fact, it is essential for the
existence of a global positive solution. Indeed, in Theorem B of [32] it is shown that,
for v(r) = rm−1 and m ≥ 3, any solution zα of{

(rm−1z′α)′ +Arm−1zα +Brm−1|zα|σ−1zα = 0 on R+,

zα(0) = α > 0, z′α(0) = 0,
(119)
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starting from a sufficiently large α, has necessarily a first zero whenever
1 < σ <

m+ 2

m− 2
;

− C2

r2−ε ≤ A(r) ≤ 0 for some C > 0, ε ∈ (0,m− 2);

B ∈ C0(R+
0 ), B ≥ 0, B(0) > 0.

The interested reader can also consult related results in [13]. It seems interesting to
note that the technique employed in [32], [13] is heavily based on the fact that the
volume v(r) is polynomial, so that the solution of (119) is “close” to the one of{

(rm−1z̄′α)′ +B(0)rm−1|z̄α|σ−1z̄α = 0 on R+,

z̄α(0) = α > 0, z̄′α(0) = 0,
(120)

and that this latter has a first zero. It would be very interesting to investigate on
analogous results for general growth of v(r).

With the aid of Lemma 2 we now prove

Theorem 6. Let Mg be an m-dimensional model manifold, set v = gm−1 and suppose
that (VL1) is met. Let σ > 1, and let A(r(x)) ∈ Hölloc(Mg) be a radial function
satisfying

A(r) < kχ(r) on R+,

for some k ∈ (−∞, 1]. Let h, h̄ be positive, C2 solutions of (106) on R+. Consider a
function b(x) ∈ Hölloc(Mg) satisfying

|b(x)| ≤ C
kχ
(
r(x)

)
−A

(
r(x)

)
h
(
r(x)

)σ Hk

(
r(x)

)
(121)

outside some ball and for some constant C > 0. Then, the equation

∆u+A(r(x))u− b(x)uσ = 0 (122)

possesses infinitely many solutions {uj}j∈N ⊆ Höl2loc(Mg). For each of them, there
exist constants 0 < Γ1,j ≤ Γ2,j such that

Γ1,j h̄(r(x)) ≤ uj(x) ≤ Γ2,jh(r(x)) on Mg. (123)

Furthermore, Γ2,j ↓ 0 as j → +∞. If A(r) and b ∈ C∞(Mg), then {uj} ⊆ C∞(Mg).

Proof. First of all we prove the theorem in case h = h̄ = y is a solution of{
(vy′)′ +Avy = 0
y(0) = 1 y′(0) = 0.

(124)

Next we choose a function B(r) ≥ 0 on R+
0 , B ∈ L∞loc(R+

0 ) such that |b(x)| ≤ B(r(x))
on Mg and satisfying (107). This is possible because of (121). By Lemma 2, there
exists α0 > 0 such that for each α ∈ (0, α0) we have a positive solution zα on R+

0 of
(105). Setting ωα(x) = zα(r(x)), ωα solves

∆ωα +Aωα − bωσα ≤ ∆ωα +Aωα +Bωσα

= z′′α +
v′

v
z′α +Azα +Bzσα

= v−1
[
(vz′α)′ +Avzα +Bvzσα

]
= 0
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and has the property that

α

2
y(r(x)) ≤ ωα(x) ≤ αy(r(x)) (125)

on Mg. Next, we define

yα =
α

2
y − zα/4.

Then, yα(0) = α/4 and, by (108),

α

2
y ≥ yα =

α

2
y − zα/4 ≥

(α
2
− α

4

)
y =

α

4
y.

Therefore, using (125),
α

4
y ≤ yα ≤

α

2
y ≤ ωα ≤ αy.

Furthermore,

(vy′α)′ +Avyα = Bvzσα/4 = Bv

(
zα/4

α
2 y − zα/4

)σ
yσα.

Since
zα/4

α
2 y − zα/4

≥
α
8 y
α
2 y

=
1

4
,

it follows that yα solves
(vy′α)′ +Avyα ≥ Bv4−σyσα,

whence, defining ȳα = 4−
σ
σ−1 yα,

(vȳ′α)′ +Avȳα ≥ Bvȳσα.

As a consequence, ω̄α(x) = ȳα(r(x)) satisfies

∆ω̄α +Aω̄α − bω̄σα ≥ (B − b)ω̄σα ≥ 0 (126)

and
4
−σ
σ−1

α

4
y(r(x)) ≤ ω̄α(x) ≤ 4

−σ
σ−1

α

2
y(r(x)) ≤ α

2
y(r(x)) ≤ ωα(x) (127)

on Mg. By the monotone iteration scheme, [33], and elliptic regularity, there exists a
solution uα(x) ∈ Höl2loc(Mg) of (122) satisfying

ω̄α ≤ uα ≤ ωα (128)

on Mg. Furthermore, if A(r), b are smooth, then uα is smooth again by elliptic regu-
larity. From (127) and (128) it follows immediately that

4−
2σ+1
σ−1 αy(r(x)) ≤ uα(x) ≤ αy(r(x))

The procedure can now be iterated, simply replacing α = α1 with, say, α2 =

4−
2σ+1
σ−1 −1α. Note that the corresponding positive solution uα2

is strictly below uα1
=

uα. In this way we obtain the required conclusion. If h 6≡ h̄, we reason as in Remark
20. Let y be a solution of (124). Then, by Sturm comparison h̄ ≤ y ≤ h, thus the
validity of (121) implies the validity of

|b(x)| ≤ C kχ(r(x))−A(r(x))

y(r(x))σ
Hk(r(x)).
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Applying the previous proof we get a sequence of solutions uj such that

Γ1,j h̄(r(x)) ≤ Γ1,jy(r(x)) ≤ uj(x) ≤ Γ2,jy(r(x)) ≤ Γ2,jh(r(x))

on Mg. This completes the proof of the theorem.

To better appreciate the above result, we specialize it to the Yamabe problem on
Rm to give an alternative proof of Ni’s version of Theorem 1.

Corollary 5 ([24], Theorem 1.4). Consider the Euclidean space Rm, m ≥ 3, and let
s̃(x) ∈ C∞(Rm) be a function satisfying

|s̃(x)| ≤ C

r(x)l
for r(x) ≥ 1, (129)

for some C > 0, l > 2. Then, the Euclidean metric 〈 , 〉 can be conformally deformed

to a complete, smooth metric 〈̃ , 〉 of scalar curvature s̃(x) and satisfying

Γ1〈 , 〉x ≤ 〈̃ , 〉x ≤ Γ2〈 , 〉x ∀x ∈ Rm, (130)

for some 0 < Γ1 ≤ Γ2. Furthermore, Γ2 can be chosen to be as small as we wish.

Proof. Defining u as in (2), u must be a positive solution of (3), which on Euclidean
space reads

∆u+
s̃(x)

cm
u
m+2
m−2 = 0, where cm =

4(m− 1)

m− 2
.

Set σ = (m+ 2)/(m− 2), b(x) = −s̃(x)/cm, and realize Rm as a model manifold with
g(r) = r, for which χ(r) = (m − 2)2/(4r2). To apply Theorem 6, we choose A ≡ 0,
h = h̄ = 1 and k > 0 small enough in such a way that

2 + (m− 2)
1−
√

1− k
2

< l.

This is possible since l > 2. Then, |b(x)| ≤ Cr−l implies the inequality

|b(x)| ≤ Cr(x)−2−m−2
2 (1−

√
1−k), (131)

which is (121) in our setting. Thus, the existence of the desired conformal deformations
follows from Theorem 6.

The main existence theorems

We begin with the next theorem, that shall be compared with the previous Lemma 2.
Our aim is to construct positive solutions of (105) with a precise asymptotic behaviour
at infinity. This will be achieved by requiring some integrability condition on B(r)
playing the role of (121).

Theorem 7. Let g ∈ C2(R+
0 ), m ≥ 2 be such that v = gm−1 satisfies (VL1). Let

A ∈ L∞loc(R+
0 ) with the property that A(r) ≤ χ(r), and let h ∈ Liploc(R+

0 ) be the
positive solution of {

(vh′)′ +Avh = 0 on R+

h(0) = 1, h′(0) = 0.
(132)
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Let σ > 1, B ∈ L∞loc(R+
0 ) and suppose that

B(r)h(r)σ−1√
χh2v(r)

∈ L1(+∞). (133)

Then, there exists a constant β > 0, depending on σ, g,A,B, h such that the following
holds: for each γ∞ ∈ (0, β), there exist 0 < γ0 ≤ γM and a positive solution γ of{

(vγ′)′ +Avγ = Bvγσ on R+

γ(0) = γ0, γ′(0) = 0
(134)

such that

γ(r) ≤ γMh(r) on R+,
γ(r)

h(r)
→ γ∞ as r → +∞. (135)

Moreover, γM → 0 as γ∞ → 0.

Remark 23. Condition (133) is well defined provided

1

h2v
∈ L1(+∞), (136)

which follows, in our assumptions, from Remark 11.

Proof of Theorem 7. The idea is the same as that of Proposition 1, and relies on a
squeezing method. Due to the presence of some technical details, we prefer to write
the proof carefully for the convenience of the reader.

Let h be the solution of (132) and note that, since A ≤ χ, h is indeed positive on
R+

0 by Theorem 4. If γ solves (134) then ξ = γ/h is a solution of{
(h2vξ′)′ = (Bhσ−1)h2vξσ on R+

ξ(0) = γ0, ξ′(0) = 0
(137)

Define
ṽ(r) = h(r)2v(r),

and note that, by its very definition, χṽ(r) → +∞ as r → 0+. Using (133) and this
observation we set Λ+, Λ− according to

Λ± =
1

2

∫ +∞

0

B±(r)h(r)σ−1√
χṽ(r)

dr. (138)

We perform the change of variables (72), ξ is a solution of (137) if and only if y(s) =
sξ(r(s)) solves ÿ(s) =

ṽ2(r(s))

s3
B(r(s))h(r(s))σ−1

(
y(s)

s

)σ
on R+.

y(0) = 0, ẏ(0) = γ0,

(139)

where · means the derivative with respect to s. Set Λ = max{Λ+,Λ−}, and define

β = min
{

(Λσ)−
1

σ−1 , sup
{
t− tσΛ : t ∈

[
0, (Λσ)−

1
σ−1
]}}

, (140)

33



It is easy to check that, for each γ∞ ∈ (0, β), we can choose in a unique way

γM ∈
(

0, (Λσ)−
1

σ−1

)
in such a way that

γM − γσMΛ− = γ∞. (141)

From this and (140) we deduce

γ∞ ≤ γM and γ∞ − (γ∞)
σ

Λ+ ≥ γ∞ − (γ∞)
σ

Λ > 0. (142)

We can thus define γm accordingly to

0 < γm = γ∞ − (γ∞)
σ

Λ+ ≤ γ∞ ≤ γM . (143)

Next, we consider the problem ÿ(s) = − ṽ
2(r(s))

s3
B−(r(s))h(r(s))σ−1γσM on R+

y(0) = 0, ẏ(0) = γM .

(144)

Integrating the equation in (144) once, changing variables using (72) and recalling
(73), (141) we obtain

ẏ(s) = γM − γσM
∫ r(s)

0

ṽ(ρ)
B−(ρ)h(ρ)σ−1

s(ρ)
dρ

= γM − γσM
∫ r(s)

0

B−(ρ)h(ρ)σ−1ṽ(ρ)

[∫ +∞

ρ

dτ

ṽ(τ)

]
dρ

= γM −
γσM
2

∫ r(s)

0

B−(ρ)h(ρ)σ−1√
χṽ(ρ)

dρ.

(145)

Therefore, by (138),
ẏ(s) ≥ γM − γσMΛ− = γ∞ > 0;

moreover, since r(s)→ +∞ as s→ +∞,

lim
s→+∞

ẏ(s) = γM − γσM
∫ +∞

0

B−(ρ)h(ρ)σ−1√
χṽ(ρ)

dρ = γM − γσMΛ− = γ∞. (146)

The function y is thus increasing and, since y(0) = 0, y is positive on R+. From (145)
we also deduce

γ∞ ≤ ẏ(s) ≤ γM on R+. (147)

Integrating (147) on [0, s] and using y(0) = 0 we have

γ∞s ≤ y(s) ≤ γMs on R+ (148)

and, from (146) and De l’Hopital’s rule,

lim
s→+∞

y(s)

s
= γ∞. (149)
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We define

ξ+(r) =
y(s(r))

s(r)
. (150)

Then, ξ+ is positive on R+, and

ξ′+(r) =
s′(r)

s2(r)

{
ẏ(s(r))s(r)− y(s(r))

}
=
s′(r)

s2(r)
µ(s(r)).

Studying the function µ(s) = sẏ(s) − y(s) we have µ(0) = 0 and µ̇(s) = sÿ(s) ≤ 0
on R+. It follows that ξ+ is non-increasing on R+. Furthermore, ξ+(0+) = γM and,
because of (150) and (149), ξ+(r) ↓ γ∞ as r → +∞. From the change of variables
(72), from (148) and from the fact that ξ+ is positive, it also follows that ξ+ satisfies{

(ṽξ′+)′ = −(B−h
σ−1)ṽγσM ≤ −(B−h

σ−1)ṽξσ+ ≤ (Bhσ−1)ṽξσ+ on R+

ξ+(0) = γM , ξ′+(0) = 0,

Thus ξ+ is a supersolution of (137). To construct a subsolution we proceed in a similar
way. Consider the problem ÿ(s) =

ṽ2(r(s))

s3
B+(r(s))h(r(s))σ−1γσ∞ on R+

y(0) = 0, ẏ(0) = γm.

(151)

Integrating the equation on [0, s], proceeding as in (145) and using (143) we get

ẏ(s) = γm +
γσ∞
2

∫ r(s)

0

B+(ρ)h(ρ)σ−1√
χṽ(ρ)

dρ ≤ γm + γσ∞Λ+ = γ∞,

and ẏ(s)→ γ∞ as s→ +∞ from which we deduce

lim
s→+∞

y(s)

s
= γ∞. (152)

From ẏ(0) = γm, and since ẏ is increasing being ÿ ≥ 0, we argue that

γm ≤ ẏ(s) ≤ γm + γσ∞Λ+ = γ∞,

whence integrating and using y(0) = 0 we deduce

γms ≤ y(s) ≤ γ∞s.

We define ξ−(r) = y(s(r))/s(r). Similarly to what we did for the supersolution ξ+, ξ−
is positive, non-decreasing, ξ−(0) = γm and, because of (152), ξ−(r) ↑ γ∞ as r → +∞.
From our change of variables, ξ− satisfies{

(ṽξ′−)′ = (B+h
σ−1)ṽγσ∞ ≥ (B+h

σ−1)ṽξσ− ≥ (Bhσ−1)ṽξσ− on R+

ξ−(0) = γm, ξ′−(0) = 0.

The function ξ− is thus the desired subsolution of (137). Furthermore,

γm ≤ ξ−(r) ≤ γ∞ ≤ ξ+(r) ≤ γM , ξ−(r), ξ+(r)→ γ∞ as r → +∞. (153)
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By the monotone iteration scheme, [33], there exists a radial solution ξ of (137), for
some γ0 ∈ [γm, γM ], such that

ξ− ≤ ξ ≤ ξ+.
In particular,

ξ(r) ≤ γM , ξ(r)→ γ∞ as r → +∞.
The fact that γM → 0 as γ∞ → 0 follows from its very definition (141). To conclude,
from h(0) = 1, there exists γ0 ∈ [γm, γM ] such that the function γ = ξh is a solution
of (134) such that

γ(r) ≤ γMh(r) on R+, lim
r→+∞

γ(r)

h(r)
= γ∞,

which proves (169).

Remark 24. If A is subjected to the requirement

A(r)− kχ(r)√
χH2

kv
(r)

∈ L1(+∞), (154)

for some k ∈ (−∞, 1], then by Theorem 5 it holds h(r) ∼ CHk(r) as r diverges, for
some C > 0. Whence, condition (133) on B can be rewritten as

B(r)Hk(r)σ−1√
χH2

kv
(r)

∈ L1(+∞). (155)

Referring to what stated in Remark 21, in the case when (154) is satisfied we deduce
that Theorem 7 refines Lemma 2.

The above theorem gives the building block to construct sub- and supersolution
for the Yamabe equation, and the effectiveness of condition (133) on B depends on
knowing the precise asymptotic behaviour for h(r). This will be accomplished via
Theorem 5, under the condition that A is closed to kχ in the integral sense given by
(154). Passing from models to general manifolds requires a control on the behaviour
of the Laplacian of the distance function, which is obtained via the classical Laplacian
comparison theorems (see [27], Section 2 or [1], Theorems 1.17 and 1.19)). To state
them in a way convenient for our purposes, we introduce the next quantities. We
restrict ourselves to the case when M has a pole. For x ∈M\{o}, let c : [0, r(x)]→M
be the unique minimizing geodesic connecting o to x. Set

ψc(s) = s exp

{∫ s

0

[
∆r ◦ c(σ)

m− 1
− 1

σ

]
dσ

}
, wc(s) = ψc(s)

m−1, (156)

and note that

∆r
(
c(s)

)
= (m− 1)

ψ′c(s)

ψc(s)
=
w′c(s)

wc(s)
∀ s ∈ [0, r(x)], (157)

thus, for every radial u(x) = γ(r(x)) it holds

∆u(x) = γ′′ + γ′∆r(x) =

(
γ′′ + γ′

w′c
wc

)
(r(x)) =

[
w−1
c (wcγ

′)′
]
(r(x)). (158)

In the notation above (a particular version of) the Laplacian comparison theorems
reads as follows:
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Theorem 8 ([27], Section 2 and [1], Theorems 1.17 and 1.19). Let (M, 〈 , 〉) be an
m-dimensional manifold with a pole o and radial sectional curvature with respect to o
satisfying

Krad(x) ≤ −G
(
r(x)

) (
resp. Krad(x) ≥ −Ḡ

(
r(x)

))
,

for some G, Ḡ ∈ C0(R+
0 ). Let g (resp. ḡ) be a solution of{

g′′ −Gg ≤ 0 on R+

g(0) = 0, g′(0) = 1.

(
resp.

{
ḡ′′ − Ḡḡ ≥ 0 on R+

ḡ(0) = 0, ḡ′(0) = 1.

)
Suppose that g (resp. ḡ) is positive on R+, and set v = gm−1 (resp. v̄ = ḡm−1). Then,
for every x ∈M\{o} and every minimizing geodesic c : [0, r(x)]→M joining o to x,

w′c
wc

(
r(x)

)
≥ v′

v

(
r(x)

)
.

(
resp.

w′c
wc

(
r(x)

)
≤ v̄′

v̄

(
r(x)

))
As underlined in the Introduction, the method to produce sub-and supersolution

radically depends on whether k = 0 or k > 0 in (154).

The case k = 0.

In this section, we prove Theorem 3 and the subsequent Corollary 2 in the Introduction.

Theorem 9. Let (M, 〈 , 〉) be a complete, m-dimensional Riemannian manifold with
a pole o and radial sectional curvature Krad with respect to o satisfying

Krad(x) ≤ −G
(
r(x)

)
, (159)

for some G ∈ C0(R+
0 ). Let g ∈ C2(R+

0 ) be a solution of{
g′′ −Gg ≤ 0 on R+,

g(0) = 0, g′(0) = 1.
(160)

Suppose that g > 0 on R+ and that v = gm−1 satisfies (VL1), and set χ = χv as usual.
Let q(x), b(x) ∈ Hölloc(M) be such that

|q(x)| ≤ A(r(x)), |b(x)| ≤ B(r(x)), (161)

for some non-negative A,B ∈ L∞loc(R+
0 ) with

A(r) ≤ χ(r) on R+,
A(r)√
χ(r)

∈ L1(+∞),
B(r)√
χ(r)

∈ L1(+∞). (162)

Fix σ > 1. Then, there exists a constant β > 0, depending on σ, g,A,B such that, for
each γ∞ ∈ (0, β), there exist 0 < Γ1 ≤ Γ2 and a solution u ∈ Höl2loc(M) (C∞ if q, b
are C∞) of

∆u+ q(x)u− b(x)uσ = 0 (163)

satisfying
Γ1 ≤ u(x) ≤ Γ2 on M (164)

and
lim

r(x)→+∞
u(x) = γ∞. (165)

Moreover, Γ2 → 0 as γ∞ → 0.
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Proof. Consider the solutions hj of the Cauchy problems{
(vh′1)′ −Avh1 = 0 on R+

h1(0) = 1, h′1(0) = 0
,

{
(vh′2)′ +Avh2 = 0 on R+

h2(0) = 1, h′2(0) = 0.
(166)

Note that, since A ≥ 0 and A ≤ χ, hj > 0 on R+ and a first integration shows that,
respectively,

h′1 ≥ 0, h′2 ≤ 0. (167)

This will be essential in the construction of the sub- and supersolution. By (162)
and Theorem 5, hj(r) → Cj as r → +∞, for some Cj > 0. Sturm arguments give
that h1 ≥ h2, and so C1 ≥ C2. From Theorem 7, for each j there exists a positive
βj , depending on σ, g,A,B, such that, for each fixed γ∞,j ∈ (0, βj), we can find
0 < γ0,j < γM,j and a positive solution γj of, respectively,{

(vγ′1)′ −Avγ1 = Bvγσ1 on R+

γ1(0) = γ0,1, γ′1(0) = 0
,

{
(vγ′2)′ +Avγ2 = −Bvγσ2 on R+

γ2(0) = γ0,2, γ′2(0) = 0
(168)

with the properties

γj(r) ≤ γM,jhj(r) on R+, γj(r)→ γ∞,jCj as r → +∞. (169)

Set
β̄ = min{β1, β2}, β = min{C2, 1}β̄.

We restrict our choice of γ∞ to (0, β). Now, fix γ∞,2 in such a way that

γ∞,2C2 = γ∞, (170)

and note that γ∞,2 = γ∞/C2 ∈ (0, β/C2) ⊆ (0, β̄). Combining (170) with the property
that γM,2 → 0 as γ∞,2 → 0 granted by Theorem 7, we deduce

γM,2 → 0 as γ∞ → 0. (171)

Next, we let

γ∞,1 = γ∞,2
C2

C1
≤ γ∞,2.

In this way, γ∞,1 ∈ (0, β̄) and, by (169),

γ1(r)

γ2(r)
→ 1 as r → +∞. (172)

Define ξj = γj/hj . Then, ξj satisfies{
(h2

1vξ
′
1)′ = (Bhσ−1

1 )h2
1vξ

σ
1 on R+

ξ1(0) = γ0,1, ξ′1(0) = 0

{
(h2

2vξ
′
2)′ = −(Bhσ−1

2 )h2
2vξ

σ
2 on R+

ξ2(0) = γ0,2, ξ′2(0) = 0.
(173)

A first integration shows that ξ′1 ≥ 0 and ξ′2 ≤ 0. Fix x ∈M and let c be a ray joining
o to x. Having defined wc as in (156), assumption (159) and the Laplacian comparison
theorem yield w′c/wc ≥ v′/v on R+, and with a simple computation we get

(h2
jv)′

h2
jv
≤

(h2
jwc)

′

h2
jwc

for each j.
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Consequently, by (173)

0 = ξ′′1 +
(h2

1v)′

h2
1v

ξ′1 − (Bhσ−1
1 )ξσ1 ≤ ξ′′1 +

(h2
1wc)

′

h2
1wc

ξ′1 − (Bhσ−1
1 )ξσ1 ;

0 = ξ′′2 +
(h2

2v)′

h2
2v

ξ′2 + (Bhσ−1
2 )ξσ2 ≥ ξ′′2 +

(h2
2wc)

′

h2
2wc

ξ′2 + (Bhσ−1
2 )ξσ2 .

(174)

Whence, a computation that uses the first of (166) and (173) shows that γ1 solves, on
R+,

γ′′1 +
w′c
wc
γ′1 −Aγ1 −Bγσ1 ≥ ξ1h′1

(
w′c
wc
− v′

v

)
. (175)

Again by the Laplacian comparison theorem and since h′1 ≥ 0, the right hand side is
non-negative, which implies that γ1 is a solution of{

(wcγ
′
1)′ −Awcγ1 ≥ Bwcγσ1

γ1(0) = γ0,1, γ′1(0) = 0.
(176)

Note the additional property

γ′1 = ξ′1h1 + h′1ξ1 ≥ 0 on R+. (177)

Setting
u1(x) = γ1(r(x)),

we have, by (158) and (176),

∆u1 + q(x)u1 − b(x)uσ1 ≥ ∆u1 −A(r)u1 −B(r)uσ1

= γ′′1 + γ′1
w′c
wc
−Aγ1 −Bγσ1 ≥ 0,

showing that u1 is a subsolution of (163). Similarly, using the second of (166) and
(173), γ2 solves

γ′′2 +
w′c
wc
γ′2 +Aγ2 +Bγσ2 ≤ ξ2h′2

(
w′c
wc
− v′

v

)
. (178)

Now, since h′2 ≤ 0, applying again the Laplacian comparison theorem we obtain that
the right hand side is non-positive, and also

γ′2 = ξ′2h2 + h′2ξ2 ≤ 0 on R+. (179)

By the same arguments as above, the function u2(x) = γ2(r(x)) is a supersolution of
(163). Combining the two monotonicity properties (177), (179) with the asymptotic
behaviour (172) we deduce that γ1 ≤ γ2 on R+, so

u1(x) ≤ u2(x) on M.

The monotone iteration scheme yields the existence of u ∈ Höl2loc(Mg) solving (163)
and such that u1 ≤ u ≤ u2. From

u(x) ≤ γ2(r(x)) ≤ γM,2h2(r(x)) ≤ γM,2 (since h′2 ≤ 0, h2(0) = 1);

uj(x) = γj(r(x))→ γ∞ as r(x)→ +∞,

property (164) follows at once by setting Γ2 = γM,2, and the validity of (171) concludes
the proof. Note that the C∞-smoothness of u, when q, b ∈ C∞(M), follows from elliptic
regularity.
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Proof of Corollary 2. We set q(x) = 0, and choose A = 0, k = 0 in Theorem 9, so that
the first two conditions in (162) are trivially satisfied. By computations (254), (257)
and (258) in the Appendix, for α ≥ −2

χ(r) ∼ Crα as r → +∞,

for some explicit constant C > 0, thus assumption (44) on B is exactly the third of
(162), and the conclusion follows from a plain application of the theorem.

The case k ∈ (0, 1).

In this section, we prove Corollary 1 and Theorem 2 of the Introduction, as con-
sequences of the general Theorem 10 below. In this latter, we restrict to the case
q(x) ≥ 0, and we consider non-negative A1, A2 such that

A1

(
r(x)

)
≤ q(x) ≤ A2

(
r(x)

)
.

The strategy of proof is close, in spirit, to that of Theorem 9, and relies on the
construction of suitable hj , γj , ξj . The supersolution u+(x) is basically obtained in
the same way as in the case k = 0, and only requires the upper bound A2 and the
geometric assumption

Krad(x) ≤ −G
(
r(x)

)
. (180)

However, in order to produce the subsolution, one has to take into account the mono-
tonicity of the solution of the linear ODE coming from A1, which, unfortunately, is
opposite to the corresponding one in Theorem 9. This makes necessary the use of the
Laplacian comparison theorem from above under the lower bound

Krad(x) ≥ −Ḡ
(
r(x)

)
. (181)

However, in order to match the correct inequalities we shall carefully mix solutions of
ODEs depending on the “upper” volume v̄ coming from (181) (the function h̄ below)
with that depending on the “lower” volume v constructed from (180) (the function
ξ1). The drawback of this method is that the subsolution u−(x) is likely to be above
the supersolution, in the sense that

u+(x) = o
(
u−(x)

)
as r(x)→ +∞.

Nevertheless, if G and Ḡ are sufficiently close (see (189) below), we are able to avoid
this basic problem. As it will become apparent in the proof, we achieve our goal via
the next two lemmas.

Lemma 3. Let Mg, Mḡ be models satisfying, respectively, v−1 = g1−m ∈ L1(+∞)
and v̄−1 = ḡ1−m ∈ L1(+∞). Let χv, χv̄ be the associated critical curves. Suppose that

C−1v(r) ≤ v̄(r) ≤ Cv(r) on R+, (182)

for some C > 0. Let H̄k be as in (58) with v substituted by v̄. Then, if k < 1,

χv̄(r)√
χH̄2

k v̄
(r)
− χv(r)√

χH2
kv

(r)
∈ L1(+∞). (183)
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Furthermore, suppose that v̄/v is non-decreasing. Then,

0 ≤ χv(r)

 1√
χH2

kv
(r)
− 1√

χH̄2
k v̄

(r)

 ∈ L1(+∞). (184)

Proof. We begin proving (183). From the first one in (59) we deduce

χv̄(r)√
χH̄2

k v̄
(r)
− χv(r)√

χH2
kv

(r)
=

1√
1− k

(√
χv̄(r)−

√
χv(r)

)
. (185)

By the very definition of the critical curves χv, χv̄, for 0 < R < r∫ r

R

(√
χv̄(s)−

√
χv(s)

)
ds = −1

2
log

(∫ +∞

r

ds

v̄(s)

/∫ +∞

r

ds

v(s)

)
+ C(R),

for a constant C(R) ∈ R. Letting r → +∞ and using (182) we conclude that√
χv̄(r)−

√
χv(r) ∈ L1(+∞), from which (183) follows.

To prove (184), we first observe that the assumption that v̄/v be non-decreasing im-
plies, via Proposition 3.12 in [1], that χv̄ ≥ χv on R+. Therefore, using (59) we
infer

χH̄2
k v̄

(r) = (1− k)χv̄(r) ≥ (1− k)χv(r) = χH2
kv

(r),

thus

0 ≤ χv(r)

 1√
χH2

kv
(r)
− 1√

χH̄2
k v̄

(r)

 = χv(r)

√
χH̄2

k v̄
(r)−

√
χH2

kv
(r)√

χH2
kv

(r)
√
χH̄2

k v̄
(r)

≤ χv(r)

√
χH̄2

k v̄
(r)−

√
χH2

kv
(r)

χH2
kv

(r)
=

1

1− k

√
χH̄2

k v̄
(r)− 1√

1− k
√
χv(r)

=
1√

1− k

(√
χv̄(r)−

√
χv(r)

)
,

and (184) follows from (185) and (183).

Remark 25. The restriction k < 1 in the above result is substantial. Indeed, if
k = 1, by the second equation of (59) it holds

∫ r

R

 χv̄(s)√
χH̄2

k v̄
(s)
− χv(s)√

χH2
kv

(s)

ds = +
1

4

[
log2

∫ +∞

r

ds

v̄(s)
− log2

∫ +∞

r

ds

v(s)

]
+ C(R)

=
1

4

[
log

(∫ +∞

r

ds

v̄(s)

∫ +∞

r

ds

v(s)

)][
log

(∫ +∞

r

ds

v̄(s)

/∫ +∞

r

ds

v(s)

)]
+ C(R).

Now, suppose that v̄(r) ∼ Cv(r) as r diverges, for some C 6= 1. Then, the RHS
diverges as r → +∞.

Lemma 4. In the assumptions of Lemma 3, let A ∈ L∞loc(R+
0 ) be such that

0 ≤ A(r) ≤ χv(r).
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Then, if k < 1,

A(r)− kχv̄(r)√
χH̄2

k v̄
(r)

∈ L1(+∞) if and only if
A(r)− kχv(r)√

χH2
kv

(r)
∈ L1(+∞). (186)

Proof. First, observe that

0 ≤ A(r)

 1√
χH2

kv
(r)
− 1√

χH̄2
k v̄

(r)

 ≤ χv(r)
 1√

χH2
kv

(r)
− 1√

χH̄2
k v̄

(r)

 .

Then, apply Lemma 3 to the identity

A− kχv̄
√χH̄2

k v̄

=
A− kχv
√χH2

kv

−A

(
1

√χH2
kv

− 1
√χH̄2

k v̄

)
− k

(
χv̄
√χH̄2

k v̄

− χv
√χH2

kv

)
.

We are now ready to prove

Theorem 10. Let (M, 〈 , 〉) be a complete, m-dimensional Riemannian manifold with
a pole o and radial sectional curvature Krad with respect to o satisfying

−Ḡ
(
r(x)

)
≤ Krad(x) ≤ −G

(
r(x)

)
, (187)

for some G, Ḡ ∈ C0(R+
0 ). Let g ∈ C2(R+

0 ) be the solution of{
g′′ −Gg = 0 on R+,

g(0) = 0, g′(0) = 1.
(188)

Suppose that g > 0 on R+ and that both

g−2 ∈ L1(+∞), and v−1 = g1−m ∈ L1(+∞).

Set χ = χv as usual. Assume that Ḡ is close enough to G in the following sense:

Ḡ(r)−G(r)√
χg2(r)

∈ L1(+∞). (189)

Let q(x) ∈ Hölloc(M) be such that

0 ≤ A1

(
r(x)

)
≤ q(x) ≤ A2

(
r(x)

)
,

for some Aj ∈ L∞loc(R+
0 ), j ∈ {1, 2} such that A2(r) ≤ χ(r). Suppose that there exists

k ∈ (0, 1) such that

Aj(r)− kχ(r)√
χ(r)

∈ L1(+∞) for j = 1, 2. (190)

Let σ > 1, B ∈ L∞loc(R+
0 ) and assume

B(r)Hk(r)σ−1√
χ(r)

∈ L1(+∞). (191)
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Then, for each b(x) ∈ Hölloc(M) satisfying

|b(x)| ≤ B(r(x)) on M,

there exist 0 < Γ1 ≤ Γ2 such that the equation

∆u+ q(x)u− b(x)uσ = 0 (192)

possesses a positive, bounded solution u ∈ Höl2loc(M) (C∞ if q, b are C∞) with the
property that, for some r0 > 0,

Γ1Hk(r(x)) ≤ u(x) ≤ Γ2Hk(r(x)) for r(x) ≥ r0. (193)

Moreover, ‖u‖L∞(M) and Γ2 can be chosen to be as small as we wish.

Remark 26. Due to the presence of the factor Hk(r)σ−1 and since k ∈ (0, 1), con-
dition (191) allows ample oscillations of b(x) between positive and negative values.
For the two relevant classes of G(r) described in (38), the reader can easily check this
claim with the aid of the computations in the Appendix.

Remark 27. By Remark 14, the requirement (190) gives a family of independent
conditions as k varies. In particular, since k > 0 neither of them implies

A(r)√
χ(r)

∈ L1(+∞),

thus Theorem 10 is not contained in Theorem 9.

Proof of Theorem 10. We begin with the construction of the supersolution, and let h
solve {

(vh′)′ +A2vh = 0 on R+

h(0) = 1, h′(0) = 0.
(194)

Since 0 ≤ A2 ≤ χ, h is positive and non-increasing, so h ≤ 1 on R+. Moreover, since
k < 1, χH2

kv
(r) = (1− k)χ(r) and so (190) implies (85) with A = A2. An application

of Theorem 5 shows that

h(r) ∼ C2Hk(r) as r → +∞, (195)

for some C2 > 0. By Theorem 7, for each γ∞,2 sufficiently small, there exists a positive
solution γ2 of {

(vγ′2)′ +A2vγ2 = −Bvγσ2 on R+

γ2(0) = γ0,2, γ′2(0) = 0
(196)

with the further properties

γ2(r) ≤ γM,2h(r) ≤ γM,2 on R+,
γ2(r)

h(r)
→ γ∞,2 as r → +∞ (197)

for some 0 < γ0,2 ≤ γM,2 satisfying γM,2 → 0 as γ∞,2 → 0. Indeed, by (195) and since
k < 1, (133) is equivalent to (191). Having set c, wc as in (156), by (157) and the
Laplacian comparison theorem, condition Krad ≤ −G(r) in (187) implies

∆r
(
c(s)

)
=
w′c
wc

(s) ≥ v′

v
(s) on R+, (198)
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therefore
(h2wc)

′

h2wc
≥ (h2v)′

h2v
. (199)

We set ξ2 = γ2/h and we observe that ξ2 solves ξ′′2 +
(h2v)′

h2v
ξ′2 = −(Bhσ−1)ξσ2

ξ2(0) = γ0,2, ξ′2(0) = 0,

(200)

in particular ξ′2 ≤ 0. Therefore, from (199) it follows that

ξ′′2 +
(h2wc)

′

h2wc
ξ′2 ≤ −(Bhσ−1)ξσ2 .

The same computation performed in Theorem 9 shows that γ2 = hξ2 solves

γ′′2 +
w′c
wc
γ′2 +A2γ2 +Bγσ2 ≤ ξ2h′

(
w′c
wc
− v′

v

)
. (201)

Combing h′ ≤ 0 and (198) we deduce that γ2 is a solution of{
(wcγ

′
2)′ +A2wcγ2 ≤ −Bwcγσ2 on R+

γ2(0) = γ0,2, γ′2(0) = 0.
(202)

From q(x) ≤ A2(r(x)) and −b(x) ≤ B(r(x)) we conclude that u+(x) = γ2(r(x)) is a
supersolution of (192) satisfying (by (195) and (197))

u+(x) ≤ γM,2 on R+, u+(x) ∼ γ∞,2C2Hk(r(x)) as r(x)→ +∞. (203)

To construct the subsolution, let ḡ solve{
ḡ′′ − Ḡḡ = 0 on R+,

ḡ(0) = 0, ḡ′(0) = 1.

and set v̄ = ḡm−1. Since Ḡ ≥ G, by Sturm arguments ḡ/g is non-decreasing, and thus
also v̄/v. Hence, χv̄ is well defined and χ ≤ χv̄ by Proposition 3.12 in [1]. Since, by
assumption, A1 ≤ A2 ≤ χ, it follows that A1 ≤ χv̄, and thus the problem{

(v̄h̄′)′ +A1v̄h̄ = 0 on R+

h̄(0) = 1, h̄′(0) = 0
(204)

has a positive, non-increasing solution h̄, thus satisfying h̄ ≤ 1 on R+. By (189) and
the fact that Ḡ ≥ G, both conditions in (95) are met, and

v̄(r) ∼ Cv(r) as r → +∞, (205)

for some positive constant C. We next determine the asymptotic behaviour of h̄. By
Lemma 4 with A = A1, and again since χH2

kv
(r) = (1− k)χ(r), our requirement (190)

is equivalent to
A1(r)− kχv̄(r)√

χH̄2
k v̄

(r)
∈ L1(+∞).
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An application of Theorem 5 yields h̄(r) ∼ CH̄k(r) as r → +∞. Finally, since v̄ ∼ Cv
as r diverges, we get

h̄(r) ∼ C1Hk(r) as r → +∞, (206)

for some positive C1. As a consequence, assumption (191) is equivalent to

B(r)h̄(r)σ−1√
χh̄2v(r)

∈ L1(+∞). (207)

Now, we apply the existence Theorem 7 with the choices k = 0, A = 0, B (in Theorem
7) equals to Bh̄σ−1 and v (in Theorem 7) given by h̄2v. Note that, with our choices,
the solution of (132) is the constant 1. Thus, for each positive γ∞,1 sufficiently small
there exists a positive solution ξ1 of{

(h̄2vξ′1)′ = (Bh̄σ−1)h̄2vξσ1

ξ1(0) = γ0,1, ξ′1(0) = 0,
(208)

with the properties that

ξ1(r) ≤ γM,1 on R+, ξ(r)→ γ∞,1 as r → +∞, (209)

for some positive γ0,1 ≤ γM,1 satisfying γM,1 → 0 as γ∞,1 → 0. Integrating (208) once,
we get ξ′1 ≥ 0. It is important to observe that, although the solution h̄ of the linear
ODE (204) is related to the volume v̄ of the model Mḡ, the function ξ solves an ODE
whose weighted volume h̄2v depends on the volume v of the model Mg.
We first observe that, using (198)

(h̄2wc)
′

h̄2wc
≥ (h̄2v)′

h̄2v
,

whence coupling with ξ′1 ≥ 0 we get

ξ′′1 +
(h̄2wc)

′

h̄2wc
ξ′1 ≥ ξ′′1 +

(h̄2v)′

h̄2v
ξ′1 = (Bhσ−1)ξσ1 . (210)

Define γ1 = h̄ξ1. Then, from a combination of (206) and (209) and since h̄ ≤ 1 we
infer the relations

γ1(r) ≤ γM,1h̄(r) ≤ γM,1 on R+, γ1(r) ∼ γ∞,1C1Hk(r) as r → +∞. (211)

A computation using (210) and (204) shows that

γ′′1 +
w′c
wc
γ′1 +A1γ1 −Bγσ1 ≥ ξ1h̄′

(
w′c
wc
− v̄′

v̄

)
. (212)

The Laplacian comparison theorem from above and assumption Krad ≥ −Ḡ(r) imply
the inequality

∆r
(
c(s)

)
=
w′c
wc

(s) ≤ v̄′

v̄
(s), (213)

thus putting together with h̄′ ≤ 0 we deduce from (212) that γ1 solves{
(wcγ

′
1)′ +A1wcγ1 ≥ Bwcγσ1 on R+

γ1(0) = γ0,1, γ′1(0) = 0.
(214)
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Using q(x) ≥ A1(r(x)) and b(x) ≤ B(r(x)) we conclude that u−(x) = γ1(r(x)) is a
subsolution of (192) satisfying (by (206) and (211))

u−(x) ≤ γM,1 on R+, u−(x) ∼ γ∞,1C1Hk(r(x)) as r(x)→ +∞. (215)

Now, by inspecting the relations (203) and (215), and using that γM,1 → 0 as γ∞,1 → 0,
for each fixed γ∞,2 we can choose γ∞,1 small enough that u− ≤ u+ on M . Now,
applying the monotone iteration scheme gives the desired solution u ∈ Höl2loc(M)
satisfying u− ≤ u ≤ u+. From ‖u+‖L∞(M) = γM,2, up to choosing γ∞,2 appropriately
we can make ‖u‖L∞(M) as small as we wish. This concludes the proof. The C∞-
regularity of u, when q, b ∈ C∞(M), follows from elliptic regularity theory.

Next, we prove Corollary 1 in the Introduction.

Proof of Corollary 1. Set G(r) = 0, g(r) = r, and note that, since m ≥ 3, v = gm−1

satisfies (VL1). Taking into account that

χ(r) =
(m− 2)2

4r2
,

and, by (260) and (261) in the Appendix, for k ∈ (0, 1)

Hk(r) ∼ Cr−
m−2

2 (1−
√

1−k)

χH2
kv

(r) ∼ (m− 2)2(1− k)

4r2

as r → +∞, the result follows immediately from Theorem 10.

Finally, specializing to hyperbolic type settings, we obtain Theorem 2.

Proof of Theorem 2. The conformal factor u in (2) has to satisfy

∆u− s(x)

cm
u+

s̃(x)

cm
uσ = 0, cm =

4(m− 1)

m− 2
, σ =

m+ 2

m− 2
. (216)

We set G(r) = −H2 and g(r) = H−1 sinh(Hr) in Theorem 10, so that we compare M
with the hyperbolic space HmH . Clearly, v(r) = g(r)m−1 satisfies (VL1), and by (56) it
holds

χ(r) >
H2(m− 1)2

4
on R+, χ(r)→ H2(m− 1)2

4
as r → +∞. (217)

We define

k =
m(m− 2)

(m− 1)2
< 1, q(x) = −s(x)

cm
, b(x) = − s̃(x)

cm
. (218)

Tracing relation (18) we deduce

−m(m− 1)H2 −m(m− 1)K(r) ≤ s(x) ≤ −m(m− 1)H2.

From (20) and (217) we thus get
q(x) ≤ 1

cm

(m− 1)3H2

m− 2
=

(m− 1)2H2

4
≤ χ(r),

m(m− 2)H2

4
≤ q(x) ≤ m(m− 2)H2

4
+ K̄(r).

(219)
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Where

0 ≤ K̄(r) =
m(m− 1)

cm
K(r) ∈ L1(+∞).

Choose

A1(r) =
m(m− 2)H2

4
, A2(r) = min

{
m(m− 2)H2

4
+ K̄(r),

(m− 1)2H2

4

}
.

and observe that
A1

(
r(x)

)
≤ q(x) ≤ A2

(
r(x)

)
≤ χ

(
r(x)

)
and that A2 can be written as

A2(r) =
m(m− 2)H2

4
+ K̂(r), for some 0 ≤ K̂(r) ∈ L1(+∞).

We recall the next asymptotic expansion (see (57)):

χ(r) =
1

4

{
1

(m− 1)H
+

m− 1

(m+ 1)H
e−2Hr + o

(
e−2Hr

)}−2

as r → +∞.

Keeping in mind our definition of k in (218), we deduce

A1(r)− kχ(r) = −1

2

m(m− 1)2(m− 2)

m+ 1
H2e−2Hr + o

(
e−2Hr

)
A2(r)− kχ(r) = −1

2

m(m− 1)2(m− 2)

m+ 1
H2e−2Hr + o

(
e−2Hr

)
+ K̂(r).

(220)

Now, again by the choice of k (see computation (256) in the Appendix),

Hk(r) ∼ Ce−
H(m−1)

2 (1−
√

1−k)r = Ce−
H(m−2)

2 r as r → +∞. (221)

Combining (220) and (221), the integrability condition (190) follows because of that of
K̂(r). On the other hand, by (221) and our definitions of σ and k, requirement (191)
becomes

e−2HrB(r) ∈ L1(+∞).

Applying Theorem 10 we reach the desired conclusion.

The case k ∈ (−∞, 1] on models.

When M itself is radially symmetric, the situation gets simpler. Indeed, in this case
Ḡ = G, and there is no need to match the monotonicity of h, h̄ with the inequalities
deriving from the Laplacian comparison theorems. Moreover, as G = Ḡ the restriction
k < 1 made in order to use Lemma 4 (see also Remark 25) is not necessary anymore.
With a procedure close to the one presented in Theorems 9 and 10, one can easily
prove the next result:

Theorem 11. Let Mg be model manifold such that v = gm−1 satisfies (VL1), and set
χ = χv as usual. Let q(x) ∈ Hölloc(Mg) be such that

A1

(
r(x)

)
≤ q(x) ≤ A2

(
r(x)

)
,
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for some Aj ∈ L∞loc(R+
0 ), j ∈ {1, 2} with A2(r) ≤ χ(r). Suppose that there exists

k ∈ (−∞, 1] for which

Aj(r)− kχ(r)√
χH2

kv
(r)

∈ L1(+∞) for j = 1, 2. (222)

Let σ > 1, B ∈ L∞loc(R+
0 ) and assume

B(r)Hk(r)σ−1√
χH2

kv
(r)

∈ L1(+∞). (223)

Then, there exists a constant β > 0, depending on σ, g,Aj , B, k such that the following
holds: for each Γ2 ∈ (0, β), and for each b(x) ∈ Hölloc(Mg) satisfying

|b(x)| ≤ B(r(x)) on Mg,

there exists 0 < Γ1 ≤ Γ2 such that the equation

∆u+ q(x)u− b(x)uσ = 0 (224)

possesses a positive solution u ∈ Höl2loc(Mg) with the property that, for some r0 > 0,

Γ1Hk(r(x)) ≤ u(x) ≤ Γ2Hk(r(x)) for r(x) ≥ r0. (225)

If q(x) is radial, there exists β̄ ≤ β such that, for each γ∞ ∈ (0, β̄), there exists a
solution of (224) with the further property

lim
r(x)→+∞

u(x)

Hk(r(x))
= γ∞. (226)

Moreover, Γ2 → 0 as γ∞ → 0.

Remark 28. It is worth to remark that the general asymptotic relation (226) seems
hardly obtainable from the proof of Theorem 10 on non-radial manifolds. In fact, for
k 6= 0, the possibility of choosing a subsolution u− and a supersolution u+ sharing the
same asymptotic behaviour at infinity, and also satisfying u− ≤ u+, strictly depends
on having G = Ḡ.

Remark 29. Particularizing Theorem 11 to the Yamabe problem on HmH , and pro-
ceeding along the same lines as in the proof of Theorem 2, we conclude the further
asymptotic relation described in Remark 4.

Remark 30. The above result enables us to justify the statements in Remark 8 in
the Introduction. In fact, for G(r) = 0 and k = 1, by (261) in the Appendix, condition
(222) reads

r log r
[
Aj(r)− χ(r)

]
∈ L1(+∞)

and, by (260),

H1(r) ∼ Cr−
m−2

2 log r as r → +∞.

Whence, (223) is equivalent to

B(r)r−
m−2

2 (σ−1)+1(log r)σ ∈ L1(+∞).
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A complementary non-existence result

The aim of this section is to prove the non-existence result contained in Theorem 12
below. Towards this aim we shall use the following simplified version of Lemma 3.2 of
[30].

Lemma 5. Let Mg̃ be a C2-model of dimension m, ṽ = g̃m−1, and let B(r) ∈ C0(R+
0 ),

B > 0 on R+ with

i) sup
R+

0

B < +∞ , ii) B(r) ≥ C

rµ
(227)

for r >> 1, some µ ∈ [0, 2) and some constant C > 0. Suppose that

lim inf
r→+∞

1

r2−µ log

∫ r

0

ṽ(t)dt < +∞. (228)

Let γ be a C2-solution of {
(ṽγ′)′ = ṽBγσ

γ(0) = γo > 0, γ′(0) = 0
(229)

for some σ > 1, and let [0, R) be its maximal interval of definition. Then R < +∞,
γ′ > 0 on (0, R) and

γ(r)→ +∞ as r → R−. (230)

In the present case condition (227) i) will not be necessary, and we briefly show
how to overcome it.
Suppose supR+

0
B = +∞ and that γ satisfies (229). Let B̃ ∈ C0(R+

0 ), B̃ > 0 satisfying

both (227) i), ii) and B̃(r) ≤ B(r). Then, by Lemma 5, if γ̃ is a solution of{
(ṽγ̃′)

′
= ṽB̃γ̃σ

γ̃(0) = γ̃o > 0, γ̃′(0) = 0,
(231)

then γ̃ is positive and it explodes in finite time, say R. Suppose now that γ satisfies
(229). Since B > 0, integrating (229) we see that γ′(r) > 0 for r > 0, hence γ > 0.
This fact together with B̃(r) ≤ B(r) shows that γ is a subsolution of the equation in
(231). Choose γ̃o < γo and let u(x) = γ(r(x)), ũ(x) = γ̃(r(x)). We then know that{

∆ũ = B̃(r(x))ũσ on BR

ũ = +∞ on ∂BR
(232)

and
∆u ≥ B̃(r(x))uσ (233)

We can now conclude with the aid of a standard maximum principle technique. Sup-
pose, by contradiction, that u is defined on all of Mg. Define w = u − ũ and observe
that, using (232) and (233),

∆w ≥ B̃(r(x)) (uσ − ũσ) on BR. (234)

Set

p(x) =


σũ(x)σ−1 if ũ(x) = u(x)

σ

u(x)− ũ(x)

∫ u(x)

ũ(x)

tσ−1dt if ũ(x) 6= u(x).
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and note that p ∈ C0(BR) and p ≥ 0 on BR. Inequality (234) can be rewritten as

∆w ≥ B̃(r(x))p(x)w on BR (235)

with
B̃(r(x))p(x) ≥ 0 on BR. (236)

Choose ε > 0 so small that w|∂BR−ε < 0. Since w(0) = γo − γ̃o > 0, w has an absolute
maximum in BR−ε. Using (235), (236) and the maximum principle (see [29], [8]), this
implies that w is constant, contradiction.

With the aid of our techniques, we can extend the above lemma to cover the Cauchy
problem {

(vγ′)′ +Avγ = Bvγσ

γ(0) = γo > 0, γ′(0) = 0,

where the linear term A is subjected to the condition A ≤ χ.

Proposition 3. Let Mg be a model with dimension m ≥ 3 and radial sectional cur-
vature satisfying Krad ≤ 0. Set v = gm−1. Let

A(r) ∈ Hölloc(R+
0 ), A(r) ≤ kχ(r) on R+

B(r) ∈ C0(R+
0 ), B > 0 on R+, B(r) ≥ C

rµHk(r)σ−1
for r >> 1,

(237)

for some µ ∈ [0, 2), k ∈ (−∞, 1], σ > 1 and some constant C > 0. Assume

lim inf
r→+∞

1

r2−µ log

∫ r

0

exp

{
2

m− 2

∫ t

0

g(s)

g′(s)
A−(s)ds

}
v(t)dt < +∞ (238)

Then any positive C2-solution γ of{
(vγ′)′ +Avγ = Bvγσ

γ(0) = γo > 0, γ′(0) = 0
(239)

is defined on a maximal interval [0, R) with R < +∞, and γ(r)→ +∞ as r → R−.

Remark 31. Since Krad ≤ 0, Mg satisfies g′′ = (−Krad)g ≥ 0. Integrating twice,
g(r) ≥ r, which implies that v has property (VL1) for each dimension m ≥ 3 and A ≤ χ
is well defined.

Proof. Let h be the positive, C2 solution of{
(vh′)′ +Avh = 0 on R+,

h(0) = 1, h′(0) = 0
(240)

which is granted by A ≤ χ. Then, by Proposition 2, since g′′ ≥ 0 the function h
satisfies the upper bound in (102). On [0, R) we define ξ = γ/h. Then (239) and (101)
imply that ξ satisfies

(
h2vξ′

)′
= (Bhσ−1)h2vξσ on [0, R)

ξ(0) = γo, ξ′(0) = 0.
(241)
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We let g̃(r) = h
2

m−1 (r)g(r) ∈ C2(R+). Then g̃(0) = 0, g̃′(0) = 1, whence Mg̃ is a
model of class C2. We want to apply Lemma 5 to Mg̃. Condition (228) is satisfied
because of (102) and (238). As for condition (227), we need to have

B(r)h(r)σ−1 ≥ C

rµ
for r >> 1. (242)

To show that this is the case we apply the usual Sturm comparison procedure. First,
we observe that condition A ≤ χ enables us to choose A ≤ Ā ≤ kχ such that Ā = kχ
on [r1,+∞), for some r1 large. We then know that a solution h̄ of{

(vh̄′)′ + Āvh̄ = 0 on R+,

h̄(0) = 1, h̄′(0) = 0

satisfies h̄(r) ∼ CHk(r) as r → +∞. Now, by Sturm comparison h̄ ≤ h, hence the
assumption

B(r) ≥ C

rµHk(r)σ−1

implies the validity of (242). Concluding, by Lemma 5 it follows that ξ, and therefore
γ, is defined on a finite maximal interval. Note that, since z(r) → +∞ as r → R−,
then also γ(r)→ +∞ as r → R−.

We are ready to state our non-existence result.

Theorem 12. Let Mg be a model manifold of dimension m ≥ 3 with Krad ≤ 0. Set
v = gm−1 and χ = χv as usual. Let q(x), b(x) ∈ Hölloc(Mg), and let A,B satisfy the
assumptions

A(r) ∈ Hölloc(R+
0 ), A(r) ≤ kχ(r) on R+

B(r) ∈ C0(R+
0 ), B > 0 on R+, B(r) ≥ C

rµHk(r)σ−1
for r >> 1,

(243)

for some µ ∈ [0, 2), k ∈ (−∞, 1], σ > 1 and some constant C > 0. Suppose that

q(x) ≤ A(r(x)), b(x) ≥ B(r(x)) for every x ∈Mg. (244)

If

lim inf
r→+∞

1

r2−µ log

∫ r

0

exp

{
2

m− 2

∫ t

0

g(s)

g′(s)
A−(s)ds

}
v(t)dt < +∞, (245)

then the equation
∆u+ q(x)u− b(x)uσ = 0 (246)

has no positive C2-solution on Mg.

Proof. By contradiction suppose that u is a positive C2-solution on Mg of (246). Fix
0 < γo < u(o). By Proposition 3, the solution γ of (239) explodes in finite time, say
R. Then, the function u+(x) = γ(r(x)) solves

∆u+ + q(x)u+ − b(x)uσ+ ≤ ∆u+ +A(r)u+ −B(r)uσ+

= γ′′ +
v′

v
γ′ +Aγ −Bγσ = 0

(247)
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and u+(x) → +∞ as x → ∂BR. To conclude, define ψ = u/u+ ∈ C2(BR). Then a
computation using (246) and (247) shows that ψ satisfies

∆ψ + 2 < ∇ log u+,∇ψ >≥ b(x)
(
uσ−1 − uσ−1

+

)
ψ on BR. (248)

Let Ω = {x ∈ BR : ψ(x) > 1}. Then, Ω is open, o ∈ Ω 6= ∅, and Ω b BR since ψ → 0
on ∂BR. Hence ψ has an absolute maximum in Ω. However, from (248) and b(x) ≥ 0
on Ω we have

∆ψ + 2 < ∇ log u+,∇ψ >≥ 0 on Ω,

from which we obtain a contradiction with the aid of the maximum principle (see [29],
[8]).

We conclude by specializing the last theorem in the case of the Yamabe problem
for the hyperbolic space HmH . Next result gives a condition mildly more demanding
than (26) for the non-existence of conformal deformations, which shows the sharpness
of Theorem 2.

Corollary 6. Consider the hyperbolic space HmH of dimension m ≥ 3. If s̃(x) ∈
C∞(HmH) satisfies

s̃(x) ≤ 0, and s̃(x) ≤ −C e
2Hr(x)

r(x)
outside some ball,

for some C > 0, then the Poincaré metric cannot be conformally deformed to a new
metric of scalar curvature s̃(x).

Proof. We realize HmH as a model with g(r) = H−1 sinh(Hr). Then, g satisfies g′′ ≥ 0
and (VL1). We remark that the conformal factor u has to solve (216). Define

σ =
m+ 2

m− 2
, A(r) =

H2m(m− 2)

4
< kχ(r) for k =

m(m− 2)

(m− 1)2
< 1,

the inequality being a consequence of (56), and

b(x) = − s̃(x)

cm
, B(r) ≥ 0, B(r) = C

e2Hr(x)

r(x)
for r ≥ 1.

Then, we have by (256) in the Appendix

Hk(r) ∼ Ce−
H(m−2)

2 r, so that Hk(r)σ−1 ∼ Ce−2Hr,

and, by our assumption on s̃(x),

− s̃(x)

cm
≥ B(r(x)) = C

e2Hr(x)

r(x)
≥ C

r(x)Hk

(
r(x)

)σ−1

for r(x) >> 1, up to changing C appropriately. Condition (238) is satisfied whenever
µ ∈ [0, 1]. The choice µ = 1 is allowed, and applying Theorem 12 for Mg = HmH we
conclude.
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Appendix: explicit computations

In this appendix, we perform explicit computations of g, χ, Hk and χH2
kv

for the two
relevant classes of G described in the Introduction, that is,

(i) m ≥ 2 G(r) = H2(1 + r2)α/2 for H > 0, α ≥ −2

(ii) m ≥ 3 G(r) = − H2

(1 + r)2
for H ∈ [0, 1/2] .

(249)

First, we produce a positive solution g of{
g′′ −Gg ≤ 0 on R+

g(0) = 0, g′(0) = 1
(250)

satisfying v−1 = g1−m ∈ L1(+∞). Then we find, when possible, a closed expression
for the critical curve χ. Moreover, we compute the asymptotics for Hk and χH2

kv
as

r → +∞, up to some unessential constant. For χH2
kv

, we can avail of formulas (59).
In this way, the requirements

Aj(r) ≤ χ(r) on R+,
Aj(r)− kχ(r)√

χH2
kv

(r)
∈ L1(+∞),

B(r)Hk(r)σ−1√
χH2

kv
(r)

∈ L1(+∞)

of the main Theorems 9, 10 will become entirely explicit. Note that, to check the first
integrability above, we only need a Taylor expansion of χ in a neighbourhood of +∞,
that can be performed, with some effort, also for the most difficult cases α > 0 and
α ∈ (−2, 0] in Class (i).

As a matter of fact, in some cases the initial conditions g(0) = 0, g′(0) = 1 needed
to ensure that the model Mg is C2 at the origin prevent appropriate choices that
simplify computations. However, it is worth to observe that, in order to apply the
Laplacian comparison theorem, it is enough that g solves{

g′′ −Gg ≤ 0 on R+

g′

g ≤
1
r + o(1) as r → 0+.

(251)

In some of the cases presented below, g will satisfy (251) instead of the stronger (250).
However, this does not affect the validity of the conclusions of Theorem 9. In what
follows, with the symbol C we mean a constant whose value may change from line to
line.

Class (i): G(r) = H2(1 + r2)α/2, m ≥ 2.

The case α > 0:

We choose

g(r) = r
1
2 I 1

2+α

(
2H

2 + α
r1+α

2

)
,

where Iν(s) is the modified Bessel function of order ν (see [16], p.102). Note that g is a
solution of the singular equation g′′ = H2rαg on R+, with initial conditions g(0) = 0,
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g′(0) = C > 0 for some constant C. Hence, g solves (251) since α > 0. Using the
asymptotic relation

Iν(s) =
es√
2πs

(1 + o(1)) as s→ +∞ (252)

(see [16], p.123) we deduce that v satisfies (VL1) and

v(r) ∼ Cr−
(m−1)α

4 exp
(

2H(m−1)
2+α r1+α

2

)
,∫ +∞

r

ds

v(s)
∼ C−1 1

H(m−1)r
(m−3)α4 exp

(
− 2H(m−1)

2+α r1+α
2

)
,

(253)

for some C > 0. Consequently,
H1(r) ∼ Cr1+(m+1)α8 exp

{
−H(m−1)

2+α r1+α
2

}
Hk(r) ∼ Cr(m−3)α8 (1−

√
1−k) exp

{
−H(m−1)(1−

√
1−k)

2+α r1+α
2

}
for k < 1,

and with some computations
χH2

1v
(r) ∼ (α+2)2

16r2

χH2
kv

(r) ∼ (m−1)2H2(1−k)
4 rα for k < 1.

(254)

The case α ∈ (−2, 0]:

A solution of (250) is given by

g(r) = H−1 sinh

(
2H

2 + α

[
(1 + r)1+α

2 − 1
])

,

and v−1 ∈ L1(+∞). A closed expression of χ cannot be computed except for the
case α = 0, which characterizes the hyperbolic space, for which we refer the reader to
Example 1. However, from

v(r) ∼ C exp
(

2H(m−1)
2+α r1+α

2

)
,∫ +∞

r

ds

v(s)
∼ C−1 1

H(m−1)r
−α/2 exp

(
− 2H(m−1)

2+α r1+α
2

)
,

(255)

for some C > 0 (note that here we have used α ∈ (−2, 0] to replace (1 + r) with r),
we deduce

H1(r) ∼ Cr1+α
4 exp

{
−H(m−1)

2+α r1+α
2

}
Hk(r) ∼ Cr−α4 (1−

√
1−k) exp

(
−H(m−1)(1−

√
1−k)

2+α r1+α
2

)
for k < 1

(256)

thus 
χH2

1v
(r) ∼ (α+2)2

16r2

χH2
kv

(r) ∼ (m−1)2H2(1−k)
4 rα for k < 1.

(257)
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The case α = −2:

Define

H ′ =
1

2
(1 +

√
1 + 4H2) ∈ (1,+∞),

and consider g(r) = (1 + r)H
′
. Then, g solves (251) and

χ(r) =
(H ′(m− 1)− 1)2

4(1 + r)2
.

Furthermore, 
H1(r) ∼ Cr−

(m−1)H′−1
2 log r

Hk(r) ∼ Cr−
[(m−1)H′−1](1−

√
1−k)

2 for k < 1,

from which 
χH2

1v
(r) ∼ 1

4r2 log2 r

χH2
kv

(r) ∼
[
(m−1)H′−1

]2
(1−k)

4r2 for k < 1.

(258)

Class (ii): G(r) = −H2/(1 + r)2, m ≥ 3.

In this case, a model Mg with radial sectional curvature Krad = −G(r) ≥ 0 and
dimension m = 2 is necessary parabolic. In fact, by Bishop-Gromov volume com-
parison theorem the volume of a geodesic ball Br centered at the origin grows at
most quadratically as a function of r, thus parabolicity follows by a criterion in [11].
Therefore, the restriction m ≥ 3 is necessary to fulfil the non-parabolicity assumption
g1−m ∈ L1(+∞). Define

H ′′ =
1 +
√

1− 4H2

2
∈
[1

2
, 1
]
. (259)

The case H ∈ [0, 1/2):

An explicit solution g of (250) with the equality sign is

g(r) =
1√

1− 4H2

(
(1 + r)H

′′
− (1 + r)1−H′′

)
(see [35], p.45). If H = 0, g(r) = r and so

χ(r) =
(m− 2)2

4r2
.

However, for H positive the algebraic integration of 1/v seems complicate, so we prefer
choosing g(r) = rH

′′
. Since H ′′ ≤ 1, g satisfies (251) and

χ(r) =

(
H ′′(m− 1)− 1

)2
4r2

.

In both cases H = 0 and H > 0,
H1(r) ∼ Cr−

(m−1)H′′−1
2 log r

Hk(r) ∼ Cr−
[(m−1)H′′−1](1−

√
1−k)

2 for k < 1,

(260)
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so that 
χH2

1v
(r) ∼ 1

4r2 log2 r

χH2
kv

(r) ∼
[
(m−1)H′′−1

]2
(1−k)

4r2 for k < 1.

(261)

The case H = 1/2:

An explicit solution of (250) is

g(r) =
√

1 + r log(1 + r), (262)

and g satisfies v−1 = g1−m ∈ L1(+∞) for each m ≥ 3. We divide into two subcases,
according to whether m = 3 or m ≥ 4.

- If m = 3, a closed expression of χ can be computed:

χ(r) =
1

4(1 + r)2 log2(1 + r)
.

Moreover,  H1(r) ∼ C log−
1
2 r log log r

Hk(r) ∼ C log r−
1−
√

1−k
2 for k < 1,

so that 
χH2

1v
(r) ∼ 1

4r2 log2 r log2(log r)

χH2
kv

(r) ∼ 1−k
4r2 log2 r

for k < 1.

- If m ≥ 4, the choice of g in (262) does not allow a straightforward computation
of χ. For this reason, we prefer using again g(r) = rH

′′
=
√
r. Then, g solves

(251) and, since m ≥ 4, v−1 = g1−m ∈ L1(+∞). The critical curve is given by

χ(r) =
(m− 3)2

16r2
,

the asymptotics for Hk(r) read H1(r) ∼ Cr−m−3
4 log r

Hk(r) ∼ Cr−
(m−3)(1−

√
1−k)

4 for k < 1,

and finally 
χH2

1v
(r) ∼ 1

4r2 log2 r

χH2
kv

(r) ∼ (m−3)2(1−k)
4r2 for k < 1.
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