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Abstract
We prove that the Hermite functions are an absolute Schauder basis for many global 
weighted spaces of ultradifferentiable functions in the matrix weighted setting and 
we determine also the corresponding coefficient spaces, thus extending the previous 
work by Langenbruch. As a consequence, we give very general conditions for these 
spaces to be nuclear.  In particular, we obtain the corresponding results for spaces 
defined by weight functions.
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1 Introduction

The systematic study of nuclear locally convex spaces began in 1951 with the fun‑
damental dissertation of Grothendieck [20] to classify those infinite dimensional 
locally convex spaces which are not normed, suitable for mathematical analysis. 
Among the properties of a nuclear space, the existence of a Schwartz kernel for a 
continuous linear operator on the space is of crucial importance for the theory of 
linear partial differential operators. In our setting of ultradifferentiable functions, 
this fact helps, for instance, to study the behaviour (propagation of singularities 
or wave front sets) of a differential or pseudodifferential operator when acting on 
a distribution. See, for example, [1, 7, 16, 17, 33, 38] and the references therein.

Since the middle of the last century, several authors have studied the topo‑
logical structure of global spaces of ultradifferentiable functions and, in particu‑
lar, when the spaces are nuclear. See [31], or the book [19]. More recently, the 
first three authors in [9] used the isomorphism established by Langenbruch [28] 
between global spaces of ultradifferentiable functions in the sense of Gel’fand 
and Shilov [18] and some sequence spaces to see that under the condition that 
appears in [11, Corollary 16(3)] on the weight function � (as in [12]) the space 
S(�)(ℝ

d) of rapidly decreasing ultradifferentiable functions of Beurling type in the 
sense of Björck [3] is nuclear. However, there was the restriction that the pow‑
ers of the logarithm were not allowed as admissible weight functions. Later, the 
authors of the present work proved in [10] that S(�)(ℝ

d) is nuclear for any weight 
function satisfying log(t) = O(�(t)) and �(t) = o(t) as t tends to infinity. The tech‑
niques used in [10] come especially from the field of time–frequency analysis 
and a mixture of ideas from [7, 21, 22, 38]. In both [9] and [10], we use (dif‑
ferent) isomorphisms between that space S(�)(ℝ

d) and some sequence space and 
prove that S(�)(ℝ

d) is nuclear by an application of the Grothendieck–Pietsch cri‑
terion [32, Theorem 28.15]. Very recently, Debrouwere, Neyt and Vindas [14, 15] 
(cf. [27] for related results about local spaces), using different techniques have 
extended our previous results in a very general framework. In [14], they charac‑
terize when mixed spaces of Björck [3] of Beurling type or of Roumieu type are 
nuclear under very mild conditions on the weight functions. In [15], using weight 
matrices in the sense of [37], the same authors characterize the nuclearity of gen‑
eralized Gel’fand–Shilov classes which extend their previous work [14] and treat 
also many other mixed classes defined by sequences.

The aim of the present paper is twofold. On the one hand, we extend the work 
of Langenbruch [28] to the matrix weighted setting in the sense of [37, 40]. In 
particular, we prove that the Hermite functions are a Schauder basis of many 
global weighted spaces of ultradifferentiable functions. Moreover, we determine 
the coefficient spaces corresponding to this Hermite expansion (Theorem  1). 
These results are applied to spaces defined by weight functions S[�](ℝ

d) , being 
[�] = (�) (Beurling setting) or [�] = {�} (Roumieu setting). Hence, we extend 
part of the previous work of Aubry [2] to the several variables case. As a conse‑
quence we are able to generalize our previous study [9, 10] about the nuclearity 
of the space S(�)(ℝ

d) to global spaces of ultradifferentiable functions defined by 
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weight matrices (Corollary  2). An application to particular matrices gives that 
S(�)(ℝ

d) is nuclear when �(t) = o(t2) as t tends to infinity. Similarly, we also prove 
the analogous result for the Roumieu setting, namely that S{�}(ℝ

d) is nuclear 
when �(t) = O(t2) as t tends to infinity (see Theorem  6 for both results). For 
weights of the form �(t) = log�(1 + t) with 𝛽 > 1 , our results hold and, hence, we 
generalize the results of [28] to spaces that could not be treated there since, as is 
easily deduced from [11, Example 20], S[(Mp)p]

(ℝ) ≠ S[�](ℝ) for any sequence of 
positive numbers (Mp)p∈ℕ in the sense of [26] (see Remark  4). We do not treat 
here the classical case �(t) = log(1 + t) , for which S(�)(ℝ) = S(ℝ) , the Schwartz 
class, because in this case infinitely many entries of our weight matrices are not 
well defined. However, the results presented here are already well known for the 
Schwartz class.

The classes of functions treated in [15] are in general different from ours. In fact, 
here we consider spaces of functions f that are bounded in the following sense: for 
some (or any) h > 0 , there is C > 0 such that for all x ∈ ℝ

d and every multi‑indices � 
and � , we have

And we pass to the matrix setting for the multi‑sequence (M�)� , i.e. we make M�
�
 

depend also on a parameter 𝜆 > 0 (see the precise definition in the next section). 
In [15], the authors consider spaces of functions f bounded in the following sense: 
there is C > 0 such that for all x ∈ ℝ

d and every multi‑index � they have

where w is a positive continuous function. They pass to the matrix setting by making 
M�

�
 and w� depend on the same parameter 𝜆 > 0 . Hence, taking unions (Roumieu 

setting) or intersections (Beurling setting) in � in the situation (A) gives different 
classes of functions than in the situation (B) in general. On the other hand, it is a 
very difficult problem to determine when the classes treated in this work are non‑
trivial, a question not considered in [14, 15]. We characterize in a very general way 
(Propositions 2 and 3) when the Hermite functions are contained in our classes and 
this fact is closely related to classes being non‑trivial. Indeed, we can deduce from 
our results that, in the Beurling setting, the space S(�)(ℝ

d) contains the Hermite 
functions if and only if �(t) = o(t2) as t tends to infinity (Corollary 3). However, it is 
not difficult to see from the uncertainty principle [23, Theorem] that S(�)(ℝ

d) = {0} 
when t2 = O(�(t)) as t tends to infinity. In the same way, in the Roumieu case, the 
space S{�}(ℝ

d) contains the Hermite functions if and only if �(t) = O(t2) as t tends 
to infinity (Corollary  3), but again from [23, Theorem] we can deduce 
S{�}(ℝ

d) = {0} when t2 = o(�(t)) as t tends to infinity. For more information on the 
uncertainty principle for S[�](ℝ

d) where, as stated above, [�] = (�) or {�} , see the 
nice introduction to the paper of Aubry [2] and the references therein. Moreover, our 
classes are well adapted for Fourier transform (Corollary 1). We should also men‑
tion that throughout this paper we assume, on the multi‑sequence (M�)� , that 
(M�)

1∕|�| tends to infinity when |�| tends to infinity, which is stronger than the 

|x��� f (x)| ≤ Ch|�+�|M�+� (A).

|w(x)�� f (x)| ≤ CM� (B),
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condition inf𝛼∈ℕd
0
(M𝛼∕M0)

1∕|𝛼| > 0 considered in [26, Def. 3.1] (for the one‑dimen‑
sional case). The reason is that it is not clear how the results read when the associ‑
ated function is infinite (see Remark 1).

The paper is organized as follows: in the next section, we give some necessary 
definitions, in Sect. 3 we introduce the classes under study in the matrix weighted 
setting and establish the analogous conditions to [28] to determine in Sect. 4 when 
the Hermite functions belong to our classes. In Sect.  5, we introduce the suitable 
matrix sequence spaces and prove that they are isomorphic to our classes, which is 
the fundamental tool to see that our spaces are nuclear. We finally apply these results 
to the particular case of spaces defined by weight functions in Sect. 6.

2  Preliminaries

In what follows, for given t = (t1,… , td) ∈ ℝ
d , we are setting |t|∞ ∶= max1≤j≤d |tj| . 

We briefly recall from [26] those basic notions about sequences � = (Mp)p∈ℕ0
 , for 

ℕ0 ∶= ℕ ∪ {0} , that we need in what follows. A sequence (Mp)p is called normalized 
if M0 = 1 . For a normalized sequence � = (Mp)p , the associated function is denoted 
by

We say that (Mp)p satisfies the logarithmic convexity condition (M1) of [26] if

The following lemma is well known (see Lemmas 2.0.6 and 2.0.4 of [39] for a 
proof).

Lemma 1 Let (Mp)p∈ℕ0
 be a normalized sequence satisfying (2.2). Then

(a) MjMk ≤ Mj+k for all j, k ∈ ℕ0;
(b) p ↦ (Mp)

1∕p is increasing;
(c) lim infp→+∞(Mp)

1∕p > 0.

From Lemma  1(c) and [26, Prop. 3.2], we have that a normalized sequence 
� = (Mp)p satisfies (2.2) if and only if

We say that (Mp)p satisfies the stability under differential operators condition (M2)� 
of [26] if

(2.1)�
�
(t) = sup

p∈ℕ0

log
|t|p
Mp

, t ∈ ℝ.

(2.2)M2
p
≤ Mp−1Mp+1, p ∈ ℕ.

(2.3)Mp = sup
t>0

tp

exp𝜔
�
(t)

, p ∈ ℕ0.
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and (Mp)p satisfies the stronger moderate growth condition (M2) of [26] if

The following lemma extends [26, Proposition 3.4] for two sequences. We give the 
proof for the convenience of the reader.

Lemma 2 Let � = (Mp)p∈ℕ0
 and � = (Np)p∈ℕ0

 be two normalized sequences satisfy-
ing (2.2). Then the following conditions are equivalent:

 (i) ∃A ≥ 1 ∀p ∈ ℕ0 ∶ Mp+1 ≤ Ap+1Np.
 (ii) ∃A ≥ 1,B > 0 ∀t > 0 ∶ 𝜔

�
(t) + log t ≤ 𝜔

�
(At) + B.

Proof If (i) is satisfied, then, for all t > 0,

Conversely, if (ii) holds, then, by (2.3),

  ◻

Now, we consider sequences � = (M�)�∈ℕd
0
 of positive real numbers for multi‑indi‑

ces � ∈ ℕ
d
0
 . As in the one‑dimensional case, we say that (M�)�∈ℕd

0
 is normalized if 

M0 = 1 . We recall condition (3.7) of [28]

Condition (2.4) takes in this setting the form (see [28, (2.1)])

and (2.5) turns into

Now, for t ∈ ℝ
d , we denote

(2.4)∃A,H ≥ 1 ∀p ∈ ℕ0 ∶ Mp+1 ≤ AHpMp,

(2.5)∃A ≥ 1 ∀p, q ∈ ℕ0 ∶ Mp+q ≤ Ap+qMpMq.

te��
(t) = t sup

p∈ℕ0

tp

Np

≤ sup
p∈ℕ0

(At)p+1

Mp+1

≤ sup
p∈ℕ0

(At)p

Mp

= e��
(At).

Np = sup
t>0

tp

exp𝜔
�
(t)

≥ sup
t>0

tp+1

eB exp𝜔
�
(At)

=e−B sup
s>0

(s∕A)p+1

exp𝜔
�
(s)

=
e−B

Ap+1
Mp+1.

(2.6)∃A ≥ 1 ∀�, � ∈ ℕ
d
0
∶ M�M� ≤ A|�+�|M�+� .

(2.7)∃A ≥ 1 ∀� ∈ ℕ
d
0
, 1 ≤ j ≤ d ∶ M�+ej

≤ A|�|+1M� ,

(2.8)∃A ≥ 1 ∀�, � ∈ ℕ
d
0
∶ M�+� ≤ A|�+�|M�M� .

(2.9)ℕ
d
0,t

∶= {� ∈ ℕ
d
0
∶ �j = 0 if tj = 0, j = 1,… , d}.
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The associated weight function of a normalized � = (M�)�∈ℕd
0
 is given by

where by convention 00 ∶= 1 . Note that for a normalized sequence we have 
�
�
(0) = 0.

Remark 1 As it has already been pointed out in the geometric construction in 
[30, Chap.  I] for the one dimensional weight function (see (2.1)), we have that 
𝜔
�
(t) < +∞ for all t ∈ ℝ

d if and only if lim|�|→∞(M�)
1∕|�| = +∞.

First, assume that 𝜔
�
(t) < +∞ for all t ∈ ℝ

d . Hence for all t = (t1,… , td) ∈ ℝ
d 

satisfying tmin ∶= min1≤j≤d |tj| ≥ 1 we have that there exists some C (depending only 
on t) such that log |t� |

M�

≤ C for all � ∈ ℕ
d
0
 . So t|�|

min
≤ |t�1

1
⋯ t

�d
d
| = |t�| ≤ eCM� for all 

� ∈ ℕ
d
0
 and now let tmin → +∞.

Conversely, let lim|�|→∞(M�)
1∕|�| = ∞ and so for any A > 0 large, we can find 

some C > 0 large enough such that A|�| ≤ CM� . Since |t�| ≤ |t||�| for all t ∈ ℝ
d and 

� ∈ ℕ
d
0
 , we see that for any given t ∈ ℝ

d we get |t
� |

M�

≤ |t||�|
M�

≤ C for some C > 0 and 
all � ∈ ℕ

d
0
.

Lemma 3 Let � = (M�)�∈ℕd
0
 . Then, for all h > 0 and � ∈ ℕ

d
0
,

Proof Fix � ∈ ℕ
d
0
 and h > 0 ; we write ℝd

�
∶= {t ∈ ℝ

d ∶ tj ≠ 0 for �j ≠ 0, j = 1,… , d} . 
Then for t ∈ ℝ

d ⧵ℝd
�
 , we have t� = 0 , and so it is enough to prove that

We have

observe that � ∈ ℕ
d
0,t

 and so, choosing � = � , we get

�
�
(t) = sup

�∈ℕd
0,t

log
|t�|
M�

, t ∈ ℝ
d,

(2.10)M�h
|�| ≥ sup

t∈ℝd

|t�|e−��
(t∕h).

(2.11)M�h
� ≥ sup

t∈ℝd
�

|t�|e−��
(t∕h).

1

sup
t∈ℝd

�

|t�|e−��
(t∕h)

= inf
t∈ℝd

�

e��
(t∕h)

|t�| = inf
t∈ℝd

�

exp sup
�∈ℕd

0,t

log

||
(

t

h

)�||
M�

|t�|

= inf
t∈ℝd

�

1

|t�| sup
�∈ℕd

0,t

||
(

t

h

)�||
M�

;
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which proves (2.11), and then the proof is complete.
Note that if �

�
(t∕h) = +∞ , then (2.10) is clear and so we could restrict in the 

estimates above to all t ∈ ℝ
d
�
 such that �

�
(t∕h) is finite.  ◻

In the following, we use two normalized sequences as above � = (M�)�∈ℕd
0
 and 

� = (N�)�∈ℕd
0
 and we compare them in the sense:

This clearly implies

In [28], Langenbruch uses his condition (1.2) to prove that the Hermite functions 
belong to the spaces considered there. In the present paper we need, for the same 
reason, a mixed condition that involves two sequences:

Remark 2 Condition (2.12) yields that lim|�|→∞(N�)
1∕|�| = +∞ . Indeed, since by 

convention 00 = 1 and by definition ��∕2 ∶= �
�1∕2

1
⋯ �

�d∕2

d
 , from (2.12) with � = 0 

we get (recall |�|∞ ∶= max1≤j≤d �j ) that

3  Global ultradifferentiable functions in the matrix weighted setting

In this section, we consider matrices of normalized sequences (M(𝜆)
𝛼
)𝜆>0,𝛼∈ℕd

0
 of real 

positive numbers:

We call M a weight matrix and consider matrix weighted global ultradifferentiable 
functions of Roumieu type defined as follows (from now on ‖ ⋅ ‖∞ denotes the supre‑
mum norm): first, for a given normalized sequence � , we set

1

sup
t∈ℝd

�

|t�|e−��
(t∕h)

≥ inf
t∈ℝd

�

|t�|
|t�|h|�|M�

=
1

h|�|M�

,

� ≤ � if M� ≤ N� , � ∈ ℕ
d
0
.

�
�
(t) ≤ �

�
(t), t ∈ ℝ

d.

(2.12)∃H,C,B > 0 ∀𝛼, 𝛽 ∈ ℕ
d
0
∶ 𝛼𝛼∕2M𝛽 ≤ BC|𝛼|H|𝛼+𝛽|N𝛼+𝛽 .

N1∕|�|
�

≥B−
1

|�|C−1H−1(��∕2)1∕|�| = B
−

1

|�|C−1H−1(�
�1∕2

1
⋯ �

�d∕2

d
)1∕|�|

≥B−
1

|�|C−1H−1(|�||�|∞∕2
∞

)1∕|�| ≥ B
−

1

|�|C−1H−1

(|�|
d

) 1

2d

→ +∞.

(3.1)
M ∶= {(�(𝜆))𝜆>0 ∶ �

(𝜆) = (M(𝜆)
𝛼
)𝛼∈ℕd

0
, M

(𝜆)

0
= 1,

�
(𝜆) ≤ �

(𝜅) for all 0 < 𝜆 ≤ 𝜅}.
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endowed with the inductive limit topology in the Roumieu setting (which may be 
thought countable if we take h ∈ ℕ ) and with the projective limit topology in the 
Beurling setting (countable for h−1 ∈ ℕ ). Next, we define the matrix type spaces as 
follows:

again endowed with the inductive limit topology in the Roumieu setting (which may 
be thought countable if we take �, h ∈ ℕ ) and endowed with the projective limit 
topology in the Beurling setting (countable for �−1, h−1 ∈ ℕ).

Now we consider different conditions on the weight matrices that we use fol‑
lowing the lines of [28]. The next basic condition extends (1.2) of [28] in the 
Roumieu case and is needed to show that the Hermite functions belong to S{M} 
(see Proposition 3):

The analogous condition to (3.2) in the Beurling case, which is needed to show that 
the Hermite functions belong to S(M) is the following (see Proposition 3):

Remark 3 Similarly, as commented in Remark 2 for (2.12), property (3.2) (property 
(3.3)) yields that lim|�|→∞(M

(�)
�
)1∕|�| = +∞ for some 𝜅 > 0 , and hence for all �′ ≥ � 

( lim|�|→∞(M
(�)
�
)1∕|�| = +∞ for all 𝜆 > 0).

We also need to extend condition (3.7) of [28] to the matrix weighted setting. 
First, we state it in the Roumieu case:

and in the Beurling case:

S{�} ∶=
�
f ∈ C∞(ℝd) ∶ ∃C, h > 0, ‖f‖∞,�,h ∶= sup

𝛼,𝛽∈ℕd
0

‖x𝛼𝜕𝛽 f‖∞
h�𝛼+𝛽�M𝛼+𝛽

≤ C
�
,

S(�) ∶={f ∈ C∞(ℝd) ∶ ∀h > 0 ∃Ch > 0, ‖f‖∞,�,h ≤ Ch},

S{M} ∶=
�
𝜆>0

S{�(𝜆)} = {f ∈ C∞(ℝd) ∶ ∃C, h, 𝜆 > 0, ‖f‖∞,�(𝜆),h ≤ C},

S(M) ∶=
�
𝜆>0

S(�(𝜆))

={f ∈ C∞(ℝd) ∶ ∀h, 𝜆 > 0 ∃C𝜆,h > 0, ‖f‖∞,�(𝜆),h ≤ C𝜆,h},

(3.2)
∀𝜆 > 0 ∃ 𝜅 ≥ 𝜆,B,C,H > 0 ∀𝛼, 𝛽 ∈ ℕ

d
0
∶

𝛼𝛼∕2M
(𝜆)

𝛽
≤ BC|𝛼|H|𝛼+𝛽|M(𝜅)

𝛼+𝛽
.

(3.3)
∀ 𝜆 > 0 ∃ 0 < 𝜅 ≤ 𝜆,H > 0 ∀C > 0 ∃B > 0 ∀𝛼, 𝛽 ∈ ℕ

d
0
∶

𝛼𝛼∕2M
(𝜅)

𝛽
≤ BC|𝛼|H|𝛼+𝛽|M(𝜆)

𝛼+𝛽
.

(3.4)∀ 𝜆 > 0 ∃ 𝜅 ≥ 𝜆,A ≥ 1 ∀𝛼, 𝛽 ∈ ℕ
d
0
∶ M(𝜆)

𝛼
M

(𝜆)

𝛽
≤ A|𝛼+𝛽|M(𝜅)

𝛼+𝛽
;



Page 9 of 39 14Nuclear global spaces of ultradifferentiable functions in…

The extensions of condition (2.7) (mixed derivation closedness  properties) for a 
weight matrix M in the Roumieu and Beurling cases read as follows:

The following conditions generalize (2.8) to the weight matrix setting:

It is immediate that for any given matrix M satisfying (3.8) and (3.4) we can replace 
in the definition of S{M} the seminorm ‖ ⋅ ‖∞,�(�),h by

We have an analogous statement for the class S(M) under (3.9) and (3.5). When we 
define the spaces S{M} or S(M) with the weighted L2 norms treated below in (3.17), 
the similar property holds.

Lemma 4 Let M be a weight matrix as defined in (3.1).

If (3.6) holds, then

If (3.7) holds, then

Proof First, we consider the Roumieu case. By 2(d + 1) iterated applications of 
(3.6), we find 𝜅2d+2 ≥ 𝜅2d+1 ≥ … ≥ 𝜅1 ≥ 𝜆 > 0 and A1,… ,A2d+2 ≥ 1 such that, for 
all � ∈ ℕ

d
0
 and 1 ≤ j ≤ d,

(3.5)∀ 𝜆 > 0 ∃ 0 < 𝜅 ≤ 𝜆,A ≥ 1 ∀𝛼, 𝛽 ∈ ℕ
d
0
∶ M(𝜅)

𝛼
M

(𝜅)

𝛽
≤ A|𝛼+𝛽|M(𝜆)

𝛼+𝛽
.

(3.6)∀𝜆 > 0∃𝜅 ≥ 𝜆,A ≥ 1∀𝛼 ∈ ℕ
d
0
, 1 ≤ j ≤ d ∶ M

(𝜆)
𝛼+ej

≤ A|𝛼|+1M(𝜅)
𝛼
,

(3.7)∀𝜆 > 0∃0 < 𝜅 ≤ 𝜆,A ≥ 1∀𝛼 ∈ ℕ
d
0
, 1 ≤ j ≤ d ∶ M

(𝜅)
𝛼+ej

≤ A|𝛼|+1M(𝜆)
𝛼
.

(3.8)∀𝜆 > 0∃𝜅 ≥ 𝜆,A ≥ 1∀𝛼, 𝛽 ∈ ℕ
d
0
∶ M

(𝜆)

𝛼+𝛽
≤ A|𝛼+𝛽|M(𝜅)

𝛼
M

(𝜅)

𝛽
,

(3.9)∀𝜆 > 0∃0 < 𝜅 ≤ 𝜆,A ≥ 1∀𝛼, 𝛽 ∈ ℕ
d
0
∶ M

(𝜅)

𝛼+𝛽
≤ A|𝛼+𝛽|M(𝜆)

𝛼
M

(𝜆)

𝛽
.

sup
�,�∈ℕd

0

‖x��� f‖∞
h��+��M(�)

� M
(�)

�

.

(3.10)
∀ 𝜆 > 0 ∃ 𝜅 ≥ 𝜆,B1,B2 ≥ 1 ∀t ∈ ℝ

d ∶

(1 + |t|)2(d+1) exp𝜔
�(𝜅) (t) ≤ B1 exp𝜔�(𝜆) (B2t).

(3.11)
∀ 𝜆 > 0 ∃ 0 < 𝜅 ≤ 𝜆,B1,B2 ≥ 1 ∀t ∈ ℝ

d ∶

(1 + |t|)2(d+1) exp𝜔
�(𝜆) (t) ≤ B1 exp𝜔�(𝜅) (B2t).
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for A ∶= (max{A1,… ,A2d+2})
2d+2 and � ∶= �2d+2.

Now, we have for |t|∞ ≥ 1,

since �t� =
�

t2
1
+…+ t2

d
≤ √

d�t�∞ . Therefore, by the definition of the associated 
weight function, choosing 𝜅 ≥ 𝜆 > 0 as in (3.12), we have, assuming |t|∞ = tj for 
some 1 ≤ j ≤ d and |t|∞ ≥ 1:

On the other hand, if t ∈ ℝ
d with |t|∞ ≤ 1 , then �t� ≤ √

d and hence, for � as in 
(3.12),

with C� depending on � since � depends on �.
We have thus proved (3.10) with B1 = max{(4d)d+1,C�} and B2 = A.
In the Beurling case, by 2(d + 1) iterated applications of (3.7), we find 

0 < 𝜅2d+2 ≤ 𝜅2d+1 ≤ … ≤ 𝜅1 ≤ 𝜆 and A1,… ,A2d+2 ≥ 1 such that

for A ∶= (max{A1,… ,A2d+2})
2d+2 and � ∶= �2d+2 . Then we proceed as in the 

Roumieu case and prove that

(3.12)

M
(�)

�+2(d+1)ej
≤A|�|+2d+2

1
M

(�1)

�+(2d+1)ej

≤A|�|+2d+2
1

A
|�|+2d+1
2

M
(�2)

�+2dej

≤⋯ ≤ A
|�|+2d+2
1

A
|�|+2d+1
2

⋯A
|�|+1
2d+2

M
(�2d+2)
�

≤A|�|+2d+2M(�)
�

(1 + �t�)2(d+1) =
2(d+1)�
j=0

�
2d + 2

j

�
�t�j ≤

2(d+1)�
j=0

�
2d + 2

j

�
(
√
d�t�∞)j

≤dd+1�t�2(d+1)
∞

2(d+1)�
j=0

�
2d + 2

j

�
= (4d)d+1�t�2(d+1)

∞

(1 + |t|)2(d+1) exp�
�(�) (t) ≤(4d)d+1|tj|2(d+1) sup

�∈ℕd
0

|t�|
M

(�)
�

≤(4d)d+1 sup
�∈ℕd

0

|(At)�+2(d+1)ej |
M

(�)

�+2(d+1)ej

≤(4d)d+1 sup
�∈ℕd

0

|(At)�|
M

(�)

�

= (4d)d+1 exp�
�(�) (At).

(1 + |t|)2(d+1) exp�
�(�) (t) ≤ C� ≤ C� exp��(�) (At),

(3.13)
M(�)

�
≥A−|�|−1

1
M

(�1)

�+ej
≥ A

−|�|−1
1

A
−|�|−2
2

M
(�2)

�+2ej

… ≥A−|�|−1
1

A
−|�|−2
2

⋯A
−|�|−2d−2
2d+2

M
(�2d+2)

�+2(d+1)ej
≥ A−|�|−2d−2M(�)

�+2(d+1)ej
,
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for B�
1
∶= max{(4d)d+1, max�t�≤√d

(1 + �t�)2(d+1) exp�
�(�) (t)} .   ◻

Lemma 5 Let M be a weight matrix that satisfies (3.7). Then

Let M be a weight matrix that satisfies (3.6). Then

Proof If t ∈ ℝ
d ⧵ {0} , then by the definition of the associated weight function, for 

1 ≤ j ≤ d such that |t|∞ = tj,

where ℕd
0,t

 is defined by (2.9). This estimate is valid for any given index 𝜆 > 0.
In the Beurling case, by N iterated applications of (3.7) we find 

�N ≤ �N−1 ≤ … ≤ �1 ≤ � and A1,… ,AN ≥ 1 such that, for 
A ∶= (max{A1,… ,AN})

N and � ∶= �N , we have, proceeding as in (3.13), 
M

(�)

�+Nej
≤ A|�|+NM(�)

�
. Therefore,

and we conclude that (3.14) is satisfied for B ∶= max{
N

2
log d, 1}.

In the Roumieu case, we make N iterated applications of (3.6) and we find indices 
� ∶= �N ≥ �N−1 ≥ … ≥ �1 ≥ � and A1,… ,AN ≥ 1 such that, for 
A ∶= (max{A1,… ,AN})

N and � = �N , as in (3.12) we have that M(�)

�+Nej
≤ A|�|+NM(�)

�
 

and hence from (3.16):

so that (3.15) is satisfied with B = max{
N

2
log d, 1}.  ◻

Now, we consider the different system of seminorms

(1 + |t|)2(d+1) exp�
�(�) (t) ≤ B�

1
exp�

�(�) (At),

(3.14)
∀ 𝜆 > 0,N ∈ ℕ ∃ 0 < 𝜅 ≤ 𝜆,A,B ≥ 1 ∀t ∈ ℝ

d ⧵ {0} ∶

𝜔
�(𝜆) (t) + N log |t| ≤ 𝜔

�(𝜅) (At) + B.

(3.15)
∀ 𝜆 > 0,N ∈ ℕ ∃ 𝜅 ≥ 𝜆,A,B ≥ 1 ∀t ∈ ℝ

d ⧵ {0} ∶

𝜔
�(𝜅) (t) + N log |t| ≤ 𝜔

�(𝜆) (At) + B.

(3.16)
�t�N exp�

�(�) (t) ≤(√d�t�∞)N exp�
�(�) (t) = dN∕2�tj�N exp�

�(�) (t)

=dN∕2�tNej � sup
�∈ℕd

0,t

�t��
M

(�)
�

= dN∕2 sup
�∈ℕd

0,t

�t�+Nej �
M

(�)
�

,

|t|N exp�
�(�) (t) ≤ dN∕2 sup

�∈ℕd
0,t

|(At)�+Nej |
M

(�)

�+Nej

≤ dN∕2 exp�
�(�) (At),

|t|N exp�
�(�) (t) ≤dN∕2 sup

�∈ℕd
0,t

|t�+Nej |
M

(�)
�

≤ dN∕2 sup
�∈ℕd

0,t

|(At)�+Nej |
M

(�)

�+Nej

≤dN∕2 exp�
�(�) (At),
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on S(M) and S{M} , where ‖ ⋅ ‖2 is the L2 norm. Under suitable conditions on the 
weight matrix M , it turns out to be equivalent to the previous one given by sup 
norms, as we prove in the following:

Proposition 1 Let M be a weight matrix as defined in (3.1) that satisfies (3.3) and 
(3.7) ((3.2) and (3.6)). Then the system of seminorms ‖ ⋅ ‖∞,�(�),h in S(M) ( S{M} ) is 
equivalent to the system of seminorms ‖ ⋅ ‖2,�(�),h . More precisely, in the Beurling 
case we have the following two conditions for every f ∈ C∞(ℝd):

in the Roumieu case we have the following two conditions, for every f ∈ C∞(ℝd),

Proof Let f ∈ C∞(ℝd) . Then for C1 = (∫
ℝd

1

(1+|x|2)d+1 dx)
1∕2 , we have

If |x|∞ ≤ 1 , then

On the other hand, if |x|∞ ≥ 1 then

Therefore, for any fixed x ∈ ℝ
d , being |x|∞ = |xj| for some 1 ≤ j ≤ d , we have

(3.17)‖f‖2,�(𝜆),h ∶= sup
𝛼,𝛽∈ℕd

0

‖x𝛼𝜕𝛽 f‖2
h�𝛼+𝛽�M(𝜆)

𝛼+𝛽

, 𝜆, h > 0,

(3.18)
∃ C1 > 0 ∀ 𝜆, h > 0 ∃ 𝜅 > 0, h̃ = h̃𝜆,h > 0 ∶

‖f‖2,�(𝜆),h ≤ C1‖f‖∞,�(𝜅),h̃,

(3.19)
∀ 𝜆, h > 0 ∃ �𝜅 > 0,C𝜆,h > 0, h̃ = h̃𝜆,h > 0 ∶

‖f‖∞,�(𝜆),h ≤ C𝜆,h‖f‖2,�(�𝜅),h̃ ;

(3.20)
∀ 𝜆, h > 0∃ C𝜆,h > 0, ∃ 𝜅 ≥ 𝜆, h̃ > 0 ∶

‖f‖2,�(𝜅),h̃ ≤ C𝜆,h‖f‖∞,�(𝜆),h,

(3.21)
∀ 𝜆, h > 0 ∃C𝜆,h > 0, �𝜅 > 0, h̃ > 0 ∶

‖f‖∞,�(�𝜅),h̃ ≤ C𝜆,h‖f‖2,�(𝜆),h .

‖x��� f‖2 ≤ C1‖(1 + �x�2) d+1

2 x��� f (x)‖∞.

(1 + |x|2) d+1

2 ≤ (1 + d|x|2
∞
)
d+1

2 ≤ (1 + d)
d+1

2 .

(1 + |x|2) d+1

2 ≤ (|x|2
∞
+ |x|2) d+1

2 ≤ (|x|2
∞
+ d|x|2

∞
)
d+1

2 ≤ (d + 1)
d+1

2 |x|d+1
∞

.
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and hence

Now, we consider separately the Beurling and Roumieu cases. In the Beurling case, 
for every 𝜆, h > 0 , we first estimate ‖x�+(d+1)ej�� f‖2,�(�),h to use (3.22). By (d + 1) 
iterated applications of (3.7) there exist 0 < 𝜅 ∶= 𝜅d+1 ≤ 𝜅d ≤ … ≤ 𝜅1 ≤ 𝜆 and 
A1,… ,Ad+1 ≥ 1 ( Aj depending on � ) such that, proceeding as in (3.13), we obtain 
M

(�)

�+�+(d+1)ej
≤ A

|�+�|+d+1
�

M
(�)

�+�
 for A� = (max{A1,… ,Ad+1})

d+1 ≥ 1 . Hence, we 
deduce

Therefore, from (3.22) and the fact that �(�) ≤ �
(�) , we have for every 𝜆, h > 0,

If h ≥ 1 then hd+1A|�+�|+d+1
�

≤ (hA�)
|�+�|+d+1.

If 0 < h < 1 then hd+1A|�+�|+d+1
�

≤ A
|�+�|+d+1
�

 . Hence, for

we obtain

This shows (3.18).

Now, since �! ≤ �
�1
1
… �

�d
d

= �� , we have �!

(�−�)!
≤
(
�

�

)
�! ≤ 2|�|�� . So it follows 

by Leibniz’s rule and [28, formula (2.3)] that, for some C2 > 0,

|(1 + |x|2) d+1

2 x�| ≤ (d + 1)
d+1

2 max{|x�+(d+1)ej |, |x�|}

(3.22)
‖x��� f‖2 ≤ C1(d + 1)

d+1

2 max{‖x�+(d+1)e1�� f‖∞, ‖x�+(d+1)e2�� f‖∞,
… , ‖x�+(d+1)ed�� f‖∞, ‖x��� f‖∞}.

‖x�+(d+1)ej�� f‖∞
h��+��M(�)

�+�

≤ ‖x�+(d+1)ej�� f‖∞
h��+��+d+1M(�)

�+�+(d+1)ej

⋅ hd+1A
��+��+d+1
�

.

(3.23)

‖x��� f‖2
h��+��M(�)

�+�

≤C1(d + 1)
d+1

2 max

� ‖x�+(d+1)e1�� f‖∞
h��+��+d+1M(�)

�+�+(d+1)e1

hd+1A
��+��+d+1
�

,

… ,
‖x�+(d+1)ed�� f‖∞

h��+��+d+1M(�)

�+�+(d+1)ed

hd+1A
��+��+d+1
�

,
‖x��� f‖∞
h��+��M(�)

�+�

�
.

h̃ ∶=

⎧⎪⎨⎪⎩

min
�

1

A𝜆

, h
�
=

1

A𝜆

, if h ≥ 1,

min
�

h

A𝜆

, h
�
=

h

A𝜆

, if 0 < h < 1,

‖f‖2,�(𝜆),h ≤ C1(d + 1)
d+1

2 ‖f‖∞,�(𝜅),h̃.
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On the other hand, by |�| iterated applications of (3.7), there exist 
0 < 𝜅 ∶= 𝜅|𝛾| ≤ 𝜅|𝛾|−1 ≤ … ≤ 𝜅1 ≤ 𝜆 and A1,… ,A|�| ≥ 1 such that, for 
A� ∶= max|�|∞≤2d+2(max{A1,… ,A|�|})|�| , we have M(�)

�+�+�
≤ A

|�+�+�|
�

M
(�)

�+�
 . By (3.3), 

there exist 0 < �𝜅 ≤ 𝜅 and H > 0 such that for all C > 0 there is B > 0 so that

Observe that �̃ may depend on � . From (3.1) we can consider in the previous esti‑
mates, instead of �̃ , the minimum of all these �̃ for |�|∞ ≤ 2d + 2 , so that we can 
finally choose �̃ independent of � . Since |�| ≤ d|�|∞ ≤ 2d(d + 1) we have

Now, if h ≥ 1 , then h|�−2�| ≤ h|�+�+�−2�| . And if 0 < h < 1 , then h|�−2�| ≤ 1 when 
|� − 2�| ≥ 0 and h|�−2�| ≤ h−|�| ≤ h−2d(d+1) when |𝛾 − 2𝛿| < 0 . For

taking into account that

we finally have that for all 𝜆, h > 0 there exist �̃ , C𝜆,h > 0 and h̃ > 0 , such that

(3.24)

‖x��� f‖∞ ≤C2 sup
���∞≤2d+2

‖�� (x��� f )‖2

≤C2 sup
���∞≤2d+2

�
�≤�

�
�

�

�
‖(��x�)��+�−�f‖2

≤C2 sup
���∞≤2d+2

�
�≤�
�≤�

�
�

�

�
2�����‖x�−���+�−�f‖2 .

‖x��� f‖∞
h��+��M(�)

�+�

≤C2 sup
���∞≤2d+2

�
�≤�
�≤�

�
�

�

� ‖x�−���+�−�f‖2
h��+�+�−2��M(�̃)

�+�+�−2�

⋅ h��−2��

⋅ 2���A��+�+��
�

BC�2��H��+�+��.

‖x��� f‖∞
h��+��M(�)

�+�

≤C2B(2CHA�)
4d(d+1)

⋅ sup
���∞≤2d+2

�
�≤�
�≤�

�
�

�

� ‖x�−���+�−�f‖2
h��+�+�−2��M(�̃)

�+�+�−2�

⋅ (2HA�)
��+�+�−2��h��−2��.

(3.25)h̃ =

{
1

2HA𝜆

if h ≥ 1

h

2HA𝜆

if 0 < h < 1,

∑
�≤�

(
�

�

)
≤ d|�| ≤ d2d(d+1),
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Since neither H nor A� are depending on h, we have h̃ → 0 as h → 0 . This shows 
(3.19) and concludes the proof in the Beurling case.

Let us now consider the Roumieu case. In (3.22), for any given � by (d + 1) iter‑
ated applications of (3.6), we obtain 𝜅 ∶= 𝜅d+1 ≥ 𝜅d ≥ … ≥ 𝜅1 ≥ 𝜆 > 0 and 
A1,… ,Ad+1 ≥ 1 such that, for A� ∶= (max{A1,… ,Ad+1})

d+1 , we have 
M

(�)

�+�+(d+1)ej
≤ A

|�+�|+d+1
�

M
(�)

�+�
 . Then from (3.22) and the fact that M(�)

�+�
≥ M

(�)

�+�
 we 

obtain, given a fixed h > 0 , for h̃ ∶= max{hA𝜆, 1},

Hence, dividing by h̃|𝛼+𝛽|,

then (3.20) is proved, with C𝜆,h = C1(d + 1)
d+1

2 h̃d+1 (observe that h̃ depends on h and 
�).

Now, given any 𝜆 > 0 consider 𝜅 ≥ 𝜆 > 0 and B,C,H > 0 as in (3.2). Then, by |�| 
iterated applications of (3.6), there exist �̃ ∶= �|�| ≥ … ≥ �1 ≥ � ≥ � and 
A1,… ,A|�| ≥ 1 such that, for A� ∶= (max{A1,… ,A|�|})|�| , M

(𝜅)

𝛼+𝛽+𝛾
≤ A

|𝛼+𝛽+𝛾|
𝜆

M
(�̃�)

𝛼+𝛽
. 

So, from (3.24) with h = 1 and �̃� instead of � , applying (3.2) and proceeding as 
before, we get

Since for every h > 0 and �, �, � , � as above

dividing (3.27) by (2A�Hh)
|�+�| we obtain

(3.26)‖f‖∞,�(𝜆),h ≤ C𝜆,h‖f‖2,�(�𝜅),h̃.

‖x𝛼𝜕𝛽 f‖2
M

(𝜅)

𝛼+𝛽

≤C1(d + 1)
d+1

2 max

�‖x𝛼𝜕𝛽 f‖∞
M

(𝜅)

𝛼+𝛽

,
‖x𝛼+(d+1)ej𝜕𝛽 f‖∞
M

(𝜆)

𝛼+𝛽+(d+1)ej

A
�𝛼+𝛽�+d+1
𝜆

�

≤C1(d + 1)
d+1

2 h̃�𝛼+𝛽�+d+1

⋅max

� ‖x𝛼𝜕𝛽 f‖∞
h�𝛼+𝛽�M(𝜆)

𝛼+𝛽

,
‖x𝛼+(d+1)ej𝜕𝛽 f‖∞

h�𝛼+𝛽�+d+1M(𝜆)

𝛼+𝛽+(d+1)ej

�
.

‖x𝛼𝜕𝛽 f‖2
h̃�𝛼+𝛽�M(𝜅)

𝛼+𝛽

≤ C1(d + 1)
d+1

2 h̃d+1‖f‖∞,�(𝜆),h;

(3.27)

‖x𝛼𝜕𝛽 f‖∞
M

(�̃�)

𝛼+𝛽

≤C2BC
4d(d+1)

⋅ sup
�𝛾�∞≤2d+2

�
𝛿≤𝛾
𝛿≤𝛼

�
𝛾

𝛿

�
(2A𝜆H)�𝛼+𝛽+𝛾�

‖x𝛼−𝛿𝜕𝛽+𝛾−𝛿f‖2
M

(𝜆)

𝛼+𝛽+𝛾−2𝛿

.

‖x�−���+�−�f‖2
h��+�+�−2��M(�)

�+�+�−2�

≤ ‖f‖2,�(�),h ,
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Taking the sup on � and � in the left‑hand side, we then get (3.21) with h̃ = 2A𝜆Hh 
and

  ◻

We observe that in (3.18) the constant C1 is fixed (it depends only on the dimension 
d), and moreover, we only need (3.7) to prove it. On the other hand, to obtain (3.19) we 
consider (3.7) and (3.3). In the Roumieu case, we just need (3.6) to prove (3.20), while 
for the proof of (3.21) we use (3.2) to choose � ≥ � and then (3.6) to get �̃� ≥ 𝜅.

4  Hermite functions: properties in the matrix setting

We recall the definition of the Hermite functions H� for � ∈ ℕ
d
0
:

where h� are the Hermite polynomials

As in [28] we consider, for f ∈ C∞(ℝd) , the operators

with A0
±,i

∶= id.
By [32, Example 29.5(2)], setting H� = 0 if �j = −1 for some 1 ≤ j ≤ d , we have

‖x��� f‖∞
(2A�Hh)

��+��M(�̃)

�+�

≤‖f‖2,�(�),h C2BC
4d(d+1)

⋅ sup
���∞≤2d+2

�
�≤�

�
�

�

�
(2A�Hh)

���h−�2��.

C�,h = C2BC
4d(d+1) sup

|�|∞≤2d+2
∑
�≤�

(
�

�

)
(2A�Hh)

|�|h−|2�|.

H� (x) ∶= (2|�|�!�d∕2)−1∕2h� (x) exp

(
−

d∑
j=1

x2
j

2

)
, x ∈ ℝ

d,

h� (x) ∶= (−1)|�| exp

(
d∑
j=1

x2
j

)
⋅ �� exp

(
−

d∑
j=1

x2
j

)
, x ∈ ℝ

d.

A±,i(f ) ∶= ∓�xi f + xif , 1 ≤ i ≤ d,

A�
±
(f ) ∶=

d∏
i=1

A
�i
±,i
(f ), � ∈ ℕ

d
0
,

A−,j(H� ) =
√

2�jH�−ej
, � ∈ ℕ

d
0
.
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It follows that, for �, � ∈ ℕ
d
0
,

We also recall the following two lemmas from [28]:

Lemma 6 Let f ∈ C∞(ℝd) . Then, for all � ∈ ℕ
d
0
 and x ∈ ℝ

d,

for some coefficients C�,�(�) satisfying

Lemma 7 For all �, �, � ∈ ℕ
d
0

We can generalize Lemma 3.1(b) of [28] in the following way:

Lemma 8 Let � = (M�)�∈ℕd
0
 and � = (N�)�∈ℕd

0
 be two sequences satisfying (2.12) 

for some C,B,H > 0 . Assume that f ∈ C∞(ℝd) satisfies, for some C1 > 0 and for the 
same constant C as in (2.12),

Then

Proof By Stirling’s inequality e
(

n

e

)n ≤ n! ≤ en
(

n

e

)n

 for any n ∈ ℕ . Hence, by 
Lemma 6 and assumption (4.2), we have

(4.1)A�
−
(H�+�) =

�
1≤j≤d

A
�j

−,j
(H�+�) =

�
1≤j≤d

(
�

2�j)
�jH� =

√
2�����H� .

(A
�
+f )(x) =

∑
�+�≤�

C�,�(�)x
��� f (x),

|C�,�(�)| ≤ 3|�|
(

�!

(� + �)!

)1∕2

, �, �, � ∈ ℕ
d
0
.

‖x���H�‖2 ≤ 2
��+��
2

�
(� + � + �)!

�!

�1∕2

.

(4.2)‖f‖2,�,C = sup
�,�∈ℕd

0

‖x��� f‖2
C��+��M�+�

≤ C1.

‖A�
+f‖2 ≤ C1Be

d∕2(9
√
2HC)���N� , � ∈ ℕ

d
0
.
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Applying now (2.12) and 
∑

�+�≤�
�

�

� + �

�
≤ 3��� (by [28, pg 274]), we get

  ◻

As a corollary, we immediately have the following:

Lemma 9 Let M be a weight matrix satisfying (3.2) and assume that f ∈ C∞(ℝd) 
satisfies, for some 𝜆,C1 > 0

for the constant C of (3.2). Then

with �,B,H,C as in (3.2).

If M satisfies (3.3) and if, for some 𝜆 > 0 , f ∈ C∞(ℝd) satisfies

for the constant � ≤ � of (3.3) and for some C,C1 > 0 , then

where H = H(�) and B = B(C, �) are given by (3.3).

The following lemma generalizes [28, Lemma 3.2(b)].

‖A�
+f‖2 ≤

�
�+�≤�

�C�,�(�)� ⋅ ‖x��� f‖2

≤C13
��� �

�+�≤�

�
�

� + �

�1∕2

(� − � − �)!1∕2C��+��M�+�

≤C13
��� �

�+�≤�

�
�

� + �

�1∕2

ed∕2

�
d�
j=1

(�j − �j − �j)
1∕2

�

⋅
(� − � − �)

�−�−�

2

exp
���−�−��

2

� C��+��M�+�

≤C13
���2���∕2ed∕2

�
�+�≤�

�
�

� + �

�
(� − � − �)

�−�−�

2 C��+��M�+� .

‖A�
+f‖2 ≤C1e

d∕2(3
√
2)���

�
�+�≤�

�
�

� + �

�
BC��−�−��H���N�C

��+��

≤C1Be
d∕2(9

√
2)���(CH)���N� .

(4.3)‖f‖2,�(�),C ≤ C1

‖A�
+f‖2 ≤ C1Be

d∕2(9
√
2HC)���M(�)

�
, ∀� ∈ ℕ

d
0
,

‖f‖2,�(�),C ≤ C1

‖A�
+f‖2 ≤ C1Be

d∕2(9
√
2HC)���M(�)

�
, ∀� ∈ ℕ

d
0
,
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Lemma 10 Let � = (M�)�∈ℕd
0
 and � = (N�)�∈ℕd

0
 be two weight sequences satisfying 

(2.12). Then

where �1∕2 ∶= (�
1∕2

1
,… , �

1∕2

d
) and B,C,H > 0 are the constants in (2.12).

Proof For �, �, � ∈ ℕ
d
0
 we set

Then for any � ∈ ℕ
d we denote

so that � = �J + �Jc . By Lemma 7 and (2.12), we have

Now, since �J has the jth entry equal to �j for j ∈ J and 0 for j ∈ Jc,

Moreover, by Lemma 3,

taking t = �1∕2.
If we replace (4.5) and (4.6) in (4.4) we finally get

  ◻

Proposition 2 Let M be a weight matrix that satisfies (3.2) and (3.6) ((3.3) and 
(3.7)). Then H� ∈ S{M} ( H� ∈ S(M) ) for all � ∈ ℕ

d
0
.

‖H�‖2,�,2HC = sup
�,�∈ℕd

0

‖x���H�‖2
(2HC)��+��N�+�

≤ Be��
(�1∕2∕C), ∀� ∈ ℕ

d
0
,

J ∶= {j ∈ ℕ ∶ 1 ≤ j ≤ d, 𝛼j + 𝛽j ≤ 𝛾j}

Jc ∶= {j ∈ ℕ ∶ 1 ≤ j ≤ d, 𝛼j + 𝛽j > 𝛾j}.

�J ∶=
∑
j∈J

�jej, �Jc ∶=
∑
j∈Jc

�jej,

(4.4)

‖x���H�‖2 ≤2 ��+��
2

�
(� + � + �)!

�!

�1∕2

≤ 2
��+��
2 (� + � + �)

�+�

2

≤2��+��(�Jc + �Jc )
�Jc+�Jc

2 �
�J+�J

2

J

≤B(2HC)��+��N�+��
�J+�J

2

J

1

M�J+�J
C��J+�J � .

(4.5)�
�J+�J

2

J
=
∏
j∈J

�

�j+�j

2

j
=
∏
j∈J

�

�j+�j

2

j

∏
j∈Jc

�0
j
= �

�J+�J

2 .

(4.6)M�J+�J
C|�J+�J | ≥ sup

t∈ℝd

|t�J+�J e−��
(t∕C)| ≥ �

�J+�J

2 e−��
(�1∕2∕C),

‖x���H�‖2 ≤ B(2HC)��+��N�+�e
�
�
(�1∕2∕C).
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Proof By Lemma 10, if (3.2) is satisfied, we have

Hence, H� ∈ S{M} by Proposition 1. Similarly, in the Beurling case, if (3.3) is satis‑
fied, we obtain

So H� ∈ S(M) by Proposition 1.  ◻

The next result gives information about the non‑triviality of the classes S{M} 
and S(M) . Indeed, we characterize when the Hermite functions H� are contained 
in such classes.

Proposition 3 Let M be a weight matrix that satisfies (3.6), (3.4); then the following 
are equivalent: 

(a)  ∃𝜆 > 0∃C,C1 > 0 ∶ 𝛼𝛼∕2 ≤ C1C
|𝛼|M(𝜆)

𝛼
, ∀𝛼 ∈ ℕ

d
0
;

(b)  M satisfies (3.2);
(c)  H� ∈ S{M} for all � ∈ ℕ

d
0
.

If M satisfies (3.7), (3.5), then the following are equivalent: 

(a)′  ∀𝜆,C > 0∃C1 > 0 ∶ 𝛼𝛼∕2 ≤ C1C
|𝛼|M(𝜆)

𝛼
, ∀𝛼 ∈ ℕ

d
0
;

(b)′  M satisfies (3.3);
(c)′  H� ∈ S(M) for all � ∈ ℕ

d
0
.

Proof The implications (b) ⇒ (c) and (b)′ ⇒ (c)′ follow from Proposition 2. To see 
(a) ⇒ (b), fix an arbitrary 𝜇 > 0 and � as in (a). We have

So, for � = max{�,�} , by (3.1) and (3.4), there exists � ≥ � and A ≥ 1 such that

Now, we prove (a)′⇒(b)′. For any given 𝜆 > 0 , let 0 < 𝜅 ≤ 𝜆 and A ≥ 1 such that 
(3.5) holds. By (a)′ applied to this � , there is, for any C > 0 , some C1 > 0 depending 
on � and C such that

∀𝜆 > 0∃ 𝜅 ≥ 𝜆, ∃B,C,H > 0 ∶

‖x𝛼𝜕𝛽H𝛾‖2 ≤ B(2HC)�𝛼+𝛽�M(𝜅)

�𝛼+𝛽�e
𝜔
�(𝜆) (𝛾

1∕2∕C).

∀𝜆 > 0∃ 0 < 𝜅 ≤ 𝜆, ∃H > 0 ∶ ∀C > 0∃B > 0 ∶

‖x𝛼𝜕𝛽H𝛾‖2 ≤ B(2HC)�𝛼+𝛽�M(𝜆)

�𝛼+𝛽�e
𝜔
�(𝜅) (𝛾

1∕2∕C).

��∕2M
(�)

�
≤ C1C

|�|M(�)
�
M

(�)

�
.

��∕2M
(�)

�
≤ C1C

|�|M(�)
�
M

(�)

�
≤ C1C

|�|A|�+�|M(�)

�+�
, �, � ∈ ℕ

d
0
.
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If (c) holds, in particular, H0 ∈ S{M} . Hence, there exist some C, h > 0 and 𝜆 > 0 
such that ‖x�H0‖∞ ≤ Ch���M(�)

�
 for all � ∈ ℕ

d
0
 . Taking x = �1∕2 , � ∈ ℕ

d
0
 arbitrary, 

yields

Hence, ��∕2�−d∕4e−���∕2 ≤ ‖x�H0‖∞ ≤ Ch���M(�)
�

 for all � ∈ ℕ
d
0
 , which shows (a).

The Beurling case (c)′ ⇒ (a)′ is analogous since, for any given � and h > 0, there 
exists C𝜆,h > 0 such that ‖x�H0‖∞ ≤ C�,hh

���M(�)
�

 for all � ∈ ℕ
d
0
.  ◻

5  Matrix sequence spaces

Let us consider, for � = (M�)�∈ℕd
0
 , the following sequence spaces in the Roumieu and 

the Beurling cases:

Since h ↦ �
�
(�1∕2∕h) is decreasing we can also write

Now, for a weight matrix M as in (3.1), we denote

Since �(�) ≤ �
(�) for 0 < 𝜆 ≤ 𝜅 by assumption, then �

�(�) ≥ �
�(�) . Moreover, 

h ↦ e��(�) (�
1∕2∕h) is decreasing for all 𝜅 > 0 , � ∈ ℕ

d
0
 . It follows that we can write 

Λ{M} ( Λ(M) ) as inductive (projective) limit:

Note that by Remark 1, it seems natural to require that lim|�|→∞(M�)
1∕|�| = +∞ for 

the definition of Λ{�} and Λ(�) . In fact, otherwise �
�
(t) = +∞ for all large t ∈ ℝ

d 

��∕2M
(�)

�
≤ C1C

|�|M(�)
�
M

(�)

�
≤ C1C

|�|A|�+�|M(�)

�+�
, �, � ∈ ℕ

d
0
.

|��∕2H0(�
1∕2)| = 1

�d∕4
�
�1∕2

1
e−�1∕2 ⋯ �

�d∕2

d
e−�d∕2 =

1

�d∕4
��∕2e−|�|∕2.

Λ{�} ∶= {� = (c𝛼) ∈ ℂ
ℕ
d
0 ∶ ∃ h > 0, ‖�‖

�,h ∶= sup
𝛼∈ℕd

0

�c𝛼�e𝜔�
(𝛼1∕2∕h) < +∞},

Λ(�) ∶= {� = (c𝛼) ∈ ℂ
ℕ
d
0 ∶ ∀ h > 0, ‖�‖

�,h < +∞}.

Λ{�} = {� = (c𝛼) ∈ ℂ
ℕ
d
0 ∶ ∃ j ∈ ℕ, ‖�‖

�,j < +∞},

Λ(�) = {� = (c𝛼) ∈ ℂ
ℕ
d
0 ∶ ∀ j ∈ ℕ, ‖�‖

�,1∕j < +∞}.

Λ{M} ∶=
�
𝜆>0

Λ{�(𝜆)} = {� = (c𝛼) ∈ ℂ
ℕ
d
0 ∶ ∃ 𝜆, h > 0, ‖�‖

�(𝜆),h < +∞},

Λ(M) ∶=
�
𝜆>0

Λ(�(𝜆)) = {� = (c𝛼) ∈ ℂ
ℕ
d
0 ∶ ∀ 𝜆, h > 0, ‖�‖

�(𝜆),h < +∞}.

(5.1)Λ{M} = {� = (c𝛼) ∈ ℂ
ℕ
d
0 ∶ ∃j ∈ ℕ, ‖�‖

�(j),j < +∞},

(5.2)Λ(M) = {� = (c𝛼) ∈ ℂ
ℕ
d
0 ∶ ∀j ∈ ℕ, ‖�‖

�(1∕j),1∕j < +∞}.
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and we get Λ(�) = {0} and Λ{�} consisting of sequences having only finitely many 
values ≠ 0.

However, in our next main result, by Remark 3 and assumption (3.2) ((3.3), 
respectively), we have the warranty of the finiteness of all associated weight func‑
tions under consideration.

Theorem 1 Let M be a weight matrix satisfying (3.2) and (3.6). Then the Hermite 
functions are an absolute Schauder basis in S{M} and

defines an isomorphism.

If M satisfies (3.3) and (3.7), then the Hermite functions are an absolute 
Schauder basis in S(M) and the above defined operator T ∶ S(M) → Λ(M) is an 
isomorphism.

Proof By Proposition 1 we can assume that S{M} and S(M) are defined by L2 norms. 
First, we consider the Roumieu case. If f ∈ S{M} , there exist 𝜆,C,C1 > 0 such that

By (4.1) and Lemma 9, there exist � ≥ � , B,C,H > 0 such that for all � , � ∈ ℕ
d
0
 , 

since ‖H�‖2 = 1 for all � ∈ ℕ
d
0
 , we have

Therefore, by definition of the associated weight function, and using the notation of 
(2.9), since |(�1∕2)�| = |��1∕2

1
⋯ �

�d∕2

d
| = (��)1∕2 , we obtain

Hence, (�� (f ))� ∈ Λ{M} and, more precisely, there exist � ≥ � , H,C > 0 and B ≥ 1 
such that

This proves that T is continuous in the Roumieu case [32, Proposition 24.7].
On the other hand, given � = (c� )�∈ℕd

0
∈ Λ{M} , let 𝜆,C∗ > 0 such that

T ∶ S{M} ⟶ Λ{M}

f ⟼ (�� (f ))�∈ℕd
0
∶=

(
∫
ℝd

f (x)H� (x)dx

)

�∈ℕd
0

‖f‖2,�(𝜆),C =∶ C1 < +∞.

��� (f )�2�� = �⟨f ,H�⟩�2�� ≤ �⟨f ,
√
2�����H�⟩�2 = �⟨f ,A�

−
(H�+�)⟩�2

=�⟨A�
+
(f ),H�+�⟩�2 ≤ ‖A�

+
(f )‖2

2
‖H�+�‖22

≤C2
1
B2ed(9

√
2HC)2���(M(�)

�
)2.

��� (f )�e��(�) (�
1∕2∕(9

√
2HC)) = sup

�∈ℕd
0,�

��� (f )�
����
�

�1∕2

9
√
2HC

������
M

(�)
�

≤ C1Be
d∕2.

(5.3)‖(�� (f ))�‖�(�),9
√
2HC

≤ Bed∕2‖f‖2,�(�),C.
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By Lemma 4, there exist � ≥ � and B1,B2 ≥ 1 such that

Then, by (3.2), there exist �′ ≥ � and B,C,H > 0 with C ≥ B2C
∗ , such that, by 

Lemma 10,

Since here |�1∕2| denotes the Euclidean norm of the multi‑index �1∕2 , we have

Hence,

Hence,

for C̃ =
∑

𝛾∈ℕd
0

(B2C
∗)2(d+1)∕((B2C

∗)2(d+1) + �𝛾�d+1) < +∞ . This shows that T−1 is 
continuous and, moreover, that (H� )� is an absolute Schauder basis in S{M}.

Let now f ∈ S(M) and 𝜆,C > 0 be given. We consider 0 < 𝜅 ≤ 𝜆 , H,B > 0 as in 
(3.3) (with � and H depending only on � ) and we set

By Lemma 8, we have

sup
𝛾∈ℕd

0

�c𝛾 �e𝜔�(𝜆) (𝛾
1∕2∕C∗) = ‖�‖

�(𝜆),C∗ =∶ C∗
1
< +∞.

e−��(�) (B2t)+��(�) (t) ≤ B1(1 + |t|)−2(d+1), t ∈ ℝ
d.

(5.4)

�c� � ⋅ ‖x���H�‖2 ≤�c� �(2HC)��+��M(��)

�+�
Be��(�) (�

1∕2∕C)

≤C∗
1
B(2HC)��+��M(��)

�+�
e−��(�) (�

1∕2∕C∗)+�
�(�) (�

1∕2∕(B2C
∗))

≤C∗
1
BB1(2HC)

��+��M(��)

�+�

�
1 +

�����
�1∕2

B2C
∗

�����

�−2(d+1)

.

(5.5)|�1∕2|2(d+1) = (�1 +…+ �d)
d+1 ≥ |�|d+1.

�
�∈ℕd

0

�c� � ⋅ ‖x���H�‖2 ≤C∗
1
BB1(2HC)

��+��M(��)

�+�

�
�∈ℕd

0

1�
1 +

���
�1∕2

B2C
∗

���
�2(d+1)

≤C∗
1
BB1(2HC)

��+��M(��)

�+�

�
�∈ℕd

0

1

1 +
���
�1∕2

B2C
∗

���
2(d+1)

=C∗
1
BB1(2HC)

��+��M(��)

�+�

�
�∈ℕd

0

(B2C
∗)2(d+1)

(B2C
∗)2(d+1) + ���d+1 .

(5.6)
����
�

𝛾∈ℕd
0

c𝛾H𝛾

����2,�(𝜅� ),2HC

≤ C∗
1
BB1C̃ = BB1C̃‖�‖�(𝜆),C∗ ,

C1 ∶= ‖f‖2,�(𝜅),C < +∞.

‖A�
+
f‖2 ≤ C1Be

d∕2(9
√
2HC)���M(�)

�
, � ∈ ℕ

d
0
.
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Hence, proceeding as in the Roumieu case, we deduce that, for all 𝜆,C > 0 , there 
exist 0 < 𝜅 ≤ 𝜆 and B,H > 0 such that

This shows that T is continuous in the Beurling case.
Now, if � = (c� )�∈ℕd

0
∈ Λ(M) , then by (3.3) and Lemma 10, for all 𝜆,C > 0 there 

exist 0 < 𝜅 ≤ 𝜆 , and H,B > 0 (with � and H depending only on � ) such that

By Lemma 4, there exist 0 < 𝜅′ ≤ 𝜅 and B1,B2 ≥ 1 such that

Since � ∈ Λ(M) , we have

Therefore, arguing as in the Roumieu case,

for B̃ = BB1

∑
𝛾∈ℕd

0

C2(d+1)∕(C2(d+1) + �𝛾�d+1) < +∞ . For all 𝜆, h > 0 , there exist 
then �′ ≤ � and h̃ = h∕(2HB2) > 0 such that

This shows that T−1 is continuous on S(M) and that (H� )� is an absolute Schauder 
basis in S(M) , which finishes the proof.   ◻

As in [28, Corollary 3.6], we also have that the Fourier transform is well adapted 
to our spaces and it is an isomorphism:

Corollary 1 Let M be a weight matrix satisfying (3.2) and (3.6) ((3.3) and (3.7)). 
Then the Fourier transform is an isomorphism in S{M} ( S(M)).

Now, we prove that the spaces of sequences are nuclear.

(5.7)‖(�� (f ))�‖�(�),9
√
2HC

≤ Bed∕2‖f‖2,�(�),C.

‖x���H�‖2 ≤ (2HC)��+��M(�)

�+�
Be��(�) (�

1∕2∕C).

e−��(��) (B2t)+��(�) (t) ≤ B1(1 + |t|)−2(d+1), t ∈ ℝ
d.

sup
𝛾∈ℕd

0

�c𝛾 �e𝜔�(𝜅�) (B2𝛾
1∕2∕C) = ‖�‖

�(𝜅� ),C∕B2
=∶ C1 < +∞.

�
𝛾∈ℕd

0

�c𝛾 � ⋅ ‖x𝛼𝜕𝛽H𝛾‖2 ≤C1B(2HC)
�𝛼+𝛽�M(𝜆)

𝛼+𝛽

⋅

�
𝛾∈ℕd

0

e−𝜔�(𝜅�) (B2𝛾
1∕2∕C)+𝜔

�(𝜅) (𝛾
1∕2∕C)

≤C1BB1(2HC)
�𝛼+𝛽�M(𝜆)

𝛼+𝛽

�
𝛾∈ℕd

0

1

(1 + �𝛾1∕2∕C�)2(d+1)

≤B̃C1(2HC)
�𝛼+𝛽�M(𝜆)

𝛼+𝛽
,

(5.8)
����
�

𝛾∈ℕd
0

c𝛾H𝛾

����2,�(𝜆),h

≤ B̃‖�‖
�(𝜅� ),h̃.
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Theorem 2 Let M = (M(𝜆)
𝛼
)𝜆>0,𝛼∈ℕd

0
 be a weight matrix satisfying (3.7). Then Λ(M) is 

nuclear.

Proof By (5.2) and [32, Prop. 28.16] (see also [10, Theorem  3.1] for a self‑con‑
tained proof in the case of countable lattices), the sequence space Λ(M) is nuclear if 
and only if

Moreover, by Lemma 5, condition (3.14) is satisfied. We can thus proceed as in the 
proof of Theorem 1 of [9] to prove that (3.14) implies that the series in (5.9) con‑
verges, and hence Λ(M) is nuclear. To this aim, we fix an index 𝜆 > 0 and N ∈ ℕ 
with N > 2d and remark that if the inequality (3.14) holds for � = 1∕j and � ≤ � , 
then it holds also if, instead of � , we put �� = 1∕h with h ∈ ℕ , h > [

1

𝜅
] + 1 , since 

�
(��) ≤ �

(�) for �′ ≤ � and hence �
�(�) ≤ �

�(��) . Then for � ≥ Ah (so that � ≥ Aj 
and � ≥ h > j and note that the constant A is also depending on the chosen N):

by our choice of N > 2d .   ◻

Concerning the Roumieu case, we have the following result.

Theorem 3 Let M = (M(𝜆)
𝛼
)𝜆>0,𝛼∈ℕd

0
 be a weight matrix satisfying (3.6). Then Λ{M} 

is nuclear.

Proof For

we consider the matrices

We observe that A is a Köthe matrix since its entries are strictly positive and 
a�,j ≤ a�,j+1 for every j ∈ ℕ . We consider now the space

Since ℕd
0
= ∪m∈ℕIm with Im = {� ∈ ℕ

d
0
∶ |�| ≤ m} and v𝛼,j > 0 for every � and j, 

we have that the matrix V satisfies the condition (D) of [5] (see also [4]). From [4, 

(5.9)∀j ∈ ℕ∃� ∈ ℕ,� > j ∶
∑
𝛾∈ℕd

0

e𝜔�(1∕j) (j𝛾
1∕2)−𝜔

�(1∕�) (�𝛾
1∕2) < +∞.

∑
𝛾∈ℕd

0

e𝜔�(1∕j) (j𝛾
1∕2)−𝜔

�(1∕�) (�𝛾
1∕2) ≤ ∑

𝛾∈ℕd
0
�{0}

e𝜔�(1∕j) (j𝛾
1∕2)−𝜔

�(1∕h) (Aj𝛾
1∕2) + 1

≤ ∑
𝛾∈ℕd

0
�{0}

e−N log |j𝛾1∕2|+B + 1 = eBj−N
∑

𝛾∈ℕd
0
�{0}

1

|𝛾|N∕2 + 1 < +∞,

a�,j ∶= e−��(j) (�
1∕2∕j),

A ∶=
(
a�,j

)
�∈ℕd

0
, j∈ℕ

, V ∶=
(
v�,j

)
�∈ℕd

0
, j∈ℕ

with v�,j = a−1
�,j
.

𝜆(M) ∶= {� = (c𝛼) ∈ ℂ
ℕ
d
0 ∶ ∀j ∈ ℕ,

∑
𝛼∈ℕd

0

|c𝛼|a𝛼,j < ∞}.
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Theorem  18(1)], we have that �(M) is distinguished, and then, from [4, Corollary 
8(f)] and (5.1) we get

Since a Fréchet space is nuclear if and only if its dual is nuclear [34, pg. 78], it is 
enough to prove that �(M) is nuclear; from [10, Theorem 3.1] this is true if and only 
if

By Lemma  5, we can now use (3.15) with � = k and with a fixed N > 2d ; since 
�
�(m) (t) ≤ �

�(�) (t) for every m ≥ � , we can replace in (3.15) � by m = max{�,Ak} , 
obtaining that for every k ∈ ℕ there exists m ≥ k such that

for every � ≠ 0 . Since A ≤ m∕k we obtain

for � ≠ 0 ; since N > 2d we have that (5.10) holds, and estimating as in Theorem 2, 
we get the conclusion.   ◻

Corollary 2 If M = (M(𝜆)
𝛼
)𝜆>0,𝛼∈ℕd

0
 is a weight matrix satisfying (3.3) and (3.7), then 

the space S(M) is nuclear. If M satisfies (3.2) and (3.6), then the space S{M} is 
nuclear.

Proof The Beurling case follows from Theorems 1 and 2, and the Roumieu case fol‑
lows from Theorems 1 and 3.  ◻

Proposition 4 Let M = (M(𝜆)
p
)𝜆>0,p∈ℕ0

 be a weight matrix (with d = 1 ), such that 
each sequence �(�) satisfies (2.2) and limp→∞(Mp)

1∕p = +∞ . Assume, moreover, 
that

satisfies �(�) ≤ �(�) for all 0 < 𝜆 ≤ 𝜅 and �(�)

0
= 1 for all 𝜆 > 0 . Then the following 

conditions are equivalent: 

(a) ∀j ∈ ℕ ∃� ∈ ℕ,� > j ∶
∑+∞

k=1
e𝜔�(1∕j) (jk

1∕2)−𝜔
�(1∕�) (�k

1∕2) < +∞;
(b) ∀ 𝜆 > 0 ∃ 0 < 𝜅 < 𝜆,A ≥ 1 ∀ p ∈ ℕ ∶ M

(𝜅)

p+1
≤ Ap+1M(𝜆)

p
.

(
�(M)

)�
b
= Λ{M}.

(5.10)∀k ∈ ℕ∃m ∈ ℕ,m > k ∶
∑
𝛾∈ℕd

0

e𝜔�(m) (𝛾
1∕2∕m)−𝜔

�(k) (𝛾
1∕2∕k) < +∞.

�
�(m)

(
�1∕2

m

)
+ N log

|||||
�1∕2

m

|||||
≤ �

�(k)

(
A
�1∕2

m

)
+ B,

e��(m) (�
1∕2∕m)−�

�(k) (�
1∕2∕k) ≤ eBmN 1

|�1∕2|N ≤ eBmN 1

|�|N∕2 ,

�(�)
p

∶=
M(�)

p

M
(�)

p−1

, p ∈ ℕ,
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Proof If condition (b) is satisfied, then (3.7) is satisfied and hence also condition (a), 
as we already saw in the proof of Theorem 2.

Let us now assume condition (a) and prove (b). To this aim let us first remark that

is decreasing. Indeed,

The first difference �1 = �
�(1∕�) (�k1∕2) − �

�(1∕�) (jk1∕2) is increasing since by defini‑
tion t ↦ �

�(1∕�) (et) is convex (see the proof of Theorem 1 in [9] for the implication 
that the convexity implies that �1 is increasing).

To prove that also the second difference �2 is increasing, we set

and remark that, by (2.2) (see [26, formula (3.11)]),

Then

is an increasing function of t since

by the assumption �(1∕�)
p ≤ �

(1∕j)
p  for � > j.

Therefore, �1 and �2 are increasing and we have thus proved that (5.11) is 
decreasing. This condition together with assumption (a) implies that

There exists then A ≥ 1 such that

and hence, for all k ∈ ℕ,

Choosing, for every t ≥ 1 , the smallest k ∈ ℕ such that jk1∕2 ∈ [t, (j + 1)t] , we finally 
have

(5.11)k ⟼ �
�(1∕j) (jk1∕2) − �

�(1∕�) (�k1∕2)

�
�(1∕�) (�k1∕2) − �

�(1∕j) (jk1∕2) =
(
�
�(1∕�) (�k1∕2) − �

�(1∕�) (jk1∕2)
)

+
(
�
�(1∕�) (jk1∕2) − �

�(1∕j) (jk1∕2)
)

=∶�1 + �2.

Σ
�(�) (t) ∶= #{p ∈ ℕ ∶ �(�)

p
≤ t}

�
�(�) (t) = ∫

t

0

Σ
�(�) (s)

s
ds.

�
�(1∕�) (t) − �

�(1∕j) (t) = ∫
t

0

Σ
�(1∕�) (s) − Σ

�(1∕j) (s)

s
ds

Σ
�(1∕�) (s) ≥ Σ

�(1∕j) (s), � > j,

lim
k→+∞

ke��(1∕j) (jk
1∕2)−�

�(1∕�) (�k
1∕2) = 0.

sup
k∈ℕ

ke��(1∕j) (jk
1∕2)−�

�(1∕�) (�k
1∕2) ≤ A

�
�(1∕j) (jk1∕2) − �

�(1∕�) (�k1∕2) ≤ − log k + logA ≤ − log(jk1∕2) + log(jA).
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Since (5.12) is trivial for 0 < t ≤ 1 , we have proved that condition (ii) of Lemma 2 is 
satisfied for � = �

(1∕j) and � = �
(1∕�) and hence, from (i) of Lemma 2, there exists 

Ã ≥ 1 such that

Then, for all 𝜆 > 0 , choosing j ∈ ℕ so that 1
j
≤ � , there exists 𝜅 =

1

�
<

1

j
≤ 𝜆 such 

that condition (b) holds.  ◻

Proposition 4 yields now the following result.

Theorem 4 Let M = (M(𝜆)
p
)𝜆>0,p∈ℕ0

 be a weight matrix as in Proposition 4. Then the 
space Λ(M) is nuclear if and only if condition (3.7) is satisfied.

Proof It follows from Theorem 2 and, in particular, (5.9).  ◻

Theorem 5 Let M = (M(𝜆)
p
)𝜆>0,p∈ℕ0

 be a weight matrix as in Proposition 4. Then the 
space Λ{M} is nuclear if and only if condition (3.6) is satisfied.

Proof By the proof of Theorem 3 we have that Λ{M} is nuclear if and only if (5.10) 
is satisfied, and this is equivalent to (3.6) since, analogously as in Proposition 4, the 
following two conditions are equivalent: 

(a)�  ∀ j ∈ ℕ ∃� ∈ ℕ,� > j ∶
∑+∞

k=1
e𝜔�(�) (k

1∕2∕�)−𝜔
�(j) (k

1∕2∕j) < +∞,
(b)�  ∀ 𝜆 > 0 ∃ 𝜅 > 𝜆,A ≥ 1 ∀ p ∈ ℕ ∶ M

(𝜆)

p+1
≤ Ap+1M(𝜅)

p
.

 Indeed, (b)� implies (3.6) and hence (a)� , i.e. (5.10), in the one‑dimensional case, 
by the proof of Theorem 3.

Conversely, if (a)′ holds then for every fixed j ∈ ℕ , and � > j as in (a)′, there 
exists A > � such that

since

is decreasing, similarly as in the proof of Proposition 4. Then, for all k ∈ ℕ,

(5.12)

�
�(1∕j) (t) + log t ≤�

�(1∕j) (jk1∕2) + log(jk1∕2)

≤�
�(1∕�) (�k1∕2) + log(jA)

≤�
�(1∕�)

(
�

j
(j + 1)t

)
+ log(jA).

M
(1∕�)

p+1
≤ Ãp+1M(1∕j)

p
, ∀p ∈ ℕ0.

sup
k∈ℕ

ke��(�) (k
1∕2∕�)−�

�(j) (k
1∕2∕j) ≤ A

k ⟼ �
�(�) (k1∕2∕�) − �

�(j) (k1∕2∕j)



Page 29 of 39 14Nuclear global spaces of ultradifferentiable functions in…

If t ≥ 1 we can choose a smallest k ∈ ℕ such that k1∕2∕� ∈ [t, (1 +
1

�
)t] and obtain 

that

Since (5.13) is trivial for 0 < t ≤ 1 , we have that

for A =
�

j

(
1 +

1

�

) ≥ 1 and B = log(A∕�) > 0 . By Lemma  2 with � = �
(j) and 

� = �
(�) , for every 𝜆 > 0 we can choose j ∈ ℕ , j ≥ � so that (b)� is satisfied for 

𝜅 = � > j ≥ 𝜆 .   ◻

6  Rapidly decreasing ultradifferentiable functions

We shall now consider weight functions � defined as below:

Definition 1 A weight function is a continuous increasing function 
�∶ [0,+∞) → [0,+∞) such that 

(�)  ∃L ≥ 1 ∀t ≥ 0 ∶ �(2t) ≤ L(�(t) + 1);
(�)  �(t) = O(t2) as t → +∞;
(�)  log t = o(�(t)) as t → +∞;
(�)  ��(t) ∶= �(et) is convex on [0,+∞).

 Then we define �(t) ∶= �(|t|) if t ∈ ℝ
d.

It is not restrictive to assume �|[0,1] ≡ 0 . As usual, we define the Young conjugate 
�∗
�
 of �� by

which is an increasing convex function such that �∗∗
�

= �� and �∗(s)∕s is increas‑
ing [12, 24]. We remark that condition (�) and the stronger condition �(t) = o(t2) 
as t tends to infinity are needed in the Roumieu and Beurling cases for Corollary 5 
and Theorem 6. On the other hand, condition (�) guarantees that �∗

�
 is finite, so that, 

from the properties of �∗
�
 (see [12] or [8, Lemma A.1]) we easily obtain (cf. [37]):

�
�(�) (k1∕2∕�) − �

�(j) (k1∕2∕j) ≤ − log k + logA ≤ − log(k1∕2∕�) + log(A∕�).

(5.13)

�
�(�) (t) + log t ≤�

�(�) (k1∕2∕�) + log(k1∕2∕�)

≤�
�(j) (k1∕2∕j) + log(A∕�)

≤�
�(j)

(
�

j

(
1 +

1

�

)
t

)
+ log(A∕�).

𝜔
�(�) (t) + log t ≤ 𝜔

�(j) (At) + B, ∀t > 0,

�∗
�
(s) ∶= sup

t≥0
{ts − ��(t)},
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Lemma 11 Let � ∶ [0,+∞) → [0,+∞) be a weight function as in Definition 1, and 
set

Then W (�)
�

∈ ℝ and the weight matrix

satisfies the following properties: 

 (i) W
(𝜆)

0
= 1, 𝜆 > 0;

 (ii) (W (𝜆)
𝛼
)2 ≤ W (𝜆)

𝛼−ei
W

(𝜆)
𝛼+ei

, 𝜆 > 0, 𝛼 ∈ ℕ
d
0
 with �i ≠ 0 , and i = 1,… , d;

 (iii) �
(𝜅) ≤ �

(𝜆), 0 < 𝜅 ≤ 𝜆;
 (iv) W

(𝜆)

𝛼+𝛽
≤ W (2𝜆)

𝛼
W

(2𝜆)

𝛽
, 𝜆 > 0, 𝛼, 𝛽 ∈ ℕ

d
0
;

 (v) ∀h > 0 ∃A ≥ 1 ∀𝜆 > 0 ∃D ≥ 1 ∀𝛼 ∈ ℕ
d
0
∶ h|𝛼|W (𝜆)

𝛼
≤ DW (A𝜆)

𝛼
;

 (vi) Both conditions (3.6) and (3.7) are valid;
 (vii) Conditions (3.4) and (3.5) are satisfied for � = � and A = 1.

Proof Let us first remark that condition (�) of Definition 1 ensures that W (�)
�

∈ ℝ for 
all 𝜆 > 0 and � ∈ ℕ

d
0
 . Condition (i) is trivial since �∗

�
(0) = 0 . Condition (ii) follows 

from the convexity of �∗
�
:

The monotonicity property (iii) is clear since �∗
�
(s)∕s is increasing. Properties (iv), 

(v) and (vii) follow from [8, Lemma A.1]. Indeed, from [8, Lemma A.1(ix)]

From [8, Lemma A.1(iv)] with A = L2 + L and B = L2 , where L is the constant of 
condition (�) of Definition 1,

for all �� ≥ �B[log h+1] and Λh,� ∶= e
1

�

(
1+

1

L

)
[log h+1] . From [8, Lemma A.1(ii)]

Finally, (vi) is an immediate consequence of (iv).  ◻

Let us now define the spaces of rapidly decreasing �‑ultradifferentiable func‑
tions, in the Roumieu case

(6.1)W (𝜆)
𝛼

∶= e
1

𝜆
𝜑∗
𝜔
(𝜆|𝛼|)

, 𝜆 > 0, 𝛼 ∈ ℕ
d
0
.

(6.2)M𝜔 ∶= (�(𝜆))𝜆>0 = (W (𝜆)
𝛼
)𝜆>0, 𝛼∈ℕd

0

e
2

�
�∗
�
(�|�|) = e

2

�
�∗
�

(
�(|�|−1)+�(|�|+1)

2

)
≤ e

1

�
�∗
�
(�|�−ei|)e

1

�
�∗
�
(�|�+ei|).

e
1

�
�∗
�
(�|�+�|) ≤ e

1

2�
�∗
�
(2�|�|)+ 1

2�
�∗
�
(2�|�|)

.

h|�|e
1

�
�∗
�
(�|�|) ≤ Λh,�e

1

��
�∗
�
(��|�|)

e
1

�
�∗
�
(�|�|)+ 1

�
�∗
�
(�|�|) ≤ e

1

�
�∗
�
(�|�+�|)

.
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and in the Beurling case

From Lemma 11(iv) and (vii) (see also [6, Thm. 4.8]):

and

We refer to [6, 8, 22] for more equivalent seminorms on S(�)(ℝ
d) , if �(t) = o(t2).

We can also insert h|�+�| at the denominator (for some h > 0 in the Roumieu 
case and for all h > 0 in the Beurling case) by Lemma  11(v). In particular, we 
have the following

Proposition 5 Let � be a weight function and M� the weight matrix defined in (6.1), 
(6.2). We have S{M�}

(ℝd) = S{�}(ℝ
d) and S(M�)

(ℝd) = S(�)(ℝ
d) and the equalities 

are also topological.

Remark 4 We observe that for the weight function �(t) = logs(1 + t) , for some s > 1 , 
we have that S(�)(ℝ) never equals S(Mp)

(ℝ) for any sequence (Mp)p∈ℕ0
 . Hence, 

S(�)(ℝ) cannot be defined with sequences as in [28] when (Mp) satisfies (M0), (M1) 
and (M2)� (see [11] for the definition of (M0); (M1) and (M2)� are recalled in (2.2) 
and (2.4)).

Indeed, by [11, Example 20], E(�)(ℝ) ≠ E(Mp)
(ℝ) for any sequence (Mp) as consid‑

ered just above, where E(�)(ℝ) and E(Mp)
(ℝ) are the spaces of ultradifferentiable 

functions defined by weights and sequences (for the definitions see [11]). We fix a 
sequence (Mp) and prove that S(�)(ℝ) ≠ S(Mp)

(ℝ) . Clearly, we can assume that (Mp) 
is non‑quasianalytic since the weight � is non‑quasianalytic. In particular, (Mp) sat‑
isfies (M0) (see [11], condition (M3)� , and use also (M1)). If f ∈ E(Mp)

(ℝ) ⧵ E(�)(ℝ) , 
then there are a compact set K ⊆ ℝ and m ∈ ℕ such that

S{𝜔}(ℝ
d) ∶=

�
f ∈ C∞(ℝd) ∶ ∃𝜆 > 0,C > 0 s.t.

sup
𝛼,𝛽∈ℕd

0

‖x𝛼𝜕𝛽 f‖∞e−
1

𝜆
𝜑∗
𝜔
(𝜆�𝛼+𝛽�) ≤ C

�

=
�
f ∈ C∞(ℝd) ∶ ∃𝜆 > 0,C > 0 s.t.

‖f‖∞,�(𝜆) ∶= sup
𝛼,𝛽∈ℕd

0

‖x𝛼𝜕𝛽 f‖∞
W

(𝜆)

𝛼+𝛽

≤ C
�
,

S(𝜔)(ℝ
d) ∶=

�
f ∈ C∞(ℝd) ∶ ∀𝜆 > 0∃C𝜆 > 0 ∶ ‖f‖∞,�(𝜆) ≤ C𝜆

�
.

S{𝜔}(ℝ
d) =

�
f ∈ C∞(ℝd) ∶ ∃𝜆 > 0,C > 0 ∶ sup

𝛼,𝛽∈ℕd
0

‖x𝛼𝜕𝛽 f‖∞
W

(𝜆)
𝛼 W

(𝜆)

𝛽

≤ C
�

S(𝜔)(ℝ
d) =

�
f ∈ C∞(ℝd) ∶ ∀𝜆 > 0∃C𝜆 > 0 ∶ sup

𝛼,𝛽∈ℕd
0

‖x𝛼𝜕𝛽 f‖∞
W

(𝜆)
𝛼 W

(𝜆)

𝛽

≤ C𝜆

�
.
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Hence,

Since K is compact we can assume that the sequence (xn) converges to some x0 ∈ K . 
Let � ∈ D(Mp)

(ℝ) (the space of functions in E(Mp)
(ℝ) with compact support) with 

� ≡ 1 in a neighbourhood of x0 . Then g = f𝜑 ∈ D(Mp)
(ℝ) ⊆ S(Mp)

(ℝ) but, for n suf‑
ficiently large,

and hence g ∉ S(�)(ℝ) (see the definition of S(�)(ℝ) above).
Analogously, for f ∈ E(�)(ℝ) ⧵ E(Mp)

(ℝ) we can construct g ∈ S(�)(ℝ) ⧵ S(Mp)
(ℝ).

The same arguments are valid for the Roumieu case and for dimension bigger 
than one (considering always isotropic classes).

The following Lemma was proved in dimension 1 in [25, Lemma 2.5]; here we 
give a version of it in dimension d.

Lemma 12 Let � be a weight function. Then there exists a constant B > 0 and, for 
every 𝜆 > 0 , there exists C𝜆 > 0 , such that

Proof For t = 0 the thesis is trivial, so we can consider t ≠ 0 . Since |t�| ≤ |t||�| for 
every multi‑index � , we have

so the first inequality of (6.3) is proved. Now, similar to [37, proof of Lemma 5.7], 
we can prove that, for every t ∈ ℝ

d such that |t| ≥ e�
∗
�
(�)∕�,

Observe now that for every t ∈ ℝ
d , we have �t� ≤ √

d�t�∞ ≤ d�t�∞. Then by [8, 
Remark 2.2(iii)],

for Dd = L + L2 +…+ Ld−1 , where L is the constant of condition (�) in Definition 1.

sup
j∈ℕ0

sup
x∈K

|f (j)(x)|e−m�∗
�

(
j

m

)
= +∞.

∀n ∈ ℕ ∃xn ∈ K, jn ∈ ℕ such that |f (jn)(xn)| ≥ ne
m�∗

�

(
jn

m

)
.

|g(jn)(xn)|
e
m�∗

�

(
jn

m

) =
|f (jn)(xn)|
e
m�∗

�

(
jn

m

) ≥ n ⟶ +∞,

(6.3)��
�(�) (t) ≤ �(t) ≤ B��

�(�) (t) + C�, t ∈ ℝ
d.

��
�(�) (t) =� sup

�∈ℕd
0,t

log
|t�|

e�
∗
�
(�|�|)∕� ≤ sup

�∈ℕd
0,t

{
�|�| log |t| − �∗

�
(�|�|)}

≤�∗∗
�
(log |t|) = �(t),

(6.4)�(t) ≤ 2 sup
M∈ℕ0

{
�M log |t| − �∗

�
(�M)

}
.

(6.5)�(t) ≤ �(d|t|∞) ≤ Dd

(
�(|t|∞) + 1

)
,
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Fix now t ∈ ℝ
d with |t| ≥ e�

∗
�
(�)∕� and let j0 be such that |t|∞ = |tj0 | ; for every 

M ∈ ℕ0 , we then write �M ∶= Mej0 . We then have |t|M
∞
= |t�M | , and so by (6.4) we 

obtain

since �M ∈ ℕ
d
0,t

 due to the fact that tj0 ≠ 0 (we are in fact considering t ∈ ℝ
d such 

that |t| ≥ e�
∗
�
(�)∕� ). By (6.5) we then obtain

for |t| ≥ e�
∗
�
(�)∕� . Then the second inequality of (6.3) holds for

  ◻

Lemma 13 Let � be a weight function and consider the weight matrix M� as 
defined in (6.1), (6.2). Then for r > 0 : 

(a) �(t) = O(t1∕r) as t → +∞ if and only if

(b) �(t) = o(t1∕r) as t → +∞ if and only if

Moreover, in the conditions above we can replace “ ∀ � ” by “ ∃ �”.
Proof We only consider the case “ ∀ � ” since the proof for the case “ ∃ � ” is 
analogous.

(a): If �(t) = O(t1∕r) as t → +∞ , there exists c ≥ 1 such that

and hence

Then

�(|t|∞) =�(|tj0 |) ≤ 2� sup
M∈ℕ0

log
|t�M |

e�
∗
�
(�|�M |)∕�

≤2� sup
�∈ℕd

0,t

log
|t�|

e�
∗
�
(�|�|)∕� = 2��

�(�) (t),

�(t) ≤ 2�Dd��(�) (t) + Dd

B = 2Dd and C� = Dd + sup
|t|≤e�∗� (�)∕�

�(t).

(6.6)∀ 𝜆 > 0 ∃C,D ≥ 1 ∀𝛼 ∈ ℕ
d ∶ 𝛼r𝛼 ≤ CD|𝛼|W (𝜆)

𝛼
;

(6.7)∀ 𝜆,D > 0 ∃C ≥ 1 ∀𝛼 ∈ ℕ
d ∶ 𝛼r𝛼 ≤ CD|𝛼|W (𝜆)

𝛼
.

�(t) ≤ ct1∕r + c, t ≥ 0,

��(y) = �(ey) ≤ cey∕r + c, y ≥ 0.
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Therefore, for every 𝜆 > 0 and j ∈ ℕ with j ≥ c

r�
 , choosing x = �j and multiplying 

by 1∕� in (6.8), we have

and hence, for j ≥ c

r�
,

for C̃𝜆 = ec∕𝜆 , D� = max
{(

ec

�r

)r

, 1
}

 , and W̃ (𝜆)

j
= e𝜑

∗
𝜔
(𝜆j)∕𝜆 . Enlarging the constants 

C̃𝜆,D𝜆 we have (6.9) for all j ∈ ℕ . Then

and so we obtain (6.6) for C = C̃d
𝜆
 in view of Lemma 11(vii).

Conversely, if (6.6) holds then, by definition of associated function we obtain, for 
z ∈ ℝ

d,

Consider now j such that zj ≠ 0 (otherwise the corresponding addend in the previous 
sum is 0). A simple computation shows that

We then have

By Lemma 12, we have �(z) = �(|z|) = O(|z|1∕r) as |z| → +∞ for z ∈ ℝ
d , which is 

equivalent to �(t) = O(t1∕r) as t → +∞ for t ∈ ℝ.
(b): If �(t) = o(t1∕r) as t → +∞ , then for every D > 0 there exists c > 0 such that

(6.8)
�∗
�
(x) = sup

y≥0
{xy − ��(y)} ≥ sup

y≥0
{xy − cey∕r} − c

=xr
(
log

xr

c
− 1

)
− c, if x ≥ c

r
.

1

�
�∗
�
(�j) ≥ jr

(
log

�jr

c
− 1

)
−

c

�
= log jjr + jr log

�r

ec
−

c

�

(6.9)jjr ≤ e
1

𝜆
𝜑∗
𝜔
(𝜆j)

(
ec

𝜆r

)jr

e
c

𝜆 ≤ C̃𝜆D
j

𝜆
W̃

(𝜆)

j

𝛼r𝛼 = 𝛼
r𝛼1
1

… 𝛼
r𝛼d
d

≤ C̃𝜆D
𝛼1
𝜆
W̃ (𝜆)

𝛼1
… C̃𝜆D

𝛼d
𝜆
W̃ (𝜆)

𝛼d
,

�
�(�) (z) = sup

�∈ℕd
0,z

log
|z�|
W

(�)
�

≤ sup
�∈ℕd

0,z

log |z�|CD|�|
�r�

≤ sup
�∈ℕd

0,z

(
logC +

d∑
j=1

log
(|zj|D)�j
�
r�j

j

)
.

sup
𝛼j∈ℕ

log
(|zj|D)𝛼j
𝛼
r𝛼j

j

≤ sup
s>0

log
(|zj|D)s

srs
≤ r

e
(|zj|D)1∕r.

(6.10)�
�(�) (z) ≤ logC +

d∑
j=1

r

e
(|zj|D)1∕r ≤ logC +

dr

e
(|z|D)1∕r.

�(t) ≤ Dt1∕r + c, t ≥ 0.
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Proceeding as in (a) we have

and hence

and (6.7) is satisfied by the arbitrariness of D > 0.
Conversely, if (6.7) holds then, proceeding as in (a), we have that for every 

𝜆,D > 0 there exists C > 0 such that (6.10) is valid and, therefore, by Lemma 12, 
�(z) = o(|z|1∕r) as |z| → +∞ for z ∈ ℝ

d , or, equivalently, �(t) = o(t1∕r) as t → +∞ .  
 ◻

Corollary 3 Let � be a weight function. We have

(a) The Hermite functions belong to S{�}(ℝ
d) if and only if �(t) = O(t2) as t → +∞.

(b) The Hermite functions belong to S(�)(ℝ
d) if and only if �(t) = o(t2) as t → +∞.

Proof By Lemmas 13 and 11 and Proposition 3, �(t) = O(t2) as t → +∞ if and only 
if M� satisfies (3.2) if and only if the space S{M�}

(ℝd) contains the Hermite func‑
tions; while �(t) = o(t2) as t → +∞ if and only if M� satisfies (3.3) if and only if 
S(M�)

(ℝd) contains the Hermite functions.   ◻

At this point, some considerations are worthy to be expressed. Among all classes 
of ultradifferentiable functions defined by global estimates, and in particular classes 
of rapidly decreasing ultradifferentiable functions, the Gel’fand–Shilov spaces 
Ss(ℝ

d) (Roumieu) and Σs(ℝ
d) (Beurling) have been largely investigated. If s ≥ 1∕2 , 

the space Ss(ℝ
d) consists of those smooth functions f such that there is C > 0 for 

which for any �, � ∈ ℕ
d
0
 and any x ∈ ℝ

d we have |x��� f (x)| ≤ C|�+�|+1|� + �|!s . 
While Σs(ℝ

d) is the space of all the smooth functions f such that for each 
C > 0 there is D > 0 such that for any �, � ∈ ℕ

d
0
 and any x ∈ ℝ

d we have 
|x��� f (x)| ≤ DC|�+�||� + �|!s . For s > 1 , they correspond to the Schwartz class 
in the context of Gevery classes (Roumieu and Beurling). In this setting the value 
s = 1∕2 is critical since Ss(ℝ

d) ≠ {0} if and only if s ≥ 1∕2 , while Σs(ℝ
d) ≠ {0} if 

and only if s > 1∕2 (see [35]). Under the above conditions the Hermite functions 
constitute a basis for the Gel’fand–Shilov spaces Ss(ℝ

d) and Σs(ℝ
d) . In fact, Ss(ℝ

d) 
and Σs(ℝ

d) are the subspaces of S(ℝd) consisting of those functions f that can be 
expressed through Hermite expansions with coefficients c� satisfying

for some c, r > 0 (for every r > 0 ), as was shown by Zhang [41] (see also [13, 29, 
36]). The critical exponent s = 1∕2 for the Gel’fand–Shilov spaces is closely related 

�∗
�
(x) ≥ xr

(
log

xr

D
− 1

)
− c, for x ≥ D

r
,

�r� ≤ ec∕�
(
eD

�r

)r|�|
W (�)

�

|c�(f )| ≤ ce−r|�|1∕2s
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to condition �(t) = O(t2) as t → ∞ for the space S{�}(ℝ
d) , as we can see in the fol‑

lowing corollary, which is a consequence of Lemma 13 applied to r = 1∕2 . On the 
other hand, we observe that the inclusion Σ1∕2(ℝ

d) ⊆ S(𝜔)(ℝ
d) trivially holds since 

Σ1∕2(ℝ
d) = {0}.

Corollary 4 Let � be a weight function. If �(t) = O(t2) as t → ∞ , then the Gel’fand–
Shilov space S1∕2(ℝ

d) is continuously embedded in S{�}(ℝ
d).

Proof We consider the weight function �2(t) = max(0, t2 − 1) and its corresponding 
weighted matrix as defined in (6.1), i.e. M𝜔2

= (W (𝜆)
𝛼
)𝜆>0, 𝛼∈ℕd

0
 , where 

W (�)
�

∶= e
1

�
�∗
�2
(�|�|) . A straightforward calculation and Stirling’s formula show that 

there are two constants A,C > 0 such that for each 𝜆 > 0 , there are B𝜆,D𝜆 > 0 satis‑
fying that for any � ∈ ℕ

d
0
 , we have

This gives immediately that S1∕2(ℝ
d) = S{M�2

} . Now, by an application of Proposi‑
tion 5 we get S1∕2(ℝ

d) = S{�2}
(ℝd) . On the other hand, by Lemma 13 applied in the 

particular case r = 1∕2 (and again Proposition 5 and Stirling’s formula) we have

for every weight function � such that �(t) = O(t2) as t → ∞ , which concludes the 
proof.  ◻

For a weight function � we now consider the sequence spaces

Proposition 6 Let � be a weight function and M� the weight matrix defined by (6.1), 
(6.2). Then Λ{�} = Λ{M�}

 and Λ(�) = Λ(M�)
 and the equalities are also topological.

Proof From Lemma 12 with � = j (and taking B ∈ ℕ ), we have

and, conversely, e��(j) (�
1∕2∕j) ≤ e

1

j
�(�1∕2∕j)

. This proves the Roumieu case. Taking 
� = 1∕j we prove analogously the Beurling case.  ◻

We now easily deduce the following consequence of Theorem 1.

B�A
|�|�|�|∕2|�|!1∕2 ≤ W (�)

�
≤ D�C

|�|�|�|∕2|�|!1∕2.

S1∕2(ℝ
d) ⊆ S{M𝜔}

= S{𝜔}(ℝ
d),

Λ{𝜔} ∶= {� = (c𝛼) ∈ ℂ
ℕ
d
0 ∶ ∃ j ∈ ℕ, ‖�‖𝜔,j ∶= sup

𝛼∈ℕd
0

�c𝛼�e
1

j
𝜔(𝛼1∕2∕j)

< +∞},

Λ(𝜔) ∶= {� = (c𝛼) ∈ ℂ
ℕ
d
0 ∶ ∀ j ∈ ℕ, ‖�‖𝜔,1∕j = sup

𝛼∈ℕd
0

�c𝛼�ej𝜔(𝛼1∕2j) < +∞}.

e
1

Bj
�
(

�1∕2

Bj

)
≤ e

�
�(j)

(
�1∕2

Bj

)
+

Cj

Bj ≤ e
Cj

Bj e��(j) (�
1∕2∕j)
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Corollary 5 Let � be a weight function. The Hermite functions are an absolute 
Schauder basis in S{�}(ℝ

d) and

defines an isomorphism.

If moreover �(t) = o(t2) as t → +∞ , then the Hermite functions are an absolute 
Schauder basis in S(�)(ℝ

d) and

as defined above is also an isomorphism.

We finally have

Theorem  6 If � is a weight function, then S{�}(ℝ
d) is nuclear. If, moreover, 

�(t) = o(t2) as t → +∞ , then S(�)(ℝ
d) is nuclear.
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