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Introduction

Efficacy outcomes of ALK-translocated NSCLC patients 
have been strikingly improved with the advent of new 
generation drugs which inhibit more efficiently aberrant 
activity of chimeric ALK proteins (1,2). Multiple ALKi 

are currently available in the clinical setting, nevertheless 
several open questions arise concerning the correct 
administration sequence (i.e., stepwise or more potent 
inhibitor upfront), since TKI may deeply influence the 
natural history of the tumor and, consequently, patients’ 
long-term outcomes (3,4). 
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Similarly to other oncogene-addicted NSCLC, ALK+ 
patients become sooner or later resistant to targeted therapy, 
showing clinically progressive disease with a wide range 
of aggressiveness (5-7). Multiple resistance mechanisms to 
ALK inhibition have been reported in the past years, even 
though they can be categorized in “ALK-dependent” or 
“on-target”, mainly due to intra-kinase domain mutations 
or ALK gene copy gain, and “ALK-independent” or “off-
target”, such as by-pass signaling pathways activation, drug 
efflux mechanisms or histological transition (8-10). To 
recognize the specific molecular mechanism underpinning 
cancer progression is of paramount relevance, since it allows 
physicians to properly change the treatment, targeting that 
resistance mechanism at the best (11). 

New high-throughput technologies [ i .e . ,  next-
generation sequencing (NGS)], capable to interrogate 
tissue and plasma samples thoroughly and rapidly, allow 
the investigation of changes in the molecular landscape at 
the time of disease progression (12,13). Even sometimes 
hard to be accomplished due to the limited accessibility 
to site of disease progression for re-biopsy (e.g., central 
nervous system) or technological limitations (poor access 
to interventional radiology or sequencing platforms), ALK-
translocated patients should be re-characterized along their 
disease story. The elucidation of biological mechanisms of 
resistance, not exclusively relevant for clinical decisions, will 
improve our knowledge on this patients’ subset providing 

physicians with tools to forecast clonal evolution and rapidly 
adjust therapeutic strategies.

On-target mechanisms of resistance

ALK mutations 

A broad spectrum of  mutat ions  within  the  ALK 
enzymatic domain has been documented, similarly to 
what previously observed in patients with Philadelphia+ 
Chronic Myelogenous Leukemia receiving target therapies 
(i.e., imatinib, dasatinib, etc.) (14). The explanation why 
mutational landscape of ALK+ NSCLC is notably different 
from epidermal growth factor receptor (EGFR)+ patients, 
who develop T790M mutations as main mechanism of 
resistance to first- and second-generation TKI, may rely 
into different tumor biology (i.e., genomic instability in 
fusion-positive tumors and different oncogenic dependency) 
and distinct TKI properties (i.e., binding modalities, 
inhibiting potency) (15,16). Thus, ALKi of different 
generation, with different profiles of activity, generate 
different mutation profiles within ALK tyrosine-kinase 
domain (8) (Table 1).

First generation ALKi (crizotinib)
The reported frequency of secondary mutations acquired 
following treatment with crizotinib is around 20–30%, a 
lower proportion of cases compared to second-generation 

Table 1 The most frequent on-target mutations to ALKi: resistance and sensitivity

ALK TKI Resistance mutations occurrence after TKI Resistance mutations sensitivity to TKI

Crizotinib L1196M, G1269A, C1156Y/T, L1152P/R,  
I1151Tins, F1174C/L/V, I1171T/N/S, G1202R, S1206Y

L1198F, E1210K

Ceritinib G1202R, F1174L/C, C1156Y, L1196M, V1180L, 
G1202del, D1203N

I1171T/N, C1156Y, L1196M, S1206C/Y, G1269A/S, D1203N

Alectinib G1202R, I1171T/N/S, V1180L,  
L1196M, S1206Y, E1210K

L1152P/R, C1156Y/T, F1174C/L/V, L1196M, L1198F,  
S1206C/Y, G1269A/S

Brigatinib G1202R, E1210K + D1203N,  
E1210K + S1206Y/C

I1151Tins, L1152P/R, C1156Y/T, I1171T/N/S, F1174C/L/V, 
L1196M, G1269A/S

Ensartinib G1202R, G1269A G1123S, L1198F

Lorlatinib L1198F + C1156Y, G1202R + L1196M, E1210K + 
D1203N + G1269A, I1171N + L1196F, L1196M + 
D1203N

I1151Tins, L1152P/R, C1156Y/T, I1171T/N/S,  
F1174C/L/V, L1196M, G1202R/del, S1206C/Y,  
E1210K, G1269A/S +/− C1156Y

The frequency of secondary on-target mutations acquired after crizotinib treatment is around 20–30%. Their occurrence after 2nd 
generation inhibitors is detectable, instead, in the 50–70% of patients, with G1202R as the most frequent event. Around 13% of patients 
who received a first- and second-generation inhibitors and the 55% treated with lorlatinib develop complex compound mutations. The 
sensitivity of on-target mutations and their coverage, which varies among different TKIs, is reported, TKI, tyrosine kinase inhibitors.



2547Translational Lung Cancer Research, Vol 9, No 6 December 2020

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2020;9(6):2545-2556 | http://dx.doi.org/10.21037/tlcr-20-372

TKIs (8). Data from a large dataset of tumor samples 
assessed at the time of progression identified different 
mutations, even if two of them appear in the majority of 
the cases: L1196M (7%) and G1269A (4%) (8); both of 
them, the first as a classical gatekeeper mutation and the 
second one lying in the ATP-binding pocket, alter 3D 
conformation and hinder TKI binding (17-19). Other 
mutations (C1156Y/T, L1152P/R, I1151Tins, F1174C/
L/V) are supposed to enhance the kinase activity, being 
localized at the C-terminus or N-terminus of the αC-
helix domain (17,20-22). I1171T/N/S, G1202R, S1206Y, 
E1210K, G1269A mutations also interfere with the binding 
of TKI determining a conformational alteration of the αC-
helix or a steric hindrance (8,23-25). Other rare variants 
have been identified in individual cases, such as G1128A 
located in the P-loop and conferring an increased enzymatic 
activity (26).

Second generation ALKi (ceritinib, alectinib, brigatinib, 
ensartinib)
The occurrence of acquired mutations following second-
generation ALKi increases till 50–70% of patients with 
G1202R as the most frequent event (35–60% of all mutated 
samples) (8). In post-ceritinib tissue biopsies secondary 
mutations were detected in the 56% of the cases—with 
17% of double mutations—mainly represented by G1202R 
(21%), F1174 C/L (17%) and, to a less extent, C1156Y 
(8%). Moreover, G1202del has been identified (8%) and 
functional studies demonstrated its partial sensitivity to 
crizotinib and moderate resistance to second-generation 
agents, differently from G1202R that confers high level 
of resistance to first and second generation TKIs (8). At 
the post-alectinib relapse, acquired mutations have been 
identified in 53% of the patients, again with G1202R as 
the most frequent event (29%); other mutations identified 
are: I1171T/S (12%), V11180L (6%), L1196M (6%) 
(8,22,24,25). Even though a limited number of samples 
from patients treated with brigatinib have been analyzed 
at relapse, the majority reported G1202R (43%) and then 
E1210K (29%), D1203N (14%), S1206Y/C (14%) (8). Of 
note, most patients had previously received crizotinib as 
first ALKi. Compared to other ALKi, ensartinib seems to 
be the most active inhibitor against G1123S and L1198F 
mutations, but less potent against G1202R and G1269A. 
At disease progression two mutations emerged: E1210K 
and, less relevant, S1206F. Longitudinal changes in ALK 
mutations were identified during the treatment with 
ensartinib, showing the relevant role of plasma analyses to 

track disease evolution (13).
Around 13% of patients who received a first- and 

second-generation ALKi developed two or more mutations, 
supporting the concept of progressive multistep genetic 
complexity. Sequential analyses of mutational profiles 
help to clarify that resistance is “private” for each ALKi, 
like F1174V that confers sensitivity and I1171 resistance 
to alectinib, differently from what has been observed for 
ceritinib (23,27). In the work by Yoda et al., a single patient, 
thoroughly analyzed along clonal evolution, developed 
a E1210K mutation post-crizotinib and two additional 
different post-brigatinib mutations; this denotes the 
emergency of two different clones (E1210K + S1206C and 
E1210K + D1203N) suggesting how TKI administration 
influences tumor evolution and response to more potent 
inhibitors (8,9).

Third generation ALKi (lorlatinib) and emergence of 
compound mutations
The mutational landscape of acquired resistance to 
lorlatinib has been extensively described, analyzing 
patients’ samples after different ALKi sequences. Initially, 
experimental models of acquired resistance have been 
generated through ENU mutagenesis assays of Ba/F3 
cell lines harboring EML4-ALK wt or mut (G1202R) and 
subsequently these data were validated in a cohort of 20 
tissue biopsies of patients progressing on lorlatinib (9).

Almost no patients with primary intrinsic resistance 
to lorlatinib carried any ALK mutations, suggesting the 
presence of ALK-independent mechanisms of resistance. On 
the other hand, 55% of patients with acquired (after initial 
response) resistance developed compound mutations (9).  
Consistently with pre-clinical results, patients’ samples 
showed double or triple mutations due to stepwise 
accumulation of resistance mechanisms. Inversely, two post-
lorlatinib samples lose initially detected mutations. Studying 
the clonal evolution of three different patients, investigators 
identified specific pattern of compound mutations, such 
as: ALK-G1202R/L1196M, ALK-E1210K/D1203N/
G1269A, ALK-I1171N/L1198F (9). Another recent study 
identified acquired compound mutations with different 
degrees of resistance to lorlatinib: F1174L/G1202R, 
L1196M/D1203N and C1156Y/G1269A. To what extent 
such patterns of resistance are sensitive to different ALKi 
is currently a field of research. It has been showed that, 
among others, the C1156Y/G1269A mutation maintains 
responsiveness to lorlatinib, thus indicating the presence 
of a concomitant off-target mechanism of resistance. On 
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the other hand, the L1196M/D1203N secondary mutation 
confers a potent lorlatinib resistance, comparable to the 
L1196M/G1202R mutation that confers primary resistance 
to third generation ALKi. Conversely, the F1174L/
G1202R mutation induces a slight increase in resistance to 
lorlatinib compared to the single G1202R mutation, which 
can be overcome by elevated compound concentration  
in vitro (28).

Taking into account the prevalence of G1202R mutation 
as mechanism of resistance after second-generation 
TKI, it could be speculated that the double compound 
mutation ALK-G1202R/L1196M (identified both through 
mutagenesis assays and in patient samples) could be 
the most frequent acquired mutation in post-lorlatinib 
patients in the clinical setting. Frighteningly, this genotype 
(comparable to other G1202-coupled mutations) is resistant 
to all commercially available ALKi, strongly narrowing 
treatment options of these patients. However, changeable 
scenarios may emerge such as the case of a patient treated 
with the sequence of crizotinib-ceritinib-lorlatinib, who 
developed a post-lorlatinib L1198F mutation, along with 
the post-crizotinib C1156Y, and surprisingly responded 
to crizotinib; this double compound mutation C1156Y/
L1198F re-sensitizes patient’s tumor to first-generation 
ALKi (29). Also the I1171S/G1269A mutation, identified 
in a liver lesion at progression to lorlatinib, turned out 
to be sensitive to ceritinib and brigatinib and the patient 
responded to treatment with ceritinib (30).

ALK amplification

ALK gene copy number gain has been observed after 
exposure to crizotinib with a frequency of 7–18%, 
occasionally coupled with an ALK kinase mutation (19,21). 
In a cell line model, the association of amplification and 
mutation conferred high degree of resistance, while the 
copy number gain alone was not sufficient to generate a 
resistant phenotype to intermediate doses of crizotinib (18).  
However, this biological event was not reported as 
resistance mechanism after more potent ALKi, thus it might 
represent a non-clinically relevant phenomenon.

Off-target mechanisms of resistance

If intra-kinase domain mutations justify ~30% and ~50% 
of resistances following first and second/third generation 
TKI respectively, other resistance mechanisms, which are 
relevant in remaining cases, need to be investigated. If 

patients with ALK-independent mechanisms of resistance 
post-crizotinib still remain sensitive anyhow to ALK 
inhibition, due to a lower inhibiting potency of first-
generation TKI, ALK-Independence post-second/third 
generation ALKi seem to no longer respond to ALK 
inhibition, suggesting how the presence of ALK secondary 
mutations predict a certain degree of ALK-dependency and, 
therefore, response to more potent ALKi (23,31,32). 

Even if through different mechanisms (genetic mutations, 
by-pass kinase signaling, gene amplification, etc.), the result 
is a constitutive activation of intra-cellular downstream 
signaling pathways, such as RAS-MAPK axis, whose re-
activation represents a crucial event driving resistance in 
ALK positive tumors (33) (Figure 1).

Co-occurring mutations

NGS approaches let the systematic screening of co-
occurring genetic mutations as putative mechanisms of 
resistance to targeted therapy. Non-ALK mutations, in 
at least one different gene, have been identified in more 
than half of the cases (56%) of a post-second generation 
TKI cohort and in a large part of post-lorlatinib samples 
(8,9). The most frequently disrupted gene was TP53, even 
though, due to the low amount of pre-therapy samples to be 
matched, it is not clear if these mutations may pre-exist the 
development of resistance. Among other genes, rare private 
alterations at low frequency were identified in BRAF, 
FGFR2, MET, NRAS and PIK3CA genes (8,34). Among 
the others, mutations of POLE gene that encodes the 
catalytic subunit of DNA polymerase epsilon, permissive of 
the accumulation of a high number of somatic mutations, 
have been detected in post-crizotinib specimens (34). In a 
post-ceritinib patient-derived cell line a MAP2K1-K57N 
mutation was identified and it conferred sensitivity to the 
dual blockade of ALKi plus selumetinib (MEKi) (35). In 
the post-lorlatinib samples analyzed by Soda et al., several 
mutated genes identified may be causative of resistance, 
such as MAP3K1 disruption or NRAS-G12D activation (9). 

Overall, these point mutations occur in a patient-private 
fashion, since appear as isolated event. Only TP53 mutations 
have been identified as relevant co-occurring mutations 
and, recently, their role as prognostic/predictive biomarker 
has been validated when tested baseline, rather than as a 
resistance-inducing event (8,34,36). Indeed, Christopoulos 
et al. recently highlighted the relevant clinical meaning of 
baseline TP53 mutational status in ALK+ NSCLC, showing 
that it significantly correlates with worse progression-free 
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survival (PFS) and a shorter overall survival (OS), especially 
when associated with ELM4-ALK V3 variant. Moreover, 
the identification of TP53 mutations by liquid biopsies at 
progression resulted to be associated with a more aggressive 
disease (37,38).

By-pass kinases and downstream signaling pathways 
activation

Concomitant activation of other kinases, both on the cell 
surface and in the cytoplasmic compartment, is frequently 
the crucial by-pass signaling track that confers resistance 
to conventional ALK inhibition. Human epidermal growth 
factor receptor family (EGFR, HER2/HER3, HER4) 
activation is one of the first and more relevant mechanisms 
identified (20,21,39). EGFR up-regulation—in absence of 
mutations—has been identified both in post-crizotinib cell 
lines and in resistant patients’ samples, sometimes induced 
by paracrine stimuli, like NRG-1 upregulation (40-42). This 

event might pre-exist in therapy-naive tumor cells or appear 
during ALK targeting, rising and falling along treatments 
in a reversible manner (43,44). A recent study demonstrated 
that moderate resistance to alectinib in patients with 
leptomeningeal carcinomatosis (LMC) could be due 
to amphiregulin (AREG)-triggered EGFR activation, 
based on the important AREG overexpression found in 
resistant LMC cells in vitro. Moreover, in this model, the 
combined use of alectinib and EGFR-TKI, including the 
third-generation inhibitor osimertinib, significantly led to 
the control of disease progression at the central nervous 
system (45). Similarly, Redaelli et al. have identified EGFR 
phosphorylation as an escape mechanism in lorlatinib-
resistant EML4-ALK cell lines, which can be controlled by 
combination treatment (e.g., lorlatinib plus erlotinib); thus 
highlighting the role of this adaptive mechanism also during 
third generation ALK inhibition (46). 

Co-stimulation and transactivation of EGFR/MAPK 
pathway may be sustained also by different players, such 

Figure 1 Mechanisms of intrinsic and acquired resistance to ALKi. The most frequent are: development of second mutations in the Kinase 
Domain (KD) at gatekeeper sites; copy number gain; activation of alternative oncogenic pathways via compensatory “by-pass” routes by 
receptor tyrosine kinases signalling (i.e., EGFR, HER-2, HER-3, c-MET); acquisition of other somatic mutations or kinase translocations. 
Alternative resistance may also be due to histological transformation or reduced drug delivery (impaired penetrance through the blood-brain 
barrier), which represents a source of primary resistance.
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as P2Y purinergic receptors that, when upregulated, boost 
signaling by PKC activation, a mechanism itself capable to 
induce resistance to ALK inhibition (42). Moreover, Lovly  
et al. identified a synergistic effect when co-targeting 
ALK and insulin-like growth factor 1 (IGF-1). IRS-
1 was identified as a central adaptor protein for IGF1-R 
and ALK signaling and inhibition of the IGF1R/IRS1 
pathway sensitizes tumor cells to ALK targeting (47). A 
drug-screening assay, through patient-derived and cell 
line models, highlighted a relevant synergistic effect 
of saracatinib (a dual Src and Bcr-Abl inhibitor) and 
ALKi, pinpointing the cause of resistance in SRC kinase 
upregulation. In fact, the phosphorylation of SRC substrates 
was increased after both first and second generation TKI 
(35,48). 

More recently, other molecular changes have been 
identified. Recondo et al. reported a case of NF2 splicing 
site mutation that was detected at the progression to 
crizotinib, subsequently responsive to lorlatinib. At the time 
of progression to this latter agent, more disrupting events 
in NF2—a well-known tumor suppressor gene—appeared, 
causing a stronger bypass activation of the PI3K-AKT-
mTOR pathway. Interestingly, cell-lines were sensitive to 
mTOR inhibition in vitro and in vivo with potential clinical 
implications (28). Activation of YAP (Yes-associated protein), 
a major downstream effector of the Hippo pathway, has 
been recognized as involved in resistance to ALK. YAP 
overexpression, indeed, hinders the response to alectinib 
in pre-clinical models and in tumor biopsies of crizotinib-
resistant patients. These results, even if still premature, can 
provide the basis for YAP pathway targeting to overcome 
ALK-TKI resistance (49,50). 

The RAS-MAPK dependency of ALK-rearranged 
cancers has been clearly elucidated and, being a crucial node 
where multiple molecular pathways converge, represent a 
solid pre-clinical evidence for upfront multi agent therapy 
approach, as emerging also in other types of oncogene 
addiction (i.e., TRK+ tumors) (33,51).

Gene amplification and translocations

Rather than ALK, different studies reported the occurrence 
of other genes’ amplification as causative of resistance 
phenotype. KIT amplification has been identified in one 
patient progressed on crizotinib; it has been shown that the 
interaction with stromal paracrine SCF ligand is crucial to 
confer this phenotype and dual ALK/KIT inhibition might 
overcome this constraint (21). 

Whether alectinib is superior to crizotinib as first line 
therapy has been demonstrated in the clinical setting (1).  
However, some investigators claim for the dual ALK/
MET inhibitory activity of  crizotinib that is  not 
observed with alectinib (52). Initially, anecdotic case 
reports showed MET amplification as potential cause of 
massive progression after alectinib administration (53).  
Nevertheless, HGF/MET amplifications have been found 
also in crizotinib-progressing samples as proper on-
target escape mechanism (34). In sequential analyses 
of circulating tumor cells derived from a patient who 
progressed on crizotinib and become primary resistant to 
ceritinib and alectinib high level of MET amplification 
was detected; gene amplification developed after crizotinib 
administration and was confirmed in the liver biopsy at the 
time of clinical progression and claimed as the causative 
mechanism of resistance (54). More recently MET gene 
amplification has been confirmed as relevant mechanism 
after second and third generation ALKi. Dagogo-Jack et al.  
identified this event in the 12% and 22% of patients’ 
samples at progression after second generation or lorlatinib, 
respectively, therefore highlighting how the probability 
increases after more potent TKI treatment upfront; 
interestingly, proper dual inhibition of ALK plus MET, co-
administering lorlatinib and crizotinib at low doses, seems 
a potential strategy to overcome resistance status (55). 
Similarly, other genes amplification, such as MYC gene 
copy number gain, may cause resistance to classical ALK 
inhibition, though these events seldom occur (56).

Genomic instability is the bedrock of acquired resistance 
mechanisms. An emerging molecular event, observed also 
in post-osimertinib EGFR+ patients, is the detection of 
fusion-driven clones (57). Although rarely reported, new 
gene translocations may restrain ALK+ NSCLC response 
to TKI. In the above reported paper, MET rearrangements 
were documented in two cases (one paired to MET 
amplification) (55). Moreover, a single case report shed 
light on the potential role of co-occurring NRG1 fusions as 
potential mechanism of resistance (58).

Phenotypic changes and stem-cell like properties

Among mechanisms of acquired resistance to ALK 
inhibitors, histological transformation such as epithelial-
mesenchymal transition (EMT), switch to small cell (SCLC) 
or squamous cell lung cancer should be included. Notably, 
approximately 3‒10% of EGFR+ lung adenocarcinoma, 
under the selective pressure of EGFR TKIs, undergoes 
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lineage change into SCLC or other neuroendocrine tumors, 
acquiring TP53 and RB1 mutations (59,60). Multiple 
clinical reports showed transformation to SCLC even in 
ALK+ NSCLC at progression on different generations of 
ALKi. In all the cases, ALK rearrangement was maintained 
on re-biopsy, suggesting a real histological switch, and not 
the outgrowth of a baseline pretreatment SCLC clone. 
Of note, histological switching may appear associated at 
the same time with acquisition of resistant mutations (e.g., 
L1196M or G1202R) (61-63). Similarly, transformation to 
squamous-cell histology has been claimed as causative of 
ALKi resistance; even though a rare event, morphological 
and immunohistochemical transformation (i.e., loss of 
TTF1 and gain of p40 positivity) were reported in the same 
primary site of initial adenocarcinoma diagnosis (64-66).

In post-ceritinib samples, analyzed by Gainor et al., 
42% of the cases expressed immunohistochemical markers 
of mesenchymal differentiation (i.e., vimentin) and loose 
E-cadherin, acquiring spindle cell features; of note, 3 of 
the 5 cases reported also an ALK intra-kinase mutation, 
meaning that EMT might be one of the mechanisms 
hindering ALKi sensitivity in these patients (8). Another 
study suggested the co-existence of L1196M mutation 
and EMT in a crizotinib-resistant tissue sample, and the 
administration of HDAC inhibitors seemed to revert the 
transition both in vitro and in vivo models (67). Further 
on, Recondo et al. expanded two cell lines derived from 
patients with EMT during lorlatinib treatment: one 
associated with C1156Y/G1269A compound mutation, the 
other apparently without any intra-ALK mutations. Both 
models, expressing EMT features (high levels of vimentin, 
ZEB1, FGFR1), showed increased SRC pathway activation, 
demonstrating that its inhibition could in part re-establish 
E-cadherin expression. In this context, it is of interest that 
in vitro fibroblast growth factor receptor (FGFR) inhibitors 
sensitized ALK-rearranged EMT+ cell lines to lorlatinib, 
spurring the investigation of combination treatments for 
patients with phenotypic changes (28).

Molecular signaling underling these phenotypic 
transformations have not been extensively understood in 
ALK+ disease. Preclinical studies investigated cell line 
models matching the resistant EMT phenotype with the 
emergence of a stemness trait of ALK-translocated cells (68).  
Nakamichi et al. generated H2228 resistant cell lines to 
first- and second-generation ALKi and identified the 
acquisition of EMT and stem-cell like (CSC) features in 
a drug-tolerant cell subpopulation that had an augmented 
signaling of ALK and HSP90 pathways. Authors stated 

that co-targeting these molecules, rather than solely ALK 
inhibition, might prevent or delay the phenomenon of drug 
tolerance, due to the inhibitory effect on the associated 
proteins, clients of the chaperone machine (69,70). 

Intrinsic primary resistance

Intrinsic resistance to ALK inhibition has been reported 
after first- and second/third-generation TKI, when the best-
obtained clinical response is disease progression. Around 
5–7% of post-crizotinib, 9% of post-ceritinib and 25% 
of post-lorlatinib cases demonstrated unresponsiveness 
to treatments and no specific ALK mutations have been 
identified (8). Multiple factors may underline primary 
resistance to ALK targeting. First of all, anyone of the above-
described mechanisms existing de novo in tumor cells might 
impinge ALK dependency. If ALK mutations have not been 
claimed to be causative of this phenomenon, other co-existing 
by-pass signaling tracks may be taken into consideration. 
Receptor tyrosine kinases-dependent pathways (e.g., HER 
members), among others, may represent the co-stimulatory 
signaling able to re-shape the ALK addiction and may 
constitute the cause of primary resistance. This concept is 
indirectly supported by the evidence that, targeting SHP2, a 
non-receptor protein tyrosine phosphatase on which multiple 
signals converge, may revert resistance in absence of ALK 
mutations (71).

Multiple studies investigated whether ALK fusion 
partner and kinase variant play a role in determining a 
different degree of response to TKI. Partner genes fused to 
tyrosine kinase domain play critical roles in the oncogenic 
transformation, providing oligo-dimerization domain, 
recruiting scaffold proteins and dictating subcellular 
localization of the chimera; since a wide number of different 
partners has been described, a certain degree of intrinsic 
resistance to therapies may be properly justified (72). 
Moreover, specific variant (V3 > V1) of the classical EML4-
ALK fusion protein seems to confer a more aggressive 
tumor behavior, with shorter TKI response, high-
metastatic spread and reduced PFS/OS. Nevertheless, these 
retrospective evidences are not supported by data coming 
from large phase III trials (e.g., ALEX trial) (37,73).

A potential mechanism of intrinsic resistance relies on 
the augmented capability of the neoplastic cells to eliminate 
the drug accumulated in the cytoplasm, thus not reaching 
a proper concentration. This is why crizotinib, being 
substrate of ATP binding cassette drug efflux transporters, 
has a low penetration in the cerebrospinal fluid (CSF) not 
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controlling, therefore, disease localization in the central 
nervous system (CNS) (74). More potent, next-generation 
TKI have been also developed to overcome this limitation 
and CNS disease control by these agents is definitively 
better, considering their capacity of delay brain metastases 
occurrence and produce more profound intra-cranial 
objective responses (75). 

Lastly, the genomic complexity of cancers bearing 
translocations should always be taken into account. A major 
issue is represented by the correct detection of the genomic 
aberrations and false-positive cases may be a possible cause 
of the absence of response to TKI. Rosenbaum et al. have 
recently characterized the presence of “non-productive” 
rearrangements that are detected by FISH (gold-standard 
technique) but totally lacking the expression of chimeric 
protein (76). The harmonization of different diagnostic 
assays, including NGS, is therefore mandatory and will help 
refining the definition of ALK+ patients prone to receive 
TKI. 

Conclusions

The Darwinian evolution of cancer cells under drug 
pressure is an inexhaustible source of resistance mechanisms 
underpinning disease progression; identification and 
characterization of these molecular transformations has 
to be at the crossroads of both preclinical and clinical 
research. Tumor heterogeneity preexists drug exposure and, 
multiplying during treatment, may facilitate the selection of 
cancer clones capable to evade TKI blocking (77). The pre-
treatment landscape cooperates in generating the genomic 
complexity: the more instable is the cancer genome, the 
higher are the probabilities of acquire additional driver 
events. Within the molecular portrait of oncogene-positive 
lung adenocarcinoma, such as ALK-driven tumors, the 
inactivation of SETD2, a gene involved in the recruitment 
of DNA repair machinery, frequently occurs (78).

Resistance and disease progression may be due also 
to incapacity of drug delivery in sanctuary site, such as 
CNS. This had led to the development of more potent 
ALK inhibitors, giving the opportunity of sequential TKI 
administration. However, this strategy may contribute to 
the emergence of highly resistant mutations (i.e., compound 
resistance mutations after lorlatinib). The systematic 
analysis of molecular changes observed at the time of 
disease progression following upfront next-generation ALKi 
is matter of research and will be fully clarified in the next 
years. Other strategies have been investigating how delay or 

circumvent the emergence of resistance. Intermitting dose 
or alternate dose schedules in order to relieve drug pressure, 
administration upfront of dirty pan-inhibitory TKI capable 
of multi-targeting or early drug combination to maintain 
and restore drug sensitivity within drug-tolerant cells 
(70,79,80), are all strategies under investigation. However 
clinical applicability is not always an easy process and the 
accessibility into clinical trials for progressing patients 
remains a stronghold.

The knowledge of the molecular aspects surrounding 
ALK+ tumors is complex and, often, only marginal 
information is gained, not representative of the overall 
adaptive tumor plasticity. Nevertheless, the introduction of 
novel technologies and the possibility to perform extensive 
genomic analyses even on liquid specimens (e.g., blood, 
CSF) is a unique opportunity to speed up the research in 
this exciting field. The development and application of 
liquid biopsies on blood specimens—whose discussion is out 
of the scope of this review—has become a real milestone 
in the clinical management of oncogene-addicted patients. 
However, as previously discussed, the emergence of non-
oncogene-driven resistance, such as phenotypic changes, 
underscores the indubitable role of tissue biopsy, when 
feasible. Differently from other scenarios (e.g., EGFR+ 
lung cancer, c-KIT+ gastrointestinal stromal tumors), ALK-
rearranged NSCLC harbor specific features. The deep 
understanding of this disease both at baseline and after 
progression on different drugs is of paramount relevance 
to increase patients’ survival. At the same time, such 
wealth of knowledge should be translated to other rare 
rearrangement-driven tumors. 
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