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We construct supersymmetric AdS3 × Σ solutions of minimal gauged supergravity in D ¼ 5, where Σ is
a two-dimensional orbifold known as a spindle. Remarkably, these uplift on S5, or more generally on any
regular Sasaki-Einstein manifold, to smooth solutions of type IIB supergravity. The solutions are dual to
d ¼ 2, N ¼ ð0; 2Þ SCFTs and we show that the central charge for the gravity solution agrees with a field
theory calculation associated with D3-branes wrapped on Σ.
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Introduction.—Important insights into strongly coupled
supersymmetric conformal field theories (SCFTs) can be
obtained by realizing them as the renormalization group
fixed points of compactifications of higher-dimensional
field theories. Such SCFTs can be constructed by starting
with the field theories arising on the world volumes of
branes in string theory or M theory, wrapping them on a
compact manifold Σ, and then flowing to the infrared (IR).
In favorable circumstances these configurations can be

described within the AdS=CFT correspondence by brane
solutions of D ¼ 10=11 supergravity. Such solutions have
a boundary of the form AdSdþ1 ×M, whereM is a compact
manifold, which describes the ultraviolet (UV) of the SCFT
in d spacetime dimensions. They also have near horizon
geometries of the schematic form AdSdþ1−n × Σ ×M,
which describes the SCFT in d − n dimensions arising
in the IR, where Σ has dimension n. After a Kaluza-Klein
reduction of the D ¼ 10=11 supergravity theory on M, to
obtain a gravity theory in dþ 1 spacetime dimensions,
these solutions may be viewed as black branes in AdSdþ1

with horizon Σ.
Such solutions were first constructed in the foundational

work [1] and describe M5-branes and D3-branes wrapping
Riemann surfaces of constant curvature, with genus g > 1.
Subsequently there have been many generalizations includ-
ing wrapping manifolds of higher dimension, relaxing the
constant curvature condition, allowing for punctures, etc.
(e.g., Refs. [2–4]). In all these developments, super-
symmetry is preserved by demanding that the field theory

arising on the brane world volume is “topologically
twisted” [5,6]. This involves a specific coupling both to
the metric on Σ and to external R-symmetry gauge fields.
An important consequence of this twisting is that the
Killing spinors preserved by the solution are independent
of the coordinates of Σ.
Here we discuss a class of supersymmetric solutions

which have fundamentally new features. We present
AdS3 × Σ solutions ofD ¼ 5minimal gauged supergravity
which we interpret as the near horizon limit of black brane
solutions associated with D3-branes wrapped on Σ. The
first new feature is that supersymmetry is not realized by a
topological twist. The second is that Σ is not a compact
manifold but an orbifold [7]. More specifically, we will
consider the weighted projective space Σ ¼ WCP1

½n−;nþ�,
also known as a spindle. This is topologically a two-
sphere but with conical deficit angles 2πð1 − 1=n∓Þ at the
poles, specified by two coprime positive integers n∓, with
n− ≠ nþ [8].
Remarkably, after uplifting the AdS3 × Σ solutions on

specific Sasaki-Einstein five-manifolds, SE5, to obtain
solutions of type IIB supergravity, they become completely
smooth [9]. Moreover, the resulting AdS3 ×M7 solutions
are precisely those of Ref. [11]. Our construction suggests
that the d ¼ 2, N ¼ ð0; 2Þ SCFTs dual to the AdS3 ×M7

solutions of Ref. [11] arise from compactifying d ¼ 4,
N ¼ 1 SCFTs on a spindle, where the d ¼ 4 theories are
dual to AdS5 × SE5. This includes the case of N ¼ 4

SYM, where SE5 ¼ S5. We make a precision test of this
interpretation: we compute the central charge and super-
conformal R-symmetry of the d ¼ 2 field theories using
anomaly polynomials and c extremization [12] and find
exact agreement with the gravity result [11].
D ¼ 5 solutions.—The equations of motion for D ¼ 5

minimal gauged supergravity [13] are given by
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Rμν ¼ −4gμν þ
2

3
FμρF

ρ
ν −

1

9
gμνFρσFρσ;

d � F ¼ −
2

3
F ∧ F; ð1Þ

where F ¼ dA, with A the Abelian R-symmetry gauge
field. A solution is supersymmetric if it admits a Killing
spinor satisfying

�
∇μ −

i
12

ðΓ νρ
μ − 4δνμΓρÞFνρ −

1

2
Γμ − iAμ

�
ϵ ¼ 0; ð2Þ

where ϵ is a Dirac spinor and fΓμ;Γνg ¼ 2gμν.
The supersymmetric solution of interest is given by

ds25 ¼
4y
9
ds2AdS3 þ ds2Σ; A ¼ 1

4

�
1 −

a
y

�
dz: ð3Þ

Here ds2AdS3 is a unit radius metric on AdS3, while

ds2Σ ¼ y
qðyÞ dy

2 þ qðyÞ
36y2

dz2; ð4Þ

is the metric on the horizon Σ and

qðyÞ ¼ 4y3 − 9y2 þ 6ay − a2; ð5Þ

with a a constant.
Assuming a ∈ ð0; 1Þ the three roots yi of qðyÞ are all real

and positive. Defining y1 < y2 < y3, we then take y ∈
½y1; y2� to obtain a positive definite metric (4) on Σ.
However, as y approaches y1 and y2 it is not possible to
remove the conical deficit singularities at both roots by a
single choice of period Δz for z, to obtain a smooth two-
sphere. Instead we find that if

a ¼ ðn− − nþÞ2ð2n− þ nþÞ2ðn− þ 2nþÞ2
4ðn2− þ n−nþ þ n2þÞ3

;

Δz ¼ 2ðn2− þ n−nþ þ n2þÞ
3n−nþðn− þ nþÞ

2π; ð6Þ

then ds2Σ is a smooth metric on the orbifold Σ¼WCP1
½n−;nþ�.

Specifically, there are conical deficit angles 2πð1 − 1=n∓Þ
at y ¼ y1, y2, respectively, where n� are arbitrary coprime
positive integers with n− > nþ.
Note that there is magnetic flux through Σ:

1

2π

Z
Σ
F ¼ n− − nþ

2n−nþ
: ð7Þ

This may be contrasted with the Euler number

χðΣÞ ¼ 1

4π

Z
Σ
RΣvolΣ ¼ n− þ nþ

n−nþ
; ð8Þ

where RΣ is the Ricci scalar of Σ, and volΣ is its volume
form [14].
To solve Eq. (2) we write Γa ¼ γa ⊗ σ3, for a ¼ 0, 1, 2

with γ0 ¼ −iσ2, γ1 ¼ σ1, γ2 ¼ σ3, and Γ3 ¼ 1 ⊗ σ2,
Γ4 ¼ 1 ⊗ σ1, where σi are Pauli matrices. We then write
ϵ ¼ ϑ ⊗ χ with ϑ a Killing spinor for AdS3 satisfying
∇aϑ ¼ 1

2
γaϑ. The two-component spinor χ on the spindle is

given by

χ ¼
� ffiffiffiffiffiffiffiffiffiffiffi

q1ðyÞ
p

ffiffiffi
y

p ; i

ffiffiffiffiffiffiffiffiffiffiffi
q2ðyÞ

p
ffiffiffi
y

p
�
; ð9Þ

where

q1ðyÞ ¼ −aþ 2y3=2 þ 3y; q2ðyÞ ¼ aþ 2y3=2 − 3y;

ð10Þ

which satisfy qðyÞ ¼ q1ðyÞq2ðyÞ. In contrast to the topo-
logical twist, this spinor depends on the coordinates of Σ.
Moreover, as shown in Ref. [15], the spinor is in fact a
section of a nontrivial bundle over Σ. Note that the gauge
choice used in Eq. (3) has been fixed by requiring ϵ to be
independent of z.
Uplift to IIB string theory.—Any supersymmetric solution

to Eq. (1) uplifts (locally) to type IIB supergravity via [16]:

ds210 ¼ L2

�
ds25 þ

�
1

3
dψ þ σ þ 2

3
A
�

2

þ ds2KE4

�

gsF5 ¼ L4

�
4vol5 −

2

3
�5 F ∧ J

þ
�
2J ∧ J −

2

3
F ∧ J

�
∧
�
1

3
dψ þ σ þ 2

3
A

��
:

ð11Þ

Here F5 is the self-dual five-form, gs is the string coupling
constant, and L > 0 is a length scale that is fixed by flux
quantization. KE4 is an arbitrary positively curved Kähler-
Einstein four-manifold with Kähler form J, normalized so that
the Ricci form is R ¼ 6J, and σ is a local one-form with
dσ ¼ 2J.
Substituting Eq. (3) into Eq. (11) we find that theD ¼ 10

metric may be written as

ds210 ¼
4

9
L2y½ds2AdS3 þ ds2M7

�; ð12Þ

where M7 is a compact seven-manifold. This is the same
solution of type IIB supergravity given in Ref. [11].
It was shown in Ref. [11] that M7 is the total space

of a lens space S3=Zq fibration over the KE4, where the
twisting is parametrized by another positive integer p. The
lens space fiber has coordinates y, z, ψ . In terms of our
parameters n� we identify
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p ¼ knþ; q ¼ k
I
ðn− − nþÞ; ð13Þ

where p; q ∈ N are coprime. The Fano index I is the largest
positive integer for which

R
S c1=I ∈ Z, for all two-cycles S

in the KE4, where c1 ¼ ½R=2π� ∈ H2ðKE4;ZÞ. We have
also defined

k ¼ hcfðI; pÞ; ð14Þ

and identify ψ with period Δψ given by [17]

Δψ ¼ 2πI
k

: ð15Þ

At a fixed point in the D ¼ 5 spacetime, the internal
five-dimensional metric ds2SE5

¼ ð1
3
dψ þ σÞ2 þ ds2KE4

in
Eq. (11) is then a regular Sasaki-Einstein manifold, which
is simply connected when k ¼ 1.
To obtain a string theory background one must also

quantize the five-form flux F5 through all five-cycles in
M7. This was carried out in Ref. [11]. We define the
integers

M ¼
Z
KE4

c1 ∧ c1 ¼
1

4π2

Z
KE4

R ∧ R; ð16Þ

and h ¼ hcfðM=I2; qÞ. Then if we choose L to satisfy

L4

gsl4
s
¼ 108π

I3h
k2nþn−n; ð17Þ

where ls is the string length and n ∈ N, then one finds that
1=ð2πlsÞ4

R
D F5 ∈ Z, for all five-cycles D in M7.

There is a finite set of choices for the positively curved
KE4. If KE4 ¼ CP2 then I ¼ 3, M ¼ 9. For this case,
k ¼ 1 gives SE5 ¼ S5 as the internal space while k ¼ 3
gives S5=Z3. If KE4 ¼ S2 × S2 we have I ¼ 2, M ¼ 8.
Now k ¼ 1 gives SE5 ¼ T1;1, while k ¼ 2 gives
SE5 ¼ T1;1=Z2. Finally, for KE4 ¼ dPm, 3 ≤ m ≤ 8,
where dPm is a del Pezzo surface, we have I ¼ 1,
M ¼ 9 −m.
A key observation is that M7 in the AdS3 solutions of

Ref. [11] may also be viewed as SE5 fibrations over
Σ ¼ WCP1

½n−;nþ�. We can begin with any weighted projec-
tive space, with weights n− > nþ, and then define p; q ∈ Z
via (13), where we also define

k ¼ I
hcfðI; n− − nþÞ

: ð18Þ

With this definition, p and q are manifestly coprime, and
one can check that Eq. (14) is equivalent to Eq. (18). With
this perspective, we can calculate the flux of F5 through the
SE5 fiber:

N ≡ 1

ð2πlsÞ4
Z
SE5

F5 ¼
M
I2h

knþn−n ∈ N: ð19Þ

Notice that for a given spindle, specified by n�, and a given
choice of KE4 we only get a smooth type IIB solution for k
as in Eq. (18) and hence a specific SE5. E.g., if KE4 ¼ CP2

and nþ ¼ 2, then for n− ¼ 3; 7;… and n− ¼ 5; 9;… we
can uplift on S5=Z3 and S5, respectively.
The central charge is given by c ¼ 3L=2Gð3Þ, whereGð3Þ

is the Newton constant obtained by compactifying type IIB
supergravity on M7 [18]. We can rewrite the result of
Ref. [11] as

c ¼ 4ðn− − nþÞ3
3n−nþðn2− þ n−nþ þ n2þÞ

a4d; ð20Þ

where

a4d ≡ π2N2

4volðSE5Þ
: ð21Þ

In Ref. [11] the dual d ¼ 2, N ¼ ð0; 2Þ SCFTs were not
identified, but our D ¼ 5 construction of the solutions,
together with the flux condition (19), leads to a conjecture.
Begin with the d ¼ 4 SCFT dual to AdS5 × SE5, describ-
ing N D3-branes at the Calabi-Yau threefold singularity
with conical metric dr2 þ r2ds2SE5

. The large N a-central
charge of this theory is precisely given by a4d in Eq. (21)
[19]. One then compactifies that theory on Σ ¼ WCP1

½n−;nþ�,
with a background R-symmetry gauge field with magnetic
flux (7). The solutions we have described suggest the
theory flows to a d ¼ 2, N ¼ ð0; 2Þ SCFT in the IR, and
we will give evidence for this below by computing the
central charge via a field theory calculation.
The Uð1ÞR symmetry of the (0,2) theory dual to the

AdS3 ×M7 solutions is realized by a Killing vector, R2d,
on M7. Using the results of Refs. [20,21] we deduce

R2d ¼ 2∂ψ þ 3n−nþðn− þ nþÞ
n2− þ n−nþ þ n2þ

∂φ: ð22Þ

Here we have defined φ ¼ 2πz
Δz so that Δφ ¼ 2π, and ∂φ

generates the Uð1Þ isometry of the weighted projective
space Σ, which we shall refer to as Uð1ÞJ. Note that the
Killing spinor on the SE5 has unit charge under R4d ¼ 2∂ψ ,
which may therefore be identified with the superconformal
Uð1ÞR symmetry of the d ¼ 4 SCFT before compactifica-
tion on Σ. In other words, Eq. (22) states that the d ¼ 4
R-symmetry mixes with Uð1ÞJ in flowing to the d ¼ 2
R-symmetry in the IR. We shall also recover Eq. (22) from
a field theory calculation in the next section.
d ¼ 4 SCFTs on Σ.—We begin with a general d ¼ 4

SCFT with anomaly polynomial given by the 6-form
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A4d ¼
trR3

6
c1ðR4dÞ3 −

trR
24

c1ðR4dÞp1ðTZ6Þ: ð23Þ

As is standard, in (even) dimension d the anomaly
polynomial is a (dþ 2)-form on an abstract (dþ 2)-
dimensional space, here called Z6. c1ðR4dÞ denotes the
first Chern class of the d ¼ 4 superconformal Uð1ÞR
symmetry bundle over Z6, and p1 denotes the first
Pontryagin class. The trace is over Weyl fermions when
the theory has a Lagrangian description, and in any case we
may always write

trR3 ¼ 16

9
ð5a4d − 3c4dÞ; trR ¼ 16ða4d − c4dÞ; ð24Þ

in terms of the central charges a4d, c4d. We focus on the
large N limit in which a4d ¼ c4d to leading order, and
hence

A4d ¼
16a4d
27

c1ðR4dÞ3 ðat largeNÞ: ð25Þ

We now compactify the d ¼ 4 theory on Σ¼WCP1
½n−;nþ�,

with magnetic flux (7) for the d ¼ 4 R-symmetry gauge
field. The resulting d ¼ 2 anomaly polynomial will then
capture the right-moving central charge cr, but crucially we
need to include the Uð1ÞJ global symmetry in d ¼ 2 that
comes from the isometry of Σ. Geometrically, this involves
taking Z6 to be the total space of a Σ fibration over a four-
manifold Z4 [22]. More precisely, we let J be aUð1Þ bundle
over Z4, with connection corresponding to a background
gauge field AJ for the d ¼ 2Uð1ÞJ global symmetry,
and then fiber Σ over Z4 using the Uð1ÞJ action and
connection AJ. In practice, this amounts to the replacement
dφ ↦ dφþ AJ.
Incorporating the magnetic flux (7) into this construction

amounts to “gauging” the Uð1Þ gauge field A in Eq. (3), as
just described. Thus, we define the following connection
one-form on Z6:

A ¼ 1

4

�
1 −

a
y

�
Δz
2π

ðdφþ AJÞ≡ ρðyÞðdφþ AJÞ; ð26Þ

where recall that the gauge choice we made is such that the
Killing spinors are uncharged under the Uð1ÞJ symmetry
generated by ∂φ. This is necessary for the twisting to make
sense. A defined by Eq. (26) is a gauge field on Z6, which
restricts to the supergravity gauge field A in Eq. (3) on each
Σ fiber. We compute the curvature

F ¼ dA ¼ ρ0ðyÞdy ∧ ðdφþ AJÞ þ ρðyÞFJ; ð27Þ

where FJ ¼ dAJ. The one-form dφþ AJ is precisely the
global angular form for the Uð1Þ bundle, and so is globally
defined on Z6 away from the poles of Σ ¼ WCP1

½n−;nþ� at

y ¼ y1; y2. Moreover, one can verify that ρ0ðyÞdy ∧ dφ
vanishes smoothly at the poles, where the angular coor-
dinate φ is not defined, implying that F is a globally
defined closed two-form on Z6. By construction, the
integral of F over a fiber Σ of Z6 satisfies Eq. (7).
More generally, the integrals of wedge products over the
fibers are given, for s ∈ N, by

Z
Σ

�
F
2π

�
s
¼ 1

2s

�
1

nsþ
−

1

ns−

��
−
FJ

2π

�
s−1

: ð28Þ

The curvature form F defines a Uð1Þ bundle L over Z6

by taking c1ðLÞ ¼ ½F=2π� ∈ H2ðZ6;RÞ. This is different
from Ref. [22], where the Uð1Þ bundle was taken to be the
tangent bundle to the fibers TfibersZ6, which gives the Euler
class (8), rather than Eq. (7). We note that at the poles we
have c1ðLÞjy¼y1;y2 ¼ − 1

2n�
c1ðJÞ, where we have defined

c1ðJÞ ¼ ½FJ=2π� ∈ H2ðZ4;ZÞ. In the anomaly polynomial
we then write

c1ðR4dÞ ¼ c1ðR2dÞ þ c1ðLÞ; ð29Þ

where R2d is the pullback of a Uð1Þ bundle over Z4. Notice
that the twisting (29) will make sense globally only if the
d ¼ 4 R charges of fields satisfy appropriate quantization
conditions, and for gauge-invariant operators this is equiv-
alent to the global regularity and flux quantization con-
ditions imposed on the supergravity solutions, cf. the
discussion below Eq. (19).
The d ¼ 2 anomaly polynomial is obtained by integrat-

ing A4d in Eq. (25) over Σ. Using Eqs. (28) and (29) we
compute

A2d¼
2a4d
27

�
12

�
1

nþ
−

1

n−

�
c1ðR2dÞ2

−6

�
1

n2þ
−

1

n2−

�
c1ðR2dÞc1ðJÞþ

�
1

n3þ
−

1

n3−

�
c1ðJÞ2

�
:

ð30Þ

The coefficient of 1
2
c1ðLiÞc1ðLjÞ inA2d is trγ3QiQj, where

the global symmetryQi is associated to the Uð1Þ bundle Li
over Z4, and γ3 is the d ¼ 2 chirality operator. On the other
hand, c extremization [12] implies that the d ¼ 2 super-
conformal Uð1ÞR extremizes

ctrial ¼ 3tr γ3R2
trial; ð31Þ

over the space of possible R-symmetries. We set

Rtrial ¼ R2d þ εJ; ð32Þ

and extremize the quadratic function of ε one obtains from
Eqs. (30) and (31). The extremal value is
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ε� ¼
3n−nþðn− þ nþÞ
n2− þ n−nþ þ n2þ

: ð33Þ

The right-moving central charge is given by Eq. (31)
evaluated on the superconformal R-symmetry [12].
Substituting Eq. (33) into Eqs. (31), (32) we find

cr ¼
ðn− − nþÞ3

n−nþðn2− þ n−nþ þ n2þÞ
4a4d
3

: ð34Þ

At leading order in N, cr ¼ cl ≡ c is the central charge of
the SCFT, and we see that the field theory result (34)
precisely matches the gravity result (20). Moreover, the
R-symmetry (32), with ε ¼ ε�, precisely matches the
supergravity R-symmetry (22).
Discussion.—Our solutions exhibit a number of new

properties, raising several directions for future research.
First, despite having orbifold singularities in D ¼ 5, when
uplifted to D ¼ 10 the solutions are completely regular.
What type of singularities are permitted in lower-
dimensional supergravity theories that have this property?
Second, it is often claimed that supersymmetry requires a
topological twist when branes wrap a compact manifold, so
that the “twisted spinors” are constant on the manifold. Our
near horizon solutions are a counterexample and it would be
interesting to understand this more systematically. Third, our
results suggest there should exist black string solutions
which approach AdS5 in the UV and AdS3 × Σ in the IR.
Such solutions will reveal the precise deformations of
the d ¼ 4, N ¼ 1 SCFTs that can then flow to the
d ¼ 2,N ¼ ð0; 2Þ SCFTs dual to the AdS3 ×M7 solutions
of Ref. [11], including the way in which the D3-brane
wrapping the spindle is preserving supersymmetry.
In Ref. [15] we present analogous supergravity solutions

in D ¼ 4, associated with M2-branes wrapped on a
“spinning spindle.” In that case the full black hole solution
is known and it approaches AdS4 in the UV and AdS2 × Σ
in the IR, with a spindle horizon Σ. TheD ¼ 4 black hole is
accelerating and this leads to the conical deficit singular-
ities on Σ. Once lifted toD ¼ 11 these orbifold singularities
are removed and the solutions become completely regular.
Supersymmetry is again not realized by the topological
twist for the AdS2 × Σ solution, similar to our AdS3 × Σ
solutions. In the UV, the black holes at finite temperature
have a conformal boundary consisting of a spindle. In the
supersymmetric and extremal limit, however, the spindle
degenerates into “two halves,” each of which is associated
with a topological twist, but with a different constant spinor
on each component. It is another fascinating open question
to determine how typical such a novel realization of
supersymmetry is for branes wrapping spindles, as well
as spaces of higher dimension.
Our results also suggest many questions on the field

theory side. When defining a SCFT on a spindle what
additional data should be specified at the orbifold points?

Considering weakly coupledN ¼ 4 SYM theory would be
an important first step. Our holographic analysis shows that
SCFTs dual to regular SE manifolds can only be placed on
certain spindles and there is an apparent obstruction for
those dual to irregular SE manifolds; why is this? The
anomaly polynomial technique we employed is based on
smooth manifolds and yet it gives a consistent result in the
context of the orbifolds we studied, in the large N limit. It
would be interesting to justify this more systematically
(also see Ref. [23]) and determine subleading contributions.
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