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Abstract

We discuss recent progresses in the study of well-posedness for
PDEs by means of stochastic perturbation. We show a counterex-
ample related to Burgers equation. We prove existence of L1-weak
solutions for a stochastic continuity equation involving a Hölder con-
tinuous vector field. For such equation there is no existence of L1-weak
solutions in the deterministic case.

1 Introduction

The question whether noise improves the well-posedness of certain models of
fluid dynamics is natural, on one side by analogy with the effects of noise on
deterministic ordinary differential equations, on the other side because noise
may break the geometric idealization at the origin of certain phenomena
(for instance, one can prepare initial configurations of finitely many vortices
that collapse in finite time, but for generic initial conditions this does not
happen). This question is relevant since most of the important equations of
fluid dynamics are not known to be well-posed (see in particular one of the
millennium prize problems [9]).
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In spite of this, progresses on relevant models have been slow and only
partial. We may identify two directions. The first one is based on the reg-
ularity of the transition probabilities, observed when a very non-degenerate
additive noise is used; since this is not the main subject of this note, but it
is related, we include a few words in the appendix. The second one is based
on multiplicative noise. Its regularizing effect, at the level of distributions, is
less clear, but a suitable multiplicative noise produces random rotations in
phase space with the effect of redistribution of energy between modes. We
do not know how to apply this to Euler or Navier-Stokes equations, but at
least one can improve the theory of linear first order PDEs. The relevance of
this result for fluid dynamics is still open, but at least it gives us some hope.
However, no easy consequence on nonlinear equations can be expected, as
counterexamples will show.

The material of Sections 2 and 5 is a review of recent results, while the
content of Sections 3 and 4 is new.

2 Multiplicative noise in a transport equa-

tion

The transport equation in Rd × [0, T ]

∂tu(x, t) + b(x, t) · ∇u(x, t) = 0, (x, t) ∈ Rd × [0, T ] (1)

u(x, 0) = u0(x), x ∈ Rd

driven by a vector field b : Rd×[0, T ]→ Rd which is Lipschitz continuous in x,
uniformly in t, can be solved in several ways and in various functions spaces.
Remarkable extensions have been obtained by Di Perna and P.L. Lions [7]
and Ambrosio [1], who proved existence and uniqueness of weak solutions
in L∞

(
Rd × [0, T ]

)
, given u0 ∈ L∞

(
Rd
)
, weak∗-continuous in time, when

b is only L1
(
0, T ;W 1,1

loc

(
Rd
))

or even L1
(
0, T ;BVloc

(
Rd
))

, with div b ∈
L1
(
0, T ;L∞

(
Rd
))

.
On the contrary, when b is only Hölder continuous in x, there are coun-

terexamples: in d = 1 the equation with

b (x) = 2sign (x)
√
|x| ∧ 1, u0 = 1[0,∞) (2)

has infinitely many weak solutions: solutions, for (x, t) ∈ R × [0, 1], are
uniquely determined for x > t2 and x < −t2, where characteristics uniquely
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connect points (x, t) to points of the form (x′, 0) with x′ 6= 0. But in the
region |x| < t2 there is a high degree of indetermination. We shall see below
three examples of solutions.

A multiplicative noise has here a strong regularizing effect. Consider the
stochastic transport equation

du+ b · ∇u dt+
d∑
i=1

ei · ∇u ◦ dW i = 0, u|t=0 = u0 (3)

where (W i)i=1,...,d are independent Brownian motions on a stochastic basis
(Ω, (F t) ,F , P ), the stochastic integrals have to be understood in Stratonovich
form, and (ei)i=1,...,d is the canonical basis of Rd.

Definition 1 Given u0 ∈ L∞(Rd), an L∞-solution of the Cauchy problem
(3) is a function u ∈ L∞(Rd × [0, T ] × Ω) such that for all f ∈ C∞0 (Rd)
the process t 7→

∫
Rd u(x, t)f(x)dx is a continuous F t-adapted semimartingale

and ∫
Rd

u(x, t)f(x)dx−
∫
Rd

u0(x)f(x)dx

=

∫ t

0

ds

∫
Rd

u(x, s) [b(x, s) · ∇f(x) + div b (x, s) f(x)] dx

+
d∑
i=1

∫ t

0

(∫
Rd

u(x, s)Dif(x)dx

)
◦ dW i (s) .

The following theorem is proved in [11] in a slightly more general form.
It includes example (2).

Theorem 2 If b ∈ C
(
[0, T ] ;Cα

b

(
Rd,Rd

))
for some α ∈ (0, 1), with div b ∈

Lp
(
[0, T ]× Rd

)
for some p ∈ (2,∞) (or div b ∈ L1

loc

(
[0, T ]× Rd

)
if d = 1),

the stochastic transport equation is well-posed in L∞.

Note that Cα
b

(
Rd,Rd

)
denotes the usual Banach space of all bounded

g : Rd → Rd, which are (globally) α-Hölder continuous. Moreover div b is
understood in distributional sense.

The previous result is quite technical. We give the idea of the proof in
the time-independent divergence-free case:

b ∈ Cα
b

(
Rd,Rd

)
, div b = 0.
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The basic tool is the stochastic flow defined by the SDE

dϕt (x) = b (ϕt (x)) dt+ dWt, ϕ0 (x) = x ∈ Rd, (4)

where W = (W i)i=1,...,d. This equation is not included in the classical theory
of stochastic flows (see [17]) but we may use the following trick. In the
integral equation

ϕt (x) = x+

∫ t

0

b (ϕs (x)) ds+Wt

we interpret
∫ t
0
b (ϕs (x)) ds as the corrector of an Itô formula, the usual

(Tanaka like) method to capture the properties of local time of stochastic
processes. This way, the x-dependence of

∫ t
0
b (ϕs (x)) ds is strongly improved.

Define

Lbu =
1

2
4u+ b · ∇u

and consider the vector valued elliptic equation in Rd

λg − Lbg = b

(to be interpreted componentwise). Under the assumption b ∈ Cα
b

(
Rd,Rd

)
,

by Schauder estimates, for any λ > 0, there exists a unique bounded classical
solution gλ which belongs to C2+α

b

(
Rd,Rd

)
.

Moreover, for λ large enough, we have supx∈Rd |∇gλ (x)| < 1. We fix such
λ and set g = gλ.

By a classical Hadamard’s theorem the mapping

G (x) = x+ g (x)

is a C2-diffeomorphism of Rd. Moreover, one proves that G and G−1 have
bounded first and second derivatives and that the second (Fréchet) derivative
D2G is globally α-Hölder continuous.

By Itô formula, the process

ψt (x) := G (ϕt (x))

satisfies

dψt (x) =
[
DG

(
G−1 (ψt (x))

)]
dWt + λg

(
G−1 (ψt (x))

)
dt.
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This equation lies in the framework of the classical flow theory (see [17]) and
has a differentiable stochastic flow of diffeomorphisms. By a proper rewriting
of the previous computations in reverse order one gets the existence of dif-
ferentiable stochastic flow of diffeomorphisms ϕt (x) associated to equation
(4).

Remark 3 Formally the trick looks similar to the Zvonkin transformation,
used by several authors to remove an irregular drift (see [24], [22], [16], [23]).
Zvonkin approach is based on the transformation Gt : Rd → Rd, t ∈ [0, T ],
solution of the vector valued equation

∂Gt

∂t
+ LbGt = 0 on [0, T ] , GT (x) = x.

At time T , the solution is an isomorphism by definition; one has to prove suit-
able regularity and invertibility of Gt for t ∈ [0, T ]. Then ψt (x) := Gt (ϕt (x))
satisfies

dψt (x) = DGt

(
G−1t (ψt (x))

)
dWt.

The irregular drift has been removed. This approach, although successful,
raises two delicate questions: i) one has to deal with unbounded initial con-
ditions; ii) one has to prove some form of invertibility, which is not obvi-
ous. We do not have these difficulties in our approach. Notice also the fact
that the motivation of our transformation is different, namely the use of a
Tanaka-like method to exploit local time properties. Previous results in the
one dimensional case, based on local time, to prove existence of stochastic
flows for irregular drift are included in [14].

Having a smooth invertible flow ϕt (x), one has to prove that

u (x, t) = u0
(
ϕ−1t (x)

)
is an L∞-solution and that any L∞-solution has this form. It is only here
that the additional condition div b = 0 simplifies the proof. To prove that
u (x, t) = u0

(
ϕ−1t (x)

)
is a solution (this part is the existence of solutions for

equation (3)), we have to prove that
∫
Rd u(x, t)f(x)dx satisfies the equation

in Definition 1, for every f ∈ C∞0 (Rd). From the assumption div b = 0 one
can deduce ∫

Rd

u0
(
ϕ−1t (x)

)
f(x)dx =

∫
Rd

u0 (y) f(ϕt (y))dy.
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Then all computations are performed by classical Itô formula on f(ϕt (y)).
It is a simple exercise to check the equation.

To prove that any L∞-solution u (x, t) of equation (3) has the form
u (x, t) = u0

(
ϕ−1t (x)

)
(uniqueness part), we mollify the equation for u by

taking suitable test functions f ∈ C∞0 (Rd) in Definition 1. Call uε (x, t)
these regularizations of u (x, t). We apply Itô-Wentzell formula (see [17])
to uε (ϕt (x) , t) and prove that duε (ϕt (x) , t) is equal to a term Rε (x, t) dt
which vanishes as ε → 0. By a rigorous control of this limit we prove that
u (ϕt (x) , t) = u0 (x) and the proof is complete.

However we have to notice that this simple explanation is perhaps mis-
leading. The uniqueness part is the most difficult one (also for determinis-
tic transport equations, see [1], [7]), based on a commutator lemma which
establish that the remainder Rε (x, t) converges to zero. In our case the Ja-
cobian determinant detDϕt (x) enters this commutator lemma. In the case
div b = 0, detDϕt (x) is equal to one, so everything becomes very easy. Oth-
erwise we need a control of detDϕt (x). In [11] we prove that, P -a.s.,

detDϕt (x) ∈ L1
(
0, T ;W 1,1

loc

(
Rd
))
.

This is a non-trivial fact, since it is related to second derivatives of the
flow (and we only assume b ∈ Cα

b

(
Rd,Rd

)
). The reason why we have this

additional regularity relies on the formula

detDϕt (x) = e
∫ t
0 div b(ϕs(x))ds

where we may use the additional assumption of Theorem 2 and again the
Tanaka-like trick.

We conclude the section by mentioning a consequence of the results in
[11] which is of independent interest.

Remark 4 If u0 ∈ C1
(
Rd
)

then the unique weak solution u verifies u(t, ·)
∈ C1

(
Rd
)
, t ∈ [0, T ], P -a.s.; moreover u is continuous on [0, T ] × Rd, P -

a.s.. Thus blow-up in C1
(
Rd
)

cannot occur (contrary to examples in the
deterministic case).

3 Stochastic continuity equation

Given a vector field b (x, t) on Rd × [0, T ], the continuity equation is the
following linear PDE

∂tp+ div (bp) = 0, p|t=0 = p0.
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It can be interpreted in a distributional way and it has a meaning even for
measure valued functions t 7→ pt. It is dual to a backward transport equation.
If b is so regular that the equation

dϕt (x)

dt
= b (ϕt (x)) , ϕ0 (x) = x (5)

defines a flow ϕt (x), then, given a probability measure p0, the image law pt :=
ϕtp0 solves the continuity equation. An advanced account is given in [1] in
the case when b is only L1

(
0, T ;BVloc

(
Rd
))

with div b ∈ L1
(
0, T ;L∞

(
Rd
))

.
If b is only Hölder continuous, we may have pathological behaviors. Con-

sider the example

b (x) = −2sign (x)
√
|x| ∧ 1, p0 = 1[−1/2,1/2]. (6)

The deterministic ODE is simply the time reversal of example (2). Solutions
ϕt (x) of (5) coalesce as t increase: for instance, ϕ1 (1) = ϕ1 (−1) = 0. The
only generalized solution pt of the continuity equation is not a function but a
probability measure with a concentrated mass at x = 0, equal to the portion
of mass of p0 given to those points that at time t have coalesced at zero. This
is an example of non existence of L1-solutions of the deterministic continuity
equation. It is dual to the non-uniqueness in L∞ for the dual backward
transport equation (example (2)).

The situation is different under random perturbations. Consider the
stochastic continuity equation

dp+ div (bp) dt+
d∑
i=1

div (eip) ◦ dW i = 0, p|t=0 = p0. (7)

Denote by L1
+(Rd) the space of all probability densities on Rd. The following

definition requires boundedness of b (assumed below in the theorem).

Definition 5 Given p0 ∈ L1
+(Rd), a weak L1

+-solution of the Cauchy prob-
lem (7) is a non-negative measurable function p : Rd × [0, T ] × Ω → R,
such that p (., t, ω) ∈ L1

+(Rd), for all t ∈ [0, T ] and P -a.s. ω ∈ Ω, t 7→∫
Rd p(x, t)g(x, t)dx is integrable for P -a.s. ω ∈ Ω for every bounded con-

tinuous function g : Rd × [0, T ] → R, for all f ∈ C∞0 (Rd) the process
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t 7→
∫
Rd p(x, t)f(x)dx is a continuous adapted semimartingale and∫

Rd

p(x, t)f(x)dx−
∫
Rd

p0(x)f(x)dx

=

∫ t

0

ds

∫
Rd

p(x, s)b(x, s) · ∇f(x)dx

+
d∑
i=1

∫ t

0

(∫
Rd

p(x, s)Dif(x)dx

)
◦ dW i (s) .

For the purpose of this note we limit ourselves to an existence result,
which includes example (6) and thus makes a difference with respect to the
deterministic case. Uniqueness, as for the transport equation, requires con-
siderable more work and will be treated elsewhere.

Theorem 6 If b ∈ C([0, T ];Cα
b (Rd,Rd)) for some α ∈ (0, 1), then the stochas-

tic continuity equation has at least one weak L1
+-solution.

Proof. We know from the previous section that the SDE (4) defines a
differentiable invertible stochastic flow ϕt (x). Let µ0 be the probability law
on Rd with density p0 with respect to Lebesgue measure. Let µt be the im-
age probability law of µ0 under ϕt. Notice that µt is a random probability
measure. See [3] for general facts about random measures and [10] for some
detail related to their use for random continuity equations. Since ϕt is differ-
entiable and invertible, µt is absolutely continuous with respect to Lebesgue
measure and its density p(x, t) is given by the formula

p(x, t) = | detDϕ−1t (x) | · p0
(
ϕ−1t (x)

)
(8)

and satisfies the identity∫
Rd

p(x, t)g(x)dx =

∫
Rd

p0 (x) g(ϕt (x))dx (9)

for all bounded continuous function g : Rd → R. Let us prove that p(x, t)
is a weak L1

+-solution. The measurability in all arguments can be deduced
from (8), which could be used to prove additional regularity results that we
omit in this note. The property p (., t, ω) ∈ L1

+(Rd), for all t ∈ [0, T ] and
P -a.s. ω ∈ Ω is true by definition of p. Identity (9) implies one of the
conditions of Definition 5 and, restricted to g = f ∈ C∞0 (Rd), implies the
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continuous semimartingale property. Finally, again from (9) and Itô formula
in Stratonovich form (see [17]) we have∫

Rd

p(x, t)f(x)dx =

∫
Rd

p0 (x) f(ϕt (x))dx =

∫
Rd

p0 (x) f(x)dx

+

∫
Rd

p0 (x) dx

[∫ t

0

∇f(ϕs (x)) · b(ϕs (x) , s)ds+
d∑

k=1

∫ t

0

Dkf(ϕs (x)) ◦ dW k (s)

]
and now, in the last expression, the first term is equal to∫ t

0

ds

∫
Rd

p0 (x)∇f(ϕs (x)) · b(ϕs (x) , s)dx

=

∫ t

0

ds

∫
Rd

p (x, s)∇f(x) · b(x, s)dx;

and the second one is equal to

d∑
k=1

∫ t

0

[∫
Rd

p0 (x)Dkf(ϕt (x))dx

]
◦ dW k (s)

=
d∑

k=1

∫ t

0

[∫
Rd

p (x, s)Dkf(x)dx

]
◦ dW k (s) .

We have used Fubini theorem both in the classical and stochastic version,
taking advantage of the boundedness of all terms except the L1 function
p0 (x). Thus the equation in Definition 5 is satisfied. The proof is complete.

The stochastic continuity equation is related to the SPDE studied by [19].
However, in our case we insist on an irregular drift, while the main examples
of generalized flows of [19] are related to irregular diffusion terms.

4 A counterexample for Burgers equation

One of the main open problems is the generalization to nonlinear equations,
where b depends on u. This is not just a technical generalization. Let us show
the difficulties by means of one of the simplest examples, the one-dimensional
stochastic Burgers equation

∂tu+ u∂xudt+ ∂xu ◦ dWt = 0, u|t=0 = u0. (10)
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Another example is given in [11].
Consider the stochastic flow formally associated to (10)

dϕt (x) = u (ϕt (x) , t) dt+ dWt.

Assume that u is sufficiently regular and ϕt (x) is well-defined. Then, by
Itô-Wentzell formula (see [17])

du (ϕt (x) , t) = ∂tu+ ∂xu ◦ dϕt
= −u∂xudt− ∂xu ◦ dWt + u∂xudt+ ∂xu ◦ dWt = 0

hence
u (ϕt (x) , t) = u0 (x) .

But this implies that the equation for the flow is

dϕt (x) = u0 (x) dt+ dWt.

The drift is a direct function of the initial position.
Let us take the Lipschitz continuous initial condition

u0 (x) =


1 for x ≤ 0

1− x for 0 ≤ x ≤ 1
0 for x ≥ 1

.

In the deterministic case

∂tu+ u∂xudt = 0, u|t=0 = u0

one easily shows that a unique Lipschitz continuous solution exists until
time t = 1, but then characteristics meet and a discontinuity emerges (see
for instance [18]).

In the stochastic case, the flow is given by

ϕt (x) = x+ t+Wt for x ≤ 0

ϕt (x) = x+Wt for x ≥ 1

hence ϕ1 (0) = ϕ1 (1), exactly as in the deterministic case. The effect of
the noise is just a background space translation. This kind of noise cannot
improve the well-posedness and regularity theory.
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5 Zero noise limit, superposition solutions

In some one-dimensional example of linear transport equation, it is possible
to analyze also the zero-noise limit of equation (3). Consider again example
(2) and consider the equation

dtu
ε + b · ∂xuεdt = ε∂xu

ε ◦ dWt, uε|t=0 = u0.

One can prove (see [2]) that the law µε of the solution uε in the space
L1
loc ([0, T ]× R) weakly converges to the probability measure µ = 1

2
δu1 + 1

2
δu2

where u1 (x, t) = 1{x≥t2}, u2 (x, t) = 1{x>−t2}. The functions u1 and u2 are
two weak solutions of equation (1). The result is related and based on a
similar result for one-dimensional SDE,

Following a terminology used in the finite dimensional case, see [1] (see
also [10]), one may call superposition solutions of the deterministic Cauchy
problem (1) all probability measures µ on L∞ ([0, T ]× R) such that µ (C (u0)) =
1, where C (u0) is the set of all weak solutions of (1). One could also call true
superposition solution a superposition solution which is not a delta Dirac.
The previous result states that the limit in law of solutions to the stochastic
transport equation, in the example above, is a true superposition solution. If
we accept the general viewpoint that the ‘physical’ objects (solutions, invari-
ant measures, see [8]), in case of non uniqueness, are those obtained in the
zero-noise limit, then we see that true superposition solutions are the right
objects for certain PDEs.

An intriguing fact (see [2]) is that zero-viscosity solutions may be different:
in the example above, the solution of the parabolic PDE

dtu
ε + b · ∂xuεdt = ε∂2xu

ε, uε|t=0 = u0

converges to the average of u1 and u2. It is thus important to identify other
criteria to decide which solutions of equation (1) are more relevant.

6 Appendix: additive noise in 3D Navier-

Stokes equations

The break-through on this problem is due to Da Prato and Debussche [4],
followed by contributions also of the same and other authors, [5], [6], [20],
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[12], [13], [21], [15]. The equations considered are the 3D Navier-Stokes
equations

∂u

∂t
+ u · ∇u+∇p− ν4u = ξ

div u = 0

(for simplicity on the torus [0, L]3 with periodic boundary conditions) where
ξ is a white noise formally of the form

ξ (x, t) =
∞∑
i=1

σihi (x)
dW i (t)

dt

where (hi)i∈N is a complete orthonormal system in H of eigenfunctions of
the linear part of the previous equations, H being an L2 space with suitable
additional conditions, (W i)i∈N is a family of independent Brownian motions
and the intensities (σi)i∈N decay with suitable power law. Existence of weak
(in both the probabilistic and analytic sense) solutions is a classical result,
but their uniqueness is still open, as in the deterministic case. However there
is a remarkable new result with respect to the deterministic case. We do
not specify the space W of next theorem because it depends on the paper
(among those quoted above) and it is a rather technical issue; we just say
that it is a suitable subspace of an L2 space.

Theorem 7 There exists Markov selections in H and all of them are strongly
Feller in W.

The continuous dependence on initial conditions inW , of the elements of a
Markov selection, is a property without anything similar in the deterministic
case, where lack of (proof of) uniqueness goes parallel to lack of (proof of)
any continuous dependence. Using these tools one can also construct new
criteria of uniqueness.
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