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Abstract. The paper presents a methodology to protect the integrity of multichannel images, having some highly 

redundant channels, by means of a reversible fragile watermarking algorithm. The watermark embedding phase uses a 

lossless compression method to compress the high redundancy channels, stores the compressed stream into their most 

significant bits, then embeds a secret fragile watermark by modifying the least significant bits of the high redundancy 

channels. In case the watermarked image is not modified, the host image can be perfectly reconstructed; otherwise, 

the modified area can be detected and located with very high probability and the area that has not been forged can be 

restored as in the original host image. The embedding of the watermark is performed by a Genetic Algorithm in the 

Karhunen-Loève Transform (KLT) domain: the use of a secret space defined by the KLT guarantees both security of 

the method and a high sensitivity in the detection of the forged areas. 

Keywords: reversible watermarking; fragile watermarking; multichannel image processing; image authentication; 

genetic algorithm; Karhunen-Loève Transform. 

1 Introduction 

Digital data may undergo different kinds of attacks, like malicious modification (i.e. tampering), 
unauthorized copying and copyright infringement. 

In the field of data hiding, digital watermarking (watermarking in the following) is a 
technology that may be used to protect digital contents, like images, videos and sounds, from the 
cited security attacks. 

Basically watermarking embeds a signal ܹ into a digital object ܫ by modifying some parts of 
it. Depending on the objective of the protection, different watermarking algorithms are developed. 

Before describing the properties of a watermarking algorithm we introduce a simple model of 
the whole process. 

The watermarking process is composed by two distinct phases, sequential and non-
overlapping in time. The first one is the embedding phase, which inserts a watermark signal ܹ into 



an object ܫ possibly using a secret key ܭ: the output is a watermarked object ܫௐ. The second phase 
is a extraction stage: after receiving ܫௐᇱ  (a possibly altered watermarked object due to intentional 
attacks or to various kinds of transmission or storage errors) it returns the watermark signal present ܹᇱ and/or a Boolean value stating if the original watermark is present; this phase, in general, needs 
the secret key ܭ  used to embed the watermark and may also require the original image ܫ  and 
watermark ܹ. 

Watermarking algorithms may be classified according to some properties and characteristics; 
we report the main ones in the following list: 

• reversibility: if the extraction stage may obtain the original host image ܫ from ܫௐ and ܭ (and possibly ܹ) the method is reversible, otherwise it is irreversible; 
• robustness: an algorithm designed to embed a watermark that must resist attacks 

aimed at its removal (like in copyright protection) is said to perform robust 
watermarking; on the converse, if the objective is to detect the minimal modification 
to the object (e.g. for integrity protection) then the algorithm must be designed to 
insert a fragile watermark; 

• blindness: a method that does not need the host object ܫ in the extraction phase is said 
blind, otherwise it is said informed (or non-blind); 

• embedding domain: if the watermark is embedded directly in the data composing the 
object (like pixels for images, or samples for sounds) then the algorithm is said to 
work in the spatial domain or time domain; on the other hand, if the data is firstly 
transformed in another domain like the Fourier Transform domain or the Discrete 
Cosine Transform domain, and the watermark is embedded into the transform 
coefficients, then the algorithm works in the frequency domain; also, other domains 
are possible, like the fractal domain; 

• perceptibility: while the other properties are objective, perceptibility is subjective 
because it is referred to a human judgment: if the degradation due to watermark 
embedding can be seen by an average observer the watermark is called perceptible 
(visible), otherwise it is said imperceptible (invisible); notice that there are algorithms 
that explicitly degrade the object superimposing a signal that makes the object 
unsuitable for any application unless it is removed (like the logos on images to be 
sold), or that insert a logo to identify a property, like ownership of a television 
transmission. 

The proposed algorithm may be applied to multichannel images: it is reversible, fragile and 
blind; moreover, it embeds the watermark in a secret frequency domain defined by the Karhunen-
Loève Transform. The high redundancy channels undergo a visible degradation due to the 
compression step, but they can be reversibly restored. The main properties of the algorithms are: 

• image tampering detection: the algorithm verifies the integrity of the image and 
signals with very high probability any modification it has undergone; 

• localization: any tampering is localized at block (i.e. subimage) level; 
• reversibility: any image that has not been tampered may be restored to the original 

form it had before watermark embedding; 
• security: due to the use of a secret space for watermark embedding and to the 

information stored into the watermark, the algorithm is secure against intentional and 
unintentional attacks. 

The paper is structured into seven sections: following this introduction, the next one recalls 
the scientific papers dealing with the subject of the present research; then, a background section 
presents the main concepts used in the development of the algorithm, which is presented in the 
fourth section. A set of experiments proving the feasibility and capabilities of the method are shown 



in section 5. Section 6 discusses the security of the algorithm and finally some observations and 
conclusions are drawn in section 7. 

2 Related works 

Works on watermarking of multichannel images have been mainly oriented to RGB color images, 
eventually also considering the ߙ-channel. Algorithms for robust and fragile watermarking have 
been developed both in the spatial and in the frequency (transformed) domains: in the following of 
this section, we will firstly review some approaches and then we will describe some reversible 
watermarking schemes. Generally, we noted that it is somewhat difficult to make comparisons 
amongst and with these approaches due to the different features and characteristics, like localization 
capability, reversibility or embedding channels (e.g., RGB channels or ߙ-channel only). 

An interesting work on reversible data embedding in the spatial domain was proposed by Tian 
[23]: pairs of pixels are considered for carrying one bit of information, with the drawback to take 
into account the possible overflow and thus the need of a location map for storing the modified 
pairs positions. Alattar [0] improves the embedding capacity and efficiency of [23] by considering 
vectors of pixels instead of pairs. 

[15] develops a data hiding method by considering the difference histogram of neighboring 
pixels: bits are embedded into pixels whose difference with the contiguous one is the most frequent 
(difference histogram shifting); overflow is dealt with the use of thresholds, under the assumption 
of low gradient gray level images. 

In [17] a framework for applying reversible data embedding to fragile watermarking is 
developed. The work divides an image into tamper localization blocks and shows how to embed in 
these blocks a secure hash (apparently used with a key, thus properly a message authentication 
code) using any reversible data embedding algorithm; moreover, it uses the idea of merging blocks 
in case a single block is not able to completely carry a hash. 

The algorithm presented in [6] embeds in the pixels integer values in the range ሾ1, ݊ሿ; it 
classifies pixels in three sets: the embedding ones, those that cannot carry information (called to-
correct), and the original ones that allow a correct decoding of the data stream. Embedding and 
decoding are performed in two passes, and the algorithm is capable, for well-behaved images, to 
reach 2 bit per pixel payloads. 

An elegant solution to fragile watermarking of images in the spatial domain has been 
developed in [14] and revised in [4]: the method non-reversibly watermarks image blocks and 
produces images with a high Peak Signal-to-Noise Ratio (PSNR) with some constraints on the 
block size; it is proposed for grayscale images but can be adapted to multichannel images as done in 
[5]. 

Embedding authentication information in the ߙ-channel is applied in [3]: from an RGB image 
a completely transparent ߙ-channel is added; then, the 2 LSB planes of this channel are zeroed and 
a Message Authentication Code (MAC) is computed for every image block; the MAC is XOR-ed 
with a watermark string and the resulting bits are stored in the ߙ-channel LSBs. The use of the 
LSBs allows for a minimal impact on the Human Visual System. 

In the work [12] the authentication information with self-repair capability is embedded into a 
newly added ߙ-channel of a grayscale image: to minimize the alteration of the transparency the 
watermark is stored modifying ߙ -values near the maximum of their range. This algorithm is 
extended and applied in [13] to color images, adding an ߙ-channel to an RGB image embedding 
therein the authentication information (made of strings computed with the Shamir secret sharing 
algorithm). 



In the frequency domain watermarking, one of the mostly used transform is the Discrete 
Cosine Transform (DCT). In [20] the DCT is used to compact the energy of a block and to generate 
part of a watermark: the DCT is applied for integrity protection and recovery of the tampered areas. 
In [28] the DCT is combined with fractal compression to embed a fragile watermark along with 
recovery information. 

The Singular Value Decomposition is applied in [18] to authenticate image blocks: the 
singular values of the image blocks are used to compute authentication information which is 
successively used to modify the LSBs of the pixels along with secret keys to scramble data. 

Genetic algorithms have been used in the context of image watermarking for minimizing 
distortion, as in [24] where the watermark is embedded in the spatial domain, or to cope with and 
correct the watermark string modification induced by pixel value integer rounding after watermark 
embedding in the DCT domain [2]. 

3 Background 

This section is devoted to recall the main concepts used in the following sections with the objective 
of making the paper self-contained. Nonetheless, we report references to give pointers for an in-
depth analysis and to perform a detailed study of the tools used by the proposed algorithm. 3.1 Channel	redundancy	

The algorithm requires that ݌ ≥ 1 channels of an ݉-channel (݉ ≥  image have a certain amount (݌
of redundancy. In particular, the objective is to exploit this redundancy to compress the pixel values 
in these ݌ channels to create an area that may be used to embed the watermark. In the verification 
phase, after the watermark extraction, the ݌  channels may be restored to their original values, 
making the method completely reversible. 

Every channel is divided into blocks of equal size and compressed at the pixel level, one 
block independently from the others; block independency allows for the tamper localization and 
block reversibility of the algorithm: even if a block is tampered and damaged, all other non-
tampered blocks can be reversibly reconstructed. 

In the present embodiment the embedding algorithm changes the LSB plane of a block in a 
channel, thus for images having ݇ bit per channel per pixel the redundancy required must allow a 
compression ratio of at least ߩ௠௜௡ = ݇ ሺ݇ − 1ሻ⁄ . An image channel for which ߩ ≥  ௠௜௡ holds forߩ
every block is called High Redundancy Channel (HRC), otherwise it is called Low Redundancy 
Channel (LRC). 3.2 The	compression	algorithm	

We designed the compression of the HRCs to work locally for every block: the locality avoids that 
an attack modifying an area in the HRCs propagates to untouched areas nullifying the localization 
ability of the algorithm. 

The pixels in a block are linearized using a raster scan order, one HRC after the other. Then, 
using a simple prediction method, the differences between a pixel value and the previous one are 
encoded with a given Huffman table (in a similar fashion to lossless JPEG or lossless PNG), the 
latter computed on a set of images and kept fixed and publicly available. The computational 
complexity of this procedure is linear in the number of pixels. 

The first pixel of the first HRC channel of every block is preceded by a virtual pixel having 
value at half the dynamic range, i.e., for ݇ bit per pixel per channel a value 2௞ିଵ is considered. 



The c
the modifi
because th
stream is e
labelled 2 
to leave un
image HRC

Fig. 1 LSB 3.3 The

A cryptogr
input and p

•

•

•

Quite
some of th3.4 The

The Karhuࢂ. In case ࢁ and ࢂ ha
a linear tra
with the m
Examples 
the Hadam
the KLT (
vectors: th
the vectors

Give
with the fo

•
•
•
•
•

compressed
ications for

he channel L
embedded s
and so on: t

ntouched the
Cs. 

and MSBs o

e	cryptogr

raphic hash
produces a f

 given onܪሺ࣭ሻ =
 given a ܪሺ࣭ሻ =
 it is comܪሺ࣭ᇱሻ (s
e a large nu
em, like SH

e	Karhune

unen-Loève 
of vector sp
ave dimensi
ansformatio

mapping ࢜ =
of linear tra

mard Transfo
(also called

he transform
s have the la

en a set of 
ollowing ste

 compute
 compute
 compute
 (possibly
 arrange t

d stream is s
r watermark
LSBs are m
starting from
this allows, 
e high orde

of a pixel byt

raphic	has

h function (
fixed length

nly a digesࣞ (one-way
message ࣭ ܪሺ࣭ᇱሻ (wea

mputational
strong collis

umber of su
HA-3 [7], m

en‐Loève	t

transform (
paces with f
ions ܽ and ܾ
on between = gene ;࢛	ܣ
ansformatio

form: all of 
d Hotelling 
m operates a
argest dispeܽ-dimensio
eps [9]: 

e the averag
e the covaria
e the ܽ eigen
y) sort the e
the eigenve

stored in th
k embeddin

modified to e
m the bits 
in case of a
r MSBs, i.e

te in a chann

sh	functio

c.h.f.) is a 
h output ࣞ =
t ࣞ it is co
y property)
it is compu
ak collision
ly difficult 
sion resistan

uch cryptog
may produce 

transform

(KLT) is a l
finite dimenܾ respectiveࢁ and ࢂ. A
erally, the 
ons are the 
them have 
Transform

a basis trans
ersion, there

onal vectors

e vector ࣆ =
ance matrix
nvectors ࢋ௝
eigenvectors
ctors as row

he MSBs of 
ng. The co
embed the w
labelled 1 i
a highly com
e. 7, 6, 5, …

nel.	

on	

function ܪ= ሺ࣭ሻ (digܪ

omputationa
; 

utationally d
n resistance)
t to find an
nce). 

graphic fun
outputs of 

m	and	bit	

linear trans
nsions a line
ely, then a m
A (column)
elements o
Discrete Co
the charact

m) has a squ
sformation 
efore it corre

s ࢛௜ ∈ a k ࢁ

=  ;ሼ࢛௜ሽܧ
x ܥ = ሼሺ࢛௜ܧ

and associa
s by decreas
ws of matrix

f the HRCs, 
ompressed 
watermark; 
in all the p
mpressible 

…, reducing 

that receiv
gest) having

ally difficul

difficult to 
); 
ny two bit 

nctions have
arbitrary len

embeddin

formation b
ear transform
matrix ܣ, ca
) vector ࢛ ∈
f ࢜ are call
osine Trans
teristic of h
uare matrix
to align the
esponds to a

kernel ܣ of 

௜ − ሻሺ࢛௜ࣆ −
ated eigenva
sing order o
x ܣ. 

leaving roo
stream is s
moreover, 

ixels, then 
channel pro
the distorti

 

es a bit stri
g the follow

lt to find a 

find a bit s

strings ࣭ ്
e been deve
ngth. 

ng	

between two
m may be d
alled kernel∈ is mapp ࢁ
led coeffici
sform, the F
having a fix
x kernel com
e new basis 
a Principal C

size ܽ × ܽ 

−  ;ሻᇱሽࣆ
alues ߣ௝ of ܥ
of their asso

om in the fr
stored into 
referring to
continuing 

oducing a sh
ion in the w

ing ࣭ of an
wing propert

bit string ࣭
string ࣭ᇱ ്് ࣭ᇱ  such th

eloped in th

o vectors sp
defined by a
l, of size ܾ
ped to a ve
ents of the
Fourier Tran

xed kernel. D
mputed fro
 along the l
Component

for a KLT

 ;ܥ
ociated eigen

ree LSBs to
the MSBs

o Fig. 1, the
to the bits

hort stream,
watermarked

ny length as
ties: ࣭ such that࣭ such that

hat ܪሺ࣭ሻ =
he past and

paces ࢁ and
a matrix: let× ܽ defines
ector ࢜ ∈ ࢂ
 transform.
nsform and
Differently,

om a set of
lines where
t Analysis.

T is derived

nvalues; 

o 
s 
e 
s 
, 
d 

s 

t 

t =
d 

d 
t 
s ࢂ 
. 
d 
, 
f 
e 

d 



Given a vector ࢞ ∈ ࢟ its KLT is computed as ࢁ = ሺ࢞ܣ −  ሻ; it is possible to perform theࣆ
inverse transformation KLT‒1 with ࢞ = ଵ࢟ିܣ +  ௜ of ࢟ are called coefficients ofݕ The elements .ࣆ
the transform and a coefficient’s position ݅ in ࢟ is called order. 

In the proposed algorithm, the watermark bits will be encoded in the binary representation of 
KLT coefficients, so that a coefficient ݕ௜ carries a bit ߚ in position ߙ if and only if: ߚ = ℰሺݕ௜, #ሺ1ሻ	ሻߙ  

where ℰሺy୧, αሻ = ہ 2 and		mod	ۂ2ିఈ	௜ݕہ  .is the floor function ۂ

To embed a bit string ࣭ of length ܾ bits into a vector ࢞ the following must be defined: 

• a fixed sequence of ݈ coefficients’ orders ݋ଵ, ݋ଶ, ..., ݋௟, where ݈ ≥ ܾ; 
• a bit position ߙ; 
• a function ℬ ∶ 	 ሼ0,1ሽ௟ → ሼ0,1ሽ௕. 

Then, applying slight modifications to the elements of ࢞, a vector ࢞ᇱ is sought such that it 
holds 

• ࢟ = ሺ࢞ᇱܣ −  ሻ, andࣆ
• ࣭ = ℬ ቀℰ ቀݕ௢భ, ቁߙ , ℰ ቀݕ௢మ, ቁߙ , … , ℰ ቀݕ௢೗,  .ቁ	ቁߙ

Previous studies [5] analyzed the influence of the parameters ݈, ߙ and ℬ on the final resulting 
image; in particular, the different tested ℬ functions were direct mapping (used here), syndrome 
coding and modulo sum of coefficients [5]. 

The KLT is used to define a secret embedding space: in our setting the use of a secret image 
pixel values as vectors of an ܽ-dimensional space ࢁ from which to derive the kernel ܣ is a way to 
build a compact representation of a secret symmetric key. 3.5 Genetic	Algorithms	

A genetic algorithm (GA) is a computing paradigm that evolves representations of solutions to an 
optimization problem with the objective of finding an optimal solution. 

When the representation of a problem may be coded as an ordered set of parameters ߱ଵ߱ଶ ⋯ ௚߱ and it is possible to express with a function the degree of fitness of a sequence of values 
to the optimum then a GA may be used to evolve a set of candidates that approximate the desired 
solution. 

A GA starts from a population of individuals, each one encoding a possible solution and 
initialized with random values. 

The population is evolved through generations until an individual coding a viable solution is 
found (or a maximum number of generations is reached): in every generation the individuals are 
evaluated with a fitness function and are reproduced by means of operators and rules to build a new 
population. 

In general, three operators are considered to reproduce individuals: 

• selection: pairs of individuals are chosen from the actual population ܲ and the one 
with best fitness in each pair is saved in a set ෨ܲ; 

• crossover: pairs of individuals ߱ଵ߱ଶ ⋯ ௚߱  and ߬ଵ߬ଶ ⋯ ߬௚  in ෨ܲ  are considered for 
mating; with probability ݌௖  the two individuals exchange their parameters: in one 
point crossover an integer random number 1 ,ߞ < ߞ < ݃, is generated and the new 
offsprings ߱ଵ⋯߱఍߬఍ାଵ ⋯ ߬௚  and ߬ଵ ⋯ ߬఍߱఍ାଵ ⋯ ௚߱  are created, in two point 
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Fig. 4 Block splitting of a multichannel host image: the pixels in the ݌ HRCs channel can be modified to 
carry the watermark, while the pixels in the ݍ LRCs channels will not be changed by the embedding 
algorithm. 4.2 Secret	KLT	basis	computation	using	࢑ࡵ	
The computation of a secret KLT basis may be performed once for every secret key image ܫ௞, as 
long as the number of channels ݉ of the host image(s) to be watermarked is known. After that, the 
same KLT basis may be applied to watermark any number of images with 	݉  channels. The 
computational complexity of this step is the one of the algorithm used to compute the eigenvectors 
and eigenvalues of a symmetric matrix. 

The key image may be single channel or multichannel: to generate a set of samples, non-
overlapping groups of ݉݊ଶ contiguous pixels are built. Then, the method described in the previous 
subsection 3.4 is used to produce a mean vector ࣆ  and a kernel matrix ܣ  composed of ݉݊ଶ 
eigenvectors having ݉݊ଶ components. 4.3 High	Redundancy	Channels	pre‐embedding	

A pre-embedding phase applied to ܫ௛ saves the information required to make the method reversible. 
In particular, the ݌ HRCs are compressed in a lossless way (as presented in subsection 3.2), every 
block independently from the others, and the resulting compressed stream stored in the MSBs of the ݌ redundant channels. By means of this operation we can save space and allow for the LSBs of the ݌ channels to be used in the fragile watermark embedding. 

As previously stated, the compressed stream is stored starting from the less significant MSBs 
leaving untouched the high order MSBs, i.e. first filling bit 1, then bit 2, then 3, and so on till bit 7 
of the MSBs. Should the compressed stream be much shorter than the available space, this 
constraint may be relaxed, and one can start from bit 2 or bit 3 of the MSBs, so leaving more space 
for the watermark embedding. 

The decoding of the compressed stream may be performed unambiguously, provided that the 
stream starts at a fixed position and the decoding table is known, as it is in our case. 

The computational complexity of this step is linear in the number of blocks. 



After the compressed stream has been stored in the MSBs of the ݌  channels blocks, a 
watermark embedding phase similar to the one proposed in [5] is performed, using the image ܫ௖ 
resulting from the pre-embedding process as host image. 4.4 Authentication	string	generation	

The proposed algorithm embeds an authentication bit string ࣛ computed from ܫ௞ and ܫ௖. In this way 
different images will have different watermarks embedded (with the limits discussed below) with 
the aim of increasing security and protecting against transplantation and copy-and-paste attacks. 
The string ࣛ is generated by using SHA-3† (in its version for arbitrary output length SHAKE [7]) 
applied to a key obtained concatenating the following data: 

• dimensions of the image (height ܪ, width ܹ, number of channels ݉), to protect also 
against image cropping and channel removal; 

• a sequence ௞ܶ of pixel values in ܫ௞ whose coordinates are determined as follows: we 
use the values of a sequence of pixels in fixed (and publicly known) positions in ܫ௞ as 
indexes to select a sequence of pixels values ௖ܶ of ܫ௖ (in the LRCs, not modified nor 
compressed by our algorithm) which in turn are used as indexes to determine the 
sequence ௞ܶ. 

Given the secrecy of ܫ௞ it is unfeasible for an attacker to derive ࣛ. 4.5 Watermark	string	generation	

The watermark string ࣭ carries two types of information, namely an authentication bit string ࣛ and 
a classification bit string ࣝ. 

1) The authentication bit string ࣛ  is generated according to the method presented in 
subsection 4.4. 

2) The classification bit string ࣝ specifying which channels are HRCs (1s) and which are 
LRCs (0s): these data consist of ݉ bits (where ݉ is the number of channels). For 
example, an image with 4 channels (RGBߙ) that has a highly redundant ߙ-channel 
will have the bit string 0001 as classification bit string ࣝ. These classification bits will 
allow to determine which are the HRCs and LRCs channels in the restoration phase. 

If the payload is ܾ bits-per-subimage (bps) then the length of ࣭ will be ܾܹܪ ݊ଶ⁄ ; for every 
block, ܾ − 1 bits are consecutively taken from ࣛ and one bit is derived from ࣝ: this means that for 
an ܪ ×ܹ image with blocks of size ݊ × ݊ the required length of ࣛ will be ሺܾ − 1ሻܹܪ ݊ଶ⁄  bits 
and the ݉  classification bits in ࣝ  will be completely repeated ቔ ுௐ௠௡మቕ  times and correspondingly 
embedded in the image (for block size ݊ = 10  and images of size 512 × 512 × 4 , we have ቔ ுௐ௠௡మቕ = 655). 

For example, suppose a payload of 6 bps, an authentication bit string ࣛ = 00110	11001	11000	00010	10000	01100	11111	10101…. 
and a classification bit string ࣝ = ૙૙૙૚. Then, the string ࣭ will be 00110૙	11001૙	11000૙	00010૚	10000૙	01100૙	11111૙	10101૚…. 
                                                            

† The computational complexity of this step depends on the complexity of the SHA-3 algorithm. 



4.6 Watermark	embedding	

After a KLT basis of ݉݊ଶ vectors is derived from the secret key image ܫ௞ and a watermark string ࣭ 
is computed, consecutive parts of ࣭, each one of ܾ bits, are embedded into the subimages ݊ × ݊ 
(examined in raster scan order) by the GA. 

For every subimage of ܫ௖, the GA embeds the ܾ bits by modifying the subimage HRCs LSBs. 
More precisely, the GA evolves a population where every individual represents a bit string used to 
substitute the subimage available LSBs (after the HRCs compression). The new subimage is KLT 
transformed and from ݈ (fixed) coefficients ܾ bits  are extracted: if they coincide with those to be 
embedded, then the new subimage substitutes the original one in ܫ௖  to obtain, when all the 
subimages have been examined, the final watermarked image ܫ௪. The evolution of the population is 
concluded when the ܾ bits are embedded into the subimage or a maximum number of generations 
has been reached: in the latter case the image is declared non-watermarkable or a new population is 
created for a new attempt to embed the bits in the subimage. 

The GA fitness function measures the Hamming distance between the bit string stored in the 
KLT coefficients and the bits of ࣭  pertaining to the subimage under examination, and the GA 
requires this distance to be equal to 0 for a viable block. No other quality measures are considered, 
like Peak Signal-to-Noise Ratio (PSNR), because the reversibility of the method allows to obtain 
the original channels: in fact, the GA may modify only the LSBs of the HRCs to embed the relevant 
part of ࣭ into the KLT coefficients of the subimage transform. In this way, in case a subimage is not 
modified by an attack it can be completely restored to its original values, making the method 
reversible. 

When the GA has embedded the secret watermark string ࣭ into all the image subimages, the 
watermarked image ܫ௪  may be released in the public: its low redundancy channels will result 
untouched by the algorithm, whilst the HRCs will be altered with the property of being possibly 
restored by anyone to their original status if no attacks have been performed. Nonetheless, only the 
holder of ܫ௞ can check the integrity of the various subimages. 

A high level scheme of the algorithm is reported in Algorithm 1 depicted in Fig. 5. The 
computational complexity of this step depends on the compression algorithm, as previously 
discussed, and the embedding has a complexity that is linear in the number of subimages; moreover, 
the computational load for every subimage depends on the parameter configuration of the GA 
algorithm used. In the current implementation, the GA runs for a maximum number of generations 
(2000), but it usually finds a solution in 25 − 35  generations on average. Anyway, the total 
running time is upper bounded by ܹܪݐ ݊ଶ⁄ ,where ݐ is the maximum running time of the GA. 



Algorithm 1: 

Input: ܫ௛ image to watermark 
 ௞ secret key imageܫ  
Output: ܫ௪ watermarked image 
compute KLT basis from ܫ௞ 
split ܫ௛ into subimages according to block size 
select HRCs and LRCs: for every channel 

compress all subimages 
if (all subimages of a channel satisfy 

the compression ratio condition) 
then mark it as an HRC 

compress and pre-embed the pixel values of the HRCs and obtain ܫ௖ 
compute the authentication string ࣛ using ܫ௞ and ܫ௖ LRCs 
generate the classification string ࣝ 
interleave ࣛ and ࣝ to build the watermark ࣭ 
for every subimage 

embed corresponding ࣭ part into subimage using the GA (GA_embedding) 
if (embedding fails) then return Fail 

return ܫ௪ 
 
function GA_embedding 

generate population of random individuals coding HRCs LSBs 
for maxnumgenerations 

evaluate all individuals: if (one individual has fitness=0) 
then return success and 

subimage having the 
individual in HRCs LSBs 

evolve population 
return embedding_failed 

 
function fitness 

compute and return Hamming distance between ࣭ part and ℬ൫ℰ൫ݕ௢భ, ,൯ߙ ℰ൫ݕ௢మ, ,൯ߙ … , ℰ൫ݕ௢೗,  ൯	൯ߙ
Fig. 5 Pseudo code of the fragile watermark embedding procedure. 

4.7 Watermark	extraction,	verification	and	image	restoration	

The verification/restoration phase works as follows (see Fig. 3). 

Firstly, every subimage in ܫ௪ᇱ  is transformed with the KLT (using the basis derived from ܫ௞) 
and the embedded watermark ࣭ᇱ  is extracted. From ࣭ᇱ  the authentication string ࣛᇱ  and the 

classification string ࣝᇱ are demultiplexed. In case of no attacks the ቔ ுௐ௠௡మቕ copies of the ݉ bit string 
classifying the channels will be identical, but if any subimage has been tampered there will be some 
differing string(s). To determine the HRC-LRC distribution the most frequent string will be chosen 
as the correct classification (as discussed in section 6, a wrongly decoded string will not expose any 
security breach). 

After that, the watermark string ࣛ௖௠௣ that should be found embedded is generated using the 
HRCs of the watermarked image ܫ௪ᇱ  and the secret key ܫ௞. 

Thirdly, a comparison performing the XOR operation ℛ = ࣛᇱ ⊕ࣛ௖௠௣  leads a resulting 
string that has ones (‘1’) corresponding to altered subimages. 

If the part (having length ܾ bits) of ℛ corresponding to a subimage is all 0s the subimage is 
considered intact and the HRCs are restored decompressing the stream in the MSBs, otherwise the 



subimage is marked as forged. So, the subimage is the minimum forge localization area, i.e. image 
modifications are signaled to the user by marking the whole subimage containing the forged pixels. 

A high level scheme of the verification and restoration Algorithm 2 is reported in Fig. 6. The 
computational complexity of the verification and reversible phase is linear in the number of 
subimages. 

Algorithm 2: 

Input: ܫ௪ᇱ  possibly watermarked image 
 ௞ secret key imageܫ  
Output: ܫ௛ᇱ verified and restored image 
compute KLT basis from ܫ௞ 
split ܫ௛ᇱ into subimages according to block size 
for every subimage ܺ 

extract ࣭ᇱሺܺሻ with KLT-1 and function ℬ 
select HRCs and LRCs from ࣝᇱ ⊂ ࣭ᇱ 
compute watermark string ࣛ௖௠௣ using ܫ௞ and ܫ௪ᇱ  LRCs 
for every subimage ܺ 

if (ࣛᇱሺܺሻ = ࣛ௖௠௣ሺܺሻ) 
then decompress subimage HRCs and restore subimage in ܫ௛ᇱ 
else mark subimage as forged in ܫ௛ᇱ 

return ܫ௛ᇱ 
Fig. 6 Pseudo code of the fragile watermark verification and restoration procedure. 

5 Experimental results 

This section summarizes the results of a large number of experiments we executed to test the 
performance of the proposed algorithm: we applied the reversible fragile watermarking algorithm to 
a set of images with at least one HRC. 

We considered three objective parameters, namely the sensitivity, the Mean Absolute Error 
(MAE) and the Peak Signal-to-Noise Ratio (PSNR). Among them, we consider the sensitivity the 
most important, given that the reversibility property of the algorithm allows the authorized user to 
obtain the original host image as final result. Indeed, the sensitivity‡  gives a measure of the 
capability of the algorithm to detect tampering attacks. 

Thus, the meanings of the parameters used to measure the performance of the proposed 
algorithm are: 

• Sensitivity (as in [5]): the sensitivity of level ܦ is defined as the fraction of blocks that are 
detected as tampered in the verification phase when just one pixel per block is modified by ܦ levels; 

• Mean Absolute Error (MAE): measures the average absolute difference between pixels of 
the host and the watermarked images; 

• Peak Signal-to-Noise Ratio (PSNR): this classical objective quality measure is defined as 

                                                            
‡ We designed an experimental setting in which we test how many times the verifier misses a tampered subimage 

when a single pixel of that subimage is changed by just 1 or 2 grey levels. This is actually the smallest tampering an 
attacker can perform: any other attack, such as filtering, blurring, noise addition, copy-and-paste, cropping, etc., would 
modify more pixels and, very likely, of more than just 1 grey level. 



PSNR = 10	logଵ଴ ܧܵܯଶ݈݁ݒ݁ܮݔܽܯ  

where ݈݁ݒ݁ܮݔܽܯ is the maximum intensity level of each channel (i.e., for 8 bit images it is 2଼ − 1 = 255 ) and ܧܵܯ  represents the mean squared error between the host and the 
watermarked images. 

We chose a setting for the genetic algorithm to be used in all experiments; in particular, we 
derived the setting values from many experiments devised to have fast convergence to a solution 
resulting in a high quality image. The settings were population size = ௖݌ ,100 = ௠݌ ,0.9 = 0.06, 
maximum generations = 2000. 

The first set of tests were performed on a public collection of images (from the Telegram 
application [21, 22]); the 29 images are in PNG RGBߙ (RGB with alpha channel) format: the alpha 
channel is not trivial (in the sense that it varies on the whole image to follow the sticker shape) and 
we expected it to be a HRC. Table 1 reports the watermarking results for two different values of 
payload; the PSNR is influenced only by the differences induced by the HRC, as the process does 
not alter any LRC pixel. 

In the presented tests the block size was set to ݊ = 11 (i.e. the subimages were composed of 11 × 11 four channel pixels). We also conducted tests with smaller values for ݊, but for some 
images no channel was an HRC, so we selected the smallest value for which we could compress 
enough every block. 

Table 1 Performance of the proposed algorithm on a set of RGBߙ images publicly available [21, 22]. 

Payload 
(bps) 

Sensitivity ±1 
(%) 

Sensitivity ±2 
(%) MAE PSNR 

(dB) 
Time 

(s) 
GA Avg 

Generations
8 86.79±2.83 96.61±0.98 0.6056±0.1544 36.54±3.54 46.77±8.18 26 
10 89.23±1.07 96.81±1.14 0.6171±0.1541 36.52±3.52 59.78±11.39 32 

We compared our algorithm with the ones proposed in [13] and [20], that have been showed 
superior against other approaches ([11], [16] and [19], [25], [26], [27] respectively). One of the 
settings of [13] is RGB image authentication, which is performed by adding an alpha channel where 
every pixel stores three authentication bits derived from the corresponding RGB channel values 
(scrambled with a key) using a secret sharing method: the effect is that every alpha channel pixel 
contains the sum of 248  and the authenticating value; moreover, the authentication data is 
distributed among groups of three pixels each, making each group the smallest forge localization 
unit. 

Our algorithm, instead, works on any existing HRC channels, thus having a wider range of 
applications to images of any kind; the disadvantage w.r.t. [13] is the bigger authentication block 
size. 

In [20], Singh et al. described a fragile watermarking algorithm for RGB color images with 
restoration capabilities of tampered areas, whereas our proposed algorithm only restore untampered 
blocks but works with any multichannel image. 

The images for the comparison reported in Table 2 were obtained by the classical ones (as the 
names recall) of size 512 × 512  pixels adding an extra HRC channel completely opaque (i.e. 
having pixel values equal to 255), as done in [13]. 



From Table 2 it may be observed that the MAEs computed on the HRC (i.e. the alpha 
channel) computed by our algorithm are an order of magnitude lower than those in [13]. Moreover, 
the PSNR is much greater than that reported in [20] on the same set of images. 

Table 2 Comparison of MAE and PSNR values for some images. 

Image MAE  PSNR 

 [13] Proposed 
algorithm [20] Proposed algorithm 

Baboon 0.723 0.0192 39.55 65.26 
Lena 0.720 0.0190 39.79 65.29 
F-16 0.721 0.0191 - 65.25 
Tiffany 0.721 0.0194 - 65.30 
Boat - 0.0191 39.93 65.33 
House - 0.0190 39.16 65.33 
Pepper - 0.0194 40.19 65.26 
Woman - 0.0194 39.73 65.25 

Extending the test in Table 2 to a larger set of images (500 color images) we obtained an 
average MAE value of 0.0336 ± 0.0003 and an average PSNR value of 62.86 ± 0.037 confirming 
the high quality of the watermarked images; moreover, the standard deviation of the resulting 
MAEs and PSNRs is very low and confirms that the algorithm is stable and is not influenced by the 
image content. 

As an example of the resulting whole authentication process, we present in Fig. 7 an image (a) 
to show the result from the watermarking process (b) and how the proposed algorithm detects (d) 
the modifications made in (c): as the HRCs are the blue and alpha channels of this image, it is 
impossible to notice any difference between host and watermarked images; on the other hand, the 
image is restored to its original state (d) apart from the tampered blocks in the upper-right part of 
the image where a counterfeit flame was added. 
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localization is possible (anyway the modification is detected and the image declared altered): for 
this reason we suggest to keep small the set ௖ܶ of pixels used to create the watermark (typically four 
pixels). 

A feature of the method is its public reversibility: anyone may reconstruct an image from ܫ௪ 
because the compression/decompression algorithm and Huffman table for the HRCs are public. 
Nonetheless, only the watermark embedder has the capability to know if any modification to ܫ௪ has 
been performed and which subimages have been forged. Thus, the possibility to reversibly 
reconstruct the original host image left to anyone is only apparent and poses no security problems, 
in fact: 

• without the key image ܫ௞ it is not possible to test if the watermarked image is intact or 
has been forged, so the reconstruction of ܫ௛  is possible only for the watermark 
embedder; 

• anyway, knowledge of ܫ௛  does not disclose any critical information because the 
objective of a fragile watermarking algorithm is to verify the integrity of objects, not 
hide their content. 

Another consideration that is important is that when embedding ܾ watermark bps there is a 
probability of 1 2௕⁄  that a random subimage substitution goes undetected. Obviously, the 
probability that ܼ different forged subimages are all undetected is 1 2௕௓⁄ , which drops dramatically 
even for small values of ܾ and ܼ. 

As shown in section 5, the main factor to take into account for the applicability of the method 
is the sensitivity to single pixel-single intensity level modifications: as shown, the proposed 
algorithm is very sensible to these modifications with a high probability of detecting this kind of 
little tampering, which translates in a strong sensitivity to forgery and a high capability of 
localization. 

7 Discussion and conclusions 

In this paper a reversible method for fragile watermarking multichannel images has been presented 
and discussed: the requirement is for the image to possess one, or more than one, high redundancy 
channels. 

The resulting watermarked image has the low redundancy channels untouched, and contains a 
compressed version of its HRCs allowing for a complete restoration of the original host image. 

The owner of the secret key image can verify the integrity of the image. Everyone is able to 
restore an image, but only the secret key owner has the certainty of its integrity. 

The test performed on a large set of images has shown the high sensitivity of the algorithm to 
attacks and the ability to localize them. 

To summarize, the method has the following properties: 

• reversibility; 
• low redundancy channels do not need restoration, as they are untouched (nonetheless, 

they may obviously be forged by an attacker); 
• high sensitivity to modifications; 
• fast image integrity verification and tamper localization ability; 
• applicable to any uncompressed, or lossless compressed, image file formats. 

The proposed algorithm fits in the MIMIC framework [5], adding a pre-embedding and a 
decompression module, along with slight modifications for the management of the HRC-LRC 
classification. 



Acknowledgements 
We would like to thank Dr. Roberto Esposito who helped in revising the manuscript according to the 
reviewers’ comments and making new experiments, pointing out and resolving issues in the first submission. 

References 

1. Alattar AM (2004) Reversible watermark using the difference expansion of a generalized 
integer transform. IEEE Transactions on Image Processing 13(8):1147‒1156 

2. Aslantas V, Ozer S, Ozturk S (2009) Improving the performance of DCT-based fragile 
watermarking using intelligent optimization algorithms. Optics Communications 
282(14):2806‒2817 

3. Bandyopadhyay P, Das S, Chaudhuri A, Banerjee M (2012) A New Invisible Color Image 
Watermarking Framework through Alpha Channel. International Conference on Advance in 
Engineering, Science and Management p 302‒308 

4. Botta M, Cavagnino D, Pomponiu V (2014) Protecting the Content Integrity of Digital 
Imagery with Fidelity Preservation: An Improved Version. ACM Trans Multimedia Comput 
Commun Appl 10(3):29:1‒29:5 

5. Botta M, Cavagnino D, Pomponiu V (2016) A modular framework for color image 
watermarking. Signal Processing 119:102‒114 

6. Chaumont M, Puech W (2009) A High Capacity Reversible Watermarking Scheme. 
Proceedings of SPIE 7257 

7. Dworkin MJ (2015) SHA-3 Standard: Permutation-Based Hash and Extendable-Output 
Functions. NIST FIPS – 202 

8. Goldberg DE (1989) Genetic Algorithms in Search, Optimization and Machine Learning. 
Addison-Wesley Longman Publishing Co. 

9. Gonzalez RC, Wintz P (1987) Digital Image Processing 2nd ed. Addison-Wesley Publishing 
Company 

10. Hassanien A-E, Abraham A, Kacprzyk J, Peters JF (2008) Computational Intelligence in 
Multimedia Processing: Foundation and Trends. Studies in Computational Intelligence 
96:3‒49 

11. Kim KS, Lee MJ, Lee HY, Lee HK (2009) Reversible data hiding exploiting spatial 
correlation between sub-sampled images Pattern Recognition, 42(11), p 3083‒3096 

12. Lee C-H, Tsai W-H (2012) A Secret-Sharing-Based Method for Authentication of Grayscale 
Document Images via the Use of the PNG Image With a Data Repair Capability. IEEE 
Trans. on Image Processing 21(1):207‒218 

13. Lee C-H, Tsai W-H (2013) A data hiding method based on information sharing via PNG 
images for applications of color image authentication and metadata embedding. Signal 
Processing 93(7):2010‒2025 

14. Lin P-Y, Lee J-S, Chang C-C (2011) Protecting the Content Integrity of Digital Imagery 
with Fidelity Preservation. ACM Trans Multimedia Comput Commun Appl 7(3):15:1‒15:20 

15. Lin C-C, Tai W-L, Chang C-C (2008) Multilevel reversible data hiding based on histogram 
modification of difference images. Pattern Recognition 41(12):3582‒3591 



16. Luo L, Chen Z, Chen M, Zeng X, Xiong Z (2010) Reversible Image Watermarking Using 
Interpolation Technique. IEEE Transactions on Information Forensics and Security, 5 (1), p 
16–21 

17. Naskar R, Chakraborty RS (2013) A Generalized Tamper Localization Approach for 
Reversible Watermarking Algorithms. ACM Trans Multimedia Comput Commun Appl 
9(3):19:1‒19:22 

18. Oktavia V, Lee W-H (2004) A Fragile Watermarking Technique for Image Authentication 
Using Singular Value Decomposition. Advances in Multimedia Information Processing 
LNCS 3332, p 42‒49 

19. Qian Z, Feng G, Zhang X, Wang S (2011) Image self-embedding with high-quality 
restoration capability. Digital Signal Process 21(2):278–286 

20. Singh D, Singh SK (2017) DCT based efficient fragile watermarking scheme for image 
authentication and restoration. Multimedia Tools and Applications 76(1):953‒977 

21. Telegram.org Available online: https://telegram.org/blog/stickers-meet-art-and-history 
(accessed on September 2018) 

22. Telegram.org Available online: https://telegram.org/blog/moar-stickers (accessed on 
September 2018) 

23. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Transactions 
on Circuits and Systems for Video Technology 13(8):890‒896 

24. Wang R-Z, Lin C-F, Lin J-C (2001) Image hiding by optimal LSB substitution and genetic 
algorithm. Pattern recognition 34(3):671‒683 

25. Zhang X, Qian Z, Ren Y, Feng G (2011) Watermarking with flexible self-recovery quality 
based on compressive sensing and compositive reconstruction. IEEE Trans Inf Forensics 
Secur 6(4):1223–1232 

26. Zhang X, Wang S, Qian Z, Feng G (2011) Self-embedding watermark with flexible 
restoration quality. Multimedia Tools and Applications 54(2):385–395 

27. Zhang X, Wang S, Qian Z, Feng G (2011) Reference sharing mechanism for watermark self-
embedding. IEEE Trans Image Process 20(2):485–495 

28. Zhang XP, Xiao YY, Zhao ZM (2015) Self-embedding fragile watermarking based on DCT 
and fast fractal coding. Multimedia Tools and Applications 74(15):5767‒5786 


