
20 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Reversible Fragile Watermarking for Multichannel Images with High Redundancy Channels

Published version:

DOI:10.1007/s11042-020-08986-4

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1781504 since 2021-03-19T16:17:01Z

Reversible Fragile Watermarking for
Multichannel Images with High Redundancy

Channels
Marco Botta a, Davide Cavagnino a, Victor Pomponiu b

a Dipartimento di Informatica, Università degli Studi di Torino
Corso Svizzera 185, 10149 Torino, Italy

{marco.botta, davide.cavagnino, roberto.esposito}@unito.it

b victor.pomponiu@gmail.com

Abstract. The paper presents a methodology to protect the integrity of multichannel images, having some highly

redundant channels, by means of a reversible fragile watermarking algorithm. The watermark embedding phase uses a

lossless compression method to compress the high redundancy channels, stores the compressed stream into their most

significant bits, then embeds a secret fragile watermark by modifying the least significant bits of the high redundancy

channels. In case the watermarked image is not modified, the host image can be perfectly reconstructed; otherwise,

the modified area can be detected and located with very high probability and the area that has not been forged can be

restored as in the original host image. The embedding of the watermark is performed by a Genetic Algorithm in the

Karhunen-Loève Transform (KLT) domain: the use of a secret space defined by the KLT guarantees both security of

the method and a high sensitivity in the detection of the forged areas.

Keywords: reversible watermarking; fragile watermarking; multichannel image processing; image authentication;

genetic algorithm; Karhunen-Loève Transform.

1 Introduction

Digital data may undergo different kinds of attacks, like malicious modification (i.e. tampering),
unauthorized copying and copyright infringement.

In the field of data hiding, digital watermarking (watermarking in the following) is a
technology that may be used to protect digital contents, like images, videos and sounds, from the
cited security attacks.

Basically watermarking embeds a signal ܹ into a digital object ܫ by modifying some parts of
it. Depending on the objective of the protection, different watermarking algorithms are developed.

Before describing the properties of a watermarking algorithm we introduce a simple model of
the whole process.

The watermarking process is composed by two distinct phases, sequential and non-
overlapping in time. The first one is the embedding phase, which inserts a watermark signal ܹ into

an object ܫ possibly using a secret key ܭ: the output is a watermarked object ܫௐ. The second phase
is a extraction stage: after receiving ܫௐᇱ (a possibly altered watermarked object due to intentional
attacks or to various kinds of transmission or storage errors) it returns the watermark signal present ܹᇱ and/or a Boolean value stating if the original watermark is present; this phase, in general, needs
the secret key ܭ used to embed the watermark and may also require the original image ܫ and
watermark ܹ.

Watermarking algorithms may be classified according to some properties and characteristics;
we report the main ones in the following list:

• reversibility: if the extraction stage may obtain the original host image ܫ from ܫௐ and ܭ (and possibly ܹ) the method is reversible, otherwise it is irreversible;
• robustness: an algorithm designed to embed a watermark that must resist attacks

aimed at its removal (like in copyright protection) is said to perform robust
watermarking; on the converse, if the objective is to detect the minimal modification
to the object (e.g. for integrity protection) then the algorithm must be designed to
insert a fragile watermark;

• blindness: a method that does not need the host object ܫ in the extraction phase is said
blind, otherwise it is said informed (or non-blind);

• embedding domain: if the watermark is embedded directly in the data composing the
object (like pixels for images, or samples for sounds) then the algorithm is said to
work in the spatial domain or time domain; on the other hand, if the data is firstly
transformed in another domain like the Fourier Transform domain or the Discrete
Cosine Transform domain, and the watermark is embedded into the transform
coefficients, then the algorithm works in the frequency domain; also, other domains
are possible, like the fractal domain;

• perceptibility: while the other properties are objective, perceptibility is subjective
because it is referred to a human judgment: if the degradation due to watermark
embedding can be seen by an average observer the watermark is called perceptible
(visible), otherwise it is said imperceptible (invisible); notice that there are algorithms
that explicitly degrade the object superimposing a signal that makes the object
unsuitable for any application unless it is removed (like the logos on images to be
sold), or that insert a logo to identify a property, like ownership of a television
transmission.

The proposed algorithm may be applied to multichannel images: it is reversible, fragile and
blind; moreover, it embeds the watermark in a secret frequency domain defined by the Karhunen-
Loève Transform. The high redundancy channels undergo a visible degradation due to the
compression step, but they can be reversibly restored. The main properties of the algorithms are:

• image tampering detection: the algorithm verifies the integrity of the image and
signals with very high probability any modification it has undergone;

• localization: any tampering is localized at block (i.e. subimage) level;
• reversibility: any image that has not been tampered may be restored to the original

form it had before watermark embedding;
• security: due to the use of a secret space for watermark embedding and to the

information stored into the watermark, the algorithm is secure against intentional and
unintentional attacks.

The paper is structured into seven sections: following this introduction, the next one recalls
the scientific papers dealing with the subject of the present research; then, a background section
presents the main concepts used in the development of the algorithm, which is presented in the
fourth section. A set of experiments proving the feasibility and capabilities of the method are shown

in section 5. Section 6 discusses the security of the algorithm and finally some observations and
conclusions are drawn in section 7.

2 Related works

Works on watermarking of multichannel images have been mainly oriented to RGB color images,
eventually also considering the ߙ-channel. Algorithms for robust and fragile watermarking have
been developed both in the spatial and in the frequency (transformed) domains: in the following of
this section, we will firstly review some approaches and then we will describe some reversible
watermarking schemes. Generally, we noted that it is somewhat difficult to make comparisons
amongst and with these approaches due to the different features and characteristics, like localization
capability, reversibility or embedding channels (e.g., RGB channels or ߙ-channel only).

An interesting work on reversible data embedding in the spatial domain was proposed by Tian
[23]: pairs of pixels are considered for carrying one bit of information, with the drawback to take
into account the possible overflow and thus the need of a location map for storing the modified
pairs positions. Alattar [0] improves the embedding capacity and efficiency of [23] by considering
vectors of pixels instead of pairs.

[15] develops a data hiding method by considering the difference histogram of neighboring
pixels: bits are embedded into pixels whose difference with the contiguous one is the most frequent
(difference histogram shifting); overflow is dealt with the use of thresholds, under the assumption
of low gradient gray level images.

In [17] a framework for applying reversible data embedding to fragile watermarking is
developed. The work divides an image into tamper localization blocks and shows how to embed in
these blocks a secure hash (apparently used with a key, thus properly a message authentication
code) using any reversible data embedding algorithm; moreover, it uses the idea of merging blocks
in case a single block is not able to completely carry a hash.

The algorithm presented in [6] embeds in the pixels integer values in the range ሾ1, ݊ሿ; it
classifies pixels in three sets: the embedding ones, those that cannot carry information (called to-
correct), and the original ones that allow a correct decoding of the data stream. Embedding and
decoding are performed in two passes, and the algorithm is capable, for well-behaved images, to
reach 2 bit per pixel payloads.

An elegant solution to fragile watermarking of images in the spatial domain has been
developed in [14] and revised in [4]: the method non-reversibly watermarks image blocks and
produces images with a high Peak Signal-to-Noise Ratio (PSNR) with some constraints on the
block size; it is proposed for grayscale images but can be adapted to multichannel images as done in
[5].

Embedding authentication information in the ߙ-channel is applied in [3]: from an RGB image
a completely transparent ߙ-channel is added; then, the 2 LSB planes of this channel are zeroed and
a Message Authentication Code (MAC) is computed for every image block; the MAC is XOR-ed
with a watermark string and the resulting bits are stored in the ߙ-channel LSBs. The use of the
LSBs allows for a minimal impact on the Human Visual System.

In the work [12] the authentication information with self-repair capability is embedded into a
newly added ߙ-channel of a grayscale image: to minimize the alteration of the transparency the
watermark is stored modifying ߙ -values near the maximum of their range. This algorithm is
extended and applied in [13] to color images, adding an ߙ-channel to an RGB image embedding
therein the authentication information (made of strings computed with the Shamir secret sharing
algorithm).

In the frequency domain watermarking, one of the mostly used transform is the Discrete
Cosine Transform (DCT). In [20] the DCT is used to compact the energy of a block and to generate
part of a watermark: the DCT is applied for integrity protection and recovery of the tampered areas.
In [28] the DCT is combined with fractal compression to embed a fragile watermark along with
recovery information.

The Singular Value Decomposition is applied in [18] to authenticate image blocks: the
singular values of the image blocks are used to compute authentication information which is
successively used to modify the LSBs of the pixels along with secret keys to scramble data.

Genetic algorithms have been used in the context of image watermarking for minimizing
distortion, as in [24] where the watermark is embedded in the spatial domain, or to cope with and
correct the watermark string modification induced by pixel value integer rounding after watermark
embedding in the DCT domain [2].

3 Background

This section is devoted to recall the main concepts used in the following sections with the objective
of making the paper self-contained. Nonetheless, we report references to give pointers for an in-
depth analysis and to perform a detailed study of the tools used by the proposed algorithm. 3.1 Channel	redundancy	

The algorithm requires that ݌ ≥ 1 channels of an ݉-channel (݉ ≥ image have a certain amount (݌
of redundancy. In particular, the objective is to exploit this redundancy to compress the pixel values
in these ݌ channels to create an area that may be used to embed the watermark. In the verification
phase, after the watermark extraction, the ݌ channels may be restored to their original values,
making the method completely reversible.

Every channel is divided into blocks of equal size and compressed at the pixel level, one
block independently from the others; block independency allows for the tamper localization and
block reversibility of the algorithm: even if a block is tampered and damaged, all other non-
tampered blocks can be reversibly reconstructed.

In the present embodiment the embedding algorithm changes the LSB plane of a block in a
channel, thus for images having ݇ bit per channel per pixel the redundancy required must allow a
compression ratio of at least ߩ௠௜௡ = ݇ ሺ݇ − 1ሻ⁄ . An image channel for which ߩ ≥ ௠௜௡ holds forߩ
every block is called High Redundancy Channel (HRC), otherwise it is called Low Redundancy
Channel (LRC). 3.2 The	compression	algorithm	

We designed the compression of the HRCs to work locally for every block: the locality avoids that
an attack modifying an area in the HRCs propagates to untouched areas nullifying the localization
ability of the algorithm.

The pixels in a block are linearized using a raster scan order, one HRC after the other. Then,
using a simple prediction method, the differences between a pixel value and the previous one are
encoded with a given Huffman table (in a similar fashion to lossless JPEG or lossless PNG), the
latter computed on a set of images and kept fixed and publicly available. The computational
complexity of this procedure is linear in the number of pixels.

The first pixel of the first HRC channel of every block is preceded by a virtual pixel having
value at half the dynamic range, i.e., for ݇ bit per pixel per channel a value 2௞ିଵ is considered.

The c
the modifi
because th
stream is e
labelled 2
to leave un
image HRC

Fig. 1 LSB 3.3 The

A cryptogr
input and p

•

•

•

Quite
some of th3.4 The

The Karhuࢂ. In case ࢁ and ࢂ ha
a linear tra
with the m
Examples
the Hadam
the KLT (
vectors: th
the vectors

Give
with the fo

•
•
•
•
•

compressed
ications for

he channel L
embedded s
and so on: t

ntouched the
Cs.

and MSBs o

e	cryptogr

raphic hash
produces a f

 given onܪሺ࣭ሻ =
 given a ܪሺ࣭ሻ =
 it is comܪሺ࣭ᇱሻ (s
e a large nu
em, like SH

e	Karhune

unen-Loève
of vector sp
ave dimensi
ansformatio

mapping ࢜ =
of linear tra

mard Transfo
(also called

he transform
s have the la

en a set of
ollowing ste

 compute
 compute
 compute
 (possibly
 arrange t

d stream is s
r watermark
LSBs are m
starting from
this allows,
e high orde

of a pixel byt

raphic	has

h function (
fixed length

nly a digesࣞ (one-way
message ࣭ ܪሺ࣭ᇱሻ (wea

mputational
strong collis

umber of su
HA-3 [7], m

en‐Loève	t

transform (
paces with f
ions ܽ and ܾ
on between = gene ;࢛	ܣ
ansformatio

form: all of
d Hotelling
m operates a
argest dispeܽ-dimensio
eps [9]:

e the averag
e the covaria
e the ܽ eigen
y) sort the e
the eigenve

stored in th
k embeddin

modified to e
m the bits
in case of a
r MSBs, i.e

te in a chann

sh	functio

c.h.f.) is a
h output ࣞ =
t ࣞ it is co
y property)
it is compu
ak collision
ly difficult
sion resistan

uch cryptog
may produce

transform

(KLT) is a l
finite dimenܾ respectiveࢁ and ࢂ. A
erally, the
ons are the
them have
Transform

a basis trans
ersion, there

onal vectors

e vector ࣆ =
ance matrix
nvectors ࢋ௝
eigenvectors
ctors as row

he MSBs of
ng. The co
embed the w
labelled 1 i
a highly com
e. 7, 6, 5, …

nel.	

on	

function ܪ= ሺ࣭ሻ (digܪ

omputationa
;

utationally d
n resistance)
t to find an
nce).

graphic fun
outputs of

m	and	bit	

linear trans
nsions a line
ely, then a m
A (column)
elements o
Discrete Co
the charact

m) has a squ
sformation
efore it corre

s ࢛௜ ∈ a k ࢁ

= ;ሼ࢛௜ሽܧ
x ܥ = ሼሺ࢛௜ܧ

and associa
s by decreas
ws of matrix

f the HRCs,
ompressed
watermark;
in all the p
mpressible

…, reducing

that receiv
gest) having

ally difficul

difficult to
);
ny two bit

nctions have
arbitrary len

embeddin

formation b
ear transform
matrix ܣ, ca
) vector ࢛ ∈
f ࢜ are call
osine Trans
teristic of h
uare matrix
to align the
esponds to a

kernel ܣ of

௜ − ሻሺ࢛௜ࣆ −
ated eigenva
sing order o
x ܣ.

leaving roo
stream is s
moreover,

ixels, then
channel pro
the distorti

es a bit stri
g the follow

lt to find a

find a bit s

strings ࣭ ്
e been deve
ngth.

ng	

between two
m may be d
alled kernel∈ is mapp ࢁ
led coeffici
sform, the F
having a fix
x kernel com
e new basis
a Principal C

size ܽ × ܽ

− ;ሻᇱሽࣆ
alues ߣ௝ of ܥ
of their asso

om in the fr
stored into
referring to
continuing

oducing a sh
ion in the w

ing ࣭ of an
wing propert

bit string ࣭
string ࣭ᇱ ്് ࣭ᇱ such th

eloped in th

o vectors sp
defined by a
l, of size ܾ
ped to a ve
ents of the
Fourier Tran

xed kernel. D
mputed fro
 along the l
Component

for a KLT

 ;ܥ
ociated eigen

ree LSBs to
the MSBs

o Fig. 1, the
to the bits

hort stream,
watermarked

ny length as
ties: ࣭ such that࣭ such that

hat ܪሺ࣭ሻ =
he past and

paces ࢁ and
a matrix: let× ܽ defines
ector ࢜ ∈ ࢂ
 transform.
nsform and
Differently,

om a set of
lines where
t Analysis.

T is derived

nvalues;

o
s
e
s
,
d

s

t

t =
d

d
t
s ࢂ
.
d
,
f
e

d

Given a vector ࢞ ∈ ࢟ its KLT is computed as ࢁ = ሺ࢞ܣ − ሻ; it is possible to perform theࣆ
inverse transformation KLT‒1 with ࢞ = ଵ࢟ିܣ + ௜ of ࢟ are called coefficients ofݕ The elements .ࣆ
the transform and a coefficient’s position ݅ in ࢟ is called order.

In the proposed algorithm, the watermark bits will be encoded in the binary representation of
KLT coefficients, so that a coefficient ݕ௜ carries a bit ߚ in position ߙ if and only if: ߚ = ℰሺݕ௜, #ሺ1ሻ	ሻߙ

where ℰሺy୧, αሻ = ہ 2 and		mod	ۂ2ିఈ	௜ݕہ .is the floor function ۂ

To embed a bit string ࣭ of length ܾ bits into a vector ࢞ the following must be defined:

• a fixed sequence of ݈ coefficients’ orders ݋ଵ, ݋ଶ, ..., ݋௟, where ݈ ≥ ܾ;
• a bit position ߙ;
• a function ℬ ∶ 	 ሼ0,1ሽ௟ → ሼ0,1ሽ௕.

Then, applying slight modifications to the elements of ࢞, a vector ࢞ᇱ is sought such that it
holds

• ࢟ = ሺ࢞ᇱܣ − ሻ, andࣆ
• ࣭ = ℬ ቀℰ ቀݕ௢భ, ቁߙ , ℰ ቀݕ௢మ, ቁߙ , … , ℰ ቀݕ௢೗, .ቁ	ቁߙ

Previous studies [5] analyzed the influence of the parameters ݈, ߙ and ℬ on the final resulting
image; in particular, the different tested ℬ functions were direct mapping (used here), syndrome
coding and modulo sum of coefficients [5].

The KLT is used to define a secret embedding space: in our setting the use of a secret image
pixel values as vectors of an ܽ-dimensional space ࢁ from which to derive the kernel ܣ is a way to
build a compact representation of a secret symmetric key. 3.5 Genetic	Algorithms	

A genetic algorithm (GA) is a computing paradigm that evolves representations of solutions to an
optimization problem with the objective of finding an optimal solution.

When the representation of a problem may be coded as an ordered set of parameters ߱ଵ߱ଶ ⋯ ௚߱ and it is possible to express with a function the degree of fitness of a sequence of values
to the optimum then a GA may be used to evolve a set of candidates that approximate the desired
solution.

A GA starts from a population of individuals, each one encoding a possible solution and
initialized with random values.

The population is evolved through generations until an individual coding a viable solution is
found (or a maximum number of generations is reached): in every generation the individuals are
evaluated with a fitness function and are reproduced by means of operators and rules to build a new
population.

In general, three operators are considered to reproduce individuals:

• selection: pairs of individuals are chosen from the actual population ܲ and the one
with best fitness in each pair is saved in a set ෨ܲ;

• crossover: pairs of individuals ߱ଵ߱ଶ ⋯ ௚߱ and ߬ଵ߬ଶ ⋯ ߬௚ in ෨ܲ are considered for
mating; with probability ݌௖ the two individuals exchange their parameters: in one
point crossover an integer random number 1 ,ߞ < ߞ < ݃, is generated and the new
offsprings ߱ଵ⋯߱఍߬఍ାଵ ⋯ ߬௚ and ߬ଵ ⋯ ߬఍߱఍ାଵ ⋯ ௚߱ are created, in two point

•

Manyܲ with the
ones, a thir

For d

In th
solution to
values to e
producing

4 The

In this sect

The i

•

•

Fig.
while Fig.

Fig. 2 High
image, ܫ௖ is
watermark s

crossove
exchang

 mutation
all the
probabil

y strategies
newly crea

rd one is to

detailed info

he proposed
o a non-line
embed the w
good result

propose

tion logical

input to the

 a multic
redundan

 a secret k

2 shows a
3 shows a d

h level structu
 the host ima
string.

er two rand
ed;

n: to allow
individuals
ity ݌௠.

s are possibl
ated individ
perform tou

ormation on

d algorithm
ear problem
watermark b
ts.

ed algori

data structu

 algorithm c

channel hos
ncy and ݍ =
key image ܫ
diagram of

diagram of t

ure of the fra
age with the

dom numbe

a better exp
s in ෨ܲ hav

le to build t
duals, anoth
urnament se

n GAs we su

m the GA is
m: as it wil
bit string is

ithm

ures and the

consists of:

st image ܫ௛= ݉ − .௞ܫare ݌

f the high l
the waterma

agile waterma
compressed

ers are used

ploration of
ve one of

the new pop
her is to rep
election to p

uggest [8, 1

s used beca
ll be shown
a problem i

e main steps

, with ݉ ch
e low redun

level structu
ark verifica

ark embeddi
HRCs, ܫ௪ is

d to define

f the solutio
their param

pulation ܲᇱ
lace the wo

produce ܲᇱ.
0] as startin

ause of its
n in the fol
in which an

s of the prop

hannels, wh
ndancy chan

ure of the w
ation proced

ing procedur
s the waterma

e the subset

on space an
meters rand

starting fro
orst individu

ng points.

ability to f
llowing, alt
n evolutiona

posed algori

here ݌ ൐ 0
nnels, and

watermark e
dure.

e: ܫ௛ is the h
arked image,

t of param

nd avoid loc
domly mod

om ෨ܲ; one is
uals in ܲ w

find a (qua
tering the i
ary algorithm

ithm are pre

 of them h

embedding

host image, ܫ௞
, ࣭ is the sec

meters to be

cal minima,
dified with

s to replace
ith the new

asi) optimal
mage pixel
m succeeds

esented.

have a high

procedure,

௞ is the key
cret

e

,
h

e
w

l
l
s

h

,

Fig. 3 Highܫ௪ᇱ is the wa
the expected
blocks.

The a

1
2
3

4
5
6
7
8

Thes4.1 Bloc

Firstly, th
overlappin
algorithm o
typically ݉
computatio

* For

h level structu
atermarked im
d watermark

algorithm is

1) tiling of
2) computa
3) compres

the HRC
4) generatio
5) generatio
6) waterma
7) waterma
8) original

se steps are

ck	tiling	o

he ݉ chann
ng contiguou
operates ind݉ bytes. Giv
onal cost.

simplicity of t

ure of the fra
mage to be v

k string, ࣛᇱ is
s composed

the host and
ation of secr
ssion of the
Cs themselve
on of the au
on of the wa
ark embeddi
ark extractio
host image

described in

of	ࢎࡵ	
nel host im
us subimag
dependently
ven that thi

the discussion

agile waterma
verified, ܫ௞ is
s the extracte

d of the follo

d key image
ret KLT bas

HRCs and
es;

uthentication
atermark str
ing;
on and integ
restoration.

n detail in th

mage of si
ges of size ݊
y (allowing
s is an oper

n we assume th

ark extractio
s the key ima
ed authentica

owing steps

es into non-
sis (perform
d inserting (

n string;
ring;

grity verifica
.

he followin

ize ܪ ×ܹ݊ × ݊ pixels
parallelizat

ration orien

hat both ܪ an

on/detection a
age, ܫ௛ᇱ is the
ation string,

s:

-overlapping
med only onc
(pre-embedd

ation;

ng subsectio

 pixels is
s* (see Fig.
tion): every
nted to data

nd ܹ are multi

and image re
reconstructeℛ is the strin

g blocks;
ce);
ding) the co

ns.

conceptuall
4) onto wh
pixel is com
manageme

iples of ݊.

econstruction
ed host image
ng identifyin

ompressed

lly divided
hich the wa
mposed of

ent it has no

n procedure:
e, ࣛ௖௠௣ is

ng the forged

stream into

into non-
atermarking݉ channels
o additional

o

-
g
s,
l

Fig. 4 Block splitting of a multichannel host image: the pixels in the ݌ HRCs channel can be modified to
carry the watermark, while the pixels in the ݍ LRCs channels will not be changed by the embedding
algorithm. 4.2 Secret	KLT	basis	computation	using	࢑ࡵ	
The computation of a secret KLT basis may be performed once for every secret key image ܫ௞, as
long as the number of channels ݉ of the host image(s) to be watermarked is known. After that, the
same KLT basis may be applied to watermark any number of images with 	݉ channels. The
computational complexity of this step is the one of the algorithm used to compute the eigenvectors
and eigenvalues of a symmetric matrix.

The key image may be single channel or multichannel: to generate a set of samples, non-
overlapping groups of ݉݊ଶ contiguous pixels are built. Then, the method described in the previous
subsection 3.4 is used to produce a mean vector ࣆ and a kernel matrix ܣ composed of ݉݊ଶ
eigenvectors having ݉݊ଶ components. 4.3 High	Redundancy	Channels	pre‐embedding	

A pre-embedding phase applied to ܫ௛ saves the information required to make the method reversible.
In particular, the ݌ HRCs are compressed in a lossless way (as presented in subsection 3.2), every
block independently from the others, and the resulting compressed stream stored in the MSBs of the ݌ redundant channels. By means of this operation we can save space and allow for the LSBs of the ݌ channels to be used in the fragile watermark embedding.

As previously stated, the compressed stream is stored starting from the less significant MSBs
leaving untouched the high order MSBs, i.e. first filling bit 1, then bit 2, then 3, and so on till bit 7
of the MSBs. Should the compressed stream be much shorter than the available space, this
constraint may be relaxed, and one can start from bit 2 or bit 3 of the MSBs, so leaving more space
for the watermark embedding.

The decoding of the compressed stream may be performed unambiguously, provided that the
stream starts at a fixed position and the decoding table is known, as it is in our case.

The computational complexity of this step is linear in the number of blocks.

After the compressed stream has been stored in the MSBs of the ݌ channels blocks, a
watermark embedding phase similar to the one proposed in [5] is performed, using the image ܫ௖
resulting from the pre-embedding process as host image. 4.4 Authentication	string	generation	

The proposed algorithm embeds an authentication bit string ࣛ computed from ܫ௞ and ܫ௖. In this way
different images will have different watermarks embedded (with the limits discussed below) with
the aim of increasing security and protecting against transplantation and copy-and-paste attacks.
The string ࣛ is generated by using SHA-3† (in its version for arbitrary output length SHAKE [7])
applied to a key obtained concatenating the following data:

• dimensions of the image (height ܪ, width ܹ, number of channels ݉), to protect also
against image cropping and channel removal;

• a sequence ௞ܶ of pixel values in ܫ௞ whose coordinates are determined as follows: we
use the values of a sequence of pixels in fixed (and publicly known) positions in ܫ௞ as
indexes to select a sequence of pixels values ௖ܶ of ܫ௖ (in the LRCs, not modified nor
compressed by our algorithm) which in turn are used as indexes to determine the
sequence ௞ܶ.

Given the secrecy of ܫ௞ it is unfeasible for an attacker to derive ࣛ. 4.5 Watermark	string	generation	

The watermark string ࣭ carries two types of information, namely an authentication bit string ࣛ and
a classification bit string ࣝ.

1) The authentication bit string ࣛ is generated according to the method presented in
subsection 4.4.

2) The classification bit string ࣝ specifying which channels are HRCs (1s) and which are
LRCs (0s): these data consist of ݉ bits (where ݉ is the number of channels). For
example, an image with 4 channels (RGBߙ) that has a highly redundant ߙ-channel
will have the bit string 0001 as classification bit string ࣝ. These classification bits will
allow to determine which are the HRCs and LRCs channels in the restoration phase.

If the payload is ܾ bits-per-subimage (bps) then the length of ࣭ will be ܾܹܪ ݊ଶ⁄ ; for every
block, ܾ − 1 bits are consecutively taken from ࣛ and one bit is derived from ࣝ: this means that for
an ܪ ×ܹ image with blocks of size ݊ × ݊ the required length of ࣛ will be ሺܾ − 1ሻܹܪ ݊ଶ⁄ bits
and the ݉ classification bits in ࣝ will be completely repeated ቔ ுௐ௠௡మቕ times and correspondingly
embedded in the image (for block size ݊ = 10 and images of size 512 × 512 × 4 , we have ቔ ுௐ௠௡మቕ = 655).

For example, suppose a payload of 6 bps, an authentication bit string ࣛ = 00110	11001	11000	00010	10000	01100	11111	10101….
and a classification bit string ࣝ = ૙૙૙૚. Then, the string ࣭ will be 00110૙	11001૙	11000૙	00010૚	10000૙	01100૙	11111૙	10101૚….

† The computational complexity of this step depends on the complexity of the SHA-3 algorithm.

4.6 Watermark	embedding	

After a KLT basis of ݉݊ଶ vectors is derived from the secret key image ܫ௞ and a watermark string ࣭
is computed, consecutive parts of ࣭, each one of ܾ bits, are embedded into the subimages ݊ × ݊
(examined in raster scan order) by the GA.

For every subimage of ܫ௖, the GA embeds the ܾ bits by modifying the subimage HRCs LSBs.
More precisely, the GA evolves a population where every individual represents a bit string used to
substitute the subimage available LSBs (after the HRCs compression). The new subimage is KLT
transformed and from ݈ (fixed) coefficients ܾ bits are extracted: if they coincide with those to be
embedded, then the new subimage substitutes the original one in ܫ௖ to obtain, when all the
subimages have been examined, the final watermarked image ܫ௪. The evolution of the population is
concluded when the ܾ bits are embedded into the subimage or a maximum number of generations
has been reached: in the latter case the image is declared non-watermarkable or a new population is
created for a new attempt to embed the bits in the subimage.

The GA fitness function measures the Hamming distance between the bit string stored in the
KLT coefficients and the bits of ࣭ pertaining to the subimage under examination, and the GA
requires this distance to be equal to 0 for a viable block. No other quality measures are considered,
like Peak Signal-to-Noise Ratio (PSNR), because the reversibility of the method allows to obtain
the original channels: in fact, the GA may modify only the LSBs of the HRCs to embed the relevant
part of ࣭ into the KLT coefficients of the subimage transform. In this way, in case a subimage is not
modified by an attack it can be completely restored to its original values, making the method
reversible.

When the GA has embedded the secret watermark string ࣭ into all the image subimages, the
watermarked image ܫ௪ may be released in the public: its low redundancy channels will result
untouched by the algorithm, whilst the HRCs will be altered with the property of being possibly
restored by anyone to their original status if no attacks have been performed. Nonetheless, only the
holder of ܫ௞ can check the integrity of the various subimages.

A high level scheme of the algorithm is reported in Algorithm 1 depicted in Fig. 5. The
computational complexity of this step depends on the compression algorithm, as previously
discussed, and the embedding has a complexity that is linear in the number of subimages; moreover,
the computational load for every subimage depends on the parameter configuration of the GA
algorithm used. In the current implementation, the GA runs for a maximum number of generations
(2000), but it usually finds a solution in 25 − 35 generations on average. Anyway, the total
running time is upper bounded by ܹܪݐ ݊ଶ⁄ ,where ݐ is the maximum running time of the GA.

Algorithm 1:

Input: ܫ௛ image to watermark
 ௞ secret key imageܫ
Output: ܫ௪ watermarked image
compute KLT basis from ܫ௞
split ܫ௛ into subimages according to block size
select HRCs and LRCs: for every channel

compress all subimages
if (all subimages of a channel satisfy

the compression ratio condition)
then mark it as an HRC

compress and pre-embed the pixel values of the HRCs and obtain ܫ௖
compute the authentication string ࣛ using ܫ௞ and ܫ௖ LRCs
generate the classification string ࣝ
interleave ࣛ and ࣝ to build the watermark ࣭
for every subimage

embed corresponding ࣭ part into subimage using the GA (GA_embedding)
if (embedding fails) then return Fail

return ܫ௪

function GA_embedding

generate population of random individuals coding HRCs LSBs
for maxnumgenerations

evaluate all individuals: if (one individual has fitness=0)
then return success and

subimage having the
individual in HRCs LSBs

evolve population
return embedding_failed

function fitness

compute and return Hamming distance between ࣭ part and ℬ൫ℰ൫ݕ௢భ, ,൯ߙ ℰ൫ݕ௢మ, ,൯ߙ … , ℰ൫ݕ௢೗, ൯	൯ߙ
Fig. 5 Pseudo code of the fragile watermark embedding procedure.

4.7 Watermark	extraction,	verification	and	image	restoration	

The verification/restoration phase works as follows (see Fig. 3).

Firstly, every subimage in ܫ௪ᇱ is transformed with the KLT (using the basis derived from ܫ௞)
and the embedded watermark ࣭ᇱ is extracted. From ࣭ᇱ the authentication string ࣛᇱ and the

classification string ࣝᇱ are demultiplexed. In case of no attacks the ቔ ுௐ௠௡మቕ copies of the ݉ bit string
classifying the channels will be identical, but if any subimage has been tampered there will be some
differing string(s). To determine the HRC-LRC distribution the most frequent string will be chosen
as the correct classification (as discussed in section 6, a wrongly decoded string will not expose any
security breach).

After that, the watermark string ࣛ௖௠௣ that should be found embedded is generated using the
HRCs of the watermarked image ܫ௪ᇱ and the secret key ܫ௞.

Thirdly, a comparison performing the XOR operation ℛ = ࣛᇱ ⊕ࣛ௖௠௣ leads a resulting
string that has ones (‘1’) corresponding to altered subimages.

If the part (having length ܾ bits) of ℛ corresponding to a subimage is all 0s the subimage is
considered intact and the HRCs are restored decompressing the stream in the MSBs, otherwise the

subimage is marked as forged. So, the subimage is the minimum forge localization area, i.e. image
modifications are signaled to the user by marking the whole subimage containing the forged pixels.

A high level scheme of the verification and restoration Algorithm 2 is reported in Fig. 6. The
computational complexity of the verification and reversible phase is linear in the number of
subimages.

Algorithm 2:

Input: ܫ௪ᇱ possibly watermarked image
 ௞ secret key imageܫ
Output: ܫ௛ᇱ verified and restored image
compute KLT basis from ܫ௞
split ܫ௛ᇱ into subimages according to block size
for every subimage ܺ

extract ࣭ᇱሺܺሻ with KLT-1 and function ℬ
select HRCs and LRCs from ࣝᇱ ⊂ ࣭ᇱ
compute watermark string ࣛ௖௠௣ using ܫ௞ and ܫ௪ᇱ LRCs
for every subimage ܺ

if (ࣛᇱሺܺሻ = ࣛ௖௠௣ሺܺሻ)
then decompress subimage HRCs and restore subimage in ܫ௛ᇱ
else mark subimage as forged in ܫ௛ᇱ

return ܫ௛ᇱ
Fig. 6 Pseudo code of the fragile watermark verification and restoration procedure.

5 Experimental results

This section summarizes the results of a large number of experiments we executed to test the
performance of the proposed algorithm: we applied the reversible fragile watermarking algorithm to
a set of images with at least one HRC.

We considered three objective parameters, namely the sensitivity, the Mean Absolute Error
(MAE) and the Peak Signal-to-Noise Ratio (PSNR). Among them, we consider the sensitivity the
most important, given that the reversibility property of the algorithm allows the authorized user to
obtain the original host image as final result. Indeed, the sensitivity‡ gives a measure of the
capability of the algorithm to detect tampering attacks.

Thus, the meanings of the parameters used to measure the performance of the proposed
algorithm are:

• Sensitivity (as in [5]): the sensitivity of level ܦ is defined as the fraction of blocks that are
detected as tampered in the verification phase when just one pixel per block is modified by ܦ levels;

• Mean Absolute Error (MAE): measures the average absolute difference between pixels of
the host and the watermarked images;

• Peak Signal-to-Noise Ratio (PSNR): this classical objective quality measure is defined as

‡ We designed an experimental setting in which we test how many times the verifier misses a tampered subimage

when a single pixel of that subimage is changed by just 1 or 2 grey levels. This is actually the smallest tampering an
attacker can perform: any other attack, such as filtering, blurring, noise addition, copy-and-paste, cropping, etc., would
modify more pixels and, very likely, of more than just 1 grey level.

PSNR = 10	logଵ଴ ܧܵܯଶ݈݁ݒ݁ܮݔܽܯ

where ݈݁ݒ݁ܮݔܽܯ is the maximum intensity level of each channel (i.e., for 8 bit images it is 2଼ − 1 = 255) and ܧܵܯ represents the mean squared error between the host and the
watermarked images.

We chose a setting for the genetic algorithm to be used in all experiments; in particular, we
derived the setting values from many experiments devised to have fast convergence to a solution
resulting in a high quality image. The settings were population size = ௖݌ ,100 = ௠݌ ,0.9 = 0.06,
maximum generations = 2000.

The first set of tests were performed on a public collection of images (from the Telegram
application [21, 22]); the 29 images are in PNG RGBߙ (RGB with alpha channel) format: the alpha
channel is not trivial (in the sense that it varies on the whole image to follow the sticker shape) and
we expected it to be a HRC. Table 1 reports the watermarking results for two different values of
payload; the PSNR is influenced only by the differences induced by the HRC, as the process does
not alter any LRC pixel.

In the presented tests the block size was set to ݊ = 11 (i.e. the subimages were composed of 11 × 11 four channel pixels). We also conducted tests with smaller values for ݊, but for some
images no channel was an HRC, so we selected the smallest value for which we could compress
enough every block.

Table 1 Performance of the proposed algorithm on a set of RGBߙ images publicly available [21, 22].

Payload
(bps)

Sensitivity ±1
(%)

Sensitivity ±2
(%) MAE PSNR

(dB)
Time

(s)
GA Avg

Generations
8 86.79±2.83 96.61±0.98 0.6056±0.1544 36.54±3.54 46.77±8.18 26
10 89.23±1.07 96.81±1.14 0.6171±0.1541 36.52±3.52 59.78±11.39 32

We compared our algorithm with the ones proposed in [13] and [20], that have been showed
superior against other approaches ([11], [16] and [19], [25], [26], [27] respectively). One of the
settings of [13] is RGB image authentication, which is performed by adding an alpha channel where
every pixel stores three authentication bits derived from the corresponding RGB channel values
(scrambled with a key) using a secret sharing method: the effect is that every alpha channel pixel
contains the sum of 248 and the authenticating value; moreover, the authentication data is
distributed among groups of three pixels each, making each group the smallest forge localization
unit.

Our algorithm, instead, works on any existing HRC channels, thus having a wider range of
applications to images of any kind; the disadvantage w.r.t. [13] is the bigger authentication block
size.

In [20], Singh et al. described a fragile watermarking algorithm for RGB color images with
restoration capabilities of tampered areas, whereas our proposed algorithm only restore untampered
blocks but works with any multichannel image.

The images for the comparison reported in Table 2 were obtained by the classical ones (as the
names recall) of size 512 × 512 pixels adding an extra HRC channel completely opaque (i.e.
having pixel values equal to 255), as done in [13].

From Table 2 it may be observed that the MAEs computed on the HRC (i.e. the alpha
channel) computed by our algorithm are an order of magnitude lower than those in [13]. Moreover,
the PSNR is much greater than that reported in [20] on the same set of images.

Table 2 Comparison of MAE and PSNR values for some images.

Image MAE PSNR

 [13] Proposed
algorithm [20] Proposed algorithm

Baboon 0.723 0.0192 39.55 65.26
Lena 0.720 0.0190 39.79 65.29
F-16 0.721 0.0191 - 65.25
Tiffany 0.721 0.0194 - 65.30
Boat - 0.0191 39.93 65.33
House - 0.0190 39.16 65.33
Pepper - 0.0194 40.19 65.26
Woman - 0.0194 39.73 65.25

Extending the test in Table 2 to a larger set of images (500 color images) we obtained an
average MAE value of 0.0336 ± 0.0003 and an average PSNR value of 62.86 ± 0.037 confirming
the high quality of the watermarked images; moreover, the standard deviation of the resulting
MAEs and PSNRs is very low and confirms that the algorithm is stable and is not influenced by the
image content.

As an example of the resulting whole authentication process, we present in Fig. 7 an image (a)
to show the result from the watermarking process (b) and how the proposed algorithm detects (d)
the modifications made in (c): as the HRCs are the blue and alpha channels of this image, it is
impossible to notice any difference between host and watermarked images; on the other hand, the
image is restored to its original state (d) apart from the tampered blocks in the upper-right part of
the image where a counterfeit flame was added.

Fig. 7 An ex
alpha chann
image, red a
the black ar

Verif
subimage i

6 Secu

The securit
is secret. In
is the key i
of the secre

As sh
a good abil

The
HRCs and
to the wat
detection.

If the
the redund
evident mo
wrong chan
correct one
indeed, ma
image mod

In ca
Redundanc
altered bec

xample of w
nel, courtesy
and green ch
rrow; (d) rest

fication tim
is of the ord

urity of t

ty of the fra
ndeed, the K
image ܫ௞. T
et key imag

hown in sec
lity at tamp

only observ
the string i

termark) an

e watermark
dantly emb
ode. In case
nnels of the
e: almost all
any altered s
dification is

ase of cropp
cy Channel
cause ࣛ௖௠௣

(a

(c

watermarking
of and © Fo

hannels untou
tored image a

me is linear i
der of 0.5 m

the meth

agile waterm
KLT basis i

Thus, the wa
ge.

ction 5, the
ering locali

vable effec
in the HRC
nd cannot b

ked image
edded clas

e the HRCs-
e ௖ܶ pixels w
l subimages
subimages h
 detected.

ping or mo
s) used to ௣ will be co

)

)

and tamperi
ootage Firm,
uched, PSNR
and tampered

in the numb
msec.

hod

marking me
is secret bec
atermark ca

method is h
ization.

ts of the w
Cs LSBs: the

be replaced

goes throug
sification b
-LRCs are n
will be used
s will be fla
have led to

odification a
generate th

ompletely u

ing detection
http://www.

R 30.80 dB; (
d area, in ma

ber of subim

ethod is bas
cause the sa

annot be ext

highly sensi

watermark e
e latter is st
d with othe

gh heavy an
bit strings
not correctly
d to generate
agged as for
a wrong ࣝᇱ
attack invol
he watermar
uncorrelated

n: (a) origina
stockphotosf
(c) forged im
agenta color,

mages and th

ed on the ev
ample from
tracted (nor

itive even to

embedding
trictly tighte
er pixel val

nd extended
have not a
y identified
e ࣛᇱ produc
rged (even i
 string. The

lving at lea
rk, almost
d with ࣛᇱ;

(b)

(d)

l four channe
forfree.com)

mage, the add
 detected by

he time requ

vidence tha
m which it is

removed) w

o small mod

are the com
ened to the
lues withou

d modificat
a frequency
d in the verif
cing a string
f possibly s
e localizatio

ast one of t
all subimag
in this case

el image (RG
); (b) waterm
ded flame is i
y the algorith

uired to ver

at the embed
s computed
without the

difications,

mpressed pi
pixel value

ut exposing

tions it is p
y distributio
fication pha
g uncorrelat
some of them
on ability is

the pixels (
ges will be
e no forged

GB with
marked

indicated by
m.

rify a single

dding space
is secret as
 possession

also having

ixels of the
es (and also
g a forgery

ossible that
on with an
ase then the
ted with the
m will not);
lost but the

in the Low
flagged as

d subimage

e

e
s
n

g

e
o
y

t
n
e
e
;
e

w
s
e

localization is possible (anyway the modification is detected and the image declared altered): for
this reason we suggest to keep small the set ௖ܶ of pixels used to create the watermark (typically four
pixels).

A feature of the method is its public reversibility: anyone may reconstruct an image from ܫ௪
because the compression/decompression algorithm and Huffman table for the HRCs are public.
Nonetheless, only the watermark embedder has the capability to know if any modification to ܫ௪ has
been performed and which subimages have been forged. Thus, the possibility to reversibly
reconstruct the original host image left to anyone is only apparent and poses no security problems,
in fact:

• without the key image ܫ௞ it is not possible to test if the watermarked image is intact or
has been forged, so the reconstruction of ܫ௛ is possible only for the watermark
embedder;

• anyway, knowledge of ܫ௛ does not disclose any critical information because the
objective of a fragile watermarking algorithm is to verify the integrity of objects, not
hide their content.

Another consideration that is important is that when embedding ܾ watermark bps there is a
probability of 1 2௕⁄ that a random subimage substitution goes undetected. Obviously, the
probability that ܼ different forged subimages are all undetected is 1 2௕௓⁄ , which drops dramatically
even for small values of ܾ and ܼ.

As shown in section 5, the main factor to take into account for the applicability of the method
is the sensitivity to single pixel-single intensity level modifications: as shown, the proposed
algorithm is very sensible to these modifications with a high probability of detecting this kind of
little tampering, which translates in a strong sensitivity to forgery and a high capability of
localization.

7 Discussion and conclusions

In this paper a reversible method for fragile watermarking multichannel images has been presented
and discussed: the requirement is for the image to possess one, or more than one, high redundancy
channels.

The resulting watermarked image has the low redundancy channels untouched, and contains a
compressed version of its HRCs allowing for a complete restoration of the original host image.

The owner of the secret key image can verify the integrity of the image. Everyone is able to
restore an image, but only the secret key owner has the certainty of its integrity.

The test performed on a large set of images has shown the high sensitivity of the algorithm to
attacks and the ability to localize them.

To summarize, the method has the following properties:

• reversibility;
• low redundancy channels do not need restoration, as they are untouched (nonetheless,

they may obviously be forged by an attacker);
• high sensitivity to modifications;
• fast image integrity verification and tamper localization ability;
• applicable to any uncompressed, or lossless compressed, image file formats.

The proposed algorithm fits in the MIMIC framework [5], adding a pre-embedding and a
decompression module, along with slight modifications for the management of the HRC-LRC
classification.

Acknowledgements
We would like to thank Dr. Roberto Esposito who helped in revising the manuscript according to the
reviewers’ comments and making new experiments, pointing out and resolving issues in the first submission.

References

1. Alattar AM (2004) Reversible watermark using the difference expansion of a generalized
integer transform. IEEE Transactions on Image Processing 13(8):1147‒1156

2. Aslantas V, Ozer S, Ozturk S (2009) Improving the performance of DCT-based fragile
watermarking using intelligent optimization algorithms. Optics Communications
282(14):2806‒2817

3. Bandyopadhyay P, Das S, Chaudhuri A, Banerjee M (2012) A New Invisible Color Image
Watermarking Framework through Alpha Channel. International Conference on Advance in
Engineering, Science and Management p 302‒308

4. Botta M, Cavagnino D, Pomponiu V (2014) Protecting the Content Integrity of Digital
Imagery with Fidelity Preservation: An Improved Version. ACM Trans Multimedia Comput
Commun Appl 10(3):29:1‒29:5

5. Botta M, Cavagnino D, Pomponiu V (2016) A modular framework for color image
watermarking. Signal Processing 119:102‒114

6. Chaumont M, Puech W (2009) A High Capacity Reversible Watermarking Scheme.
Proceedings of SPIE 7257

7. Dworkin MJ (2015) SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions. NIST FIPS – 202

8. Goldberg DE (1989) Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co.

9. Gonzalez RC, Wintz P (1987) Digital Image Processing 2nd ed. Addison-Wesley Publishing
Company

10. Hassanien A-E, Abraham A, Kacprzyk J, Peters JF (2008) Computational Intelligence in
Multimedia Processing: Foundation and Trends. Studies in Computational Intelligence
96:3‒49

11. Kim KS, Lee MJ, Lee HY, Lee HK (2009) Reversible data hiding exploiting spatial
correlation between sub-sampled images Pattern Recognition, 42(11), p 3083‒3096

12. Lee C-H, Tsai W-H (2012) A Secret-Sharing-Based Method for Authentication of Grayscale
Document Images via the Use of the PNG Image With a Data Repair Capability. IEEE
Trans. on Image Processing 21(1):207‒218

13. Lee C-H, Tsai W-H (2013) A data hiding method based on information sharing via PNG
images for applications of color image authentication and metadata embedding. Signal
Processing 93(7):2010‒2025

14. Lin P-Y, Lee J-S, Chang C-C (2011) Protecting the Content Integrity of Digital Imagery
with Fidelity Preservation. ACM Trans Multimedia Comput Commun Appl 7(3):15:1‒15:20

15. Lin C-C, Tai W-L, Chang C-C (2008) Multilevel reversible data hiding based on histogram
modification of difference images. Pattern Recognition 41(12):3582‒3591

16. Luo L, Chen Z, Chen M, Zeng X, Xiong Z (2010) Reversible Image Watermarking Using
Interpolation Technique. IEEE Transactions on Information Forensics and Security, 5 (1), p
16–21

17. Naskar R, Chakraborty RS (2013) A Generalized Tamper Localization Approach for
Reversible Watermarking Algorithms. ACM Trans Multimedia Comput Commun Appl
9(3):19:1‒19:22

18. Oktavia V, Lee W-H (2004) A Fragile Watermarking Technique for Image Authentication
Using Singular Value Decomposition. Advances in Multimedia Information Processing
LNCS 3332, p 42‒49

19. Qian Z, Feng G, Zhang X, Wang S (2011) Image self-embedding with high-quality
restoration capability. Digital Signal Process 21(2):278–286

20. Singh D, Singh SK (2017) DCT based efficient fragile watermarking scheme for image
authentication and restoration. Multimedia Tools and Applications 76(1):953‒977

21. Telegram.org Available online: https://telegram.org/blog/stickers-meet-art-and-history
(accessed on September 2018)

22. Telegram.org Available online: https://telegram.org/blog/moar-stickers (accessed on
September 2018)

23. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Transactions
on Circuits and Systems for Video Technology 13(8):890‒896

24. Wang R-Z, Lin C-F, Lin J-C (2001) Image hiding by optimal LSB substitution and genetic
algorithm. Pattern recognition 34(3):671‒683

25. Zhang X, Qian Z, Ren Y, Feng G (2011) Watermarking with flexible self-recovery quality
based on compressive sensing and compositive reconstruction. IEEE Trans Inf Forensics
Secur 6(4):1223–1232

26. Zhang X, Wang S, Qian Z, Feng G (2011) Self-embedding watermark with flexible
restoration quality. Multimedia Tools and Applications 54(2):385–395

27. Zhang X, Wang S, Qian Z, Feng G (2011) Reference sharing mechanism for watermark self-
embedding. IEEE Trans Image Process 20(2):485–495

28. Zhang XP, Xiao YY, Zhao ZM (2015) Self-embedding fragile watermarking based on DCT
and fast fractal coding. Multimedia Tools and Applications 74(15):5767‒5786

