&%3,%; UNIVERSITA
S wcrf Ty Ei}él DEGLI STUDI
”l Aer 1O %@ﬁj‘%ﬁ% DI TORINO

AperTO - Archivio Istituzionale Open Access dell'Universita di Torino

Reversible Fragile Watermarking for Multichannel Images with High Redundancy Channels

This is a pre print version of the following article:

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1781504 since 2021-03-19T16:17:01Z

Published version:
DOI:10.1007/s11042-020-08986-4
Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

(Article begins on next page)

20 April 2024

Reversible Fragile Watermarking for
Multichannel Images with High Redundancy
Channels

Marco Botta ¢, Davide Cavagnino *, Victor Pomponiu °

* Dipartimento di Informatica, Universita degli Studi di Torino
Corso Svizzera 185, 10149 Torino, Italy

{marco.botta, davide.cavagnino, roberto.esposito}@unito.it

®victor.pomponiu@gmail .com

Abstract. The paper presents a methodology to protect the integrity of multichannel images, having some highly
redundant channels, by means of a reversible fragile watermarking algorithm. The watermark embedding phase uses a
lossless compression method to compress the high redundancy channels, stores the compressed stream into their most
significant bits, then embeds a secret fragile watermark by modifying the least significant bits of the high redundancy
channels. In case the watermarked image is not modified, the host image can be perfectly reconstructed; otherwise,
the modified area can be detected and located with very high probability and the area that has not been forged can be
restored as in the original host image. The embedding of the watermark is performed by a Genetic Algorithm in the
Karhunen-Loéve Transform (KLT) domain: the use of a secret space defined by the KLT guarantees both security of

the method and a high sensitivity in the detection of the forged areas.

Keywords: reversible watermarking; fragile watermarking; multichannel image processing; image authentication;

genetic algorithm; Karhunen-Lo¢ve Transform.

1 Introduction

Digital data may undergo different kinds of attacks, like malicious modification (i.e. tampering),
unauthorized copying and copyright infringement.

In the field of data hiding, digital watermarking (watermarking in the following) is a
technology that may be used to protect digital contents, like images, videos and sounds, from the
cited security attacks.

Basically watermarking embeds a signal W into a digital object I by modifying some parts of
it. Depending on the objective of the protection, different watermarking algorithms are developed.

Before describing the properties of a watermarking algorithm we introduce a simple model of
the whole process.

The watermarking process is composed by two distinct phases, sequential and non-
overlapping in time. The first one is the embedding phase, which inserts a watermark signal W into

an object I possibly using a secret key K: the output is a watermarked object I};,. The second phase
is a extraction stage: after receiving I}, (a possibly altered watermarked object due to intentional
attacks or to various kinds of transmission or storage errors) it returns the watermark signal present
W' and/or a Boolean value stating if the original watermark is present; this phase, in general, needs
the secret key K used to embed the watermark and may also require the original image I and
watermark W.

Watermarking algorithms may be classified according to some properties and characteristics;
we report the main ones in the following list:

reversibility: if the extraction stage may obtain the original host image I from I}, and
K (and possibly W) the method is reversible, otherwise it is irreversible;

robustness: an algorithm designed to embed a watermark that must resist attacks
aimed at its removal (like in copyright protection) is said to perform robust
watermarking; on the converse, if the objective is to detect the minimal modification
to the object (e.g. for integrity protection) then the algorithm must be designed to
insert a fragile watermark;

blindness: a method that does not need the host object I in the extraction phase is said
blind, otherwise it is said informed (or non-blind);

embedding domain: if the watermark is embedded directly in the data composing the
object (like pixels for images, or samples for sounds) then the algorithm is said to
work in the spatial domain or time domain; on the other hand, if the data is firstly
transformed in another domain like the Fourier Transform domain or the Discrete
Cosine Transform domain, and the watermark is embedded into the transform
coefficients, then the algorithm works in the frequency domain; also, other domains
are possible, like the fractal domain;

perceptibility: while the other properties are objective, perceptibility is subjective
because it is referred to a human judgment: if the degradation due to watermark
embedding can be seen by an average observer the watermark is called perceptible
(visible), otherwise it is said imperceptible (invisible); notice that there are algorithms
that explicitly degrade the object superimposing a signal that makes the object
unsuitable for any application unless it is removed (like the logos on images to be
sold), or that insert a logo to identify a property, like ownership of a television
transmission.

The proposed algorithm may be applied to multichannel images: it is reversible, fragile and
blind; moreover, it embeds the watermark in a secret frequency domain defined by the Karhunen-
Loéve Transform. The high redundancy channels undergo a visible degradation due to the
compression step, but they can be reversibly restored. The main properties of the algorithms are:

image tampering detection: the algorithm verifies the integrity of the image and
signals with very high probability any modification it has undergone;

localization: any tampering is localized at block (i.e. subimage) level;

reversibility: any image that has not been tampered may be restored to the original
form it had before watermark embedding;

security: due to the use of a secret space for watermark embedding and to the
information stored into the watermark, the algorithm is secure against intentional and
unintentional attacks.

The paper is structured into seven sections: following this introduction, the next one recalls
the scientific papers dealing with the subject of the present research; then, a background section
presents the main concepts used in the development of the algorithm, which is presented in the
fourth section. A set of experiments proving the feasibility and capabilities of the method are shown

in section 5. Section 6 discusses the security of the algorithm and finally some observations and
conclusions are drawn in section 7.

2 Related works

Works on watermarking of multichannel images have been mainly oriented to RGB color images,
eventually also considering the a-channel. Algorithms for robust and fragile watermarking have
been developed both in the spatial and in the frequency (transformed) domains: in the following of
this section, we will firstly review some approaches and then we will describe some reversible
watermarking schemes. Generally, we noted that it is somewhat difficult to make comparisons
amongst and with these approaches due to the different features and characteristics, like localization
capability, reversibility or embedding channels (e.g., RGB channels or a¢-channel only).

An interesting work on reversible data embedding in the spatial domain was proposed by Tian
[23]: pairs of pixels are considered for carrying one bit of information, with the drawback to take
into account the possible overflow and thus the need of a location map for storing the modified
pairs positions. Alattar [0] improves the embedding capacity and efficiency of [23] by considering
vectors of pixels instead of pairs.

[15] develops a data hiding method by considering the difference histogram of neighboring
pixels: bits are embedded into pixels whose difference with the contiguous one is the most frequent
(difference histogram shifting); overflow is dealt with the use of thresholds, under the assumption
of low gradient gray level images.

In [17] a framework for applying reversible data embedding to fragile watermarking is
developed. The work divides an image into tamper localization blocks and shows how to embed in
these blocks a secure hash (apparently used with a key, thus properly a message authentication
code) using any reversible data embedding algorithm; moreover, it uses the idea of merging blocks
in case a single block is not able to completely carry a hash.

The algorithm presented in [6] embeds in the pixels integer values in the range [1,n]; it
classifies pixels in three sets: the embedding ones, those that cannot carry information (called to-
correct), and the original ones that allow a correct decoding of the data stream. Embedding and
decoding are performed in two passes, and the algorithm is capable, for well-behaved images, to
reach 2 bit per pixel payloads.

An elegant solution to fragile watermarking of images in the spatial domain has been
developed in [14] and revised in [4]: the method non-reversibly watermarks image blocks and
produces images with a high Peak Signal-to-Noise Ratio (PSNR) with some constraints on the
block size; it is proposed for grayscale images but can be adapted to multichannel images as done in

[5].

Embedding authentication information in the a-channel is applied in [3]: from an RGB image
a completely transparent a-channel is added; then, the 2 LSB planes of this channel are zeroed and
a Message Authentication Code (MAC) is computed for every image block; the MAC is XOR-ed
with a watermark string and the resulting bits are stored in the a-channel LSBs. The use of the
LSBs allows for a minimal impact on the Human Visual System.

In the work [12] the authentication information with self-repair capability is embedded into a
newly added a-channel of a grayscale image: to minimize the alteration of the transparency the
watermark is stored modifying a-values near the maximum of their range. This algorithm is
extended and applied in [13] to color images, adding an a-channel to an RGB image embedding
therein the authentication information (made of strings computed with the Shamir secret sharing
algorithm).

In the frequency domain watermarking, one of the mostly used transform is the Discrete
Cosine Transform (DCT). In [20] the DCT is used to compact the energy of a block and to generate
part of a watermark: the DCT is applied for integrity protection and recovery of the tampered areas.
In [28] the DCT is combined with fractal compression to embed a fragile watermark along with
recovery information.

The Singular Value Decomposition is applied in [18] to authenticate image blocks: the
singular values of the image blocks are used to compute authentication information which is
successively used to modify the LSBs of the pixels along with secret keys to scramble data.

Genetic algorithms have been used in the context of image watermarking for minimizing
distortion, as in [24] where the watermark is embedded in the spatial domain, or to cope with and
correct the watermark string modification induced by pixel value integer rounding after watermark
embedding in the DCT domain [2].

3 Background

This section is devoted to recall the main concepts used in the following sections with the objective
of making the paper self-contained. Nonetheless, we report references to give pointers for an in-
depth analysis and to perform a detailed study of the tools used by the proposed algorithm.

3.1 Channel redundancy

The algorithm requires that p > 1 channels of an m-channel (m = p) image have a certain amount
of redundancy. In particular, the objective is to exploit this redundancy to compress the pixel values
in these p channels to create an area that may be used to embed the watermark. In the verification
phase, after the watermark extraction, the p channels may be restored to their original values,
making the method completely reversible.

Every channel is divided into blocks of equal size and compressed at the pixel level, one
block independently from the others; block independency allows for the tamper localization and
block reversibility of the algorithm: even if a block is tampered and damaged, all other non-
tampered blocks can be reversibly reconstructed.

In the present embodiment the embedding algorithm changes the LSB plane of a block in a
channel, thus for images having k bit per channel per pixel the redundancy required must allow a
compression ratio of at least p,,;, = k/(k — 1). An image channel for which p > p,,;, holds for
every block is called High Redundancy Channel (HRC), otherwise it is called Low Redundancy
Channel (LRC).

3.2 The compression algorithm

We designed the compression of the HRCs to work locally for every block: the locality avoids that
an attack modifying an area in the HRCs propagates to untouched areas nullifying the localization
ability of the algorithm.

The pixels in a block are linearized using a raster scan order, one HRC after the other. Then,
using a simple prediction method, the differences between a pixel value and the previous one are
encoded with a given Huffman table (in a similar fashion to lossless JPEG or lossless PNG), the
latter computed on a set of images and kept fixed and publicly available. The computational
complexity of this procedure is linear in the number of pixels.

The first pixel of the first HRC channel of every block is preceded by a virtual pixel having
value at half the dynamic range, i.e., for k bit per pixel per channel a value 2%~ is considered.

The compressed stream is stored in the MSBs of the HRCs, leaving room in the free LSBs to
the modifications for watermark embedding. The compressed stream is stored into the MSBs
because the channel LSBs are modified to embed the watermark; moreover, referring to Fig. 1, the
stream is embedded starting from the bits labelled 1 in all the pixels, then continuing to the bits
labelled 2 and so on: this allows, in case of a highly compressible channel producing a short stream,
to leave untouched the high order MSBs, i.e. 7, 6, 5, ..., reducing the distortion in the watermarked
image HRCs.

Fig. 1 LSB and MSBs of a pixel byte in a channel.

3.3 The cryptographic hash function

A cryptographic hash function (c.h.f.) is a function H that receives a bit string S of any length as
input and produces a fixed length output D = H(S) (digest) having the following properties:

e given only a digest D it is computationally difficult to find a bit string § such that
H(S) = D (one-way property);

e given a message S it is computationally difficult to find a bit string ' # S such that
H(S) = H(S') (weak collision resistance);

e it is computationally difficult to find any two bit strings § # S’ such that H(S) =
H(S'") (strong collision resistance).

Quite a large number of such cryptographic functions have been developed in the past and
some of them, like SHA-3 [7], may produce outputs of arbitrary length.

3.4 The Karhunen-Loeve transform and bit embedding

The Karhunen-Logéve transform (KLT) is a linear transformation between two vectors spaces U and
V. In case of vector spaces with finite dimensions a linear transform may be defined by a matrix: let
U and V have dimensions a and b respectively, then a matrix 4, called kernel, of size b X a defines
a linear transformation between U and V. A (column) vector u € U is mapped to a vector v € V
with the mapping v = A u; generally, the elements of v are called coefficients of the transform.
Examples of linear transformations are the Discrete Cosine Transform, the Fourier Transform and
the Hadamard Transform: all of them have the characteristic of having a fixed kernel. Differently,
the KLT (also called Hotelling Transform) has a square matrix kernel computed from a set of
vectors: the transform operates a basis transformation to align the new basis along the lines where
the vectors have the largest dispersion, therefore it corresponds to a Principal Component Analysis.

Given a set of a-dimensional vectors u; € U a kernel A of size a X a for a KLT is derived
with the following steps [9]:

compute the average vector u = E{u;};
compute the covariance matrix C = E{(w; — p)(w; — w)'};
compute the a eigenvectors e; and associated eigenvalues A; of C;

(possibly) sort the eigenvectors by decreasing order of their associated eigenvalues;
arrange the eigenvectors as rows of matrix A.

Given a vector x € U its KLT is computed as y = A(x — u); it is possible to perform the
inverse transformation KLT' with x = A~'y + u. The elements y; of y are called coefficients of
the transform and a coefficient’s position i in y is called order.

In the proposed algorithm, the watermark bits will be encoded in the binary representation of
KLT coefficients, so that a coefficient y; carries a bit § in position « if and only if:

B =EQ,a)#(1)
where E(y;,) = |y; 27%] mod 2 and | | is the floor function.
To embed a bit string S of length b bits into a vector x the following must be defined:

e a fixed sequence of [coefficients’ orders 04, 0, ..., 0;, Wwhere | > b;
e abit position a;
e afunction B : {0,1}* - {0,1}°.

Then, applying slight modifications to the elements of x, a vector x" is sought such that it
holds

e y=AX —p), and

o s=B(e(y,.a).&(v,,a), - E(y,0)).

Previous studies [5] analyzed the influence of the parameters [, @ and B on the final resulting
image; in particular, the different tested B functions were direct mapping (used here), syndrome
coding and modulo sum of coefficients [5].

The KLT is used to define a secret embedding space: in our setting the use of a secret image
pixel values as vectors of an a-dimensional space U from which to derive the kernel A is a way to
build a compact representation of a secret symmetric key.

3.5 Genetic Algorithms

A genetic algorithm (GA) is a computing paradigm that evolves representations of solutions to an
optimization problem with the objective of finding an optimal solution.

When the representation of a problem may be coded as an ordered set of parameters
w15 - Wy and it is possible to express with a function the degree of fitness of a sequence of values
to the optimum then a GA may be used to evolve a set of candidates that approximate the desired
solution.

A GA starts from a population of individuals, each one encoding a possible solution and
initialized with random values.

The population is evolved through generations until an individual coding a viable solution is
found (or a maximum number of generations is reached): in every generation the individuals are
evaluated with a fitness function and are reproduced by means of operators and rules to build a new
population.

In general, three operators are considered to reproduce individuals:

e selection: pairs of individuals are chosen from the actual population P and the one
with best fitness in each pair is saved in a set P;

e crossover: pairs of individuals w;w; -+ wy and 717, -+ T4 in P are considered for
mating; with probability p. the two individuals exchange their parameters: in one
point crossover an integer random number {, 1 < { < g, is generated and the new

offsprings w; - W¢Teyq " Ty and Ty Teweyq @y are created, in two point

crossover two random numbers are used to define the subset of parameters to be
exchanged;

e mutation: to allow a better exploration of the solution space and avoid local minima,
all the individuals in P have one of their parameters randomly modified with
probability p,,.

Many strategies are possible to build the new population P’ starting from P; one is to replace
P with the newly created individuals, another is to replace the worst individuals in P with the new
ones, a third one is to perform tournament selection to produce P’.

For detailed information on GAs we suggest [8, 10] as starting points.

In the proposed algorithm the GA is used because of its ability to find a (quasi) optimal
solution to a non-linear problem: as it will be shown in the following, altering the image pixel
values to embed the watermark bit string is a problem in which an evolutionary algorithm succeeds
producing good results.

4 The proposed algorithm

In this section logical data structures and the main steps of the proposed algorithm are presented.
The input to the algorithm consists of:

e a multichannel host image I;,, with m channels, where p > 0 of them have a high
redundancy and ¢ = m — p are low redundancy channels, and
e asecret key image I.

Fig. 2 shows a diagram of the high level structure of the watermark embedding procedure,
while Fig. 3 shows a diagram of the watermark verification procedure.

Block tiling HRCs pre-embedding
(subimages) (local lossless compression)

“

Watermark string)
generation

I
; KLT basis 4n |

(offline computation)

Y

v

Watermark —
embedding (GA)

Fig. 2 High level structure of the fragile watermark embedding procedure: I, is the host image, I, is the key
image, I, is the host image with the compressed HRCs, I,,, is the watermarked image, S is the secret
watermark string.

Ly > Watermark string Aemp [
generation (SHA-3) Authentic /

Forgery location
¢’ ®

Extraction of embedded A
watermark string 8’

R

Y

A u HRCs reconstruction
’ (local decompression)
I ® y KLT basis
k (offline computation)] ;l

Fig. 3 High level structure of the fragile watermark extraction/detection and image reconstruction procedure:
I, is the watermarked image to be verified, I is the key image, Iy, is the reconstructed host image, A ¢y, is

the expected watermark string, A’ is the extracted authentication string, R is the string identifying the forged
blocks.

The algorithm is composed of the following steps:

1) tiling of the host and key images into non-overlapping blocks;

2) computation of secret KL T basis (performed only once);

3) compression of the HRCs and inserting (pre-embedding) the compressed stream into
the HRCs themselves;

4) generation of the authentication string;

5) generation of the watermark string;

6) watermark embedding;

7) watermark extraction and integrity verification;

8) original host image restoration.

These steps are described in detail in the following subsections.

4.1 Block tiling of I,

Firstly, the m channel host image of size H X W pixels is conceptually divided into non-
overlapping contiguous subimages of size n X n pixels* (see Fig. 4) onto which the watermarking
algorithm operates independently (allowing parallelization): every pixel is composed of m channels,
typically m bytes. Given that this is an operation oriented to data management it has no additional
computational cost.

" For simplicity of the discussion we assume that both H and W are multiples of n.

- g block

subimage

Fig. 4 Block splitting of a multichannel host image: the pixels in the p HRCs channel can be modified to
carry the watermark, while the pixels in the ¢ LRCs channels will not be changed by the embedding
algorithm.

4.2 Secret KLT basis computation using I,

The computation of a secret KLT basis may be performed once for every secret key image I, as
long as the number of channels m of the host image(s) to be watermarked is known. After that, the
same KLT basis may be applied to watermark any number of images with m channels. The
computational complexity of this step is the one of the algorithm used to compute the eigenvectors
and eigenvalues of a symmetric matrix.

The key image may be single channel or multichannel: to generate a set of samples, non-
overlapping groups of mn? contiguous pixels are built. Then, the method described in the previous
subsection 3.4 is used to produce a mean vector g and a kernel matrix A composed of mn?
eigenvectors having mn? components.

4.3 High Redundancy Channels pre-embedding

A pre-embedding phase applied to I, saves the information required to make the method reversible.
In particular, the p HRCs are compressed in a lossless way (as presented in subsection 3.2), every
block independently from the others, and the resulting compressed stream stored in the MSBs of the
p redundant channels. By means of this operation we can save space and allow for the LSBs of the
p channels to be used in the fragile watermark embedding.

As previously stated, the compressed stream is stored starting from the less significant MSBs
leaving untouched the high order MSBs, i.e. first filling bit 1, then bit 2, then 3, and so on till bit 7
of the MSBs. Should the compressed stream be much shorter than the available space, this
constraint may be relaxed, and one can start from bit 2 or bit 3 of the MSBs, so leaving more space
for the watermark embedding.

The decoding of the compressed stream may be performed unambiguously, provided that the
stream starts at a fixed position and the decoding table is known, as it is in our case.

The computational complexity of this step is linear in the number of blocks.

After the compressed stream has been stored in the MSBs of the p channels blocks, a
watermark embedding phase similar to the one proposed in [5] is performed, using the image I,
resulting from the pre-embedding process as host image.

4.4 Authentication string generation

The proposed algorithm embeds an authentication bit string A computed from I, and ... In this way
different images will have different watermarks embedded (with the limits discussed below) with
the aim of increasing security and protecting against transplantation and copy-and-paste attacks.
The string A is generated by using SHA-3" (in its version for arbitrary output length SHAKE [7])
applied to a key obtained concatenating the following data:

e dimensions of the image (height H, width W, number of channels m), to protect also
against image cropping and channel removal;

e a sequence T} of pixel values in [, whose coordinates are determined as follows: we
use the values of a sequence of pixels in fixed (and publicly known) positions in I, as
indexes to select a sequence of pixels values T, of I (in the LRCs, not modified nor
compressed by our algorithm) which in turn are used as indexes to determine the
sequence Ty.

Given the secrecy of I, it is unfeasible for an attacker to derive A.

4.5 Watermark string generation

The watermark string § carries two types of information, namely an authentication bit string A and
a classification bit string C.

1) The authentication bit string A is generated according to the method presented in
subsection 4.4.

2) The classification bit string C specifying which channels are HRCs (1s) and which are
LRCs (0s): these data consist of m bits (where m is the number of channels). For
example, an image with 4 channels (RGBa) that has a highly redundant a-channel
will have the bit string 0001 as classification bit string C. These classification bits will
allow to determine which are the HRCs and LRCs channels in the restoration phase.

If the payload is b bits-per-subimage (bps) then the length of § will be bHW /n?; for every
block, b — 1 bits are consecutively taken from A and one bit is derived from C: this means that for

an H X W image with blocks of size n X n the required length of A will be (b — 1)HW /n? bits
HW

mn?

embedded in the image (for block size n = 10 and images of size 512 X 512 X 4, we have
HW

[Zj = 655).

mn

and the m classification bits in C will be completely repeated l J times and correspondingly

For example, suppose a payload of 6 bps, an authentication bit string
A =001101100111000 0001010000 011001111110101
and a classification bit string C = 0001. Then, the string § will be
001100110010 110000 000101 100000 011000111110 101011

" The computational complexity of this step depends on the complexity of the SHA-3 algorithm.

4.6 Watermark embedding

After a KLT basis of mn? vectors is derived from the secret key image I, and a watermark string S
is computed, consecutive parts of S, each one of b bits, are embedded into the subimages n X n
(examined in raster scan order) by the GA.

For every subimage of I, the GA embeds the b bits by modifying the subimage HRCs LSBs.
More precisely, the GA evolves a population where every individual represents a bit string used to
substitute the subimage available LSBs (after the HRCs compression). The new subimage is KLT
transformed and from [(fixed) coefficients b bits are extracted: if they coincide with those to be
embedded, then the new subimage substitutes the original one in I, to obtain, when all the
subimages have been examined, the final watermarked image I,,. The evolution of the population is
concluded when the b bits are embedded into the subimage or a maximum number of generations
has been reached: in the latter case the image is declared non-watermarkable or a new population is
created for a new attempt to embed the bits in the subimage.

The GA fitness function measures the Hamming distance between the bit string stored in the
KLT coefficients and the bits of S pertaining to the subimage under examination, and the GA
requires this distance to be equal to 0 for a viable block. No other quality measures are considered,
like Peak Signal-to-Noise Ratio (PSNR), because the reversibility of the method allows to obtain
the original channels: in fact, the GA may modify only the LSBs of the HRCs to embed the relevant
part of S into the KLT coefficients of the subimage transform. In this way, in case a subimage is not
modified by an attack it can be completely restored to its original values, making the method
reversible.

When the GA has embedded the secret watermark string S into all the image subimages, the
watermarked image I, may be released in the public: its low redundancy channels will result
untouched by the algorithm, whilst the HRCs will be altered with the property of being possibly
restored by anyone to their original status if no attacks have been performed. Nonetheless, only the
holder of I;, can check the integrity of the various subimages.

A high level scheme of the algorithm is reported in Algorithm 1 depicted in Fig. 5. The
computational complexity of this step depends on the compression algorithm, as previously
discussed, and the embedding has a complexity that is linear in the number of subimages; moreover,
the computational load for every subimage depends on the parameter configuration of the GA
algorithm used. In the current implementation, the GA runs for a maximum number of generations
(2000), but it usually finds a solution in 25 — 35 generations on average. Anyway, the total
running time is upper bounded by tHW /n?,where t is the maximum running time of the GA.

Algorithm 1:

Input: [, image to watermark
I, secret key image
Output: [, watermarked image
compute KLT basis from I,
split I, into subimages according to block size
select HRCs and LRCs: for every channel
compress all subimages
it (all subimages of a channel satisfy
the compression ratio condition)
then mark it as an HRC
compress and pre-embed the pixel values of the HRCs and obtain I,
compute the authentication string A using [, and I. LRCs
generate the classification string C
interleave A and C to build the watermark §
for every subimage
embed corresponding § part into subimage using the GA (GA_embedding)
if (embedding fails) then return Fail
return [,

function GA_embedding
generate population of random individuals coding HRCs LSBs
for maxnumgenerations
evaluate all individuals: if (one individual has fitness=0)
then return success and
subimage having the
individual in HRCs LSBs
evolve population
return embedding_failed

function Ffitness
compute and return Hamming distance between

§ part and B(S(yol,a),g(yOZ,a), ...,S(yol,a))

Fig. 5 Pseudo code of the fragile watermark embedding procedure.

4.7 Watermark extraction, verification and image restoration
The verification/restoration phase works as follows (see Fig. 3).

Firstly, every subimage in I, is transformed with the KLT (using the basis derived from Ij,)

and the embedded watermark S’ is extracted. From S’ the authentication string A’ and the
HW
mn?

classification string C’ are demultiplexed. In case of no attacks the [J copies of the m bit string

classifying the channels will be identical, but if any subimage has been tampered there will be some
differing string(s). To determine the HRC-LRC distribution the most frequent string will be chosen
as the correct classification (as discussed in section 6, a wrongly decoded string will not expose any
security breach).

After that, the watermark string A, that should be found embedded is generated using the
HRCs of the watermarked image I;, and the secret key .

Thirdly, a comparison performing the XOR operation R = A’ D Ay leads a resulting
string that has ones (‘1’) corresponding to altered subimages.

If the part (having length b bits) of R corresponding to a subimage is all Os the subimage is
considered intact and the HRCs are restored decompressing the stream in the MSBs, otherwise the

subimage is marked as forged. So, the subimage is the minimum forge localization area, i.e. image
modifications are signaled to the user by marking the whole subimage containing the forged pixels.

A high level scheme of the verification and restoration Algorithm 2 is reported in Fig. 6. The
computational complexity of the verification and reversible phase is linear in the number of
subimages.

Algorithm 2:

Input: I, possibly watermarked image
I, secret key image
Output: [; verified and restored image
compute KLT basis from I,
split [; into subimages according to block size
for every subimage X
extract §’(X) with KLT! and function B
select HRCs and LRCs from C'c S’
compute watermark string A.,, using [, and [, LRCs
for every subimage X
It (A'X) = AmpX))
then decompress subimage HRCs and restore subimage in [
else mark subimage as forged in [
return [

Fig. 6 Pseudo code of the fragile watermark verification and restoration procedure.

5 Experimental results

This section summarizes the results of a large number of experiments we executed to test the
performance of the proposed algorithm: we applied the reversible fragile watermarking algorithm to
a set of images with at least one HRC.

We considered three objective parameters, namely the sensitivity, the Mean Absolute Error
(MAE) and the Peak Signal-to-Noise Ratio (PSNR). Among them, we consider the sensitivity the
most important, given that the reversibility property of the algorithm allows the authorized user to
obtain the original host image as final result. Indeed, the sensitivity* gives a measure of the
capability of the algorithm to detect tampering attacks.

Thus, the meanings of the parameters used to measure the performance of the proposed
algorithm are:

e Sensitivity (as in [5]): the sensitivity of level D is defined as the fraction of blocks that are
detected as tampered in the verification phase when just one pixel per block is modified by
D levels;

e Mean Absolute Error (MAE): measures the average absolute difference between pixels of
the host and the watermarked images;

e Peak Signal-to-Noise Ratio (PSNR): this classical objective quality measure is defined as

* We designed an experimental setting in which we test how many times the verifier misses a tampered subimage
when a single pixel of that subimage is changed by just 1 or 2 grey levels. This is actually the smallest tampering an
attacker can perform: any other attack, such as filtering, blurring, noise addition, copy-and-paste, cropping, etc., would
modify more pixels and, very likely, of more than just 1 grey level.

MaxLevel?
MSE

where MaxLevel is the maximum intensity level of each channel (i.e., for 8 bit images it is
28 — 1 = 255) and MSE represents the mean squared error between the host and the
watermarked images.

PSNR = 10 log,

We chose a setting for the genetic algorithm to be used in all experiments; in particular, we
derived the setting values from many experiments devised to have fast convergence to a solution
resulting in a high quality image. The settings were population size = 100, p, = 0.9, p,,, = 0.06,
maximum generations = 2000.

The first set of tests were performed on a public collection of images (from the Telegram
application [21, 22]); the 29 images are in PNG RGBa (RGB with alpha channel) format: the alpha
channel is not trivial (in the sense that it varies on the whole image to follow the sticker shape) and
we expected it to be a HRC. Table 1 reports the watermarking results for two different values of
payload; the PSNR is influenced only by the differences induced by the HRC, as the process does
not alter any LRC pixel.

In the presented tests the block size was set ton = 11 (i.e. the subimages were composed of
11 X 11 four channel pixels). We also conducted tests with smaller values for n, but for some
images no channel was an HRC, so we selected the smallest value for which we could compress
enough every block.

Table 1 Performance of the proposed algorithm on a set of RGBa images publicly available [21, 22].

Payload Sensitivity +£1 Sensitivity 2 MAE PSNR Time GA Avg
(bps) (%) (%) (dB) (s) Generations
8 86.79+2.83 96.61+0.98 0.6056+0.1544 36.54+3.54 46.77+8.18 26
10 89.23+1.07 96.81+1.14 0.6171+0.1541 36.52+3.52 59.78+11.39 32

We compared our algorithm with the ones proposed in [13] and [20], that have been showed
superior against other approaches ([11], [16] and [19], [25], [26], [27] respectively). One of the
settings of [13] is RGB image authentication, which is performed by adding an alpha channel where
every pixel stores three authentication bits derived from the corresponding RGB channel values
(scrambled with a key) using a secret sharing method: the effect is that every alpha channel pixel
contains the sum of 248 and the authenticating value; moreover, the authentication data is
distributed among groups of three pixels each, making each group the smallest forge localization
unit.

Our algorithm, instead, works on any existing HRC channels, thus having a wider range of
applications to images of any kind; the disadvantage w.r.t. [13] is the bigger authentication block
size.

In [20], Singh et al. described a fragile watermarking algorithm for RGB color images with
restoration capabilities of tampered areas, whereas our proposed algorithm only restore untampered
blocks but works with any multichannel image.

The images for the comparison reported in Table 2 were obtained by the classical ones (as the
names recall) of size 512 X 512 pixels adding an extra HRC channel completely opaque (i.e.
having pixel values equal to 255), as done in [13].

From Table 2 it may be observed that the MAEs computed on the HRC (i.e. the alpha
channel) computed by our algorithm are an order of magnitude lower than those in [13]. Moreover,
the PSNR is much greater than that reported in [20] on the same set of images.

Table 2 Comparison of MAE and PSNR values for some images.

Image MAE PSNR
[13] aljlrgo(g?tieri [20] Proposed algorithm

Baboon 0.723 0.0192 39.55 65.26
Lena 0.720 0.0190 39.79 65.29
F-16 0.721 0.0191 - 65.25
Tiffany 0.721 0.0194 - 65.30
Boat - 0.0191 39.93 65.33
House - 0.0190 39.16 65.33
Pepper - 0.0194 40.19 65.26
Woman - 0.0194 39.73 65.25

Extending the test in Table 2 to a larger set of images (500 color images) we obtained an
average MAE value of 0.0336 + 0.0003 and an average PSNR value of 62.86 + 0.037 confirming
the high quality of the watermarked images; moreover, the standard deviation of the resulting
MAESs and PSNRs is very low and confirms that the algorithm is stable and is not influenced by the
image content.

As an example of the resulting whole authentication process, we present in Fig. 7 an image (a)
to show the result from the watermarking process (b) and how the proposed algorithm detects (d)
the modifications made in (c): as the HRCs are the blue and alpha channels of this image, it is
impossible to notice any difference between host and watermarked images; on the other hand, the
image is restored to its original state (d) apart from the tampered blocks in the upper-right part of
the image where a counterfeit flame was added.

(© (d)

Fig. 7 An example of watermarking and tampering detection: (a) original four channel image (RGB with
alpha channel, courtesy of and © Footage Firm, http://www.stockphotosforfree.com); (b) watermarked
image, red and green channels untouched, PSNR 30.80 dB; (c) forged image, the added flame is indicated by
the black arrow; (d) restored image and tampered area, in magenta color, detected by the algorithm.

Verification time is linear in the number of subimages and the time required to verify a single
subimage is of the order of 0.5 msec.

6 Security of the method

The security of the fragile watermarking method is based on the evidence that the embedding space
is secret. Indeed, the KLT basis is secret because the sample from which it is computed is secret as
is the key image I,. Thus, the watermark cannot be extracted (nor removed) without the possession
of the secret key image.

As shown in section 5, the method is highly sensitive even to small modifications, also having
a good ability at tampering localization.

The only observable effects of the watermark embedding are the compressed pixels of the
HRCs and the string in the HRCs LSBs: the latter is strictly tightened to the pixel values (and also
to the watermark) and cannot be replaced with other pixel values without exposing a forgery
detection.

If the watermarked image goes through heavy and extended modifications it is possible that
the redundantly embedded classification bit strings have not a frequency distribution with an
evident mode. In case the HRCs-LRCs are not correctly identified in the verification phase then the
wrong channels of the T, pixels will be used to generate A’ producing a string uncorrelated with the
correct one: almost all subimages will be flagged as forged (even if possibly some of them will not);
indeed, many altered subimages have led to a wrong C’ string. The localization ability is lost but the
image modification is detected.

In case of cropping or modification attack involving at least one of the pixels (in the Low
Redundancy Channels) used to generate the watermark, almost all subimages will be flagged as
altered because Ay, will be completely uncorrelated with A'; in this case no forged subimage

localization is possible (anyway the modification is detected and the image declared altered): for
this reason we suggest to keep small the set T, of pixels used to create the watermark (typically four
pixels).

A feature of the method is its public reversibility: anyone may reconstruct an image from [,
because the compression/decompression algorithm and Huffman table for the HRCs are public.
Nonetheless, only the watermark embedder has the capability to know if any modification to I,, has
been performed and which subimages have been forged. Thus, the possibility to reversibly
reconstruct the original host image left to anyone is only apparent and poses no security problems,
in fact:

e without the key image [}, it is not possible to test if the watermarked image is intact or
has been forged, so the reconstruction of I, is possible only for the watermark
embedder;

e anyway, knowledge of I, does not disclose any critical information because the
objective of a fragile watermarking algorithm is to verify the integrity of objects, not
hide their content.

Another consideration that is important is that when embedding b watermark bps there is a
probability of 1/2P that a random subimage substitution goes undetected. Obviously, the
probability that Z different forged subimages are all undetected is 1/2%%, which drops dramatically
even for small values of b and Z.

As shown in section 5, the main factor to take into account for the applicability of the method
is the sensitivity to single pixel-single intensity level modifications: as shown, the proposed
algorithm is very sensible to these modifications with a high probability of detecting this kind of
little tampering, which translates in a strong sensitivity to forgery and a high capability of
localization.

7 Discussion and conclusions

In this paper a reversible method for fragile watermarking multichannel images has been presented
and discussed: the requirement is for the image to possess one, or more than one, high redundancy
channels.

The resulting watermarked image has the low redundancy channels untouched, and contains a
compressed version of its HRCs allowing for a complete restoration of the original host image.

The owner of the secret key image can verify the integrity of the image. Everyone is able to
restore an image, but only the secret key owner has the certainty of its integrity.

The test performed on a large set of images has shown the high sensitivity of the algorithm to
attacks and the ability to localize them.

To summarize, the method has the following properties:

e reversibility;

¢ low redundancy channels do not need restoration, as they are untouched (nonetheless,
they may obviously be forged by an attacker);

¢ high sensitivity to modifications;

e fast image integrity verification and tamper localization ability;

e applicable to any uncompressed, or lossless compressed, image file formats.

The proposed algorithm fits in the MIMIC framework [5], adding a pre-embedding and a
decompression module, along with slight modifications for the management of the HRC-LRC
classification.

Acknowledgements

We would like to thank Dr. Roberto Esposito who helped in revising the manuscript according to the
reviewers’ comments and making new experiments, pointing out and resolving issues in the first submission.

References

1. Alattar AM (2004) Reversible watermark using the difference expansion of a generalized
integer transform. IEEE Transactions on Image Processing 13(8):1147-1156

2. Aslantas V, Ozer S, Ozturk S (2009) Improving the performance of DCT-based fragile
watermarking using intelligent optimization algorithms. Optics Communications
282(14):2806-2817

3. Bandyopadhyay P, Das S, Chaudhuri A, Banerjee M (2012) A New Invisible Color Image
Watermarking Framework through Alpha Channel. International Conference on Advance in
Engineering, Science and Management p 302308

4. Botta M, Cavagnino D, Pomponiu V (2014) Protecting the Content Integrity of Digital
Imagery with Fidelity Preservation: An Improved Version. ACM Trans Multimedia Comput
Commun Appl 10(3):29:1-29:5

5. Botta M, Cavagnino D, Pomponiu V (2016) A modular framework for color image
watermarking. Signal Processing 119:102-114

6. Chaumont M, Puech W (2009) A High Capacity Reversible Watermarking Scheme.
Proceedings of SPIE 7257

7. Dworkin MJ (2015) SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions. NIST FIPS — 202

8. Goldberg DE (1989) Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co.

0. Gonzalez RC, Wintz P (1987) Digital Image Processing 2nd ed. Addison-Wesley Publishing
Company

10. Hassanien A-E, Abraham A, Kacprzyk J, Peters JF (2008) Computational Intelligence in
Multimedia Processing: Foundation and Trends. Studies in Computational Intelligence
96:349

11. Kim KS, Lee MJ, Lee HY, Lee HK (2009) Reversible data hiding exploiting spatial
correlation between sub-sampled images Pattern Recognition, 42(11), p 3083-3096

12. Lee C-H, Tsai W-H (2012) A Secret-Sharing-Based Method for Authentication of Grayscale
Document Images via the Use of the PNG Image With a Data Repair Capability. IEEE
Trans. on Image Processing 21(1):207-218

13. Lee C-H, Tsai W-H (2013) A data hiding method based on information sharing via PNG
images for applications of color image authentication and metadata embedding. Signal
Processing 93(7):2010-2025

14. Lin P-Y, Lee J-S, Chang C-C (2011) Protecting the Content Integrity of Digital Imagery
with Fidelity Preservation. ACM Trans Multimedia Comput Commun Appl 7(3):15:1-15:20

15. Lin C-C, Tai W-L, Chang C-C (2008) Multilevel reversible data hiding based on histogram
modification of difference images. Pattern Recognition 41(12):3582-3591

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Luo L, Chen Z, Chen M, Zeng X, Xiong Z (2010) Reversible Image Watermarking Using
Interpolation Technique. IEEE Transactions on Information Forensics and Security, 5 (1), p
16-21

Naskar R, Chakraborty RS (2013) A Generalized Tamper Localization Approach for
Reversible Watermarking Algorithms. ACM Trans Multimedia Comput Commun Appl
9(3):19:1-19:22

Oktavia V, Lee W-H (2004) A Fragile Watermarking Technique for Image Authentication
Using Singular Value Decomposition. Advances in Multimedia Information Processing
LNCS 3332, p 42-49

Qian Z, Feng G, Zhang X, Wang S (2011) Image self-embedding with high-quality
restoration capability. Digital Signal Process 21(2):278-286

Singh D, Singh SK (2017) DCT based efficient fragile watermarking scheme for image
authentication and restoration. Multimedia Tools and Applications 76(1):953-977

Telegram.org Available online: https://telegram.org/blog/stickers-meet-art-and-history
(accessed on September 2018)

Telegram.org Available online: https://telegram.org/blog/moar-stickers (accessed on
September 2018)

Tian J (2003) Reversible data embedding using a difference expansion. IEEE Transactions
on Circuits and Systems for Video Technology 13(8):890-896

Wang R-Z, Lin C-F, Lin J-C (2001) Image hiding by optimal LSB substitution and genetic
algorithm. Pattern recognition 34(3):671-683

Zhang X, Qian Z, Ren Y, Feng G (2011) Watermarking with flexible self-recovery quality
based on compressive sensing and compositive reconstruction. IEEE Trans Inf Forensics
Secur 6(4):1223-1232

Zhang X, Wang S, Qian Z, Feng G (2011) Self-embedding watermark with flexible
restoration quality. Multimedia Tools and Applications 54(2):385-395

Zhang X, Wang S, Qian Z, Feng G (2011) Reference sharing mechanism for watermark self-
embedding. IEEE Trans Image Process 20(2):485—-495

Zhang XP, Xiao YY, Zhao ZM (2015) Self-embedding fragile watermarking based on DCT
and fast fractal coding. Multimedia Tools and Applications 74(15):5767-5786

