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ABSTRACT 

Fibroblast growth factor receptor-like 1 (FGFRL1) encodes a transmembrane protein that is 

related to fibroblast growth factor receptors but lacks an intercellular tyrosine kinase domain. 

In vitro studies suggest that it inhibits cell proliferation and promotes cell differentiation and 

cell adhesion. Mice that lack FGFRL1 die shortly after birth from respiratory distress and 

have abnormally thin diaphragms whose muscular hypoplasia allows the liver to protrude into 

the thoracic cavity. Haploinsufficiency of FGFRL1 has been hypothesized to contribute to the 

development of congenital diaphragmatic hernia (CDH) associated with Wolf-Hirschhorn 

syndrome. However, data from both humans and mice suggest that disruption of one copy of 

FGFRL1 alone is insufficient to cause diaphragm defects. Here we report a female fetus 

affected by CDH whose 4p16.3 deletion allows us to refine the Wolf-Hirschhorn syndrome 

CDH critical region to a ~1.9 Mb region that contains FGFRL1. We also report a male infant 

with isolated left-sided diaphragm agenesis who carried compound heterozygous missense 

variants in FGFRL1. These cases provides additional evidence that FGFRL1 deficiency may 

contribute to the development of CDH in humans. 

 

 

  



INTRODUCTION 

The fibroblast growth factors (FGFs) regulate a variety of cellular functions including cell 

proliferation, differentiation, migration, and apoptosis and play a critical role in embryonic 

development [Belov and Mohammadi 2013; Trueb 2011]. FGFs act by binding to and 

activating members of the fibroblast growth factor receptors (FGFR) subfamily of tyrosine 

kinases that are encoded by four genes (FGFR1-4) in mammals [Johnson and Williams 1993; 

Mohammadi et al., 2005]. FGFR1-4 are transmembrane proteins whose structure includes 

three immunoglobulin-like domains, a single transmembrane helix domain, and an 

intracellular domain with tyrosine kinase activity. Fibroblast growth factor receptor-like 1 

(FGFRL1: MIM# 605830) encodes a transmembrane protein that is related to FGFRs but 

lacks an intercellular tyrosine kinase domain [Wiedemann and Trueb 2000]. In vitro studies 

suggest that FGFRL1 inhibits cell proliferation [Trueb et al., 2003], and promotes cell 

differentiation [Baertschi et al., 2007] and cell adhesion [Rieckmann et al., 2008]. 

 In mice, Fgfrl1 is expressed at a relatively high level in the developing diaphragm 

[Trueb and Taeschler 2006] and plays a critical role in diaphragm development. Mice that are 

homozygous for a deletion of the first two exons of Fgfrl1 (Fgfrl1-/-) die shortly after birth 

due to respiratory distress caused by generalized hypotrophy of the diaphragm muscle 

[Baertschi et al., 2007]. The diaphragmatic muscles of Fgfrl1-/- mice are ~60% as thick as 

those seen in wild-type controls. In some regions, the muscular diaphragm is replaced by 

connective tissue and in some cases the liver protrudes in the thoracic cavity [Gerber et al., 

2009]. Decreased expression of FGFRL1 during the late stages of gestation has also been 

hypothesized to contribute to the development of congenital diaphragmatic hernia (CDH) in 

mice exposed to nitrofen in utero [Dingemann et al., 2011]. 

 In humans, FGFRL1 resides on chromosome 4p16.3. Deletions of 4p16.3 cause 

Wolf–Hirschhorn syndrome (WHS; MIM# 194190) which is characterized by distinctive 



facial features, delayed growth and development, intellectual disability, seizures, and 

structural birth defects that can include CDH [Paradowska-Stolarz 2014]. FGFRL1 is located 

in an ~2.3 Mb CDH critical region on 4p16.3 defined by a patient described by Casaccia et al. 

[Callaway et al., 2018; Casaccia et al., 2006]. Deletion of FGFRL1 has been previously 

hypothesized to contribute to the development of CDH associated with WHS [Callaway et 

al., 2018; LopezJimenez et al., 2010]. However, the low loss-of-function intolerance of 

FGFRL1 in the Genome Aggregation Database (gnomAD ver2.1.1, 

https://gnomad.broadinstitute.org/; pLI = 0.01; e/o ratio = 0.37) suggests that 

haploinsufficiency of FGFRL1 alone is unlikely to be sufficient to cause CDH [Karczewski 

et al., 2020]. This is consistent with the observation that heterozygous Fgfrl1+/- mice are 

asymptomatic [Baertschi et al., 2007] 

 Here we refine the CDH critical region associated with WHS to an ~1.9 Mb region of 

4p16.3 based on a deletion identified in a female fetus with CDH. We also report a male 

infant with isolated left-sided diaphragm agenesis who was compound heterozygous for 

missense variants in FGFRL1. These cases provides additional evidence that FGFRL1 

deficiency may contribute to the development of CDH in humans. 

 

MATERIALS AND METHODS 

Editorial Policies and Ethical Considerations 

 Subjects 1 and 2 were enrolled in research studies in accordance with protocols approved 

by local institutional review boards. The procedures followed were in accordance with the 

ethical standards of Baylor College of Medicine’s committee on human research and were in 

keeping with international standards. 

 

Molecular Testing 



 The 4p16.3 deletion in Subject 1 was detected by array-comparative genomic 

hybridization (a-CGH) performed according to manufacturer’s recommendations using a 60K 

Agilent array. Genetic testing for Subject 2 was performed on a clinical basis at Baylor 

Genetics using a cord blood sample and included a chromosome analysis with a band 

resolution of 550, array-based copy number variant (CNV) analysis (CMA-HR+SNP version 

11.2) and Critical Trio Whole Exome Sequencing [Meng et al., 2017]. Tests for maternal 

blood contamination were negative.  

 

RESULTS 

Clinical presentations and molecular studies 

Subject 1 

 Subject 1 (DECIPHER ID: 339928) was a 21 week gestation female fetus with left-

sided CDH identified by prenatal ultrasound.  The left lung was found to be hypoplastic and 

the heart was displaced to the right. The stomach was in the thorax, but the remaining 

thoracic and abdominal organs had a normal conformation and position. The brain had a 

normal size and conformation for the gestational age. Based on these findings, parents chose 

to terminate the pregnancy. Biometric values were consistent with a 21 week gestation with a 

weight of 480 grams (82nd centile), a length of 28.5 cm (94th centile), and the occipitofrontal 

circumference of 21.3 cm (99th centile, Z-score = 2.59). The fetus was found to carry a de 

novo 4p16.3 deletion (minimum deletion chr4:71,552-1,800,425, maximum deletion chr4:1-

1,875,255; hg19) by array-comparative genomic hybridization (Figure 1). 

 

Subject 2 

 Subject 2 was a Hispanic male of Mexican descent who was conceived by healthy, 

non-consanguineous parents with the aid of oral medications for ovulation induction. His 



parents had one spontaneous abortion at eight weeks gestation and have a five-year-old son 

who is in good health. There was no family history of functional or structural birth defects. 

The pregnancy was complicated by diet-controlled gestational diabetes.  

 At thirty-one weeks gestation, an ultrasound examination showed a left-sided CDH. A 

fetal MRI at thirty-eight weeks gestation confirmed a left-sided diaphragmatic hernia with 

herniation of the stomach, spleen, and a portion of the left lobe of the liver, with no evidence 

of a hernia sac. The total fetal lung volume was 16.8 mL, with a right lung volume of 15.6 

mL and a left lung volume of 1.2 mL. The observed/expected total fetal lung volume was 

15.4% based on the formula proposed by Rypens et al. and 19% based on mean values 

reported by the same group [Rypens et al., 2001]. The lung area to head circumference ratio 

was 1.0, the observed/ expected lung to head ratio was 30%, and 24% of the liver was 

herniated. A fetal echocardiogram performed four days prior to delivery showed mild 

hypoplasia of the left heart structures secondary to mass effect with normal aortic and mitral 

valve function, dextroposition with a leftward apex, normal biventricular systolic function, 

and no obvious intracardiac abnormalities.  

 The patient was born at 39 3/7 weeks gestation via an induced vaginal delivery. Apgar 

scores were 8 at one minute and 9 at five minutes. The patient had a birth weight of 3.06 kg 

(27th centile), a birth length of 50.8 cm (69th centile), and a head circumference of 35 cm (66th 

centile). Due to his prenatal diagnosis of CDH, he was intubated and sedated immediately 

after delivery and transferred to the neonatal intensive care unit where he was put on an 

oscillator and started on inhaled nitric oxide and pressor support. On physical exam, he did 

not have any dysmorphic features or other congenital anomalies. A head ultrasound, 

performed on the first day of life, was normal.  

 An echocardiogram on the sixth day of life showed severe pulmonary hypertension, 

severe tricuspid regurgitation, a severely dilated right ventricle with qualitatively moderately 



to severely depressed systolic function, and decreased left ventricle cavity size with 

hyperdynamic systolic function, likely secondary to a flattened septal configuration. There 

was also a small patent ductus arteriosus and patent foramen ovale/ small atrial septal defect, 

both with right to left shunting. Because of the severe pulmonary hypertension noted on this 

echocardiogram, sildenafil was initiated, along with prostaglandin E1 to enlarge the patent 

ductus arteriosus.  

 On day of life eleven, he was put on veno-arterial extracorporeal membrane 

oxygenation (VA-ECMO) due to respiratory failure and cardiac dysfunction. He underwent a 

CDH repair surgery on day of life twelve. The left-sided diaphragmatic defect was estimated 

as 95%, with no diaphragm along the left lateral aspect and the left anterolateral and 

posterolateral aspect of the chest. There was a rim of diaphragm medially that was about 5 

mm in its largest dimension anteriorly, and a small crural remnant posteromedially. The 

abdominal contents were returned to the abdomen and diaphragmatic defect was closed with 

GORE-TEX Dual Mesh patch.  

 On day of life twenty-four, he had a successful trial off of VA-ECMO, but suffered an 

unexplained decompensation shortly thereafter. Despite maximal support, he died on day of 

life twenty-five. Postmortem CT and MRI evaluations did not identify additional birth 

defects.  

 A chromosome analysis revealed a 46,XY chromosomal complement. Array-based 

CNV analysis did not identify variants that were associated with known microdeletion or 

microduplication syndromes, deletions of the mitochondrial genome, or increased blocks of 

absence of heterozygosity (AOH). Trio exome sequencing performed on a clinical basis did 

not reveal any pathogenic variants, likely pathogenic variants, or variants of uncertain 

significance in known CDH genes. However, the same test revealed that the Subject 2 was 

compound heterozygous for two FGFRL1 missense variants; a paternally inherited 



c.886A>G, p.(I296V) variant located in a region that codes for an Ig-like C2-type 3 domain 

(amino acids 246-354; UniProt https://www.uniprot.org/uniprot/Q8N441), and a maternally 

inherited c.1328G>C, p.(G443A). All variants described in this paper are based on transcript 

NM_001004356.2. In silico analyses of these variants are summarized in Table 1.   

 

DISCUSSION 

 Despite advances in diagnostic techniques, the molecular etiology of the majority of 

CDH cases remains undetermined [Longoni et al., 1993; Yu et al., 2019]. This is due, in part, 

to an incomplete understanding of the genes that contribute to the development of CDH. 

Often the first indication that a gene plays a role in diaphragm development comes from 

mouse models [Nakamura et al., 2020], with evidence of a role in human diaphragm 

development slowly accumulating over time [Ackerman et al., 2005; Brady et al., 2014; 

Longoni et al., 2015; Wat et al., 2011]. 

 The first indication that FGFRL1 deficiency could cause CDH came from mouse 

models.  Fgfrl1-/- mice die shortly after birth from respiratory distress and have abnormally 

thin diaphragms whose muscular hypoplasia allows the liver to protrude into the thoracic 

cavity [Baertschi et al., 2007; Gerber et al., 2009]. Decreased expression of FGFRL1 during 

the late stages of gestation has also been hypothesized to contribute to the development of 

CDH in mice exposed to nitrofen in utero [Dingemann et al., 2011].  

 In humans, FGFRL1 is located in the previously defined ~2.3 Mb CDH critical region 

on chromosome 4p16.3 [Callaway et al., 2018; Casaccia et al., 2006], and haploinsufficiency 

of FGFRL1 has been hypothesized to contribute to the development of CDH associated with 

WHS for over a decade [Callaway et al., 2018; LopezJimenez et al., 2010]. Among the ~61 

RefSeq genes located in this region, FGFRL1 was identified using a machine learning 

algorithm to be the second most similar to a group of training genes previously shown to 



cause CDH [Callaway et al., 2018]. Among all RefSeq genes, FGFRL1 was ranked at the 

98.9th centile based on its similarity to genes in the CDH training set (CDH-specific 

pathogenicity score = 98.9%) [Callaway et al., 2018], suggesting that it represents an 

excellent positional candidate gene for CDH. 

 The deletion identified in Subject 1 allows us to refine the CDH critical region to a 

~1.9 Mb that still includes FGFRL1 (Figure 1). This interval includes ~48 RefSeq genes. 

Since FGFRL1 has a low loss-of-function intolerance in gnomAD (pLI = 0.01; e/o ratio = 

0.37), it is likely that haploinsufficiency of FGFRL1 combined with other epigenetic, genetic, 

environmental, and/or stochastic factors is responsible for the CDH seen in a subset of 

individuals with WHS. The genetic factors involved may include the haploinsufficiency of 

other protein coding genes within the new critical region that have high CDH-specific 

pathogenicity scores including FGFR3 (99.9%; MIM# 134934), NSD2 (97.3%; MIM# 

602952), and ZNF141 (97%; MIM# 194648), MAEA (91%; MIM# 606801), CPLX1 (89%; 

MIM# 605032) and/or CTBP1 (85.6%; MIM# 602618) [Callaway et al., 2018]. Of these 

genes, only CTBP1 has been clearly implicated in the development of the diaphragm with 

Ctbp1-/-;Ctbp2+/- mouse embryos having abnormal muscle fiber formation in their diaphragms 

[Hildebrand and Soriano 2002]. 

 The potential role of FGFRL1 deficiency as a contributor to CDH development is also 

supported by Subject 2, the first child with CDH that has been found to be compound 

heterozygous for variants in FGFRL1 (c.[886A>G];[1328G>C], p.[(I296V)];[(G443A)]). As 

expected, based on the Fgfrl1 mouse model, neither of Subject 2’s parents, who carried only 

one affected FGFRL1 allele, had CDH. Consistent with Subject 2’s Hispanic (Mexican) 

ethnicity, these variants are seen most commonly in the Latino/Admixed American 

population of the gnomAD database. However, even in this population, they are rare (allele 

frequencies of 0.00032 and 0.00059, respectively) and have never been documented in the 



homozygous state. In silico evaluations provide greater evidence for the deleterious nature of 

the c.886A>G variant (Table 1) that occurs in a region that codes for an Ig-like C2-type 3 

domain of FGFRL1 and has a Combined Annotation Dependent Depletion (CADD; 

https://cadd.gs.washington.edu/) score of 23.9. In contrast, the c.1328G>C variant has a much 

lower CADD score of 8.5. If these variants contributed to the development of CDH in 

Subject 2, it is still possible that they did so in conjunction with other deleterious variants that 

were not identified on exome sequencing. Unidentified epigenetic, environmental and/or 

stochastic factors may have also played a role in Subject 2’s CDH.  

 We conclude that the CDH critical region on 4p16.3 that is associated with WHS can 

be refined to an ~1.9 Mb telomeric region that contains FGFRL1 and ~47 other RefSeq 

genes. We also conclude that FGFRL1 deficiency may contribute to the development of CDH 

in humans, although definitive proof will require the identification of additional individuals 

with CDH that carry biallelic, deleterious variants in FGFRL1.   
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FIGURE LEGENDS 

Figure 1. The deletion identified in Subject 1 defines the CDH critical region on 4p16.3 

that is associated with Wolf-Hirschhorn syndrome. A schematic representation of 

molecularly defined, isolated 4p16 deletions associated with CDH [Callaway et al., 2018; 

Casaccia et al., 2006; Slavotinek et al., 2006; Tautz et al., 2010; Van Buggenhout et al., 

2004].  In all cases, the maximal deletion is depicted. FGFRL1 is located in the CDH critical 

region on 4p16.3 defined by the maximal deletion in Subject 1 (chr4:1-1,875,255; hg19).  
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