
Physics Reports 368 (2002) 317–407
www.elsevier.com/locate/physrep

Gauge and Lorentz invariant one-pion exchange currents in
electron scattering from a relativistic Fermi gas

J.E. Amaroa ; ∗, M.B. Barbarob, J.A. Caballeroc, T.W. Donnellyd, A. Molinarib

aDepartamento de F�
sica Moderna, Universidad de Granada, Campus de Fuentenueva, E-18071 Granada, Spain
bDipartimento di Fisica Teorica, Universit a di Torino and INFN, Sezione di Torino Via P. Giuria 1, 10125 Torino, Italy
cDepartamento de F�
sica At�omica, Molecular y Nuclear, Universidad de Sevilla, Apdo. 1065, E-41080 Sevilla, Spain

dCenter for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 1 April 2002
editor: G.E. Brown

Abstract

A consistent analysis of relativistic pionic correlations and meson-exchange currents for electroweak quasi-
elastic electron scattering from nuclei is carried out. Fully relativistic one-pion-exchange electromagnetic opera-
tors are developed for use in one-particle emission electronuclear reactions within the context of the relativistic
Fermi gas model. Then the exchange and pionic correlation currents are set up fully respecting the gauge
invariance of the theory. Emphasis is placed on the self-energy current which, being in8nite, needs to be renor-
malized. This is achieved starting in the Hartree–Fock framework and then expanding the Hartree–Fock current
to 8rst order in the square of the pion coupling constant to obtain a truly gauge invariant, one-pion-exchange
current. The model is applied to the calculation of the parity-conserving and parity-violating inclusive re-
sponses of nuclei. Interestingly, in the pionic correlations terms exist which arise uniquely from relativity,
although their impact on the responses is found to be modest. c© 2002 Elsevier Science B.V. All rights
reserved.
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1. Introduction

In modern experimental studies of electron scattering from nuclei [1–3], the typical values of
energy and momentum transfer are comparable to or even larger than the mass scale set by the
nucleon mass and accordingly one must expect relativistic eGects to be important. Unfortunately,
the wave functions and operators used to describe this high-energy regime have been treated only
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approximately. Indeed it is still the case that many calculations continue to be done at the non-
relativistic level with leading-order expansions of the electroweak currents involved [4–8]. However,
a number of studies in recent years show that such an approach is highly constrained to work only
at relatively low energies and momenta.

In order to gain insight into which ingredients can or cannot be non-relativistically approximated,
we have employed a simple model in which Lorentz covariance and gauge invariance can be main-
tained, namely, the relativistic Fermi gas model (RFG). Since our focus is placed on the quasielastic
region where high-energy knockout of nucleons is kinematically favored, we believe that this model,
while undoubtedly too simple to encompass all aspects of nuclear dynamics is nevertheless a con-
venient place to start in such explorations. Indeed, the problem of relativity in electroweak studies
of nuclei is so diIcult [9–18] that only in special frameworks such as the RFG can we hope to
carry out all but rather severely approximated modeling.

In the quasielastic regime we also expect pions to play a role that diGers from the dynamics
typically occurring near the Fermi surface where one expects other mesons (� and ! in particular) to
dominate. For quasielastic scattering the residual interaction of relevance is principally that between
a low-energy hole and a very high-energy particle, and for this the pion is expected to play an
important role. Accordingly, as the next step after the basic relativistic Fermi gas of non-interacting
nucleons we have concentrated on one-pion-exchange (OPE) eGects in our description of the nuclear
responses. These occur as correlation eGects and also as two-body meson-exchange current eGects.
After developing approximate methods for modeling to this order, in recent work we have reached
the stage where large classes of eGects can be incorporated fully relativistically. The present paper
is a comprehensive discussion of what we have learned to this point based on this type of approach,
together with comments on what directions future studies could follow.

In particular, in a recent paper [19] we investigated the role played by pions in inclusive electron
scattering from nuclei within the context of one-particle one-hole (1p–1h) excitations, i.e., for the
dominant modes in the quasielastic regime. There we extended our previous work [20,21] where
a systematic investigation of relativistic eGects in the nuclear electromagnetic responses spanning a
wide range of kinematical conditions and accounting for both meson-exchange and isobar currents
was carried out. In these studies a consistent 8rst-order operator, embodying all Feynman diagrams
built out of nucleons and pions with one exchanged pion and one photon attached to all the possible
lines was set up to represent the two-body current. Importantly, the latter has been explicitly proven
to be gauge invariant in [19].

In addition to the usual contact and pion-in-Jight meson-exchange currents (MEC), this fully rel-
ativistic operator includes as well the so-called correlation currents. The latter are often not included
in model calculations because they give rise to contributions assumed already to be accounted for
(at least in part) in the initial and 8nal nuclear wave functions [22,23]. However, our model is based
on an uncorrelated relativistic Fermi gas whose states are Slater determinants built out of (Dirac)
plane waves. Within a perturbative approach, we are free to consider the one-pion correlation con-
tributions to the responses as arising either explicitly in the wave functions or from an appropriate
current operator acting on unperturbed states: our choice has been the latter. Clearly, should it be
possible to sum up the whole perturbative expansion, then the results obtained starting with the true
“correlated” wave function would be exactly recovered.

In this paper we provide a deeper analysis of the impact of pions on the nuclear electromagnetic
response in the 1p–1h channel [24–28]. Just as for the MEC, the two-body correlation current
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also contributes in this sector and, of course, it should do so consistently, namely ful8lling gauge
invariance at the level of OPE.

When the operator associated with a two-body current acts on the RFG ground state, in general,
it changes the quantum numbers of two nucleons: the 1p–1h matrix element is then obtained via
the integration of a one-particle state over the Fermi sea. In the case of the correlation current two
contributions are thus obtained. The 8rst one, sometimes referred to as a vertex correction [29],
arises from the exchange of a pion between the particle and hole; the second relates to the Fock
self-energy (SE) [29,30] and dresses the particle and hole propagation lines. This one diverges,
since it corresponds to an SE insertion on an external line, which 8eld theory [31,32] tells us not
to include in a perturbative expansion. Instead, one should apply a renormalization procedure to
dress the external lines by summing up the entire perturbative series of self-energy insertions. In the
nuclear context, this procedure leads to the relativistic Hartree–Fock (HF) approach.

In some relativistic calculations [29,30], this contribution has been treated by introducing from
the outset an HF propagator in the medium, which accounts for the SE diagrams. In-medium form
factors for the 1p–1h current were also introduced neglecting however any momentum dependence
in the self-energy and eGective mass. Thus in [30] the self-consistent Hartree mean 8eld was in-
serted into the single-particle propagator, automatically including the Pauli blocking of N MN pairs,
whose contribution was thus included in the random-phase-approximation (RPA) responses com-
puted there. A similar semi-phenomenological treatment of the nucleon self-energy in the medium
at the non-relativistic level was implemented in [4]. More recently, the Dirac structure of nucleon
self-energy in nuclear matter has been studied in [33], while a 8nite nuclei calculation based on
the �–! model can be found in [9], where the relativistic Hartree model of [10] is used for the
single-particle bound states.

In [19] the diIculty of the SE insertion in 8rst order was avoided by computing the associated
self-energy response as the imaginary part of the corresponding polarization propagator with OPE
SE insertions on the particle and hole lines. A 8nite result was thus obtained in 8rst order (one
pionic line) without resorting to the HF approach. The question then arises whether it is possible to
obtain the same result for the self-energy response function starting with >nite well-de>ned matrix
elements of the current operator.

In this paper we answer this question by constructing a renormalized self-energy current corre-
sponding to OPE. This current acts over free Dirac spinors and leads to the same response functions
as those obtained by taking the imaginary part of the polarization propagator computed to 8rst order.
It should be clear that in this work the concept of renormalization has a many-body signi8cance,
namely it amounts to a relativistic HF approximation and ignores (see [19]) the additional vacuum
renormalization due to the change of the negative-energy sea induced by the nuclear medium [30].

The new current is obtained by renormalizing spinors and energies and by expanding the resulting
in-medium one-body current to 8rst order in the square of the pion–nucleon coupling constant,
to be consistent with the requirement of dealing with diagrams having only one pionic line. The
renormalized quantities should then be obtained in the general case by solving a set of self-consistent
relativistic HF equations numerically. However, one of the goals of this paper is to show that to
8rst order the solutions and the corresponding corrections to the bare single-nucleon current operator
can be expressed analytically in terms of a simple electromagnetic operator. This operator accounts
for two main eGects induced by the interaction of the nucleon with the medium: the 8rst is the
enhancement of the lower components of the Dirac spinors; the second is a global renormalization
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of the spinors in the nuclear medium. These eGects are genuine relativistic corrections that are absent
in a non-relativistic framework [24]. Actually a third renormalization eGect also arises, related to
the in-medium modi8cation of the energy–momentum relation for a nucleon, which is here treated
in 8rst order of the square of the pion–nucleon coupling constant (in other approaches this eGect is
embedded in a constant eGective mass [29]).

Using the renormalized SE current operator together with the MEC and the vertex exchange
operator we prove the full gauge invariance of the current if account is taken of the change in
energy arising from the HF renormalization to 8rst order. The results for the inclusive response
functions we obtain with this current agree completely with the ones of [19], where the polarization
propagator technique was used.

The present review is organized as follows: in Section 2 we focus on parity-conserving electron
scattering from nuclei. We begin in Section 2.1 with some general formalism and then in Section
2.2 discuss the pion exchange and correlation currents. There we revisit the full set of 1p–1h current
operators with OPE line which contribute to the electro-excitation process, paying special attention to
the SE contribution. We show the necessity of re-de8ning the otherwise in8nite self-energy diagrams.
In Section 2.3 we develop the HF renormalization scheme as a vehicle to addressing this problem,
going on in Section 2.4 to expand the renormalized spinors and energies to 8rst order in the pion
coupling constant squared obtaining a new self-energy current. Then in Section 2.5 we prove the
gauge invariance of the theory. To conclude this section we go on to discuss the hadronic tensor
and electromagnetic response functions (Section 2.6) and present some typical results (Section 2.7).
In Section 3 we brieJy discuss parity-violating electron scattering to place it in context with the
above studies. In Section 4 we make contact with non-relativistic expansions schemes, both for the
pion-exchange currents (Section 4.1) and for the pionic correlations (Section 4.2). In Section 5 we
summarize our results and draw our conclusions and end with a series of appendices where more
technical aspects of the formalism are compiled.

2. Parity-conserving electron scattering

2.1. General formalism

The general formalism involved in the description of (e; e′) processes for quasielastic kinematics
has been derived and discussed at length in several papers (see for instance [34–41]). Here we
summarize only those aspects that are of special relevance to the analysis that follows. We limit
our attention to the plane wave born approximation (PWBA), i.e., the electron is described as a
plane wave and interacts with the nuclear target via the exchange of a virtual photon. The laboratory
system variables involved in the process are K� = (	; k) and K ′� = (	′; k′), the initial and scattered
electron four-momenta, and P�

i = (Ei; pi) = (Mi; 0) and P�
f = (Ef; pf), the initial and 8nal hadronic

four-momenta, respectively. The four-momentum transferred by the virtual photon is Q�=(K−K ′)�=
(Pf − Pi)� = (!; q); for electron scattering the momentum transfer is spacelike, Q2 = !2 − q2 ¡ 0,
with q= |q|. The S-matrix element in PWBA can then be written as

Sfi =−2�i�(Ef − Ei − !)
e2

Q2 〈k′; s′|je�(0)|k; s〉〈f|Ĵ
�
(Q)|i〉 ; (1)
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where

〈k′; s′|je�(0)|k; s〉=
(me

V	′
me

V	

)1=2
us′(k′)��us(k) (2)

is the electron current matrix element and Ĵ
�
(Q) is the Fourier transform of the nuclear electromag-

netic current operator.
We assume Lorentz invariance, parity conservation and work in the extreme relativistic limit

(ERL), in which the electron energy 	�me. Under these conditions the unpolarized, inclusive (e; e′)
cross section reads

d�
dP′

e d!
=

2�2

Q4

(
	′

	

)
���W�� = �M[vLRL(q; !) + vTRT(q; !)] : (3)

Here � is the 8ne structure constant and P′
e the scattered electron solid angle. The term �M represents

the Mott cross section which in the ERL reduces to

�M =
(

� cos #e=2
2	 sin2 #e=2

)2
; (4)

where #e is the electron scattering angle, and ��� and W�� are the leptonic and hadronic tensor,
respectively. Within PWBA the leptonic tensor simply reads

��� = K�K ′
� + K ′

�K� +
Q2

2
g�� : (5)

The kinematic factors vL and vT are evaluated from the leptonic tensor using standard techniques
(see, for example, [34])

vL =
(
Q2

q2

)2
; (6)

vT =−1
2

(
Q2

q2

)
+ tan2

#e
2

; (7)

whereas the longitudinal and transverse (with respect to the momentum transfer q) response functions
RL and RT are constructed directly as components of the hadronic tensor W�� according to

RL(q; !) =
(

q2

Q2

)2 [
W 00 − !

q
(W 03 +W 30) +

!2

q2
W 33

]
; (8)

RT(q; !) =W 11 +W 22 ; (9)

where we use a coordinate system with the z-axis in the direction of the vector q. Note that if
gauge invariance is ful8lled, implying that W 03 =W 30 = (!=q)W 00 and W 33 = (!=q)2W 00, then RL

is simply the time component of the hadronic tensor, namely W 00. Hence RL is determined by the
charge distribution, whereas RT reJects the current distribution of the nuclear target.

The hadronic tensor and consequently the response functions derived from it embody the entire
dependence on the nuclear structure, speci8cally on the charge and current distributions in nuclei, and
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accordingly these provide the prime focus in analyses of electron scattering. There are various options
on how to proceed in performing such analyses (see, for example, [42]), depending on the speci8c
problem under consideration and on the approximations to be made. In what follows we recall two
common expressions for the hadronic tensor W�� and comment brieJy on their applications.
First, the hadronic tensor can be de8ned according to

W�� =
∑

i

∑
f

〈f|Ĵ �
(Q)|i〉∗〈f|Ĵ �

(Q)|i〉�(Ei + !− Ef) ; (10)

where Ĵ
�
(Q) represents the nuclear many-body current operator, the nuclear states |i〉 and |f〉 are

exact eigenstates of the nuclear Hamiltonian with de8nite four-momenta and the sum with a bar
means average over initial states. This form is very general and includes all possible 8nal states
that can be reached through the action of the current operator Ĵ

�
(Q) on the exact ground state. In

our perturbative approach we shall use eigenstates of the free Hamiltonian H0 (which describes the
free relativistic Fermi gas) and include correlations among nucleons in the current mediated by the
exchange of pions. This current of course allows one to reach both the p–h and the 2p–2h sectors in
the Hilbert space of H0. In the present work, however, we shall restrict our attention to the former.

A diGerent option for evaluating the nuclear responses exploits the polarization propagator '��

(also referred to as the current–current correlation function). The latter can be expressed in terms
of the full propagator, Ĝ, of the nuclear many-body system, since closure can be used to carry out
the sum over the 8nal states in Eq. (10). Then one has for the hadronic tensor [43]

W�� =−1
�
Im'��(q; q;!) =−1

�
Im
∑

i

〈i|Ĵ †�
(Q)Ĝ(!+ Ei)Ĵ

�
(Q)|i〉 : (11)

A possible advantage of this approach relates to the existence of a well-de8ned set of rules (the
relativistic Feynman diagrams) which allows one to compute '�� perturbatively [43].
Obviously, the two procedures are equivalent and hence the observables calculated using the

expressions for the hadronic tensor given by Eq. (10) or (11) should be the same. However, notice
that Eq. (10) is less suitable for dealing with situations where the nuclear current matrix element
〈f|Ĵ �|i〉 is divergent. In this case one proceeds either by computing directly the responses via
the polarization propagator or by 8rst renormalizing the current matrix element and then by using
Eq. (10).

Finally, we remark that gauge invariance must be ful8lled both at the level of the nuclear cur-
rent matrix elements and at the level of the hadronic tensor and=or the polarization propagator.
A consequence is that the electromagnetic continuity equation should be satis8ed. In other words,
in momentum space all of the expressions Q�〈f|Ĵ �

(Q)|i〉; Q�W�� and Q�'�� should vanish.

2.2. Pion-exchange and correlation currents

Working within the framework of the RFG model, i.e., for nucleons moving freely inside the
nucleus with relativistic kinematics, in this section we present a detailed study of the electromagnetic
currents accounting for the eGects introduced by pions in 8rst-order perturbation theory (one-pion
exchange).
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Fig. 1. Feynman diagrams contributing to the two-body current with OPE. The wide line in the correlation diagrams
(d)–(g) means a fully relativistic Dirac propagator for the nucleon.

2.2.1. Feynman diagrams and two-body currents
The linked, two-body Feynman diagrams that contribute to electron scattering with OPE are shown

in Fig. 1. The 8rst three correspond to the usual MEC: diagrams (a), (b) refer to the contact or seagull
current, diagram (c) to the pion-in-Jight current. The four diagrams (d)–(g) represent the so-called
correlation current and are usually not treated as genuine MEC, but as correlation corrections to the
nuclear wave function. However, again we note that our approach puts all correlation eGects in the
current operator and uses an uncorrelated wave function for the initial and 8nal nuclear states.

In this work we use Bjorken and Drell conventions [31] and pseudovector �NN coupling (the
eGect of a pseudoscalar coupling will be commented on later), namely

H�NN =
f
m�

M �5��(9�*a),a ; (12)

where  is the nucleon 8eld, *a is the isovector pion 8eld, f represents the �NN coupling con-
stant and m� is the pion mass. The electromagnetic currents corresponding to diagrams (a)–(g) are
obtained by computing the S-matrix element

Sfi = Sfi(P′
1; P

′
2; P1; P2)− Sfi(P′

1; P
′
2; P2; P1) (13)

for the absorption of a virtual photon by a system of two nucleons, namely for the process

�+ N1 + N2 → N ′
1 + N ′

2 ; (14)

with P1; P2 (P′
1; P′

2) being the initial (8nal) four-momenta of the two nucleons involved (see Fig. 1).
The electromagnetic current is then de8ned according to

Sfi(P′
1; P

′
2; P1; P2) =−ieA�(Q)2��(E′

1 + E′
2 − E1 − E2 − !)〈P′

1P
′
2|ĵ�(Q)|P1P2 〉 ; (15)
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where A�(Q) is related to the matrix element of the electromagnetic 8eld between the incident photon
with momentum Q and the vacuum state, namely

〈0|A�(X )|�(Q)〉= A�(Q)e−iQ·X : (16)

Finally, the on-shell matrix element of the two-body current can be written in terms of a function
j�(p′1; p′2; p1; p2) as follows:

〈P′
1P

′
2|ĵ�(Q)|P1P2〉

=(2�)3�3(p′1 + p′2 − q − p1 − p2)
m2

V 2(Ep1Ep2Ep′1Ep′2)
1=2 j�(p′1; p

′
2; p1; p2) ; (17)

where m is the nucleon mass, V is the volume enclosing the system and Ep=
√
p2 + m2 the on-shell

energy of a nucleon with momentum p. The four-momenta—indicated by capital letters—are de8ned
in Fig. 1.

The general relativistic expressions for the seagull (diagrams (a,b)), pion-in-Jight (c) and corre-
lation (d–g) current matrix elements are (isospin summations are understood)

• Seagull or contact:

j�s (p
′
1; p

′
2; p1; p2) =

f2

m2
�
ij3abu(p′1),a�5K=1u(p1)

FV
1

K2
1 − m2

�
u(p′2),b�5�

�u(p2) + (1 ↔ 2) : (18)

• Pion-in-Jight:

j�p (p
′
1; p

′
2; p1; p2) =

f2

m2
�
ij3ab

F�(K1 − K2)�

(K2
1 − m2

�)(K
2
2 − m2

�)
u(p′1),a�5K=1u(p1)u(p

′
2),b�5K=2u(p2) : (19)

• Correlation:

j�cor(p
′
1; p

′
2; p1; p2) =

f2

m2
�
u(p′1),a�5K=1u(p1)

1
K2
1 − m2

�
u(p′2)[,a�5K=1SF(P2 + Q)1�(Q)

+1�(Q)SF(P′
2 − Q),a�5K=1]u(p2) + (1 ↔ 2) : (20)

In the above, K1; K2 are the four-momenta given to the nucleons 1, 2 by the exchanged pion, and
they are de8ned in Fig. 1, while FV

1 and F� are the electromagnetic isovector nucleon and pion form
factors, respectively. Furthermore, SF(P) is the nucleon propagator and 1�(Q) the electromagnetic
nucleon vertex, i.e.,

SF(P) =
P= + m

P2 − m2 ; (21)

1�(Q) = F1�� +
i
2m

F2���Q� ; (22)

F1 and F2 being the Dirac and Pauli form factors: for these we use the Galster parameterization
[44]. Finally, the spinors (for brevity we denote u(p; sp) by u(p)) are normalized according to the
Bjorken and Drell convention [31] and the isospinors are not explicitly indicated.
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The seagull and pion-in-Jight currents shown above coincide with the expressions given by Van
Orden and Donnelly [45] if account is taken for the diGerent conventions used for the gamma matrix
�5 and for the metric. Concerning the correlation current note that, at variance with [45], it embodies
both the positive and negative energy components of the nucleon propagator.

A crucial point to be stressed is that the sum of the relativistic seagull, pion-in-Jight and correlation
currents satisfy current conservation, i.e., Q�J� = 0, provided some assumptions are made for the
form factors involved in the various currents. This is proven in Appendix A (see also [19]) where
we show that when the seagull and pion-in-Jight currents are multiplied by the same electromagnetic
form factor FV

1 , gauge invariance is ful8lled, i.e.,

Q�(j�s + j�p + j�cor) = 0 ; (23)

where the two-body currents in Eq. (23) are de8ned in Eqs. (18)–(20).
It is also possible [46] to use diGerent phenomenological electromagnetic form factors for the

nucleon and pion—even introducing phenomenological form factors at the strong pion–nucleon
vertices—without violating current conservation, by appropriate modi8cation in the currents through
the generalized Ward–Takahashi identity [47,48].

2.2.2. Particle–hole matrix elements
In this report we deal with the case of one-particle emission induced by the two-body currents

introduced above. The matrix element of a two-body operator between the Fermi gas ground state
and a 1p–1h excited state reads

〈ph−1|ĵ�(Q)|F〉 ≡ (2�)3�3(q + h − p)
m

V
√

EpEh
j�(p; h)

=
∑
k¡F

[〈pk|ĵ�(Q)|hk〉 − 〈pk|ĵ�(Q)|kh〉] ; (24)

where the summation runs over all occupied levels in the ground state, and thus includes a sum
over spin (sk) and isospin (tk) and an integral over the momentum k.

The 8rst and second terms in Eq. (24) represent the direct and exchange contribution to the matrix
element, respectively. It can be easily veri8ed (see, e.g., [19,20]) that in spin–isospin saturated
systems, the direct term vanishes for the MEC and pionic correlation currents upon summation
over the occupied states. Hence only the exchange term contributes to the p–h matrix elements. The
associated many-body Feynman diagrams are displayed in Fig. 2. Diagrams (a,b) and (c) correspond
to the seagull (or contact) and pion-in-Jight contributions, respectively. Diagrams (d–g) represent
instead the correlation contributions. Here we distinguish the exchange of a pion between a particle
and a hole line (d,e), giving rise to the so-called vertex correlation (VC), and the self-energy
insertions on the nucleonic lines (f,g). After carrying out explicitly the sums over the internal spin,
sk , and isospin, tk , the fully relativistic expressions for the MEC (seagull and pion-in-Jight) and
correlation (vertex correlations and self-energy) currents turn out to be

• Seagull:

j�s (p; h) =− f2

Vm2
�
FV
1 i	3ab

∑
k6kF

m
Ek

u(p),a,b

{
(K= − m)��

(P − K)2 − m2
�
+

��(K= − m)
(K − H)2 − m2

�

}
u(h) : (25)
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Fig. 2. Many-body Feynman diagrams contributing to the one-body current with OPE. The thick line in the correlation
diagrams (d)–(g) corresponds to a fully relativistic Dirac propagator for the nucleon. Diagrams (d) and (e) represent the
vertex current, while diagrams (f and g) represent the self-energy current of the hole and of the particle, respectively.

• Pion-in-Jight:

j�p (p; h)

=2m
f2

Vm2
�
FV
1 i	3ab

∑
k6kF

m
Ek

(Q + 2H − 2K)�

[(P − K)2 − m2
�][(K − H)2 − m2

�]
u(p),a,b(K= − m)u(h) : (26)

• Vertex correlations:

j�VC(p; h)

=
f2

Vm2
�

∑
k6kF

1
2Ek

u(p)
{

K= − H=
(K − H)2 − m2

�
�5SF(K + Q),a1�(Q),a�5(K= − m)(K= − H=)

+ (P= − K=)(K= − m)�5,a1�(Q),aSF(K − Q)�5
P= − K=

(P − K)2 − m2
�

}
u(h)

≡ F� +B� : (27)

• Self-energy:

j�SE(p; h) =− 3f2

Vm2
�

∑
k6kF

1
2Ek

u(p)
{

P= − K=
(P − K)2 − m2

�
(K= − m)(P= − K=)SF(P)1�(Q)

+ S�(Q)SF(H)(K= − H=)(K= − m)
K= − H=

(K − H)2 − m2
�

}
u(h)

≡H�
p +H

�
h : (28)

The eGects of the medium are included through the summation in Eqs. (25)–(28) over the inter-
mediate momentum k up to the Fermi momentum.
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In the thermodynamic limit the sum (1=V )
∑

k6kF becomes an integral over the momentum∫
d3k=(2�)3 in the range 06 k6 kF; kF being the Fermi momentum, and over the angular vari-

ables #k ; *k . Note that, although the global factor m=V
√

EpEh has been extracted from the current
in Eq. (24), the factor m=VEk, associated with the internal line, has to be retained inside the sum.
Note also that, in order to ful8ll gauge invariance, we have assumed F� = FV

1 .
The vertex p–h matrix element splits into two terms F� and B� representing the forward- and

backward-going contributions, respectively (Fig. 2d and e). They are

F� =− f2

Vm2
�

∑
k6kF

m
Ek

u(p)�5(K= − H=)SF(K + Q),a1�(Q),a�5
(K= − m)

(K − H)2 − m2
�
u(h) ; (29)

B� =− f2

Vm2
�

∑
k6kF

m
Ek

u(p)
K= − m

(P − K)2 − m2
�
�5,a1�(Q),aSF(K − Q)�5(P= − K=)u(h) : (30)

Similarly, the self-energy p–h matrix element splits into two terms, H�
p and H

�
h . The former

corresponds to the diagram with the pion inserted in the particle line (Fig. 2g), whereas the latter
describes the diagram with the pion inserted in the hole line (Fig. 2f). They are given by

H�
p =− 3f2

Vm2
�

∑
k6kF

m
Ek

u(p)(K= − m)
P= − K=

(P − K)2 − m2
�
SF(P)1�(Q)u(h) ; (31)

H
�
h =

3f2

Vm2
�

∑
k6kF

m
Ek

u(p)1�(Q)SF(H)
(K= − H=)

(K − H)2 − m2
�
(K= − m)u(h) : (32)

Finally, splitting also the electromagnetic nucleon operator 1� into its isoscalar and isovector
parts, one obtains the isoscalar and isovector contributions to the self-energy and vertex p–h matrix
elements. The 8nal results can be cast in the form

F�(S) =− 3f2

Vm2
�

∑
k6kF

m
Ek

u(p)�5(K= − H=)SF(K + Q)1�(S)(Q)�5
(K= − m)

(K − H)2 − m2
�
u(h) ; (33)

B�(S) =− 3f2

Vm2
�

∑
k6kF

m
Ek

u(p)
K= − m

(P − K)2 − m2
�
�51�(S)(Q)SF(K − Q)�5(P= − K=)u(h) (34)

for the isoscalar and

F�(V) =− f2

Vm2
�

∑
k6kF

m
Ek

u(p)�5(K= − H=)

×SF(K + Q)1�(V)(Q)(,3 + i	3ab,a,b)�5
(K= − m)

(K − H)2 − m2
�
u(h) ; (35)

B�(V) =− f2

Vm2
�

∑
k6kF

m
Ek

u(p)
K= − m

(P − K)2 − m2
�
�51�(V)(Q)(,3 + i	3ab,a,b)

×SF(K − Q)�5(P= − K=)u(h) (36)
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for the isovector vertex p–h matrix elements and

H�(S;V)
p

=− 3f2

2Vm2
�

∑
k6kF

m
Ek

u(p)
P= − K=

(P − K)2 − m2
�
(K= − m)(P= − K=)SF(P)1�(S;V)(Q)u(h) ; (37)

H
�(S;V)
h

=− 3f2

2Vm2
�

∑
k6kF

m
Ek

u(p)1�(S;V)(Q)SF(H)(K= − H=)(K= − m)
(K= − H=)

(K − H)2 − m2
�
u(h) (38)

for the self-energy matrix elements. Interestingly, the isoscalar=isovector ratio is =− 3 in the vertex
matrix element, whereas in the self-energy case it is the unity. 1 Note that the MEC (pion-in-Jight
and seagull) p–h matrix elements are purely isovector, whereas the vertex and self-energy correlations
get both isoscalar and isovector contributions.

The VC and SE p–h matrix elements involve the nucleon propagator SF(P) which in some situa-
tions may imply the occurrence of singularities. In the case of the vertex diagrams, the four-momenta
appearing in the propagators are K + Q and K − Q for the forward- (Fig. 2d) and backward-going
(Fig. 2e) contributions, respectively, and an integration over k should be done. For q¿ 2kF (no
Pauli blocking) it can be proven (see [19]) that only the forward diagram contains a pole, i.e., a
value of the inner momentum k exists such that the nucleon carrying a four-momentum K + Q is
on-shell. In this situation the forward vertex p–h matrix element is evaluated by taking the principal
value in the integral over cos #k . In the case of the backward-going diagram, the nucleon propagator
SF(K − Q) has no singularity for the kinematics in which we are interested.
The case of the self-energy diagrams is clearly diGerent. Here the particle (p) and hole (h)

are described in the Fermi gas by unperturbed plane waves, i.e., they are on-shell, and hence the
propagators SF(P) and SF(H) diverge. The divergence of diagrams (f) and (g) is reminiscent of
the well-known in8nity occurring in standard perturbative quantum 8eld theory, when self-energy
insertions in the external legs are included in Feynman diagrams [32]. As is well known, there one
should renormalize the theory by dressing the external legs, propagators and vertices. In the nuclear
matter case we assume that the particle-physics eGects are already accounted for by the physical
masses and electromagnetic form factors. However, an additional nuclear physics renormalization,
arising from the interaction of a nucleon with the nuclear medium, should be included at the OPE
level to account for the self-energy diagram.

The self-energy current in Eq. (28) can be written in the following form:

j�SE(p; h) = u(p)6(P)SF(P)1�(Q)u(h) + u(p)1�(Q)SF(H)6(H)u(h) ; (39)

1 The latter result stems from the relation ,3 + i	3ab,a,b =−,3; however, we prefer to leave the isospin structure of the
isovector exchange as in Eqs. (35) and (36), since it makes more transparent the self-energy and exchange cancellation
in the continuity equation, as shown in Appendix B.



330 J.E. Amaro et al. / Physics Reports 368 (2002) 317–407

Fig. 3. Diagrammatic representation of the self-energy current for a hole (a) and a particle (b). The self-energy is de8ned
to 8rst order as the Fock insertion shown in (c) with OPE.

where 6(P) is the nucleon self-energy matrix that in 8rst order reads

6(P) =− f2

Vm2
�

∑
k6kF

∑
sk ; tk

m
Ek

,a�5(P= − K=)
u(k)u(k)

(P − K)2 − m2
�
,a�5(P= − K=) : (40)

This is diagrammatically displayed in Fig. 3. The SE matrix, shown in Fig. 3c, corresponds to the
Fock term of the mean-8eld potential (the Hartree or direct term is zero for pion exchange, since it
involves a pion carrying zero momentum).

Performing the sum over the internal spin (sk) and isospin (tk) indices and using the commutation
properties of the gamma matrices to eliminate �5, the self-energy can be cast in the form

6(P) =−3f2

m2
�

∫
d3k
(2�)3

#(kF − k)
1

2Ek

(P= − K=)(K= − m)(P= − K=)
(P − K)2 − m2

�
; (41)

where the sum over k has been converted into an integral. Note that the self-energies 6(P) and
6(H) appearing in Eq. (39) are evaluated for free particles and holes, i.e., for P� and H� on-shell.
Hence the self-energy contributions to the current are divergent, since so are the free propagators
SF(P) and SF(H) in Eq. (39). Therefore they should not be computed using Eq. (39), but rather one
should 8rst renormalize the wave function and the propagator of the particles in the medium. This is
achieved through the summation of the full series of diagrams with repeated self-energy insertions
displayed in Fig. 4.

Now the energy of a particle in nuclear matter is modi8ed by the interaction with the medium
and, as well, through its energy–momentum relation. Thus the associated momentum is no longer
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Fig. 4. Diagrammatic series for the nucleon propagator in the medium.

on-shell and therefore in the next section we shall evaluate the self-energy for o@-shell particles. In
the 8rst iteration, corresponding to OPE, the particle P� is oG-shell, but the intermediate interacting
hole K� is still on-shell. 2 In this case, with the help of Dirac spinology, one writes

(P= − K=)(K= − m)(P= − K=) = 2(P · K − m2)(P= + m)− (P2 − m2)(K= + m) ; (42)

which allows one to recast the self-energy in Eq. (41) for the oG-shell momentum P in the form

6(P) =−3f2

m2
�

∫
d3k
(2�)3

#(kF − k)
1

2Ek

2(P · K − m2)(P= + m)− (P2 − m2)(K= + m)
(P − K)2 − m2

�
: (43)

Note that the second term inside the integral vanishes for P on-shell.
In general the self-energy of a nucleon in nuclear matter can be written in the form [49]

6(P) = mA(P) + B(P)�0p0 − C(P)S · p : (44)

In contrast to the quantum 8eld-theory decomposition 6(P)=mA+BP=, owing to the non-invariance
under a boost of the step function #(kF − k) appearing in the self-energy, in nuclear matter B(P) �=
C(P). This in turn reJects the existence of a privileged system, namely the lab system where the
Fermi gas has total momentum pFG=0. Here it is natural to compute the self-energy. Under a boost,
the Fermi gas ground state is no longer characterized by k ¡kF and also the self-energy takes a
diGerent form.

In the case of the Fock self-energy in Eq. (43) the functions A; B; C can be expressed in terms
of the integrals (for K� on-shell)

I(P) ≡
∫

d3k
(2�)3

#(kF − k)
1

2Ek

1
(P − K)2 − m2

�
; (45)

L�(P) ≡
∫

d3k
(2�)3

#(kF − k)
1

2Ek

K�

(P − K)2 − m2
�
: (46)

2 Note that in deriving Eq. (41) we have assumed free spinors u(k); hence Eq. (41) is only valid for K� on-shell. The
oG-shell case requires a rede8nition of the spinors u(k) according to an interacting Dirac equation, as is shown later.
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Indeed one gets 3

A(P) =−3
f2

m2
�
{2[P�L�(P)− m2I(P)]− (P2 − m2)I(P)} ; (47)

B(P) =−3
f2

m2
�

{
2[P�L�(P)− m2I(P)]− (P2 − m2)

L0(P)
p0

}
; (48)

C(P) =−3
f2

m2
�

{
2[P�L�(P)− m2I(P)]− (P2 − m2)

L3(P)
p

}
: (49)

Note that A= B= C for P on-shell. In this case one simply has 6(P)on-shell = A(P)(m+ P=).

2.3. Hartree–Fock renormalization in nuclear matter

In this section we discuss the renormalization of the nucleon propagator and spinors associated
with the pionic self-energy in an HF scheme.

2.3.1. Nucleon propagator
The HF nucleon propagator in the nuclear medium is the solution of Dyson’s equation

SHF(P) = S0(P) + S0(P)6(P)SHF(P) ; (50)

where 6(P) is the HF proper self-energy and

S0(P) =
#(p− kF)
P= + m+ ij +

#(kF − p)
P= + m− ijp0

(51)

is the free propagator in the medium. Eq. (50) results from summing up a series with an in8nite
number of self-energy insertions (see Fig. 4) for each of the two terms in (51), 4 namely

1
P= − m

+
1

P= − m
6(P)

1
P= − m

+
1

P= − m
6(P)

1
P= − m

6(P)
1

P= − m
+ · · ·

=
1

P= − m− 6(P)
: (52)

Using the spin decomposition of the self-energy in Eq. (44), we can write

P= − m− 6(P) = [1− B(P)]�0p0 − [1− C(P)]S · p− [1 + A(P)]m : (53)

3 L is parallel to p since, choosing p along the z-axis, the azimuthal integration in Eq. (46) yields Lx = Ly = 0.
4 No interference term arises since #(k − kF)#(kF − k) = 0:
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Now the new four-momentum f� = f�(P), which is related to P� as

f0(P) =
1− B(P)
1− C(P)

p0 ; (54)

f(P) = p ; (55)

and the functions

m̃(P) =
1 + A(P)
1− C(P)

m ; (56)

z(P) =
1

1− C(P)
; (57)

allow one to recast Eq. (52) in the form

1
P= − m− 6(P)

=
z(P)

�0f0(P)− S · p− m̃(P)
=

z(P)
f=(P)− m̃(P)

: (58)

For a nucleon with a 8xed three-momentum p, the pole of the propagator in Eq. (58) in the variable
p0 de8nes the new energy of the nucleon in the medium. To 8nd the latter we introduce

Ẽ(P) ≡ E(p; m̃(P)) =
√
p2 + m̃(P)2 : (59)

Then the propagator reads

1
P= − m− 6(P)

=
z(P)

f0(P)− Ẽ(P)

f=(P) + m̃(P)

f0(P) + Ẽ(P)
(60)

and its pole p0 is found by solving the implicit equation

f0(P) = Ẽ(P) ; (61)

which, exploiting Eq. (54), can be recast as follows:

p0 =
1− C(P)
1− B(P)

√
p2 + m̃(P)2 ≡ 1− C(p0; p)

1− B(p0; p)

√
p2 + m̃(p0; p)2 : (62)

The solution of Eq. (62) for 8xed p de8nes the new dispersion relation p0 = j(p) for interacting
nuclear matter. Once the above equation has been solved, the 8eld strength renormalization constant

Z2(p) = Res
z(P)

f0(P)− Ẽ(P)

∣∣∣∣
p0=j(p)

; (63)

de8ned as the residue of the 8rst factor on the right-hand side of Eq. (60) at p0 = j(p), can be
computed. Indeed using Eq. (57), Z2(p) is obtained by expanding the denominator around the pole
j(p), i.e.,

[1− C(P)][f0(P)− Ẽ(P)] = Z2(p)−1[p0 − j(p)] + · · · ; (64)
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hence

Z2(p)−1 =
9
9p0

∣∣∣∣
p0=j(p)

{[1− C(P)][f0(P)− Ẽ(P)]}

=
9
9p0

∣∣∣∣
p0=j(p)

{[1− B(P)]p0 − [1− C(P)]Ẽ(P)} : (65)

With the help of Eq. (59) the derivative can be easily evaluated, the result being

Z2(p)−1 =
[
1− B− 9B

9p0
p0 − m

m̃

Ẽ

9A
9p0

+
p2

Ẽ

9C
9p0

]
p0=j(p)

: (66)

2.3.2. Nucleon spinors
The self-energy modi8es not only the propagator and the energy–momentum relation of a nucleon,

but, as well, the free Dirac spinors. In fact the spinors are now solutions of the Dirac equation in
the nuclear medium [49], i.e.,

[P= − m− 6(P)]*(p) = 0 ; (67)

which, again using the decomposition in Eq. (44), can be recast as

[�0f0(P)− S · p− m̃(P)]*(p) = 0 ; (68)

the functions f0(P) and m̃(P) being de8ned in Eqs. (54) and (56), respectively. Eq. (68) has the
same structure as the free Dirac equation; hence for the positive-energy eigenvalue one has

f2
0(P) = p2 + m̃2(P); (69)

which implicitly yields the energy p0 = j(p) of the nucleon in the nuclear medium. This result
was already obtained as the pole of the nucleon propagator. Then the corresponding positive-energy
spinors (s being the spin index) read

*s(p) =
√

Z2(p)
(
Ẽ(p) + m̃(p)

2m̃(p)

)1=2  >s� · p
Ẽ(p) + m̃(p)

>s

=
√

Z2(p)us(p; m̃(p)) ; (70)

where the two functions of the three-momentum p

m̃(p) ≡ m̃(j(p); p) (71)

and

Ẽ(p) ≡ Ẽ(j(p); p) =
√

p2 + m̃(p)2 ; (72)

represent the nucleon eGective mass and eGective energy corresponding to p0 = j(p). The 8eld
strength renormalization constant,

√
Z2(p), of the new spinors, de8ned in Eq. (66), is required

by renormalization theory, since the propagator in Eq. (58) for p0 close to the pole j(p) reads,
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Fig. 5. Diagrammatic series for the one-body electromagnetic current with dressed external lines.

from Eq. (64),
1

P= − m− 6(P)
∼ Z2(p)

p0 − j(p)
f=(p) + m̃(p)

2Ẽ(p)
=

1
p0 − j(p)

m̃(p)
Ẽ(p)

∑
s

*s(p) M*s(p) : (73)

Once the new spinors have been computed, the self-energy can be evaluated by inserting *(k) instead
of u(k) into Eq. (40). Then the Dirac equation should be solved again with the new self-energy and
so on. This self-consistent procedure leads to the relativistic HF model which has to be dealt with
numerically.

In this paper we do not attempt to solve the HF equations, since we are interested only in the
OPE 8rst-iteration correction to the single-nucleon current. Although the latter cannot be derived
by directly applying the Feynman rules, it can still be identi8ed with the self-energy diagrams of
Fig. 2f and g. Thus in the next section we shall compute the renormalized one-body current using
the new spinors and energy–momentum relation and then expand it in powers of the square of the
pion coupling constant f2=m2

�. As we shall see, the unperturbed one-body current is thus recovered
as the leading-order term whereas the 8rst-order term is searched for the self-energy contribution.

It is also important to remark that the use of the new ‘renormalized’ wave functions *s leads to
a slightly modi8ed global momentum distribution as shown in [50]. Note however that the number
of particles is conserved without modifying the value of the Fermi momentum selected.

2.4. Self-energy current to >rst order

The particle–hole (p–h) current matrix element in the HF approximation reads

j�HF(p; h) = M*(p)1�(Q)*(h) ; (74)

where the spinors *(p), the 8rst iteration solution of the HF equation, are given by Eq. (70).
Hence Eq. (74) represents the electromagnetic excitation of the p–h pair with dressed external lines
corresponding to the sum of the diagrams shown in Fig. 5.

In order to obtain a genuine OPE expression we expand Eq. (74) in powers of the square of the
pion coupling constant f2=m2

� and single out the 8rst-order term, i.e., the one linear in f2=m2
�. We

shall still refer to the current thus obtained, representing the OPE contribution, as the “self-energy”
current and, importantly, we shall show that it yields a 8nite contribution, free from the divergence
problem of the current in Eq. (39).
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To proceed we start by deriving the HF energy j(p) to 8rst order in f2=m2
�. For this purpose

we note that the functions A(P); B(P) and C(P) de8ned in Eqs. (47)–(49) are of order O(f2=m2
�).

Hence the following expansion of the Dirac mass in Eq. (56) holds:

m̃(P) = m
1 + A(P)
1− C(P)

= m[1 + A(P) + C(P)] + O
(

f4

m4
�

)
: (75)

Inserting this into Eq. (62) for the energy and expanding again to 8rst order in f2=m2
�, we get

p0 = j(p)� [1− C(P) + B(P)]
√

p2 + m2 + 2m2[A(P) + C(P)]

=Ep +WE(p0; p) ; (76)

where Ep =
√

p2 + m2 is the unperturbed free energy and

WE(p0; p) ≡ 1
Ep

[m2A(P) + E2
pB(P)− p2C(P)] + O

(
f4

m4
�

)
(77)

is the 8rst-order correction to the energy. Next we can insert the above value of p0 inside the
argument of the functions A; B; C. Expanding the latter around the on-shell value p0 = Ep we get

A(P) = A(p0; p) = A(Ep +WE; p) = A(Ep; p) + O
(

f4

m4
�

)
� A0(p); (78)

where A0(p) ≡ A(Ep; p). Likewise to 8rst order we obtain

B(P) � B(Ep; p) ≡ B0(p) ; (79)

C(P) � C(Ep; p) ≡ C0(p) : (80)

Recalling that for P on-shell the functions A; B; C coincide, i.e., A0(p)=B0(p)=C0(p), we can insert
these on-shell values into Eq. (77) and, neglecting terms of second order, i.e., O(f4=m4

�), we 8nally
arrive at the result

p0 = j(p) = Ep +
1
Ep

B0(p)(m2 + E2
p − p2) + O

(
f4

m4
�

)
= Ep +

1
Ep

2m2B0(p) + O
(

f4

m4
�

)
: (81)

The above expression can be recast in terms of the on-shell value of the self-energy

60(p) ≡ 2mB0(p) ; (82)

which satis8es the relation

6(Ep; p)u(p) = 60(p)u(p) ; (83)

thus showing that the free spinors are eigenvectors of the on-shell self-energy matrix 6(Ep; p)
corresponding to the eigenvalue 60(p). Hence to 8rst order in f2=m2

�, the HF energy in Eq. (81)
is found to read

j(p) � Ep +
m
Ep

60(p) (84)
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in terms of the on-shell self-energy eigenvalue 60(p). When compared with the non-relativistic HF
energy (see Eq. (207)) it appears that, beyond the diGerent expressions of the self-energy functions
that hold in the relativistic and non-relativistic frameworks, an extra multiplicative factor m=Ep occurs
in the relativistic case.

Once the HF energy j(p) is known to 8rst order in f2=m2
�, we expand as well the renormalized

spinors, namely√
m̃(p)
Ẽ(p)

u(p; m̃(p)) =

√
Ẽ(p) + m̃(p)

2Ẽ(p)

 >
� · p

Ẽ(p) + m̃(p)
>

 : (85)

Actually, for later use in the calculation of the hadronic tensor, it is convenient to expand the spinor
multiplied by the factor

√
m̃(p)=Ẽ(p).

Thus we start by expanding the Dirac mass in Eq. (75) around the on-shell energy, obtaining

m̃(p) = m[1 + A0(p) + C0(p)] + O(f2=m2
�) � m+ 60(p) ; (86)

where use has been made of the on-shell self-energy in Eq. (82). Likewise, using the HF equation
(Eq. (62)), the Dirac energy Ẽ(p) de8ned in Eq. (72) is given by

Ẽ(p) =
1− B
1− C

j(p) � [1− B0(p) + C0(p)]
[
Ep +

m
Ep

60(p)
]

�Ep +
m
Ep

60(p) � j(p) : (87)

After some algebra the following 8rst-order expressions are obtained:√
Ẽ + m̃

2Ẽ
�
√

m+ Ep

2Ep

(
1 +

Ep − m
2Ep

60

Ep

)
; (88)

1

Ẽ + m̃
� 1

m+ Ep

(
1− 60

Ep

)
: (89)

Inserting Eqs. (88) and (89) into the renormalized spinor in Eq. (85) we get

√
m̃(p)
Ẽ(p)

u(p; m̃(p))�
√

m+ Ep

2Ep

[
1 +

Ep − m
2Ep

60

Ep

] >

� · p
m+ Ep

(
1− 60

Ep

)
>



�
√

m
Ep

u(p) +
60

Ep

√
m
Ep

√
m+ Ep

2m


Ep − m
2Ep

>

−Ep + m
2Ep

� · p
m+ Ep

>

 : (90)
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Since  (Ep − m)>

−(Ep + m)
� · p

m+ Ep
>

= (Ep�0 − m)

 >
� · p

m+ Ep
>

 ; (91)

the 8rst-order (in f2=m2
�) renormalized spinor can be cast in the form√

m̃(p)
Ẽ(p)

u(p; m̃(p)) �
√

m
Ep

[
u(p) +

60(p)
Ep

Ep�0 − m
2Ep

u(p)
]

: (92)

The above expansion transparently displays the eGect of the self-energy on the free spinor u(p). In-
deed the second term in the square brackets of Eq. (92) corresponds to a negative-energy component
with momentum p. In fact, the Dirac equation for a positive-energy spinor is given by

(p · S + m)u(p) = Ep�0u(p) with Ep ¿ 0 : (93)

Now if we apply the operator (p · S + m) to the spinor (Ep�0 − m)u(p), we obtain

(p · S + m)(Ep�0 − m)u(p) = p · S(Ep�0 − m)u(p) + m(Ep�0 − m)u(p)

= (−Ep�0 − m)p · Su(p) + m(Ep�0 − m)u(p)

= (−Ep�0 − m)(Ep�0 − m)u(p) + m(Ep�0 − m)u(p)

=−Ep�0(Ep�0 − m)u(p): (94)

Hence (Ep�0 −m)u is an eigenvector of the free Dirac Hamiltonian with eigenvalue −Ep. Therefore
the operator Ep�0 − m transforms a positive-energy spinor u(p) into a negative-energy one.
Moreover, it is useful to write down the correction to the free spinor (see Eq. (92)) in an alternative

form. Using the identity in Eq. (94) we can write

(P= − m)(Ep�0 − m)u(p) = 2Ep�0(Ep�0 − m)u(p) : (95)

Multiplying by [2Ep(P= − m)]−1 we then obtain

Ep�0 − m
2Ep

u(p) =
1

P= − m
�0(Ep�0 − m)u(p) : (96)

Hence the second term in the square brackets on the right-hand side of Eq. (92) can be recast in
the form

60

Ep

Ep�0 − m
2Ep

u(p) =
60

Ep

1
P= − m

�0(Ep�0 − m)u(p) =
1

P= − m

(
1− m

Ep
�0

)
6(p)u(p)

= SF(p)
(
1− m

Ep
�0

)
6(p)u(p) : (97)

The 8rst term in Eq. (97), SF(p)6(p)u(p), corresponds to the one that enters in the original
(divergent) self-energy current for a nucleon on-shell (Eq. (39)). The subtracted term, with the factor
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(m=Ep)�0 inserted between the propagator and the self-energy, cancels the divergence and yields a
8nite result. Thus it can be viewed as a “recipe” to renormalize the self-energy current.

We turn now to an expansion of the 8eld-strength renormalization function de8ned in Eq. (66).
For this purpose we use Eqs. (86) and (87), obtaining

Z2(p) �
[
1 + B0(p) +

m2

Ep

9A
9p0

+ Ep
9B
9p0

− p2

Ep

9C
9p0

]
p0=Ep

; (98)

which implies that√
Z2(p) � 1 + 1

2 �(p) (99)

with

�(p) ≡ B0(p) +
[
m2

Ep

9A
9p0

+ Ep
9B
9p0

− p2

Ep

9C
9p0

∣∣∣∣
p0=Ep

: (100)

Hence, collecting the above results and inserting them into Eq. (70), we get to 8rst order√
m̃(p)
p̃0(p)

*(p) �
√

m
Ep

[
u(p) +

60

Ep

Ep�0 − m
2Ep

u(p) +
1
2
�(p)u(p)

]
: (101)

Thus, within the OPE approach the renormalized HF spinors in the nuclear medium are charac-
terized by two new elements with respect to the bare u(p): the term 60=Ep[(Ep�0 − m)=2Ep]u(p)
introduces negative-energy components in the wave function, while the term 1

2�(p)u(p) comes from
the 8eld-strength renormalization which modi8es the occupation number of the single-particle states.

Using the above expressions for the renormalized spinors, we now expand the renormalized
one-body current matrix element to 8rst order in f2=m2

�, getting√
m̃(p)
Ẽ(p)

√
m̃(h)
Ẽ(h)

j�HF(p; h)�
√

m
Ep

m
Eh

u(p)
[
1� + 1�60(h)

Eh

Eh�0 − m
2Eh

+
�(h)
2

1�

+
60(p)
Ep

Ep�0 − m
2Ep

1� +
�(p)
2

1�

]
u(h)

≡ m√
EpEh

[j�OB(p; h) + j�RSE(p; h)] : (102)

In Eq. (102) the term j�OB represents the usual one-body current matrix element evaluated with free
spinors, i.e.,

j�OB(p; h) = u(p)1�(Q)u(h) ; (103)

whereas j�RSE is a new renormalized self-energy (RSE) current matrix element that includes the
eGects of the renormalization of the spinors. It can be decomposed according to

j�RSE(p; h) = j�RSE1(p; h) + j�RSE2(p; h) ; (104)
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where j�RSE1 embodies the correction arising from the new spinor solution of the Dirac equation in
the medium and j�RSE2 the one stemming from the 8eld-strength renormalization function

√
Z2 in the

medium. Their expressions are the following:

j�RSE1(p; h) = u(p)
[
1�60(h)

Eh

Eh�0 − m
2Eh

+
60(p)
Ep

Ep�0 − m
2Ep

1�

]
u(h) ; (105)

j�RSE2(p; h) =
[
�(h) + �(p)

2

]
j�OB(p; h) : (106)

2.5. Gauge invariance of the theory

A crucial feature of the present theory is that the hadronic tensor, computed either through the p–h
matrix elements or through the polarization propagator, is gauge invariant. This may be somewhat
surprising because, as shown in Appendix B (see also [19]), current conservation is already obtained
at the level of the MEC and correlation p–h matrix elements: hence the one-body current p–h
matrix element also has to be independently conserved. This however occurs only in zeroth order
of perturbation theory. To be dealt with properly, the situation clearly requires the renormalization
of the p–h energies and of the Dirac spinors (see previous sections). Only then does it become
possible to set up a renormalized SE current which leads to a hadronic tensor coinciding with the
one obtained through the polarization propagator [19].

As shown in the previous section, the renormalized HF current matrix element, expanded to 8rst or-
der in f2=m2

�, has been split into the usual one-body current and into a new renormalized self-energy
current. In order to be consistent with the OPE model, we should add the contribution of the seagull,
pion-in-Jight and vertex correlation currents corresponding to the diagrams shown in Fig. 2a–e. We
point out once more that the self-energy diagrams (f) and (g), of Fig. 2, corresponding to insertions
in external legs, should be disregarded in computing amplitudes (or currents) in perturbation theory.
Rather, their contributions should be taken into account via renormalized energies and spinors as
solutions of the relativistic HF equations. We have expressed the latter, to 8rst order in f2=m2

�, in
the form of a new current operator (denoted as RSE current).

Then the total current in our model reads

j�(p; h) = j�OB(p; h) + j�OPE(p; h) ; (107)

where j�OPE embodies the seagull, pion-in-Jight, vertex correlation and renormalized self-energy cur-
rents, namely

j�OPE = j�s + j�p + j�VC + j�RSE : (108)

In what follows we shall prove the gauge invariance of this current to 8rst order in f2=m2
�. In

so-doing it is crucial to take into account not only the full current in Eqs. (107) and (108), but also
the 8rst-order correction to the energy of the particles and holes due to the self-energy interaction
in Eq. (84). In other words, for a given momentum transfer q= p− h, the energy transfer should be
computed as the diGerence between the particle and hole HF energies and not using the free values
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Ep and Eh. Thus the energy transfer is

!HF = Ep − Eh +
m
Ep

60(p)− m
Eh

60(h) (109)

and the associated four-momentum transfer is Q�
HF = (!HF; q). To make the following discussion

clearer we denote with QHF the HF four-momentum and with !HF the HF energy transfer, to dis-
tinguish them from the on-shell values Q and !.

2.5.1. Divergence of the one-body current
The divergence of the zeroth-order one-body current computed using the HF four-momentum

transfer QHF is given by

QHF; �j
�
OB(p; h) = u(p)QHF; �1� (QHF) u(h) = u(p)F1(QHF)Q=HFu(h) ; (110)

where the nucleon vertex 1�(QHF) is also evaluated at the momentum transfer QHF. Because of
Mu(p)Q=u(h) = 0, only the 8rst-order contribution arising from the self-energy correction survives,
namely

QHF; �j
�
OB(p; h) = u(p)F1(Q)

[
m
Ep

60(p)− m
Eh

60(h)
]
�0u(h) : (111)

In the above, the Dirac form factor F1 is computed at the unperturbed value Q�, since we disregard
second-order contributions. Note that the one-body current itself is not gauge invariant—its diver-
gence yields a 8rst-order term which turns out to be essential for the gauge invariance of the full
current, as we shall see below.

2.5.2. Divergence of the MEC
The seagull and pionic 1p–1h currents given in Eqs. (25) and (26) are already of 8rst order in

f2=m2
�; thus in computing their divergence we use the unperturbed value of the energy transfer,

neglecting a term of order O(f4=m4
�). Using the free Dirac equation and exploiting the kinematics

we obtain

Q�j�s (p; h)

=− f2

Vm2
�
FV
1 i	3abu(p),a,b

∑
k6kF

m
Ek

{
2(K · P − mK=)
(P − K)2 − m2

�
− 2(K · H − mK=)

(K − H)2 − m2
�

}
u(h) ; (112)

Q�j�p (p; h)

=− f2

Vm2
�
FV
1 i	3abu(p),a,b

∑
k6kF

m
Ek

{
2m(K= − m)

(P − K)2 − m2
�
− 2m(K= − m)

(K − H)2 − m2
�

}
u(h) : (113)

In deriving these equations we have used the relations Q�(Q + 2H − 2K)� =−2K · Q and

1
(K − H)2 − m2

�
− 1

(P − K)2 − m2
�
=

−2P · Q
[(K − H)2 − m2

�][(P − K)2 − m2
�]

: (114)
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Upon addition of Eqs. (112) and (113) the terms containing K= cancel, leaving for the total
divergence of the seagull and pion-in-Jight the expression

Q�(j�s + j�p )

=− f2

Vm2
�
FV
1 i	3abu(p),a,b

∑
k6kF

m
Ek

{
2(K · H − m2)
(K − H)2 − m2

�
− 2(K · P − m2)

(P − K)2 − m2
�

}
u(h) ; (115)

which can be further simpli8ed by exploiting the self-energy of Eq. (43) for on-shell momenta. One
8nally obtains

Q�(j�s + j�p ) =
i
3
FV
1 	3abu(p),a,b[6(p)− 6(h)]u(h) : (116)

2.5.3. Divergence of the vertex correlation current
Starting from the 1p–1h matrix element of the VC current in Eq. (27) and applying the Dirac

equation, we get

Q�j
�
VC(p; h) =

f2

Vm2
�
u(p),aF1,a

∑
k6kF

1
2Ek

�5(P= − K=)
K= + m

(P − K)2 − m2
�
�5(P= − K=)u(h)

− f2

Vm2
�
u(p),aF1,a

∑
k6kF

1
2Ek

�5(K= − H=)
K= + m

(K − H)2 − m2
�
�5(K= − H=)u(h) ; (117)

where we recognize again the expression of the self-energy matrix in Eq. (11). Since the Dirac form
factor can be split into an isoscalar and an isovector component according to

F1 = 1
2(F

S
1 + FV

1 ,3) ; (118)

which yields

,aF1,a = 3F1 + iFV
1 	3ab,a,b ; (119)

the divergence of the VC current written in terms of the self-energy function reads

Q�j
�
VC(p; h) = u(p)

(
F1 +

i
3
FV
1 	3ab,a,b

)
[6(h)− 6(p)]u(h) : (120)

Comparing this result with Eq. (116) we note that the term above containing j3ab,a,b cancels with
the MEC contribution. Hence

Q�[j
�
MEC(p; h) + j�VC(p; h)] = u(p)F1 [6(h)− 6(p)] u(h) : (121)

The above relation just expresses the Ward–Takahashi identity [46] relating the full vertex correction,
namely MEC plus VC (Fig. 2a–e), to the self-energy matrix element.

2.5.4. Divergence of the RSE current
Finally we compute the divergence of the RSE current de8ned in Eqs. (104)–(106). For this

purpose we 8rst note that the divergence of j�RSE2 vanishes to 8rst order because it is proportional
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to the OB current. Hence we write

Q�j
�
RSE(p; h) = u(p)

[
F1Q=

60(h)
Eh

Eh�0 − m
2Eh

+
60(p)
Ep

Ep�0 − m
2Ep

F1Q=
]
u(h) : (122)

Using the relation Mu(p)Q=u(h) = 0 and

u(p)Q=�0u(h) = u(p)2(m�0 − Eh)u(h) ; (123)

u(p)�0Q=u(h) = u(p)2(Ep − m�0)u(h) ; (124)

it is straightforward to obtain

Q�j
�
RSE(p; h) = u(p)F1[6(p)− 6(h)]u(h) + u(p)F1

[
m
Eh

60(h)− m
Ep

60(p)
]
u(h) : (125)

Remarkably the 8rst term of this equation cancels with the divergence of the MEC plus the VC
current, given by the Ward–Takahashi identity in Eq. (121), whereas the second term cancels with
the divergence of the OB current in Eq. (111). We have thus proven that, within the present model
up to 8rst order in f2=m2

�, the total current in Eq. (107) satis8es the continuity equation, namely

QHF; �(j
�
OB + j�MEC + j�VC + j�RSE) = 0 : (126)

2.6. Nuclear hadronic tensor and electromagnetic response functions

In this section we compute the electromagnetic inclusive response functions for one-particle emis-
sion reactions within the RFG model. As discussed in previous sections, the p–h matrix elements
corresponding to the diGerent pionic diagrams are all well de8ned except for the self-energy term
which diverges, and consequently needs to be renormalized. In what follows, we evaluate the hadronic
tensor starting from the current p–h matrix elements in the case of the one-body, MEC and ver-
tex correlation diagrams. These are shown diagrammatically in Fig. 6. On the contrary, for the
self-energy diagrams we calculate the hadronic tensor in two at 8rst sight diGerent ways: on the one
hand, from the polarization propagator '�� (see Appendix C), and on the other, using the renormal-
ized, well-de8ned, SE p–h matrix elements. In Appendix D we prove that the two formalisms are
equivalent.

The formalism of the nuclear hadronic tensor set up with the p–h matrix elements has been
presented in detail, within the RFG model, in previous papers [24,51]. Hence, here we simply
summarize the results needed for later discussions. Before starting the analysis of pionic contributions,
we recall the analytic expressions for the one-body (OB), leading-order electromagnetic responses
of the RFG (see, for example, [35,41] for details):

RL;T(q; !) = R0(q; !)[UL;T
p (q; !) + UL;T

n (q; !)] ; (127)

where p and n refer to protons and neutrons, respectively, and, for Z = N ,

R0(q; !) ≡ 3Z
4mB�3F

(	F − 	0)#(	F − 	0) (128)
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Fig. 6. Feynman diagrams of the free (a) and 8rst-order pion-in-Jight (b), seagull (c and d), vertex correlation (e and f)
and self-energy (g and h) polarization propagator.

with

	0 = max

{
	F − 2C; B

√
1 +

1
,
− C

}
: (129)

In the above the usual dimensionless variables

C=
!
2m

; ,=
|Q2|
4m2 ; B =

q
2m

; �F =
kF
m

; 	F =
EF

m
(130)

have been introduced and EF =
√

k2F + m2 is the Fermi energy. The functions UL;T in Eq. (127) are

UL
p(n)(q; !) =

B2

,

{
G2

Ep(n) +
W

1 + ,
[G2

Ep(n) + ,G2
Mp(n)]

}
; (131)

UT
p(n)(q; !) = 2,G2

Mp(n) +
W

1 + ,
[G2

Ep(n) + ,G2
Mp(n)] ; (132)

where

D ≡ ,
B2

[
1
3
(	3F + 	F	0 + 	20) + C(	F + 	0) + C2

]
− (1 + ,) : (133)

2.6.1. MEC and vertex pionic contributions
The hadronic tensor that arises from the interference of the single-nucleon, OB current, j�OB, with

the OPE current j�a , with a = s (seagull), p (pion-in-Jight) and VC (vertex correlation), is for the
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RFG model with Z = N (see Eq. (193))

W�� =
3Z

8�k3Fq

∫ kF

h0

h dh(!+ Eh)
∫ 2�

0
d*h

∑
sp; sh

m2

EpEh
2Re [j�OB(p; h)

∗j�a(p; h)] ; (134)

where j�OB(p; h) = Mu(p)1�u(h) is the single-nucleon p–h matrix element with 1� the electromagnetic
nucleon current from Eq. (22) and j�a(p; h) is the p–h matrix element for the seagull, pion-in-Jight
or vertex current as given in Eqs. (25), (26), and (29) and (30), respectively.

Note that in Eq. (134) the integral over the hole polar angle, cos #h, has been performed explicitly
by exploiting the energy-conserving �-function. This 8xes the minimum momentum of the hole
according to

h0 = m
√

	20 − 1 : (135)

Moreover, the hole three-momentum,

h = h(sin #0 cos*h; sin #0 sin*h; cos #0) ; (136)

involved in the hadronic tensor must be evaluated for the following speci8c value of the polar angle:

cos #0 =
C	− ,
�B

(137)

with �= h=m.
The hadronic tensor, as was the case for the current, can be also split into isoscalar and isovector

parts, since there is no interference between the two isospin channels.
An important issue relates to the form factor of the �NN vertex, 1�, which incorporates some

aspects of the short-range physics aGecting the pionic correlations. In all of the above expressions 1�

has not been explicitly indicated for sake of simplicity. In [19] the analysis of the gauge invariance
at the level of the particle–hole channel, performed by deriving the contribution to the continuity
equation of the isoscalar and isovector SE, VC and MEC p–h matrix elements, is presented. There,
it is shown that the SE and VC contributions cancel in the isoscalar channel, in contrast with
the non-relativistic result [24], where the SE is by itself gauge invariant. Furthermore, the SE and
VC contribution in the isovector channel is exactly canceled by that of the MEC (seagull and
pion-in-Jight). It is crucial to recall that the inclusion of 1� in the p–h current matrix elements is
not without consequences in connection with gauge invariance. In fact, in this case, the model is
not gauge invariant unless new terms are added to the MEC (see [51–57] for recent work on the
restoration of current conservation in model calculations). Lacking a fundamental theory for 1�, in
the calculations reported in this work we use the phenomenological expression

1�(P) =
E2 − m2

�

E2 − P2 (138)

with E=1:3 GeV. As long as the dependence upon E is not too strong, the gauge invariance of the
theory should not be too badly aGected. Within a non-relativistic approach for the pion currents, a
detailed discussion on the breakdown of the gauge invariance induced by 1�, and on the dependence
of the responses upon the cutoG value can be found in [51,55].
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In [58,59] the eGects of the MEC upon the transverse response in a non-relativistic shell model
for 8nite nuclei were studied as a function of the cutoG E.

2.6.2. Relativistic self-energy responses
As already discussed in previous sections, a crucial point to be emphasized is that the self-energy

p–h matrix element, Eq. (39), is divergent. Hence it cannot be used directly in the evaluation of the
hadronic tensor. Instead one should use renormalized spinors with the corresponding renormalized
energies. Above we have taken account of the eGect of renormalization to 8rst order in f2=m2

� by
introducing an extra term in the current: the RSE current de8ned in Eq. (104). In addition there is
also a O(f2=m2

�) modi8cation of the energy of the particles, Eq. (84). These two modi8cations of the
free current and energy in turn give a contribution to the hadronic tensor of order O(f2=m2

�), which
we will refer to as RSE contribution, which is of the same order as the MEC and VC currents and
should be included in any consistent calculation to 8rst order in f2=m2

�. In addition this contribution
is needed for the gauge invariance of the results.

In what follows we derive the RSE contribution to the nuclear response functions. This RSE
contribution should replace the SE Feynman diagrams shown in Fig. 6g and h. As a matter of fact,
these two diagrams can be computed using the polarization propagator formalism (see Appendix C
and Ref. [19]), where one does not need to appeal to renormalization since the SE diagrams are
8nite in this case. Our goal is to show that the results for the response functions obtained in the two
ways coincide, although they stem from diGerent approaches. This is proved in Appendix D. The
RSE contribution, therefore, can be identi8ed with the contribution coming from the two diagrams
(g) and (h) of Fig. 6.

The one-body hadronic tensor in HF approximation reads

W��
HF(!; q) =V

∑
spsh

∑
tpth

∫
d3h
(2�)3

m̃(p)m̃(h)
Ẽ(p)Ẽ(h)

j�HF(p; h)
∗j�HF(p; h)

×�(!+ j(h)− j(p))#(kF − h) ; (139)

where p=h+q and j�HF(p; h) is the one-body HF current in Eq. (74) computed using the renormalized
HF spinors and HF energies of the particle and the hole.

Next we use the expansions in Eqs. (102) for the current jHF and (84) for the HF energies. In
addition we expand the energy delta function to 8rst order in f2=m2

� according to

�(!+ j(h)− j(p)) � �(!+ Eh − Ep) +
d�(!+ Eh − Ep)

d!

[
m
Eh

60(h)− m
Ep

60(p)
]

: (140)

Inserting all of these relations into the hadronic tensor and neglecting terms of second order we get
for the diagonal elements of the hadronic tensor 5

W��
HF(!; q) � W��

OB(!; q) + WW��
RSE(!; q) (141)

5 We only work out the diagonal elements of the hadronic tensor, since these are the ones that contribute to the
unpolarized inclusive longitudinal and transverse response functions.
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(the summation convention is not in force in Eq. (141)), where W��
OB(!; q) is the usual OB hadronic

tensor of an RFG, i.e.,

W��
OB = V

∑
spsh

∑
tpth

∫
d3h
(2�)3

m2

EpEh
|j�OB(p; h)|2�(!+ Eh − Ep)#(kF − h) ; (142)

and WW��
RSE(!; q) is the 8rst-order self-energy correction

WW��
RSE =V

∑
spsh

∑
tpth

∫
d3h
(2�)3

m2

EpEh
{2Re j�OB(p; h)∗j�RSE(p; h)�(!+ Eh − Ep)

+ |j�OB(p; h)|2
[
m
Eh

60(h)− m
Ep

60(p)
]

d
d!

�(!+ Eh − Ep)
}

#(kF − h) : (143)

In Eq. (143) the 8rst term corresponds to the interference between the OB and the RSE currents,
while the second one, which shifts the allowed kinematical region because of the derivative of the
energy delta function, is due to the modi8cation of the nucleon energies in the medium.

Carrying out the spin traces for the single-nucleon current∑
spsh

|j�OB(p; h)|2 =
1

4m2 Tr{1�(Q)(H= + m)1�(−Q)(P= + m)} ; (144)

we get for the renormalized self-energy response function

WW��
RSE =V

∫
d3h
(2�)3

1
4EpEh

Tr
{
1�(Q)

[
60(h)
Eh

Eh�0 − m
2Eh

+
�(h)
2

]
(H= + m)1�(−Q)(P= + m)

+1�(Q)(H= + m)1�(−Q)(P= + m)
[
60(p)
Ep

Ep�0 − m
2Ep

+
�(p)
2

]

+1�(Q)(H= + m)
[
60(h)
Eh

Eh�0 − m
2Eh

+
�(h)
2

]
1�(−Q)(P= + m)

+ S�(Q)(H= + m)1�(−Q)
[
60(p)
Ep

Ep�0 − m
2Ep

+
�(p)
2

]
(P= + m)

}
×�(!+ Eh − Ep)#(kF − h)

+V
∫

d3h
(2�)3

1
4EpEh

Tr {1�(Q)(H= + m)1�(−Q)(P= + m)}

×
(

m
Eh

60(h)− m
Ep

60(p)
)

d
d!

�(!+ Eh − Ep)#(kF − h) : (145)

More precisely, one should add two copies of Eq. (145), one with the form factors appropriate to
the proton and one to the neutron.

In Appendix D we show that this contribution to the response function is identical to the one
obtained in Appendix C by computing the imaginary part of the polarization propagator corresponding
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to the two SE diagrams (g) and (h) of Fig. 6. This identity is not trivial: indeed in the case of the
polarization propagator the response functions, with the Fock self-energy dressing the particle and
the hole lines, are computed by representing the product of two nucleon propagators as the derivative
of a single one to deal with the presence of a double pole in the integrand. In the present paper
the problem has been solved diGerently. First the entire perturbative series with Fock self-energy
insertions has been summed up and then the result has been expanded to 8rst order, thus obtaining
a 8nite 8rst-order current operator. Because of the equivalence of these two procedures we are
con8dent about the validity of the results we have obtained for the self-energy contribution to the
nuclear responses.

2.7. Analysis of results

In this section we report the numerical results obtained for the pionic MEC (pion-in-Jight and
seagull) and for the correlation (vertex and self-energy) contributions to the quasielastic peak (QEP)
in the 1p–1h sector. The calculation is fully relativistic. We have taken Z = N = 20 and set kF =
237 MeV=c, which is representative of nuclei in the vicinity of 40Ca.
The 8ve-dimensional integrations of the MEC and correlation responses implicit in Eq. (134) have

been performed numerically. The reliability of the numerical procedure has been proven by checking
that the free RFG responses coincide with their analytic expressions (see, e.g., [35]).

2.7.1. MEC
We start by analyzing the eGects introduced by the MEC. These are presented in Figs. 7 and 8

where we show the longitudinal (left panels) and transverse (right panels) response functions versus
the transferred energy ! for four diGerent values of the transferred momentum q: 0.5, 1, 2 and
3 GeV=c. First, in Fig. 7 we compare the free RFG responses (dashed) with the responses obtained
including the global MEC contribution (solid). As shown, while for the longitudinal responses the
MEC are hardly visible, in the T channel they contribute somewhat more, typically by about 5–10%,
depending upon q and ! (see discussion later).
In Fig. 8 we display the separate pion-in-Jight (dashed) and seagull (short-dashed) contribution

to RL and RT for various values of q. The total MEC (seagull+pion-in-Jight) contribution is also
shown (solid line). In the transverse channel (right panels) it appears that the seagull term is always
larger than the pion-in-Jight term, a dominance that increases with q and reJecting the spin nature
of the photon–MEC interaction. Moreover, whereas the pion-in-Jight term is always negative, the
seagull changes sign with !, inducing a (mild) softening of the response, i.e., a shift to lower energy.
Within the longitudinal channel (left panels), the seagull term, now always negative, also dominates.
Note however that the relative diGerence between the seagull and pion-in-Jight contributions is not
as large as in the previous case. Moreover, the behavior of the seagull and pion-in-Jight terms in the
longitudinal channel as q increases displays a diGerent pattern from the one shown in the transverse
channel, since for high q the pionic current is not negligible compared with the seagull one.

To complete this discussion we brieJy comment on the MEC dependence upon the momentum
transfer q and the Fermi momentum kF, associated with scaling of 8rst and second kind, respectively
(see [60–62]).

In [19] we have explored in detail the evolution with q of the MEC in the transverse channel (as
they are negligible in the longitudinal channel). We have proven that their relative contribution to
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Fig. 7. Longitudinal (left panels) and transverse (right panels) electromagnetic response functions versus !. Dashed: free
RFG; solid: RFG+MEC contribution. Here and in all the 8gures that follow, unless explicitly indicated, the nucleus is
40Ca, corresponding to a Fermi momentum kF = 237 MeV=c.

RT decreases with q, but does not vanish for large values of q. In fact, the relative MEC contribution
decreases in going from 0.5 to 1 GeV=c; but then it rapidly saturates at or slightly above q=1 GeV=c,
where its value stabilizes, typically around 10%. Thus, one can conclude that at momentum transfers
above 1 GeV=c, scaling of the 8rst kind is satis8ed for the MEC contributions considered in this
work. Moreover, for high q the MEC almost vanish for ! in the vicinity of the QEP.

A detailed analysis of the kF dependence of the MEC contribution in the transverse response has
also been presented in [19]. The MEC contribution is found to grow with kF, in contrast with the
free response which decreases as k−1

F . It is also shown that the two-body MEC processes violate
the second-kind scaling by roughly three powers of kF. This eGect is a rapid function of the Fermi
momentum (or equivalently, of the density): for example, if one considers the cases 2H=4He=heavy
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Fig. 8. Separate MEC contribution to the longitudinal (left panels) and transverse (right panels) responses. Dashed:
pion-in-Jight; short-dashed: seagull and solid: MEC (pion-in-Jight+seagull) contribution.

nuclei with Fermi momenta of approximately 55=200=260 MeV=c, respectively, then the 1p–1h MEC
contributions amount to 0:1%=5%=10% of the total transverse response, respectively (normalizing to
10% for the heavy nucleus case).

2.7.2. Correlations
In Fig. 9 we display the vertex correlation contribution to the longitudinal and transverse responses

by comparing the free RFG responses (dashed) with the responses obtained including the VC con-
tribution (solid). As noted, the VC action, while substantial in both the longitudinal and transverse
channel, is actually dominant in the former by roughly a factor of three. This outcome relates to
the minor role played by the isoscalar contribution in the transverse response, in turn due to the
smallness of the isoscalar magnetic moment.
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Fig. 9. Same as Fig. 7 but for the vertex correlation. Dashed: RFG responses; solid: RFG+VC contribution.

The evolution with q of the VC in the longitudinal and transverse channels has been discussed at
length in [19]. Let us summarize the basic 8ndings. First, the VC do not saturate quite as rapidly
as the MEC, although their behavior is rather similar and saturation again occurs somewhere above
q= 1–1:5 GeV=c: thus, once more, scaling of the 8rst kind is achieved at high momentum transfers
for these contributions. Moreover, similarly to the MEC case, for high q the VC almost vanish
around the QEP.

Finally, the vertex correlations are found to grow with kF, much as the MEC do. From a
semi-relativistic point of view, we 8nd a behavior that goes as k2F. The basic conclusion is sim-
ilar to that made above for the seagull contribution and hence for the total MEC at high q, namely,
scaling of the second kind is badly broken by eGects that go roughly as k3F.
The role played by the SE contribution is displayed in Figs. 10 and 11. In Fig. 10 we show

the total RFG+SE responses (solid line) compared with the free RFG responses (dashed).
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Fig. 10. Same as Fig. 7 but for the self-energy. Dashed: RFG responses; solid: RFG+SE contribution.

Note that, in contrast with the MEC and vertex correlations, which mostly contribute to only one
channel (transverse and longitudinal, respectively), the impact of the self-energy on RL and RT is
similar, leading in both cases to a softening of the responses for high q.
The separate particle (dashed) and hole (short-dashed) SE contributions to the longitudinal and

transverse responses are presented in Fig. 11. Here, also the total SE contribution (solid) is displayed.
We observe that the self-energy contribution results from a quite delicate cancellation between the
responses having only the particle or only the hole dressed (Fig. 11). This was already pointed out
in [51] within the framework of a treatment in which relativistic eGects were partially incorporated
and it is now con8rmed within a fully relativistic context.

Whereas this cancellation is very substantial at q=0:5 GeV=c, as the momentum transfer increases
the imbalance between the two contributions grows. Indeed the response associated with the particle
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Fig. 11. Particle (dashed) and hole (short-dashed) contributions to the longitudinal (left panels) and transverse (right
panels) self-energy. The solid line represents the total SE contribution.

self-energy is suppressed by the form factors and by the pion propagator, but that coming from the
hole self-energy is not. As a result, for q¿ 2 GeV=c the total self-energy response is almost entirely
due to the hole dressing and induces a moderate softening to the free response. Note that the SE
contribution does not vanish on the borders of the response region. Moreover for high values of !
(close to the upper border) it becomes very large (Fig. 11) and yields a signi8cant lowering of the
upper ! limit in the responses. This clearly points to the insuIciency of a 8rst-order perturbative
treatment in this kinematical region, an eGect already present in the partially relativized analysis of
[51] and emphasized by our fully relativistic calculation. Therefore, the summation of the full Fock
series becomes necessary near the upper boundary of the response.

The analysis of the scaling and superscaling properties of the self-energy correlations has been
presented in [19]. In accord with the above, the particle contribution decreases with q, going to zero
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Fig. 12. The on-shell self-energy 60(p)=Ep de8ned in Eq. (82) (solid line) and the 8eld-strength renormalization function
�(p) given in Eq. (100) (dashed line) plotted versus the momentum p.

at q � 2 GeV=c, whereas the hole contribution, although also decreasing with q when not too high,
saturates for q¿ 1 GeV=c (see Fig. 11). As a result the total self-energy grows with q in the range
q = 0:5–2 GeV=c, then stabilizes typically at about 30–40% of the free response to the left of the
QEP, thus inducing an important softening of the longitudinal and transverse responses. In summary,
again scaling of the 8rst kind is achieved at momentum transfers somewhat below 2 GeV=c. Finally,
we also prove that the self-energy relative contribution grows with kF, although not uniformly in
the scaling variable  (see [60–62])—recall that in the 8rst-order analysis presented in this paper
the edges of the response region are not treated adequately for the self-energy contribution and thus
should not be taken too seriously. Where the self-energy contribution is correctly modeled (away
from the edges) we again see breaking of second-kind scaling by roughly k3F.

In what follows we explore the impact on the responses of the new currents j�RSE1 and j�RSE2 that
arise from the enhancement of the lower components of the spinors and from the 8eld strength
renormalization

√
Z2(p), respectively. In Fig. 12 we show the on-shell self-energy (solid curve)

and the 8eld strength renormalization function �(p) (dashed curve) given by Eqs. (82) and (100),
respectively. The explicit expressions for 60(p) and �(p) are derived in Appendix E. The 60(p)
obtained here is in good agreement with the results of [63] and its eGect on the single-particle
energy in Eq. (84) and on the eGective mass in Eq. (86) is very small (less than ∼ 3%). Note that
�, which is linked to the current j�RSE2 of Eq. (106), is much smaller than 60(p)=Ep, which enters in
j�RSE1 through Eq. (105). Thus the eGect of the enhancement of the lower components of the spinors
dominates over the 8eld-strength renormalization. This is very clearly seen in Fig. 13, where the
various contributions to the longitudinal and transverse responses stemming from j�RSE1 and j�RSE2 are
displayed versus the transferred energy ! for momentum transfer q = 0:5; 1; 2 and 3 GeV=c. It is
evident that the eGect of j�RSE2 is negligible with respect to that of j�RSE1. The separate contributions
of the particle and hole self-energies are also shown: as q increases the contribution of the particle
is suppressed, whereas that of the hole survives.

In Fig. 14 we compare the contribution to the longitudinal and transverse responses due to renor-
malization of the wave functions (solid) with that arising from renormalization of the energies
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Fig. 13. The contribution of the renormalized self-energy current to the longitudinal (left panels) and transverse (right
panels) responses plotted versus !. The separate contributions of the current j�RSE1 for the particle (solid) and hole (dotted)
and of the current j�RSE2 for the particle (dashed) and hole (dot–dashed) are displayed.

(dashed). The eGect linked to modi8cation of the energy due to the medium is the dominant one,
the other being very small, especially for large values of q.

To complete this section we display in Fig. 15 the separate contributions of seagull (dashed),
pion-in-Jight (dot–dashed), VC (dotted) and SE (solid) to the longitudinal and transverse responses.
Worth pointing out is the oscillatory behavior versus ! of the vertex correlations, which induces
a hardening of the responses. In addition, the seagull and vertex correlations tend to cancel in the
transverse channel, especially for low values of q, whereas for higher q the MEC dominate. Note
that in the T channel both the seagull and VC exactly vanish at the same value of !, the latter
coinciding with the QEP for high momentum transfers, as said above. It is also important to point
out that the net eGect introduced by the SE contribution is in general the largest one for transfer
momentum values q¿ 1 GeV=c. Within the L channel, the pionic correlations (VC and SE) clearly
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Fig. 14. The contributions of the 8rst (solid) and second (dashed) term in Eq. (143) to the longitudinal (left panels) and
transverse (right panels) responses.

dominate over the MEC. In the transverse channel, apart from the SE contribution which seems
to dominate for high q, the seagull term is clearly more important than the VC one, whereas the
pion-in-Jight only enters for q not very high.

Up to now, we have considered a pseudovector coupling for the pion, Eq. (12). We now shortly
investigate the eGects on the responses of using a pseudoscalar pion–nucleon Hamiltonian

H
(PS)
�NN = ig M �5*a,a (146)

instead of the pseudovector one. For on-shell nucleons the Hamiltonians in Eqs. (12) and (146) are
equivalent provided f=m� = g=(2m), but for oG-shell nucleons this is not so. Among the diagrams
considered in our approach the only one involving oG-shell nucleons is the one associated with the
vertex correlations (Fig. 6e and f). Hence in Fig. 16 we compare the VC contribution to RL and RT
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Fig. 15. Separate pion-in-Jight (dot–dashed), seagull (dashed), vertex correlation (dotted) and self-energy (solid) contri-
butions to the longitudinal (left panels) and transverse (right panels) responses.

obtained with the pseudovector (solid) and pseudoscalar (dashed) couplings. The diGerence between
the two is especially sizable in the transverse channel (where the impact of VC is smaller) and
increases with the momentum transfer.

In conclusion, in Fig. 17 we display the total responses in 8rst order of perturbation theory and
compare them with the zeroth-order ones (free responses) for several momentum transfers. Here one
assesses the impact of the global two-body current contribution to the responses. First the overall
eGect of the two-body currents appears suIciently modest to justify our 8rst-order treatment. Next
the softening at large q appears to be common to both L and T channels, whereas at low q the
longitudinal response displays a hardening that is absent in the transverse one. Also evident is the
already-noted nearly vanishing of the two-body correlation contribution at the peak of the free re-
sponses. Finally the unrealistic dominance of the self-energy contribution on the upper border is
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Fig. 16. Longitudinal and transverse vertex correlation responses versus ! in the pseudovector (solid) and pseudoscalar
(dashed) �–N coupling.

apparent. Summarizing, the impacts of the diGerent 8rst-order contributions—MEC, vertex correla-
tions and self-energy—to the total responses are all comparable in size in the transverse channel
(in the longitudinal one the MEC are negligible), their relative contribution ranging from ∼ 5% to
∼ 15% depending upon the kinematics and the Fermi momentum.
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Fig. 17. Longitudinal and transverse responses versus ! including all 8rst-order contributions (solid) compared with the
free result (dashed).

3. Parity-violating electron scattering

In this section we deal with the parity-violating (PV) eGects arising from the weak interaction
between the electron and the nucleus. Such eGects, which are negligible in unpolarized electron
processes, can be brought to evidence by measuring the asymmetry associated with longitudinally
polarized electrons having opposite helicities, namely

A=
d�+ − d�−

d�+ + d�− : (147)
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In this case the purely electromagnetic cross sections cancel out and one is left with the interference
between the electromagnetic and neutral weak currents, corresponding to the exchange of a photon
and a Z0, respectively.

An important motivation of PV experiments (see, for example, [64] for a general review and [35]
for the foundations of PV quasielastic scattering) is the measurement of the single-nucleon form
factors, in particular the strange and axial ones: for this reason most experiments are presently being
carried out on light nuclei, where the uncertainties associated with the nuclear model are minimized.
Other motivations exist for such studies: speci8cally, as discussed in the following, the PV response
functions display a diGerent sensitivity to nuclear correlations compared with the parity-conserving
ones: hence they could not only shed light on the part of the problem concerned with nucleon (and
meson) structure, but also are being used as a test of nuclear models. In the present work we provide
no details for the underlying formalism used in PV electron scattering—those discussions can be
found in [64]. Our focus here is rather to place in context the expectations for PV electron scattering
of what role the modeling discussed above plays.

3.1. General formalism

The cross section for scattering of a polarized electron with helicity h reads

d�(h)

dP′
e d!

=
	′

	

(
2�2

Q4 ���W�� +
�G

2
√
2�Q2

�̃��W̃
��
)

: (148)

In Eq. (148) G is the Fermi constant, ���, W�� are the leptonic and hadronic electromagnetic tensors
de8ned in Section 2.1 and �̃��, W̃

��
are the tensors arising from the �− Z0 interference. Here terms

containing two weak currents have been neglected. The interference tensors read

�̃�� = (aV − haA)(K�K ′
� + K ′

�K� − g��K · K ′) + (aA − haV)ij��H�KHK ′� (149)

with aA =−1 and aV = 4 sin2 #W − 1; #W being the weak mixing angle, and

W̃
��
=
∑

i

∑
f

〈f|Ĵ �
em(Q)|i〉∗〈f|Ĵ �

wn(Q)|i〉�(Ei + !− Ef) ; (150)

Ĵ
�
em(Q) and Ĵ

�
wn(Q) being the nuclear electromagnetic and weak neutral currents, respectively.

When the diGerence of cross sections corresponding to opposite electron helicities is taken, the
electromagnetic term in Eq. (148) cancels out and the resulting PV expression reads(

d�
dP′

e d!

)
PV

≡ 1
2

(
d�(+)

dP′
e d!

− d�(−)

dP′
e d!

)
=A0�M[vLRL

AV(q; !) + vTRT
AV(q; !) + vTRT′

VA(q; !)] ; (151)

where

A0 =
G|Q2|
2
√
2��

; (152)
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�M is the Mott cross section in Eq. (4), the leptonic kinematical factors vL and vT are given by Eqs.
(6) and (7) and

vT′ = tan
#e
2

√
−
(
Q2

q2

)
+ tan2

#e
2

: (153)

In terms of nuclear response functions the asymmetry in Eq. (147) reads

A=A0
vLRL

AV + vTRT
AV + vT′RT′

VA

vLRL + vTRT : (154)

3.2. PV response functions

The PV response functions appearing in Eq. (151) are linked to the interference hadronic tensor
in Eq. (150) by the following relations:

RL
AV(q; !) = aA

(
q2

Q2

)2 [
W̃

00 − !
q
(W̃

03
+ W̃

30
) +

!2

q2
W̃

33
]

; (155)

RT
AV(q; !) = aA(W̃

11
+ W̃

22
) ; (156)

RT′
VA(q; !) =−iaV(W̃

12 − W̃
21
) : (157)

The subscript AV in the PV responses denotes interferences of axial-vector leptonic currents with
vector hadronic currents, and the reverse for the subscript VA.

Within the context of the RFG model the interference hadronic tensor is

W̃
��
=

3Z
8�k3Fq

∫ kF

h0

h dh(!+ Eh)
∫ 2�

0
d*h

∑
sp; sh

m2

Ep Eh
2Re [j�em(p; h)

∗j�wn(p; h)] ; (158)

where the electromagnetic current j�em includes both the single-nucleon one-body and the two-body
(MEC and correlation) currents discussed in the previous section, i.e., j�em = j�OB+ j�MEC+ j�cor. In this
work we include in the weak neutral current only the one-body contribution (see Fig. 18), namely

j�wn(p; h) = u(p)
(
F̃1�� + i

F̃2

2m
��HQH + G̃A�5��

)
u(h) ; (159)

where the Pauli and Dirac form factors are

F̃1 =
G̃E + ,G̃M

1 + ,
; (160)

F̃2 =
G̃E − G̃M

1 + ,
: (161)

Thus we neglect the direct coupling of a Z0 to the pion (important clues for the understanding of
the weak-neutral sector of the MEC should be found in the study of pion electroproduction on the
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Fig. 18. Feynman diagrams of the free (a) and 8rst-order pion-in-Jight (b), seagull (c and d), vertex correlation (e and
f) and self-energy (g and h) PV polarization propagator. The external wavy and dashed lines represent a photon and a
Z0 boson, respectively.

nucleon, where a Z0 is exchanged with the nucleon. This topic has recently been investigated in
[65].)

Within the standard model at tree level, the weak neutral form factors are linked to the electromag-
netic ones by the following relations (possible contributions from the strange quark are neglected—
these can be included in a straightforward way [35,64] and do not provide the primary focus of the
present discussions):

G̃Ep(n) = Ip
VGEp(n) + In

VGEn(p) ; (162)

G̃Mp(n) = Ip
VGMp(n) + In

VGMn(p) ; (163)

G̃Ap(n) = Ip
AGAp(n) + In

AGAn(p) ; (164)

where

Ip
V = 1

2(1− 4 sin2 #W); In
V = In

A =−Ip
A = 1

2 : (165)

The one-body contribution to the three PV responses can be evaluated analytically in RFG, yielding
(see, for example [35])

RL;T
AV (q; !) = aAR0(q; !)[Ũ

L;T
p (q; !) + Ũ

L;T
n (q; !)] ; (166)

RT′
VA(q; !) = aVR0(q; !)[Ũ

T′

p (q; !) + Ũ
T′

n (q; !)] ; (167)
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where R0 has been de8ned in Eq. (128) and

Ũ
L
p(n)(q; !) =

B2

,

{
GEp(n)G̃Ep(n) +

D
1 + ,

[GEp(n)G̃Ep(n) + ,GMp(n)G̃Mp(n)]
}

; (168)

Ũ
T
p(n)(q; !) = 2,GMp(n)G̃Mp(n) +

D
1 + ,

[GEp(n)G̃Ep(n) + ,GMp(n)G̃Mp(n)] ; (169)

Ũ
T′

p(n)(q; !) = 2
√

,(1 + ,)GMp(n)G̃Ap(n)(1 + D̃) ; (170)

with D given by Eq. (133) and

D̃ ≡ 1
B

√
,

1 + ,

[
1
2
(	F + 	0) + C

]
− 1 : (171)

The two-body contributions involve instead multidimensional integrals, to be numerically evaluated.

3.3. Results

In this section we analyze the PV response functions labeled L, T and T′ and the associated
asymmetry for various values of the momentum transfer. In [66] results for the PV responses in
a relativized continuum shell model were presented in the impulse approximation for 8nite, closed
shell nuclei. Two-body currents were not included in that calculation. In [51,55], a semi-relativistic
analysis of the PV responses has been presented, showing the dominance of pionic correlations in
the longitudinal channel. Here we perform a fully relativistic calculation, which con8rms the above
8ndings, and extends them to higher values of the momentum transfer.

In Fig. 19 we display the PV responses for four values of the momentum transfer q. The dashed
line corresponds to the free RFG, the dotted line includes MEC and vertex correlations, whereas the
solid line also includes the self-energy contribution.

One observes that in the T and T′ channels (central and right columns) the main eGect arises
from the self-energy, which tends to soften the response function, similar to what happens in the
parity-conserving case, whereas the MEC and VC eGect is very tiny. Note also that the axial response
is proportional to the transverse one, the factor between the two being roughly

√
1 + 1=,aVG

(1)
A =G(1)

M :
this agrees with the conjecture of [41,55], which is proven here to be valid within a fully relativistic
context. It also appears that the self-energy contribution increases in going from q= 500 MeV=c to
1 GeV=c, then saturates for higher values of q (thus scaling of 8rst kind is ful8lled). This is due to
the same particle–hole cancellation mechanism occurring in the electromagnetic case.

In the longitudinal channel, the self-energy gives instead a very small contribution compared with
the MEC and vertex correlations. The eGect of the SE contribution is found to increase with q,
but always remains smaller than the one arising from the other correlations. Indeed the one-body
longitudinal response is suppressed due to a delicate cancellation between the isoscalar and isovector
responses [35]. Physically this occurrence reJects the fact that the electric form factor in one of
the two vertices of Fig. 18a is always very small, for both protons and neutrons. When isospin
correlations are taken into account this balance can be disrupted, as pointed out in [51,55,67], thus
yielding the large eGects observed in Fig. 19. Indeed in Fig. 18e and f a proton can be converted
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Fig. 19. The longitudinal (left panels), transverse (central panels) and axial (right panels) PV responses plotted versus !.
Dashed line: one-body contribution; dotted line: one-body+MEC+VC; solid line: total (including SE).

into a neutron, leading to two large couplings, GEp and G̃En. Using diGerent language, the MEC and
VC are more eGective than the SE in RL

AV, since they act diGerently in the two isospin channels.
Indeed the VC carries a factor −3 in the isoscalar response and +1 in the isovector one and the
MEC are purely isovector, whereas the SE has almost the same impact in the two channels.

This is clearly illustrated in Fig. 20, where the separate seagull (dashed), pion-in-Jight (dot–
dashed) and VC (solid) contributions are displayed. In the L channel the role of MEC is almost
negligible, in agreement with the 8ndings for the electromagnetic RL, whereas the eGect of the
vertex correlations is dominant, especially at small values of q. In the T and T′ channels, the bal-
ance between MEC and VC is similar to that occurring for the electromagnetic RT (see Fig. 15):
the pion-in-Jight gives the smallest contribution, particularly for large q, whereas the seagull
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Fig. 20. Separate contributions to the PV longitudinal (left panels), transverse (central panels) and axial (right panels)
responses plotted versus !. Solid: VC; dashed: seagull; dot–dashed: pion-in-Jight.

dominates for all q and tends to cancel the VC contribution. Note also that the seagull and VC
vanish exactly at the same value of !, which, for high q, coincides with the QEP.

Since the three PV responses are not at present experimentally separable, we now explore the
eGect of the pionic physics on the asymmetry in Eq. (154). In Fig. 21 we show A at various values
of the momentum transfer q and of the electron scattering angle #e for the free RFG (dashed), and
including the MEC and VC (dot–dashed) or the MEC, VC and SE (solid) contributions. Clearly the
pionic correlations are mostly felt at low values of #e (left panel), where the longitudinal response
is enhanced by the kinematical factor vL, and at low values of q, where the vertex correlations
dominate. At high values of #e (right panel) the asymmetry is totally insensitive to pions, because
the eGect of the SE (which gives the main contribution) cancels between the PV and PC responses
appearing in the numerator and denominator of Eq. (154).
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Fig. 21. The PV asymmetry displayed versus ! for various values of the momentum transfer q and the scattering angle
#e. Dashed: one-body; dot–dashed: one-body+MEC+VC; solid: total.

We thus conclude that the extraction (at large electron angles) of the axial nucleonic form factor
GA is almost independent of the nuclear model. On the contrary, at small angles PV experiments can
measure the strange electric content of the nucleon only if a good control of the nuclear dynamics is
achieved, since the isospin correlations give very large eGects. Conversely, interesting insight into the
latter can in principle be gained here. Our results show that only at very large momentum transfer
does the forward-angle asymmetry become insensitive to pionic correlations and hence suitable for
assessing the strangeness content of the nucleon.
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4. Non-relativistic reductions

For years most of the eGects introduced by the two-body pionic currents in electron scattering
reactions have been explored assuming diGerent types of non-relativistic reduction [28,68–72]. Not
only non-relativistic wave functions have been used, but also non-relativistic current operators derived
from a direct Pauli reduction have been considered. Focusing on the pionic eGects on the hadronic
(e; e′) response functions one has to deal with the single-nucleon electromagnetic (electroweak in
general) current and the various two-body pionic currents discussed previously. Concerning the
former, an improved version of the single-nucleon electromagnetic current has been suggested in
[66], where the expression of the current is derived as a non-relativistic expansion in terms of
the dimensionless parameter � ≡ p=m, p being the three-momentum of the struck nucleon. In
Appendix F we review this approach—which we call semi-relativistic (SR)—and compare it with
the traditional non-relativistic reduction, where the non-relativistic expansion is performed with the
additional assumption B ≡ q=2m�1 and C ≡ !=2m�1. As shown in [20,66] and in Appendix F,
the expansion of the current to >rst order in the variable � yields quite simple expressions; moreover
the various pieces of the relativized current diGer from the traditional non-relativistic expressions only
by multiplicative (q; !)-dependent factors, and therefore are easy to implement in already existing
non-relativistic models.

The SR form of the OB electromagnetic current operator was 8rst checked in [66], where the in-
clusive longitudinal and transverse responses of a non-relativistic Fermi gas were found to agree
with the exact relativistic result within a few percent if one uses relativistic kinematics when
computing the energy of the ejected nucleon. Recently the same expansion has been tested with
great success by comparing with the relativistic exclusive polarized responses for the 2H(e; e′p)
reaction at high momentum transfers [73]. This relativized current has also been applied to the
calculation of inclusive and exclusive responses that arise in the scattering of polarized electrons
from unpolarized [74] and polarized nuclei [75–78]. Finally, it also has been compared with a
fully relativistic DWIA calculation of (e; e′p) observables for |Q|2 = 0:8 (GeV=c)2 in [79,80]. A
systematic analysis of the SR approximation in the case of (̃e; e′Ñ ) reactions has been presented
in [81].

Alternative expansions, in powers of the initial nucleon momentum, of the structure functions of
nuclei have recently been proposed [15] and “recipes” to obtain a relativistic structure function from
its non-relativistic analog by changing the scaling variable and performing an energy shift have been
suggested. The so-called three-dimensional reduction model, which includes 8nal-state interactions,
has been tested in the case of a deuteron target, but not for A¿ 3.

The necessity of an SR form for the current even for moderate momentum transfer is demonstrated
in Fig. 22, where we compare the traditional non-relativistic results for the electromagnetic responses
with the fully relativistic calculation for a non-interacting system. It clearly appears that for low
densities and momentum transfers the two approaches are equivalent, but that the two curves deviate
from each other as q and kF increase. One of the eGects of relativity is the shrinking of the response
region [25] and is already signi8cant at q=400 MeV=c. This eGect, which arises from the relativistic
kinematics in the energy-conserving delta-function appearing in the responses, can be accounted for
approximately by the replacement

C → C(1 + C) : (172)
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Fig. 22. The one-body longitudinal (left panels) and transverse (right panels) responses displayed versus ! for various
values of the momentum transfer q and of the Fermi momentum kF. Dashed: non-relativistic; solid: relativistic.

Another eGect, stemming from the non-relativistic reduction of the currents, relates to the enhance-
ment of the longitudinal response and to the reduction of the transverse one due to relativity. Such
an eGect can be mimicked by the kinematical factors B2=, (in the L channel) and ,=B2 (in the
T channel), which naturally emerge from the � expansion illustrated in Appendix F. When included
in the non-relativistic responses these factors, together with the prescription of Eq. (172), allow one
to reproduce the fully relativistic responses even for very high q values (see, for example, [66]).

In this section we explore the impact of relativity on the MEC.
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4.1. Pion-exchange currents

We 8rst compare the fully relativistic transverse MEC responses with the traditional non-relativistic
calculation developed in [82], where the seagull p–h matrix element is evaluated analytically, while
the pion-in-Jight contribution is reduced to a one-dimensional integral. For this comparison the value
1� = 1 for the �NN form factor and the static pion propagator have been used in the relativistic
calculation. The eGect of static versus dynamic pion propagator will be discussed later on.

From Fig. 23 it emerges that the two calculations give the same results for small density and
momentum transfer. As q and kF increase we see that, apart from the diGerence stemming from the
relativistic kinematics, which shrinks the response domain, the relativistic responses are smaller than
the non-relativistic ones: this reduction amounts to about 30% for q=500 MeV=c and kF=250 MeV=c,
indicating that relativity plays an important role even for not so high q values.
The same curves are displayed for kF = 250 MeV=c and q= 500, 600 and 700 MeV=c in Fig. 24,

where it is shown that the eGect of relativity clearly grows with the momentum transfer.
In Fig. 25 the relativistic MEC-correlated transverse response (dotted) is compared with the corre-

sponding non-relativistic one (dot–dashed) as well as with the relativistic (solid) and non-relativistic
(dashed) one-body response for three values of q. The 8gure shows that for low values of q
(500 MeV=c) the eGects of MEC and relativity are roughly of the same size, the former acting
mainly to the left of the QEP, the latter to the right. As q increases, the eGect of relativity becomes
dominant, pointing to the necessity of a relativistic treatment for momentum transfers larger than
500 MeV=c.
Finally the impact on the responses of the relativistic propagator D�(K)=(K2−m2

�)
−1 as compared

with the static one D(n:r:)
� (k)=−(k2+m2

�)
−1, which is commonly used in non-relativistic calculations,

is explored. In Fig. 26 the pion-in-Jight, seagull and total MEC contributions to RT are evaluated
for q = 0:5 and 2 GeV=c using the two versions of the propagator. It appears that the dynamical
propagator aGects the pion-in-Jight contribution more than the seagull term (it increases the former
by more than a factor 2 at q= 2 GeV=c); however, the two eGects tend to cancel, so that their net
eGect is not very signi8cant.

4.1.1. The �F expansion
In view of the relevance of relativistic eGects illustrated above and following the ideas and methods

developed in the case of the single-nucleon electromagnetic current operator and its non-relativistic
reduction [66], a new SR reduction of the MEC has been developed in [20], where the transferred
energy and momentum have been left unexpanded while expanding only the initial nucleon mo-
mentum. The expressions thus obtained retain important aspects of relativity not included in the
traditional non-relativistic MEC used throughout the literature. Here we summarize the basic results.

We are interested in the evaluation of the particle–hole matrix elements 〈pk|j�MEC|kh〉 and their new
SR expressions. The resulting expansion for the MEC should be used together with the single-nucleon
current, developed to 8rst order in � (see [20] and Appendix F), to set up the various responses.
Therefore, in order to be consistent, the expansion of the MEC should also be performed to 8rst
order in the corresponding small quantities {�k ≡ k=m; �h ≡ h=m}, whereas {�p ≡ p=m; B ≡ q=2m}
are treated exactly.

After some algebra [20] the following SR expressions of the MEC currents (referred to as NR1
approximation in [20]) are obtained:
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Fig. 23. The seagull (left panels) and pion-in-Jight (right panels) contributions to the transverse response displayed
versus ! for various values of the momentum transfer q and of the Fermi momentum kF. Dashed: non-relativistic; solid:
relativistic.
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Fig. 24. The seagull (left panels), pion-in-Jight (central panels) and total MEC (right panels) contributions to the transverse
response displayed versus ! for kF =250 MeV=c and various values of the momentum transfer q. Dashed: non-relativistic;
solid: relativistic.

Seagull current operator.

j0s (p; k; k; p)SR1

=
F

2
√
1 + ,

>†sp

{
� · [2� + �h − (1 + ,)�k]>sk >

†
sk� · (�k + �h)

(P − K)2 − m2
�

−� · [2� + �h + (1 + ,)�k]>sk >
†
sk� · (�k − �h)

(K − H)2 − m2
�

}
>sh ; (173)

js(p; k; k; p)SR1

=
F√
1 + ,

>†sp
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2� · �

(
1− � · �h

2(1 + ,)

)
+ � · (�h − �k)− ,� · �k

]
>sk

× >†sk
�

(P − K)2 − m2
�
− (1 + ,)

�
(K − H)2 − m2

�
>sk >

†
sk� · (�k − �h)

}
>sh ; (174)
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Fig. 25. The transverse response displayed versus ! for kF = 250 MeV=c and various values of the momentum trans-
fer q. Dashed: one-body non-relativistic; solid: RFG; dot–dashed: one-body+MEC non-relativistic; dotted: RFG+MEC
relativistic.

where the factor

F=−f2m
m2

�
i	3ab〈tp|,a|tk〉〈tk |,b|th〉FV

1 (175)

has been introduced. Note that if the terms �h − (1 + ,)�k and �h + (1 + ,)�k are neglected (this
approximation will be referred to as SR2) the expression for the time component is similar to the one
obtained in the traditional non-relativistic reduction [66] except for the factor 1=

√
1 + ,, which ac-

cordingly incorporates important aspects of relativity not considered in the traditional non-relativistic
reduction. Analogously, in the space component, if the terms (� · �h)=[2(1 + ,)] and ,(� · �k) are
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Fig. 26. MEC contribution to RT (in GeV−1) versus ! with dynamic (solid curves) and static (dashed curves) pion
propagator at (a) q = 0:5 and (b) 2 GeV=c. The separate pion-in-Jight and seagull contributions are displayed.

neglected (SR2 approximation), the traditional non-relativistic expression [24] is simply recovered,
except for the factors 1=

√
1 + , and

√
1 + , that multiply the contributions given by the two diagrams

involved. Thus, as in the case of the time component, also here important relativistic eGects are
simply accounted for by these multiplicative factors.

To illustrate this point we plot in Fig. 27 the current matrix element K s
� de8ned through

1
V

∑
k¡kF

m
Ek

js�(p; k; k; h) =− m2√
EpEhE2

k

k2F
m

K s
�(q; !; h)

∑
tk

F (176)

for q=1 GeV=c, h=175 MeV=c and *h=0. The curves represent the fully relativistic result (solid),
the traditional non-relativistic approximation, including relativistic kinematics through Eq. (172)
(dot–dashed), the SR1 approximation of Eqs. (173) and (174) (dashed) and the SR2 approxi-
mation (dotted). Only the relevant components are shown, the other vanishing for symmetry rea-
sons (see [20] for details). It clearly appears that, while the traditional non-relativistic reduction,
although corrected by the replacement C → C(1 + C), fails to reproduce the exact results by roughly
10–20% (this deviation increasing with q, as shown in [20]), both the SR1 and SR2 approaches
yield excellent agreement with the fully relativistic current.

Finally, we examine the limit �F → 0, since this provides some understanding of how the MEC
eGects are expected to evolve in going from light (�F very small) to heavy nuclei (�F ∼= 0:29). In
this limit the seagull current simply reduces to

lim
�F→0

j0s (p; k; k; h) = 0 : (177)

This is because the time component of the seagull current is of 8rst order in the small momenta
involved or, equivalently, it is O(�F). On the contrary, the vector component in the limit �F → 0
becomes

lim
�F→0

js(p; k; k; h) =
2F√
1 + ,

>†sp
(� · �)>sk >

†
sk�

Q2 − m2
�

>sh ; (178)

which shows that the space components of the seagull current are O(1) and contribute even for
nucleons at rest, as happens for the charge and magnetization pieces of the one-body current.
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Fig. 27. Seagull current matrix element K s
�—see Eq. (176)—for q = 1 GeV=c and kF = 250 MeV=c. The kinematics for

the hole are h = 175 MeV=c and *h = 0. First column: spin ( 12 ;
1
2 ) component; second column: spin ( 12 ;− 1

2 ) component.
Solid: fully relativistic; dashed: SR1 approximation; dot–dashed: traditional non-relativistic; dotted: SR2 approximation.
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Pion-in-Cight current operator. Keeping only linear terms in the small momenta, one obtains for
the SR pion-in-Jight current

j0p(p; k; k; h)SR =− F√
1 + ,

4m2,>†sp
� · �>sk >

†
sk� · (�k − �h)

[(P − K)2 − m2
�][(K − H)2 − m2

�]
>sh ; (179)

jp(p; k; k; h)SR =− F√
1 + ,

4m2>†sp
� · �>sk >

†
sk� · (�k − �h)

[(P − K)2 − m2
�][(K − H)2 − m2

�]
>sh� : (180)

Again, these expressions are similar to the traditional non-relativistic currents [24] except for the
common factor 1=

√
1 + ,, which includes important aspects of relativity not taken into account in

the traditional non-relativistic reduction. Note that the space component of the pionic current is, in
leading order, purely longitudinal; its transverse components are in fact of second order in �F.
In Fig. 28 we display the current matrix element Kp

� , de8ned analogously to eq. (176), for
q = 1 GeV=c, h = 175 MeV=c and *h = 0. As for the seagull, the fully relativistic result (solid)
is very well approximated by the SR prescription (dashed), whereas the traditional non-relativistic
approach with relativistic kinematics (dot–dashed) deviates from the exact result by 10–20%.

Finally the limit �F → 0 implies that j�p (p; k; k; h) = 0, since all components of the pionic current
are O(�F) in the expansion.
Summarizing, the � expansion shows that relativity can be very easily implemented in MEC SR

calculations by applying the prescription C → C(1+ C) and by multiplying the exchange currents by
the kinematical factors indicated in Eqs. (173)–(180).

4.1.2. Results for the responses using the relativized MEC model
In this section we discuss the validity of the relativizing prescriptions introduced above, when

they are implemented in a traditional non-relativistic model of the reaction. We begin with the
non-relativistic Fermi gas of [82], which includes also MEC in the transverse response. One of the
advantages of this model is that the integral over the Fermi sea appearing in the seagull matrix
elements can be performed analytically, while the pion-in-Jight is reduced to an one-dimensional
integral.

Next we will relativize this model by implementing relativistic kinematics through the substitution
C → C(1 + C) in all places except in the nucleon and pion form factors F(q; !), which should
be evaluated at the correct !-value. Second, we use the new SR expansion of the electromagnetic
OB+MEC operators in powers of �. For the OB operators we use the following expressions (see
Appendix F):

HOB =
B√
,
GE + i

GM − GE=2√
1 + ,

(� × �) · � ; (181)

JT
OB =

√
,

B
[iGM(� × �) + GE�T ] : (182)

Note that near the QEP it makes little diGerence to use the factors 1+, or B2=,. In these factors lies
the main diGerence with the traditional non-relativistic charge and transverse current operators. Note
that in addition we include a 8rst-order spin–orbit term in the charge operator. The contribution of
this term is small in the longitudinal unpolarized response, since its interference with the leading
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Fig. 28. Pion-in Jight current matrix element Kp
� for q = 1 GeV=c and kF = 250 MeV=c. The kinematics for the hole are

h=175 MeV=c and *h=0. First column: spin ( 12 ;
1
2 ) component; second column: spin (1=2;−1=2) component. Solid: fully

relativistic; dashed: semi-relativistic approximation; dot–dashed: traditional non-relativistic.
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order is exactly zero in PWIA and hence it gives a negligible contribution of second order in �.
However one should be careful in including this term in the more complex cases in which there is
an interference TL response (when the nucleus is polarized or in the exclusive reactions (e; e′p), see
[75,76,81]), and where it gives a signi8cant contribution, since in this response the leading order is
zero in PWIA.

In the case of the MEC we use the following simpli8ed prescription to relativize transverse
operators:

JT
MEC =

1√
1 + ,

JT
MEC; non rel ; (183)

namely we introduce a factor 1=
√
1 + , to take into account relativistic corrections coming from the

free Dirac spinors. Note that in the case of the seagull we have neglected a further correction factor
1 + , in the hole part of the seagull current. However here we choose to present results with the
above simpli8ed version of the transverse current, since it is easier to implement in already existing
models of the reaction; otherwise one has to identify the diGerent pieces of the operator, which may
be diIcult. Furthermore, this correction is not of much importance, its main eGect being to correct
slightly the position of the zero in the seagull response. Be it as it may this ad hoc prescription for
the seagull current is supported by the quality of the results shown below.

Results for the 40Ca nucleus for q = 500 and 1000 MeV=c are shown in Figs. 29 and 30, re-
spectively. In the upper part of these 8gures we show the one-body (OB) separated longitudinal
and transverse responses. The solid lines are the exact relativistic results. These are very diGerent
from the traditional non-relativistic results shown with dashed lines. Note that the same nucleon
form factors and the same kF = 237 MeV=c are used in both calculations. If we include relativistic
kinematics, then we obtain the dotted lines, which are still diGerent from the exact result, even if
now the region where the response is non-zero is similar to the relativistic case. Finally, using in
addition the new SR corrections (factors B=

√
, in the charge and

√
,=B in the current) we obtain

the relativistic approximation shown with dot–dashed lines, which is very similar to the exact result.
Hence we can safely say that the new expansion of the OB current is very good, giving essentially
the exact answer.

The case of the MEC transverse responses is shown in the lower part of Figs. 29 and 30. There
we show the separate contribution of seagull and pion-in-Jight currents to the transverse response
(interference with the OB current). Again we show with solid lines the exact relativistic results, and
with dashed lines the traditional non-relativistic results. If again we include the relativistic kinematics
we obtain the dotted lines. With dot–dashed lines we display results which include in addition the
relativistic correction to the OB current, amounting to a factor 1=

√
1 + , � √

,=B. This correction
produces a small reduction of the responses. Finally, with double-dashed lines we show the results
computed using in addition the relativistic corrections in the MEC, which amounts to another factor
1=
√
1 + ,. This correction produces a further reduction of the responses, giving a result which is

closer to the exact one.
From these results it appears that our expansion of MEC currents is not as good (at least frac-

tionally) as the OB expansion. This is likely related to the fact that the OB currents have been
expanded in powers of � = h=M , where h is the momentum of the hole, and they are exact, by
construction, for h=0. However in the case of the MEC there is another variable in the expansion:
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Fig. 29. One-body longitudinal and transverse response functions (top panels), and transverse responses of interference
between MEC and OB currents (bottom panels) for q = 500 MeV=c and kF = 237 MeV=c. Solid: exact relativistic results
with static propagator and without �N form factor. The rest of the curves have been computed using the non-relativistic
Fermi gas model, with or without relativistic corrections. Dashed: traditional non-relativistic results. Dotted: including
relativistic kinematics in the non-relativistic calculations. Dot–dashed: including in addition the new expansion of the OB
currents. Double-dashed: including in addition a correction to the MEC operators with a factor 1=

√
1 + ,.

the momentum of the second hole h′=M , which is small, but is never zero and is being integrated
up to kF. Therefore our currents are not constructed to agree with the exact ones for h= 0.
On the other hand, we have explicitly showed before that in the limit q → 0 and kF → 0, the

relativistic and non-relativistic results agree. This is also the case for the present results of the
relativized currents, as it is illustrated in Fig. 31. There we show the seagull and pionic responses
for several small values of q = 100; : : : ; 500 MeV=c and for kF = q=2. With solid lines we show
the exact relativistic results, while with dashed lines we show the traditional non-relativistic results.
Finally we also show with dotted lines the results using the present semi-relativized approach. It is
seen that the last are always much closer to the exact result than the non-relativistic ones, and that
they converge faster to the exact results.

Better agreement between the exact and the relativized models for the MEC responses is also
expected in the limit �F → 0 in the quasielastic peak, since in this case both momenta h and h′ are
forced to be small, which are the conditions assumed in our expansion. Results for the transverse
MEC responses in this limit are shown in Fig. 32 for q = 1000 MeV=c and for two values of
kF = 50 and 25 MeV=c. With solid lines we show the exact relativistic results, while with dashed
lines we display the non-relativistic ones, but including relativistic kinematics. Finally, the dotted
lines correspond to the semi-relativized results, which fully agree with the exact ones in the case of
the seagull current, while in the pionic case there is still a diGerence between the two calculations.
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Fig. 30. The same as Fig. 29, now for q = 1000 MeV=c.

However this is not very important in this limit, since the transverse pionic contribution which we
are computing here is of second order in the hole momenta, and so is negligible compared with the
seagull one, as can be seen in the 8gure.

In order to improve the present results for the MEC responses one should look for an expansion
of the MEC in the form

J(p; h) =
N (q; !; kF)√

1 + ,
Jnon rel(p; h) ; (184)

where N (q; !; kF) is an appropriate normalization factor de8ned by requiring

lim
h→0

J(p; h)
Jrel(p; h)

= 1 ; (185)

i.e., the coincidence between the relativistic and the approximate results at the quasielastic peak.
Obviously the factor N (q; !; kF) is a function of kF also, since an integral over the Fermi sphere is
implicit in the de8nition of the MEC in the 1p–1h channel, and it can be written in the form

N (q; !; kF) =
√
1 + ,

Jrel(q; 0)
Jnon rel(q; 0)

: (186)

A simple approximation for this function is not easy to obtain, since it requires the knowledge of
the exact relativistic answer.

Despite these diIculties, the quality of the OB expansion plus the approximated improvement of
the MEC currents obtained in the present expansion are good enough to ensure a quite satisfactory
description of the exact relativistic transverse response using the relativized OB plus MEC operators
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Fig. 31. Seagull and pionic responses computed for several values of q and kF. Solid lines: exact relativistic results.
Dashed lines: non-relativistic results. Dotted lines: approximated semi-relativistic results using relativistic kinematics and
relativized currents. Static propagators without a �NN form factor have been used here.

altogether with relativistic kinematics. This is shown in Fig. 33, where we show the total transverse
response, including OB+MEC operators, for q = 500; 1000; 2000 and 3000 MeV=c. The solid lines
are the exact relativistic result. Again with dashed lines we display the traditional non-relativistic
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Fig. 32. MEC-OB transverse responses for q=1000 MeV=c and kF =50 MeV=c. Solid: exact relativistic results with static
propagator and without a �N form factor. Dashed: non-relativistic results, but including relativistic kinematics. Dotted:
using in addition the relativized currents.

results, which together with relativistic kinematics give the dotted lines. Finally, with dot–dashed
lines we show the results using the semi-relativized OB+MEC currents. The agreement between the
two models is quite good even for very high q, since the major part of the relativistic eGects is
included in the approximated model, and therefore these currents are very appropriate and easy to
implement in already existing non-relativistic models of the reaction.

4.1.3. Comparison with the traditional relativistic corrections
Here we discuss the reasons why the present expansion of electromagnetic operators is preferable

to other kinds of relativistic corrections existing in the literature. The most common of these is
the Darwin–Foldy correction to the charge operator of the nucleus [7,83–85]. This correction is
usually derived from a Foldy–Wouthuysen transformation [31], but can also be obtained from a
Pauli reduction of the spin matrix element (we do not write the spin indices for simplicity):

J �
E (p; h) = uE(p)1�(Q)uE(h) = uE(p)

(
F1�� + i

F2

2m
���Q�

)
uE(h) ; (187)

where we use the sub-index E to denote the spinors normalized to u†E(p)uE(p) = 1, i.e., namely

uE(p) =
(
E + m
2E

)1=2( >
�·p
E+m>

)
: (188)

This is in contrast to the Bjorken and Drell spinor normalization used in the present work, where
spinors are normalized to u†(p)u(p) = E=m. The relation between the two sets of spinors
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Fig. 33. Total transverse response function of 40Ca including MEC for several values of the momentum transfer, and for
kF=237 MeV=c. Solid: exact relativistic results. The rest of the curves have been computed using the non-relativistic Fermi
gas model, with or without relativistic corrections. Dashed: traditional non-relativistic results. Dotted: including relativistic
kinematics in the non-relativistic calculations. Dot–dashed: including in addition the new expansion of the OB+MEC
currents. The relativistic calculations include a dynamical propagator and �N form factor, while the non-relativistic cal-
culations do not include these corrections.
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obviously is

u(p) =

√
E
m
uE(p) : (189)

Of course both formalisms based on the diGerent spinor sets uE(p) or u(p) should give the same
results for the observable quantities. For instance, if we like to think in terms of wave functions,
for a nucleon in a box of volume V this would be

 (x) =

√
m
EV

u(p)e−ip·x =
1√
V
uE(p)e−ip·x : (190)

This means that observables (expectation values, probabilities or cross sections) computed using
the Bjorken and Drell normalization always contain additional phase-space factors m=E, while these
factors do not appear explicitly if one uses the E-scheme, since they are already included inside the
spinors uE(p).

As an example let us consider the case of the longitudinal response function for protons

RL =
∑
ph

∑
spsh

�(Ep − Eh − !)|〈ph−1|H(q)|F〉|2

=
∑
ph

�(Ep − Eh − !)
m2

EpEh
�p;h+qTr [H(p; h)†H(p; h)]

=
(

3Z
8�k3F

)∫
h¡kF

d3h �(Ep − Eh − !)
m2

EpEh
Tr[H(p; h)†H(p; h)] ; (191)

where in the last line p = h + q, and we have used the replacement
∑

h → (V=(2�)3)
∫
d3h,

with V=(2�)3 = 3Z=8�k3F. Note that we use the Bjorken and Drell normalization and so the en-
ergy denominators appear explicitly. The charge matrix element used here is the fully relativistic
one H(p; h) = Mu(p)10(Q)u(h).
The interesting (and crucial) point is that the energy denominator Ep cancels out when we perform

the integral over cos #—the angle between h and q—using the energy-conserving delta function. In
fact, from

E2
p = p2 + m2 = h2 + q2 + 2hq cos #+ m2 ; (192)

we have Ep dEp = hq dcos #. Therefore, the angle # becomes 8xed by the energy conservation Ep =
Eh + ! and we obtain

RL(q; !) =
3Z
8�k3F

∫ kF

0
h dh

∫ 2�

0
d*

Ep

q
m2

EpEh
Tr[H(p; h)†H(p; h)]

=
3Z
8�k3F

m
q

∫ kF

0
h dh

∫ 2�

0
d*

m
Eh

Tr[H(p; h)†H(p; h)] : (193)

This expression has to be compared with the non-relativistic response function, which can be
computed by repeating the steps above using instead the non-relativistic energies jp = p2=2m,



384 J.E. Amaro et al. / Physics Reports 368 (2002) 317–407

i.e.,

RL(q; !)non rel =
(

3Z
8�k3F

)∫
h¡kF

d3h �(jp − jh − !)Tr[H(p; h)†H(p; h)]n:r: ; (194)

where again p = h + q, no energy denominators appear and the non-relativistic charge operator is
used.

Now the integral over cos # can again be performed using the non-relativistic identity

jp =
p2

2m
=

h2 + q2 + 2hq cos #
2m

: (195)

Hence djp = (hq=m)d cos # and the integral over the new variable jp can be performed. The latter
is jp = jh + !. We obtain

RL(q; !)nonrel =
3Z
8�k3F

m
q

∫ kF

0
h dh

∫ 2�

0
d*Tr[H(p; h)†H(p; h)]n:r: ; (196)

which has formally the same structure as Eq. (193) with the exception of the factor m=Eh � 1
included there. Therefore, the relativistic response can be reproduced using a non-relativistic model
if we introduce in the non-relativistic response in Eq. (196) a good approximation for H(p; h), and
in addition we use relativistic kinematics, i.e., we use the relativistic relation between cos # and !.
This can be approximately accomplished starting from Eq. (192). Indeed we have

h2 + q2 + 2hq cos #= (Eh + !)2 − m2 = h2 + !2 + 2Eh + !

� h2 + !2 + 2m!+ 2jh!

=2m
(
!+ jh +

!2 + 2jh!
2m

)

� 2m
(
!+ jh +

!2

2m

)
; (197)

where we have neglected the term jh!=m = O(h2=m2). Comparing with the non-relativistic relation
(195) we see that the relativistic one can be approximately obtained with the replacement ! →
!(1+!=2m). The validity of this approximate method of relativization was demonstrated numerically
in the last sections.

If instead we use the other spinor normalization uE(p) in the relativistic model, then the matrix
element is HE(p; h) and now there are no explicit energy denominators in the expression of the
response, which hence becomes, after integration over #,

RL(q; !) =
3Z
8�k3F

m
q

∫ kF

0
h dh

∫ 2�

0
d*

Ep

m
Tr[HE(p; h)†HE(p; h)] : (198)

Comparing with Eq. (196) we see that if we start with a non-relativistic model and use an approx-
imate non-relativistic form for HE(p; h), as happens with the Darwin–Foldy correction, an additional
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factor Ep=m is needed in order to reproduce the relativistic response. For this reason, a careless
introduction of relativistic corrections alone in non-relativistic models can produce incorrect results.

4.2. Pionic correlations

The analysis carried out in the previous section for the MEC could in principle be extended to the
correlation current. However in this case the calculation becomes extremely cumbersome and has
not yet been performed. A SR calculation of the vertex and self-energy correlations has been carried
out in [51,55,86], where the relativistic energy-conserving delta function has been accounted for via
the replacement in Eq. (172) and the form factors in the two-body current have been modi8ed to
implement relativistic eGects. The response functions so obtained are in qualitative agreement with
the fully relativistic ones for not too high q. However, for high values of q a careful treatment of
the relativistic eGects is needed.

In what follows we brieJy examine the non-relativistic limit of the vertex correlations and self-
energy diagrams in order to bring to light some diGerences with respect to the fully relativistic case.

The non-relativistic leading order of the pionic correlation currents in Eqs. (27) and (28) is
obtained by using the following prescriptions, valid in the static limit:

Ek � m ; (199)

�5K= � � · k ; (200)

1
K2 − m2

�
� − 1

k2 + m2
�
; (201)

SF(P) � Snr(P) =
1

p0 − p2=2m
: (202)

The electromagnetic form factor 1�(Q) is also replaced by 1�
nr(q), representing the usual non-

relativistic one-body current acting over bi-spinors [20,24]. Using the above relations and performing
the sums over spin and isospin indices, the VC and SE current matrix elements read

j�VC(p; h)nr =
f2

Vm2
�
>†sp

∑
k6kF

{
� · (k − h)

(k − h)2 + m2
�
Snr(K + Q),a1�

nr(Q),a� · (k − h)

+ � · (p− k),a1�
nr(Q),aSnr(K − Q)

� · (p− k)
(p− k)2 + m2

�

}
>sh (203)

and

j�SE(p; h)nr = >†sp[6nr(p)Snr(P)1�
nr(Q) + 1�

nr(Q)Snr(H)6nr(h)]>sh ; (204)

where >sp and >sh are two-components spinors. The non-relativistic self-energy function is given by

6nr(p) = 3
f2

Vm2
�

∑
k6kF

(p− k)2

(p− k)2 + m2
�
= 6nr(|p|) : (205)

The above expressions coincide with the traditional non-relativistic currents used in the literature.
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With the self-energy in Eq. (205) one can then construct the non-relativistic Fock nucleon prop-
agator

SHF
nr (p0; p) =

1

p0 − p2

2m

+
1

p0 − p2

2m

6nr(p)
1

p0 − p2

2m

+ · · ·= 1

p0 − p2

2m
− 6nr(p)

: (206)

As is well known, this is a meromorphic function whose simple pole again de8nes the new energy
of the nucleon in the medium, namely

	nr(p) =
p2

2m
+ 6nr(p) ; (207)

since 6nr(p) is a function only of p.
Since the non-relativistic self-energy function in Eq. (205) does not depend on spin, the nucleon

wave functions are not modi8ed in the medium. In fact the corresponding Schr[odinger equation in
momentum space, including the self-energy, is simply given by[

p2

2m
+ 6nr(p)

]
*nr(p) = p0*nr(p) ; (208)

with the bi-spinor *nr(p) corresponding to the eigenvalue p0 = jnr(p).
The non-relativistic analysis of the nucleon self-energy current [43] is much simpler than its

relativistic counterpart. Indeed, in the former the self-consistency is immediately achieved because
the nucleon wave functions are not modi8ed by the self-energy interaction and thus the 8rst iteration
of the “Hartree–Fock” equations already provides the exact energy. By contrast, in the relativistic
framework the spin dependence of the self-energy [87] modi8es the Dirac spinors, inducing an
enhancement of the lower components. Moreover, the 8eld-strength renormalization constant, namely
the residue of the nucleon propagator in Eq. (206) at the pole, in the non-relativistic case is just
unity. Hence the enhancement of the lower components and the spinors’ 8eld strength renormalization
are genuine relativistic eGects absent in a non-relativistic analysis where only the energy–momentum
relation in the medium is altered by the self-energy diagrams. We have shown in Section 2.4 that the
two above-mentioned relativistic signatures can be incorporated as new pieces in the electromagnetic
current acting over free spinors.

5. Conclusions

Our goal in these studies has been to explore some of the ingredients that enter at high energies
where relativistic eGects become important in attempting to model the nuclear response functions for
inclusive quasielastic electron scattering. The full problem of accounting for relativistic dynamics in
nuclear physics is a daunting one and far from being solved [88,89]. While in many papers it appears
that a reasonable level of understanding has been reached [1,90–92], since the basic trends seen in
the data are reproduced, closer scrutiny reveals a diGerent situation. It is not only that contributions
left out in various analyses are far from being small, but, even more serious, fundamental physics
principles (Lorentz covariance, gauge invariance and unitarity) turn out patently to be violated. Thus
the successes in reproducing the experiments often reJect more an adjusting of parameters than a
real understanding of the physics involved in the quasielastic regime.
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Our approach has been less to use a highly elaborated non-relativistic model whose failings are
expected at the outset than to employ a simple model in which the important consequences of
relativity are hopefully present. For this we have begun with the relativistic Fermi gas as our starting
point [93,94]. This approach is motivated by several critical features of the model, namely, that it is
Lorentz covariant, that it allows the implementation of gauge invariance and that it is simple enough
to be tractable and yet not obviously lacking at least for the quasielastic responses for which it is
designed. Clearly it is not an appropriate way to proceed if near-Fermi-surface physics is the goal
and this regime is not our focus.

With these as basic motivations in a series of papers we have explored the consequences of
having a Lorentz covariant model. In particular in [20] we attempted to approximate the full theory by
identifying a dimensionless variable that is small enough to be suitable in setting up a semi-relativistic
expansion of the responses (namely the momentum of a nucleon lying below the Fermi surface
compared with its mass). In contrast, in very recent work [19] no expansion whatsoever is involved
and the theory is now fully relativistic.

Our treatment proceeds in terms of nucleonic and mesonic degrees of freedom (the latter viewed
both as force and current carriers). As our aim is to study the quasielastic regime where the
longest-range hadronic ingredients may be expected to be dominant, we focus on pions; studies
using a larger set of hadrons can be undertaken and some steps have already been taken by us in
that direction. In our model, the pions are dealt with to 8rst order in a perturbative framework, since
their eGects on the free responses of the RFG are not expected to be too disruptive.

Gauge invariance is a fundamental property we have also addressed in very recent work [19]. We
now understand how the continuity equation is satis8ed order by order in perturbation theory. We
have succeeded in showing that the continuity equation for the one-body (single-nucleon) and the
two-body (MEC and correlations) currents is ful8lled, implying that our approach deals consistently
with both forces and currents.

Given the point in our understanding of the quasielastic responses at relatively high energies, we
have been motivated to provide a comprehensive set of discussions of progress made so far. In
particular, as a more in-depth presentation of the analysis carried out in [19], where we 8rst studied
the fully relativistic set of OPE operators that contribute to the electromagnetic responses of nuclei
in the 1p–1h channel, in the present work we have gone further to answer the question of whether or
not a >nite OPE self-energy current in nuclear matter exists. Indeed we have proven that the latter
can be obtained through a renormalization of the 1p–1h excitation vertex with a Fock self-energy
insertion in the particle or in the hole line. In [19] these diagrams were shown to diverge but, at the
same time, to be crucial to preserve gauge invariance. To overcome this impasse in that work we
abandoned the notion of current operators, using instead the polarization propagator for computation
of these diagrams. Indeed the double pole appearing in the self-energy polarization propagator can
be dealt with employing the derivative of the nucleon propagator.

In assessing the role of the pions in the electromagnetic nuclear responses, the MEC are not the
only contributions that arise in 8rst-order perturbation theory. In fact, the pionic correlations are
intimately linked to MEC through the continuity equation and, as we have seen, only when the full
set of Feynman diagrams with OPE is considered can one expect gauge invariance to be ful8lled.

Since all of these ingredients are required for a consistent theory, a question we have addressed in
this paper is whether or not a uni8ed treatment based on current operators at the level of the OPE
can be used even for the self-energy contribution. We succeeded in achieving this goal introducing
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a new ingredient: the 8rst-order correction to the wave function and energy of the nucleon in
the medium, which is modi8ed by the interaction with the other nucleons. Indeed the iteration of
the self-energy diagrams generates a “dressed” propagator in the medium. By the same token, the
self-energy generates “dressed” or “renormalized” wave functions in the medium, solutions of an
in-medium Dirac equation, where the self-energy plays the role of a mean relativistic potential. This
equation also provides the dispersion relation linking the energy and momentum of the nucleon in the
medium. Importantly, the new spinors should be multiplied by a renormalization function

√
Z2(p).

As the self-energy is generated by the interaction of a nucleon with the other nucleons in the
medium, the solutions of the new Dirac equation should be used as input to re-compute the
self-energy and so on. The exact answer is obtained through a self-consistent procedure. In this
paper, however, we have just considered the 8rst iteration: we have thus computed the self-energy
current con8ning ourselves to 8rst-order corrections to the energy and spinors—or, equivalently, to
corrections linear in the self-energy—which correspond to diagrams with only one pionic line, in
order to be consistent with the MEC and vertex correlation currents.

Notably in the 8rst-order expansion of the renormalized spinors two new elements with respect to
the non-relativistic approach emerge, one arising from the negative-energy components in the wave
function produced by the interaction, the other from the renormalization function

√
Z2(p). These

two elements can be combined in a new renormalized self-energy current, j�RSE, acting over free
spinors, and, together with renormalized self-energies, lead to the same self-energy contribution of
[19]. The introduction of renormalized energies produces a shift of the response function. Our results
for the response functions for typical kinematics show that the negative energy components constitute
a correction to the total self-energy contribution of roughly 10–20%, whereas the renormalization
function for OPE is small, yet necessary if gauge invariance is to be ful8lled exactly. Moreover,
while at low momentum transfers both particle and hole contributions play a role in the response,
at high q only the hole contribution survives. Finally, the self-energy contribution to the response
functions is comparable in size to the one arising from the MEC and vertex correlations.

These formal developments have been discussed at length in the present work, and not to interrupt
the Jow of the arguments unduly some details have been placed in a series of appendices.

In the remainder of the article we have presented some typical results, both for parity-conserving
and parity-violating quasielastic electron scattering. BrieJy we have found the following: we have
found that the MEC contributions are small enough to be well handled in 8rst order. In particular,
both the pion-in-Jight and seagull contributions are very small in the L channel where the virtual
photon exchanged between the electron and the Fermi gas couples to the charge of the pion, implying
as expected that the MEC only marginally aGect the Coulomb sum rule. In contrast in the T channel
the MEC are more signi8cant. There the seagull contribution dominates, and one sees that the MEC
contribution does not vanish when q increases. In [19] the scaling behaviors of the MEC were also
explored in detail: in summary it was seen that they break scaling of the second kind everywhere, but,
while breaking scaling of the 8rst kind at modest momentum transfers, tend to successful 8rst-kind
scaling behavior at suIciently high values of q.

The correlation contributions arising from the vertex corrections (VC) display a diGerent pattern:
the L channel dominates over the T channel by an amount of roughly 3:1. Thus the longitudinal
response eGectively picks up only these correlation contributions, since the MEC eGects are so small
there, and the former contribute to the total at roughly the 10–15% level. Indeed, were these to be
the only contributions needed in addition to the RFG response itself, then we would expect the
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total to shift in !. Note that, since the correlation contributions are roughly symmetrical about
the quasielastic peak, their impact on the Coulomb sum rule should be very small, perhaps only
at the few percent level. The correlation contribution to RT is similar to the MEC contribution,
but is smaller, roughly 1

2 the size of the latter; since the two are of opposite sign, they tend to
cancel and thus the total is similar to the MEC contribution but is cut down roughly by a factor
of two.

In summary, the total contribution (the sum of 1p–1h MEC + 1p–1h correlations) to be added to
the RFG response (1) is not insigni8cant, (2) is Lorentz covariant=gauge invariant and interestingly
(3) does not go away as q becomes very large.
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Appendix A. Gauge invariance of two-body currents

In this appendix we prove that the total two-body current is gauge invariant at the level of the
two-body matrix elements in free space. We start by evaluating the contraction of the four-momentum
transfer Q� with the correlation current j�cor(p′1; p′2; p1; p2). It can be written as

Q�j�cor(p
′
1; p

′
2; p1; p2) =

f2

m2
�
u(p′1),a�5K=1u(p1)

1
K2
1 − m2

�
Ma + (1 ↔ 2) (A.1)

with Ma given by

Ma = u(p′2)[,a�5K=1SF(P2 + Q)=QF1 + F1=QSF(P′
2 − Q),a�5K=1]u(p2) ; (A.2)

where we have used the relation Q�1�(Q) = F1(Q)=Q. After some algebra, involving the nucleon
propagator and the Dirac spinors, Ma can be further simpli8ed leading to

Ma = u(p′2)[,a�5K=1F1 − F1,a�5K=1]u(p2) = u(p′2)[,a; F1]�5K=1u(p2) : (A.3)

To evaluate the commutator [,a; F1] we now decompose the nucleon form factor into its isoscalar
and isovector pieces, F1 = 1

2(F
S
1 + FV

1 ,3). Then

[,a; F1] =−iFV
1 	3ab,b ; (A.4)

which entails the automatic conservation of the �0 exchange current (a = 3). Using Eq. (A.4) we
can recast Ma as follows:

Ma =−iFV
1 	3abu(p′2),b�5K=1u(p2) : (A.5)
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Hence the divergence of the two-body correlation current matrix element can 8nally be written as

Q�j�cor(p
′
1; p

′
2; p1; p2) = 2m

f2

m2
�
i	3abu(p′1),a�5u(p1)

FV
1

K2
1 − m2

�

×u(p′2),b�5(Q= + 2m)u(p2) + (1 ↔ 2) : (A.6)

The divergence of the seagull and pion-in-Jight two-body current matrix elements can also be
calculated in a straightforward way. The 8nal result reads

Q�j�s (p
′
1; p

′
2; p1; p2) =−2m

f2

m2
�
i	3abu(p′1),a�5u(p1)

FV
1

K2
1 − m2

�

×u(p′2),b�5Q= u(p2) + (1 ↔ 2) ; (A.7)

Q�j�p (p
′
1; p

′
2; p1; p2) = 4m2f

2

m2
�
i	3abF�

(K1 − K2) · Q
(K2

1 − m2
�)(K

2
2 − m2

�)

×u(p′1),a�5u(p1)u(p
′
2),b�5u(p2) : (A.8)

Then, by summing up the contributions given by the correlation (Eq. (A.6)) and seagull (Eq. (A.7))
currents and writing the four-momentum transfer as Q� = (K1 + K2)�, we 8nally obtain

Q�[j�cor(p
′
1; p

′
2; p1; p2) + j�s (p

′
1; p

′
2; p1; p2)]

=4m2f
2

m2
�
FV
1 i	3ab

(K2 − K1) · Q
(K2

1 − m2
�)(K

2
2 − m2

�)
u(p′1),a�5u(p1)u(p

′
2),b�5u(p2) ; (A.9)

which cancels exactly the contribution of pion-in-Jight current in Eq. (A.8) provided the electro-
magnetic pion form factor is chosen to be F� = FV

1 .

Appendix B. Gauge invariance of the two-body current p–h matrix elements

Following the study of gauge invariance at the level of the free-space particle–particle matrix
elements, here we extend the analysis to the particle–hole channel, deriving the contribution to the
continuity equation of the isoscalar and isovector SE, VC and MEC particle–hole matrix elements.
We start by evaluating the divergence of the correlation particle–hole matrix element j�cor(p; h) for
the SE and VC contributions; next we address the MEC p–h matrix elements.

B.1. Self energy (SE)

From Eqs. (31) and (32) we get

Q ·Hp =− 3f2

2mVm2
�

∑
k6kF

m
Ek

u(p)
(P= − K=)(K= − m)(P= − K=)

(P − K)2 − m2
�

SF(P)F1P=u(h) ; (B.1)
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Q ·Hh =− 3f2

2mVm2
�

∑
k6kF

m
Ek

u(p)F1Q= SF(H)
(K= − H=)(K= − m)(K= − H)

(K − H)2 − m2
�

u(h) : (B.2)

Note that F1 cannot be taken out of the matrix element, since it acts on the isospinors. Now from
the relations

SF(P)Q= u(h) = u(h) ; (B.3)

u(p)Q= SF(H) =−u(p) ; (B.4)

u(p)(P= − K=)(K= − m) = 2mu(p)(P= − K=) ; (B.5)

(K= − m)(K= − H=)u(h) =−2m(K= − m)u(h) ; (B.6)

the following expressions are derived:

Q ·Hp =− 3f2

Vm2
�

∑
k6kF

m
Ek

u(p)
(K= − m)(P= − K=)
(P − K)2 − m2

�
F1u(h) ; (B.7)

Q ·Hh =− 3f2

Vm2
�

∑
k6kF

m
Ek

u(p)F1
(K= − H=)(K= − m)
(K − H)2 − m2

�
u(h) : (B.8)

B.2. Vertex correlations (VC)

From Eqs. (29) and (30) the four-divergence of the VC matrix element is found to be

Q ·F=− f2

Vm2
�

∑
k6kF

m
Ek

u(p)�5(K= − H=)SF(K + Q),aF1,aQ= �5
K= − m

(K − H)2 − m2
�
u(h) ; (B.9)

Q ·B=− f2

Vm2
�

∑
k6kF

m
Ek

u(p)
K= − m

(P − K)2 − m2
�
,aF1,a�5Q= SF(K − Q)�5(P= − K=)u(h) : (B.10)

We now exploit the identities

SF(K + Q)Q= (K= + m) = +(K= + m) ; (B.11)

(K= + m)Q= SF(K − Q) =−(K= + m) (B.12)

to get 8nally

Q ·F=
f2

Vm2
�

∑
k6kF

m
Ek

u(p),aF1,a
(K= − H=)(K= − m)
(K − H)2 − m2

�
u(h) ; (B.13)

Q ·B=
f2

Vm2
�

∑
k6kF

m
Ek

u(p),aF1,a
(K= − m)(P= − K=)
(P − K)2 − m2

�
u(h) : (B.14)
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If expressions (B.7) (B.8), (B.13) and (B.14) are split into their isoscalar and isovector parts, as
illustrated in Section 2.2.2, we get

Q ·H(S)
p =− 3f2

Vm2
�
FS
1

∑
k6kF

m
Ek

u(p)
(K= − m)(P= − K=)
(P − K)2 − m2

�
u(h) ; (B.15)

Q ·H(V)
p =− 3f2

Vm2
�
FV
1

∑
k6kF

m
Ek

u(p)
(K= − m)(P= − K=),3
(P − K)2 − m2

�
u(h) ; (B.16)

Q ·H(S)
h =− 3f2

Vm2
�
FS
1

∑
k6kF

m
Ek

u(p)
(K= − H=)(K= − m)
(K − H)2 − m2

�
u(h) ; (B.17)

Q ·H(V)
h =− 3f2

Vm2
�
FV
1

∑
k6kF

m
Ek

u(p)
(K= − H=)(K= − m),3
(K − H)2 − m2

�
u(h) ; (B.18)

Q ·F(S) = +
3f2

Vm2
�
FS
1

∑
k6kF

m
Ek

u(p)
(K= − H=)(K= − m)
(K − H)2 − m2

�
u(h) ; (B.19)

Q ·F(V) = +
f2

Vm2
�
FV
1

∑
k6kF

m
Ek

u(p)
(K= − H=)(K= − m)
(K − H)2 − m2

�
(,3 + i	3ab,a,b)u(h) ; (B.20)

Q ·B(S) = +
3f2

Vm2
�
FS
1

∑
k6kF

m
Ek

u(p)
(K= − m)(P= − K=)
(P − K)2 − m2

�
u(h) ; (B.21)

Q ·B(V) = +
f2

Vm2
�
FV
1

∑
k6kF

m
Ek

u(p)
(K= − m)(P= − K=)
(P − K)2 − m2

�
(,3 + i	3ab,a,b)u(h) : (B.22)

From these relations we learn that:

• In the isoscalar channel the self-energy and vertex contributions cancel

Q ·H(S)
p + Q ·B(S) = Q ·H(S)

h + Q ·F(S) = 0 : (B.23)

This diGers from the non-relativistic result [24], where the self-energy is by itself gauge invariant.
• In the isovector channel we get

Q · [H(V)
p +B(V)] =

2f2

Vm2
�
FV
1 i	3ab

∑
k6kF

m
Ek

u(p)
(K= − m)(P= − K=),a,b
(P − K)2 − m2

�
; u(h) (B.24)

Q · [H(V)
h +F(V)] =

2f2

Vm2
�
FV
1 i	3ab

∑
k6kF

m
Ek

u(p)
(K= − H=)(K= − m),a,b
(K − H)2 − m2

�
u(h) : (B.25)
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These expressions, using the Dirac equations H=u(h) = mu(h) and Mu(p)P= = m Mu(p), can be further
simpli8ed to yield the following four-divergence of the correlation current:

Q · jcor(p; h) = 1
2Q · [H(V)

p +B(V) +H
(V)
h +F(V)]

=
2f2

Vm2
�
FV
1 i	3ab

∑
k6kF

m
Ek

u(p),a

{
K · P − m2

(P − K)2 − m2
�
− K · H − m2

(K − H)2 − m2
�

}
,bu(h) : (B.26)

This contribution is exactly canceled by that of the MEC (seagull and pion-in-Jight) as we illustrate
in what follows.

B.3. MEC

Using expressions (25) and (26) for the p–h matrix elements corresponding to the seagull and
pion-in-Jight currents, the associated four-divergences are found to be

Q · js(p; h)

=− f2

Vm2
�
FV
1 i	3ab

∑
k6kF

m
Ek

u(p),a,b

{
(K= − m)Q=

(P − K)2 − m2
�
+

Q= (K= − m)
(K − H)2 − m2

�

}
u(h) ; (B.27)

Q · jp(p; h)

=
2mf2

Vm2
�
FV
1 i	3ab

∑
k6kF

m
Ek

(Q2 + 2H · Q − 2K · Q)
[(P − K)2 − m2

�][(K − H)2 − m2
�]
u(p),a(K= − m),bu(h) : (B.28)

Exploiting the Dirac equation and after some algebra the above can be recast as follows:

Q · jMEC(p; h) = Q · js(p; h) + Q · jp(p; h)

=− 2f2

Vm2
�
FV
1 i	3ab

∑
k6kF

m
Ek

u(p),a

{
K · P − m2

(P − K)2 − m2
�
− K · H − m2

(K − H)2 − m2
�

}
,bu(h) : (B.29)

We have thus proven that the correlation and MEC p–h matrix elements satisfy current conservation,
i.e., Q · jcor(p; h) + Q · jMEC(p; h) = 0.

Appendix C. Polarization propagator with nucleon self-energy

Here we evaluate the Feynman diagrams for the polarization propagator with self-energy (6)
insertions in the particle and hole lines, depicted in Fig. 6g and h. From the general Feynman rules
for the polarization propagator [43] we have

'��
SE(Q) =−i

∫
dh0 d3h
(2�)4

Tr{1�(Q)S0(H)6(H)S0(H)1�(−Q)S0(P)

+1�(Q)S0(H)1�(−Q)S0(P)6(P)S0(P)} ; (C.1)
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where P = H + Q and S0 is the free relativistic propagator for a nucleon in the nuclear medium in
Eq. (51), which can also be written in the equivalent ways:

S0(K) = (K= + m)
[

1
K2 − m2 + ij + 2�i#(kF − k)�(K2 − m2)#(k0)

]
= (K= + m)

[
#(k − kF)

K2 − m2 + ij +
#(kF − k)

K2 − m2 − ijk0

]
: (C.2)

The self-energy function 6 is given by Eq. (40).
In order to simplify the calculation of the above polarization propagator, we will simultaneously

compute the two diagrams contributing to Eq. (C.1). First we note that Eq. (C.1) can be rewritten
as

'��
SE(Q) ='��

10(Q) +'��
01(Q) ; (C.3)

where we introduce '��
nl (Q) as the polarization propagator shown in Fig. 34, containing n self-energy

insertions 6(H) in the hole line and l insertions 6(P) in the particle line, i.e.,

'��
nl (Q) ≡ −i Tr

∫
dh0 d3h
(2�)4

1�(Q)[S0(H)6(H)]nS0(H)1�(−Q)[S0(P)6(P)]lS0(P) ; (C.4)

where again P =H +Q. From this expression one can derive, as particular cases, the leading-order
response (n=l=0, no interaction lines) and the 8rst-order self-energy response (with one interaction
line, given by Eq. (C.3)).

Using the nucleon propagator in the medium written in the form of Eq. (C.2), the product of
n + 1 propagators appearing in Eq. (C.4) can be expressed as a derivative of order n according
to

[S0(H)6(H)]nS0(H)

=[(H= + m)6(H)]n(H= + m)
[

#(h− kF)
(H 2 − m2 + ij)n+1 +

#(kF − h)
(H 2 − m2 − ijh0)n+1

]
=[(H= + m)6(H)]n(H= + m)

1
n!

dn

d�n

∣∣∣∣
�=0

[
#(h− kF)

H 2 − �− m2 + ij +
#(kF − h)

H 2 − �− m2 − ijh0

]
=[(H= + m)6(H)]n(H= + m)

× 1
n!

dn

d�n

∣∣∣∣
�=0

[
1

H 2 − �− m2 + i	
+ 2�i#(kF − h)�(H 2 − �− m2)#(h0)

]
; (C.5)

where a parameter �, which at the end is going to be zero, has been introduced in the propaga-
tor denominators. A similar equation holds for the propagation of a particle introducing a second
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Fig. 34. Diagrammatic de8nition of the polarization propagator '��
nl for a ph excitation with self-energy insertions in the

hole and particle lines. Only the forward diagram (a) contributes to the electromagnetic responses, while the backward
diagram (b) corresponds to a negative value of the energy transfer.

parameter I. The polarization propagator '��
nl can then be written as

'��
nl (Q) =−i

dn

d�n

∣∣∣∣
�=0

dl

dIl

∣∣∣∣
I=0

∫
dh0 d3h
(2�)4

I ��nl (H; P; Q)

×
[

1
H 2 − �− m2 + ij + 2�i#(kF − h)�(H 2 − �− m2)#(h0)

]
×
[

1
P2 − I − m2 + ij + 2�i#(kF − p)�(P2 − I − m2)#(p0)

]
(C.6)

with P = H + Q, and where we have introduced the functions

I ��nl (H; P; Q) = I ��nl (h0; h;p0; p; q0; q)

≡ 1
n!l!

Tr{1�(Q)[(H= + m)6(H)]n(H= + m)1�(−Q)[(P= + m)6(P)]l(P= + m)} : (C.7)
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The product of the two brackets inside the integral in Eq. (C.6) gives rise to four terms. The 8rst
of these contains the product of the two free propagators, namely

1
H 2 − �− m2 + ij × 1

P2 − I − m2 + ij ; (C.8)

and yields a genuine vacuum contribution, '(0)��
nl (Q), which diverges after integration. Therefore we

subtract out its contribution since it pertains to a domain beyond nuclear physics. Performing this
subtraction of the vacuum propagator we obtain

'��
nl (Q)−'(0)��

nl (Q) = 2�
dn

d�n

∣∣∣∣
�=0

dl

dIl

∣∣∣∣
I=0

∫
dh0 d3h
(2�)4

I ��nl (H; P; Q)

×
[
#(kF − p)�(P2 − I − m2)#(p0)

H 2 − �− m2 + ij +
#(kF − h)�(H 2 − �− m2)#(h0)

H 2 − I − m2 + ij

+2�i#(kF − p)#(kF − h)�(P2 − I − m2)�(H 2 − �− m2)#(P0)#(H0)
]

:

(C.9)

Taking the imaginary part according to Eq. (11) we obtain the corresponding hadronic tensor 6

−V
�
Im

[
'��

nl (Q)−'(0)��
nl (Q)

]
= 2�

dn

d�n

∣∣∣∣
�=0

dl

dIl

∣∣∣∣
I=0

∫
dh0 d3h
(2�)4

I ��nl (H; P; Q)�(P2 − I − m2)�(H 2 − �− m2)

×[#(kF − p)#(p0) + #(kF − h)#(h0)− 2#(kF − p)#(kF − h)#(p0)#(h0)] : (C.10)

Now the factor containing the step functions can be expressed in the form

[#(kF − p)#(p0) + #(kF − h)#(h0)− 2#(kF − p)#(kF − h)#(p0)#(h0)]

=#(kF − h)#(h0)[1− #(kF − p)#(p0)] + #(kF − p)#(p0)[1− #(kF − h)#(h0)] (C.11)

so that the hadronic tensor can be written as a sum of two pieces

− V
�
Im ['��

nl −'(0)��
nl ] =W (+)��

nl +W (−)��
nl ; (C.12)

where

W (+)��
nl (Q) = 2�V

dn

d�n

∣∣∣∣
�=0

dl

dIl

∣∣∣∣
I=0

∫
dh0 d3h
(2�)4

I ��nl (H; P; Q)�(P2 − I − m2)�(H 2 − �− m2)

×#(kF − h)#(h0)[1− #(kF − p)#(p0)] (C.13)

6 The extra factor V appears since we are computing the response function of an extended system, see Eq. (17.17) of
Ref. [43]
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corresponds to the hadronic tensor sought for electron scattering (Fig. 34a), whereas the second
term

W (−)��
nl (Q) = 2�V

dn

d�n

∣∣∣∣
�=0

dl

dIl

∣∣∣∣
I=0

∫
dh0 d3h
(2�)4

I ��nl (H; P; Q)�(P2 − I − m2)�(H 2 − �− m2)

×#(kF − p)#(p0)[1− #(kF − h)#(h0)] (C.14)

corresponds to a process with negative energy transfer (Fig. 34b); hence it does not contribute to
the electron scattering response and should be disregarded.

Finally, the integration with respect to h0 in Eq. (C.13) can be explicitly performed by using the
�-functions. One then gets the following expression for the nlth SE contribution to the hadronic
tensor:

W��
nl ≡ W (+)��

nl = V
dn

d�n

∣∣∣∣
0

dl

dIl

∣∣∣∣
0

∫
d3h
(2�)3

I ��nl (E
′
h(�); h;E

′
p(I); p; q)

4E′
h(�)E′

p(I)

×�(E′
h(�) + q0 − E′

p(I))#(kF − h)#(p− kF) ; (C.15)

where p= h + q and we have de8ned the following energy functions of the parameters �, I:

E′
h(�) =

√
h2 + �+ m2 ; (C.16)

E′
p(I) =

√
p2 + I + m2 : (C.17)

Expression (C.15) is the general equation for which we are searching. It is one of the (n+l)th order
contributions to the full HF hadronic tensor, which is an in8nite sum of all perturbative orders. In
the particular case n= l= 0 it gives the well known free (OB) hadronic tensor

W��
OB =W��

00 = V
∫

d3h
(2�)3

I ��00 (Eh; h;Ep; p; q)
4EhEp

�(Eh + q0 − Ep)#(kF − h)#(p− kF) : (C.18)

Finally, the hadronic tensor corresponding to one self-energy insertion in the particle or hole lines,
corresponding to diagrams (g) and (h) in Fig. 6 is given by

W��
SE =W��

10 +W��
01 ; (C.19)

where the n= 1, l= 0 terms correspond to the 8rst-order hole self-energy diagram (Fig. 6h)

W��
10 = V

d
d�

∣∣∣∣
�=0

∫
d3h
(2�)3

I ��10 (E
′
h(�); h;Ep; p; q)
4E′

h(�)Ep
�(E′

h(�) + q0 − Ep)#(kF − h)#(p− kF) (C.20)

and for n= 0, l= 1, the 8rst-order particle self-energy diagram (Fig. 6g)

W��
01 = V

d
dI

∣∣∣∣
I=0

∫
d3h
(2�)3

I ��01 (Eh; h;E′
p(I); p; q)

4EhE′
p(I)

�(Eh + q0 − E′
p(I))#(kF − h)#(p− kF) :

(C.21)
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In the above expressions, after the derivatives with respect to the parameters � and I are taken, the
integral over the hole polar angle cos #h can be performed analytically by exploiting the �-function.
Hence the SE contribution to the hadronic tensor can 8nally be expressed as a double integral. Since
the self-energy 6 involves a triple integral, the contribution to hadronic tensor turns out to be a
8ve-dimensional integral, to be carried out numerically.

Appendix D. Renormalized self-energy response using the polarization propagator

In Appendix C we computed the 8rst-order self-energy contribution to the polarization propagator
corresponding to the two diagrams of Fig. 6. The corresponding hadronic tensor splits into the sum
of the two terms given in Eqs. (C.20) and (C.21) with Fock self-energy insertions in the hole and
particle lines respectively, and reads

W�� = V
d
d�

∣∣∣∣
�=0

∫
d3h
(2�)3

I ��10 (E
′
h(�); h;Ep; p; q)
4E′

h(�)Ep
�(E′

h(�) + q0 − Ep)#(kF − h)#(p− kF)

+ V
d
dI

∣∣∣∣
I=0

∫
d3h
(2�)3

I ��01 (Eh; h;E′
p(I); p; q)

4EhE′
p(I)

�(Eh + q0 − E′
p(I))#(kF − h)#(p− kF) ; (D.1)

where p = h + q, and the modi8ed energies for holes and particles have been introduced in
Eqs. (C.16) and (C.17), with � and I being real parameters. Finally, the functions I ��nl are de8ned
in Eq. (C.7).

In order to prove the equivalence between the responses computed using the polarization propagator
in Eq. (D.1) and the result in Eq. (145), obtained using the renormalized current and energies, we
proceed to perform the derivative with respect to � and I. For a general function F(h0) we have

dF(E′
h(�))

d�

∣∣∣∣
�=0

=
1

2Eh

[
dF(h0)
dh0

]
h0=Eh

: (D.2)

Hence, interchanging the derivatives and the integral, we get for the hadronic tensor the expression

W�� =V
∫

d3h
(2�)3

1
4EhEp

d
dh0

[
I ��10 (h0; h;Ep; p; q)

2h0

]
h0=Eh

�(Eh + q0 − Ep)#(kF − h)#(p− kF)

+V
∫

d3h
(2�)3

1
4EhEp

I ��10 (Eh; h;Ep; p; q)
1

2Eh

d
dq0

�(Eh + q0 − Ep)#(kF − h)#(p− kF)

+V
∫

d3h
(2�)3

1
4EhEp

d
dp0

[
I ��01 (Eh; h;p0; p; q)

2p0

]
p0=Ep

�(Eh + q0 − Ep)#(kF − h)#(p− kF)

−V
∫

d3h
(2�)3

1
4EhEp

I ��01 (Eh; h;Ep; p; q)
1

2Ep

d
dq0

�(Eh + q0 − Ep)#(kF − h)#(p− kF) :

(D.3)
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In diGerentiating the function I ��01 de8ned in Eq. (C.7), we 8rst consider the term

d
dp0

[
1

2p0
(P= + m)6(P)(P= + m)

]
p0=Ep

=
60(p)
2Ep

[
−2m

Ep
(P= + m) + �0(P= + m) + (P= + m)�0

]
p0=Ep

+
[

1
2Eh

(H= + m)
96(H)
9p0

(H= + m)
]
p0=Ep

; (D.4)

where use has been made of the results

6(P)(P= + m) = 60(p)(P= + m) ; (D.5)

(P= + m)(P= + m) = 2m(P= + m) ; (D.6)

which hold for P� on-shell and where 60(p) is the eigenvalue of the self-energy for on-shell spinors.
Next we should compute the derivative of the self-energy 6(P). This function has the general

structure given in Eq. (44), and its derivative implies derivatives of the coeIcients A, B and C,
namely

96(P)
9p0

= m
9A(P)
9p0

+
9B(P)
9p0

�0p0 − 9C(P)
9p0

S · p+ B(P)�0 ; (D.7)

which must be evaluated for P� on-shell. Using again Eq. (D.6) together with the identity

(P= + m)��(P= + m) = 2P�(P= + m) (D.8)

we obtain, for P on-shell,

1
2Ep

(P= + m)
96(P)
9p0

(P= + m)

=
1
Ep

[
m2 9A(P)

9p0
E2
p
9B(P)
9p0

− p2
9C(P)
9p0

+ EpB0(p)
]
p0=Ep

(P= + m)

=�(p)(P= + m) ; (D.9)

where the de8nition of the function �(p) in Eq. (100) has been used.
Finally, collecting the above results, the derivative in Eq. (D.4) is found to read

d
dp0

[
1

2p0
(P= + m)6(P)(P= + m)

]
p0=Ep

=
60(p)
Ep

[
�0Ep − m

2Ep
(P= + m) + (P= + m)

�0Ep − m
2Ep

]
+ �(p)(P= + m) : (D.10)
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Hence the following expression

d
dp0

[
I ��01 (H; P; Q)

2p0

]
p0=Ep

=Tr
{
1�(Q)(H= + m)1�(−Q)

[
60(p)
Ep

�0Ep − m
2Ep

+
�(p)
2

]
(P= + m)

}

+Tr
{
1�(Q)(H= + m)1�(−Q)(P= + m)

[
60(p)
Ep

�0Ep − m
2Ep

+
�(p)
2

]}
(D.11)

yields the derivative of I ��01 (H; P; Q) with respect to p0 and the similar result

d
dh0

[
I ��10 (H; P; Q)

2h0

]
h0=Eh

=Tr
{
1�(Q)

[
60(h)
Eh

�0Eh − m
2Eh

+
�(h)
2

]
(H= + m)1�(−Q)(P= + m)

}
+Tr

{
1�(Q)(H= + m)

[
60(h)
Eh

�0Eh − m
2Eh

+
�(h)
2

]
1�(−Q)(P= + m)

}
(D.12)

holds for the derivative of I ��10 (H; P; Q) with respect to h0. In addition, with the help of Eq. (D.5),
we can write for on-shell momenta

I ��10 (H; P; Q) = Tr{1�(Q)(H= + m)6(H)(H= + m)1�(−Q)(P= + m)}
=2m60(h)Tr{1�(Q)(H= + m)1�(−Q)(P= + m)} (D.13)

and, as well,

I ��01 (H; P; Q) = 2m60(p)Tr{1�(Q)(H= + m)1�(−Q)(P= + m)} : (D.14)

Finally, the response functions are found as linear combinations of the diagonal components of the
hadronic tensor, i.e., W��. Using the above equations the latter reads

W�� =V
∫

d3h
(2�)3

1
4EhEp

�(Eh + q0 − Ep)#(kF − h)#(p− kF)

×Tr
{
1�(Q)

[
60(h)
Eh

�0Eh − m
2Eh

+
�(h)
2

]
(H= + m)1�(−Q)(P= + m)

+1�(Q)(H= + m)
[
60(h)
Eh

�0Eh − m
2Eh

+
�(h)
2

]
1�(−Q)(P= + m)
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+1�(Q)(H= + m)1�(−Q)
[
60(p)
Ep

�0Ep − m
2Ep

+
�(p)
2

]
(P= + m)

+ S�(Q)(H= + m)1�(−Q)(P= + m)
[
60(p)
Ep

�0Ep − m
2Ep

+
�(p)
2

]}

+V
∫

d3h
(2�)3

1
4EhEp

Tr {1�(Q)(H= + m)1�(−Q)(P= + m)}

×
(
60(h)

m
Eh

− 60(p)
m
Ep

)
d
dq0

�(Eh + q0 − Ep)#(kF − h)#(p− kF) ; (D.15)

which coincides with the result in Eq. (145), obtained by computing the response functions using
the renormalized current and energy.

Appendix E. On-shell self-energy and 1eld strength renormalization function

In this appendix we show in detail how to evaluate the on-shell self-energy in Eq. (82) and the
8eld strength renormalization function in Eq. (100). They can be expressed in terms of the integrals
I(P) and L�(P) in Eqs. (45) and (46) as follows:

60(p) = 2mB(Ep; p) =−12m
f2

m2
�
[p0L0(p0; p)− pL3(p0; p)− m2I(p0; p)]p0=Ep

(E.1)

and

�(p) =B0(p) +
1
Ep

[
m2 9A(p0; p)

9p0
+ E2

p
9B(p0; p)
9p0

− p2
9C(p0; p)
9p0

]
p0=Ep

=−12m2f
2

m2
�

[
L0(p0; p)

p0
− I(p0; p) +

9L0(p0; p)
9p0

− p
p0

9L3(p0; p)
9p0

− m2

p0

9I(p0; p)
9p0

]
p0=Ep

;

(E.2)

where we have used Eqs. (47)–(49) and the derivatives(
9A(p0; p)
9p0

)
p0=Ep

=−6
f2

m2
�

[
p0
9L0(p0; p)
9p0

− p
9L3(p0; p)
9p0

− m2 9I(p0; p)
9p0

+L0(p0; p)− p0I(p0; p)]p0=Ep
; (E.3)

(
9B(p0; p)
9p0

)
p0=Ep

=−6
f2

m2
�

[
p0
9L0(p0; p)
9p0

− p
9L3(p0; p)
9p0

− m2 9I(p0; p)
9p0

]
p0=Ep

; (E.4)
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(
9C(p0; p)
9p0

)
p0=Ep

=−6
f2

m2
�

[
p0
9L0(p0; p)
9p0

− p
9L3(p0; p)
9p0

− m2 9I(p0; p)
9p0

+L0(p0; p)− p0

p
L3(p0; p)

]
p0=Ep

: (E.5)

By choosing the z-axis in the direction of p, the angular integrals can be performed analytically,
yielding

I(Ep; p) =
1

(2�)2

∫ kF

0
dk

k
4pEk

ln
�(p; k) + 2pk
�(p; k)− 2pk

; (E.6)

L0(Ep; p) =
1

(2�)2

∫ kF

0
dk

k
4p

ln
�(p; k) + 2pk
�(p; k)− 2pk

; (E.7)

L3(Ep; p) =
1

(2�)2

∫ kF

0
dk
{

k2

2pEk
− k�(p; k)

8p2Ek
ln

�(p; k) + 2pk
�(p; k)− 2pk

}
; (E.8)

9I(p0; p)
9p0

∣∣∣∣
p0=Ep

=
1

(2�)2

∫ kF

0
dk

k
2pEk

(Ep − Ek)
[

1
�(p; k) + 2pk

− 1
�(p; k)− 2pk

]
; (E.9)

9L0(p0; p)
9p0

∣∣∣∣
p0=Ep

=
1

(2�)2

∫ kF

0
dk

k
2p

(Ep − Ek)
[

1
�(p; k) + 2pk

− 1
�(p; k)− 2pk

]
; (E.10)

9L3(p0; p)
9p0

∣∣∣∣
p0=Ep

=− 1
(2�)2

∫ kF

0
dk

k
4p2Ek

(Ep − Ek)
{
ln

�(p; k) + 2pk
�(p; k)− 2pk

+�(p; k)
[

1
�(p; k) + 2pk

− 1
�(p; k)− 2pk

]}
; (E.11)

where we have de8ned the function

�(p; k) ≡ (Ep − Ek)2 − p2 − k2 − m2
� = 2m2 − m2

� − 2EpEk : (E.12)

By replacing the above integrals in Eqs. (E.1) and (E.2) we obtain

60(p) =
3mf2

2�2m2
�

∫ kF

0
dk

k2

Ek

[
1 +

m2
�

4pk
ln

�(p; k) + 2pk
�(p; k)− 2pk

]
(E.13)

and

�(p) =
3m2f2

�2Ep

∫ kF

0
dk

k2

Ek
· Ek − Ep

�2(p; k)− 4p2k2
: (E.14)
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It is interesting to note that for large p-values the following limits hold:

lim
p→∞ �(p) = 0 ; (E.15)

lim
p→∞60(p) =

3mf2

2�2m2
�

∫ kF

0
dk

k2

Ek
=

3mf2

4�2m2
�

(
EFkF − m2 ln

EF + kF
m

)
; (E.16)

where EF =
√

k2F + m2 is the Fermi energy. For kF = 237 MeV=c, the on-shell self-energy limit is
∼ 34 MeV.

Appendix F. The electromagnetic current operator

In this appendix we provide a simple derivation of the non-relativistic reduction of the single-
nucleon on-shell electromagnetic current operator (see [66,75,73]). The single-nucleon electromag-
netic current reads

J �(P′s′;Ps) = u(p′; s′)
[
F1(Q2)�� +

i
2m

F2(Q2)���Q�

]
u(p; s) ; (F.1)

where P�=(E; p) is the four–momentum of the incident nucleon, P′�=(E′; p′) the four–momentum of
the outgoing nucleon and Q�=P′�−P�=(!; q) the transferred four–momentum. The spin projections
for incoming and outgoing nucleons are labeled s and s′, respectively. We follow the conventions of
Bjorken and Drell [31] for the u-spinors. For convenience in the discussions that follow the scales
in the problem we introduce the dimensionless variables: � = p=m, 	 = E=m =

√
1 + �2, C = !=2m,

B=q=2m and ,=−Q2=4m2=B2−C2. For the outgoing nucleon, �′ and 	′ are de8ned correspondingly.
For any general operator whose 1-matrix form is given by

1 =

(
111 112

121 122

)
(F.2)

one has Mu(p′; s′)1u(p; s) = >†s′ M1>s, with the current operator M1 given by

M1 =
1
2

√
(1 + 	)(1 + 	′)

(
111 + 112

� · �
1 + 	

− � · �′
1 + 	′

121 − � · �′
1 + 	′

122
� · �
1 + 	

)
: (F.3)

An important point in our approach is that we expand only in powers of the bound nucleon mo-
mentum �, not in the transferred momentum B or the transferred energy C. This is a very reasonable
approximation as the momentum of the initial nucleon is relatively low in most cases, since the
typical values of � lie below �F ≡ kF=m, where kF is the Fermi momentum (�F is typically about
1
4). However, for those cases corresponding to short-range properties of the nuclear wave functions
it will be necessary to be very careful with the approximations made. Indeed, for large values of �
a fully relativistic approach will likely prove necessary. Expanding up to 8rst order in powers of �
we get 	 � 1 and 	′ � 1 + 2C.
Thus, the non-relativistic reductions of the time and space components of the single-nucleon

electromagnetic current operator can be evaluated in a rather simple form.
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Let us consider 8rst the case of the time component. We have

J 0(P′s′;Ps) = u(p′; s′)J 0u(p; s) = >†s′J 0>s (F.4)

with the current operator J 0 = F1�0 + iF2�0�Q�=2m. Using the general result given by Eq. (F.3) and
expanding up to 8rst order in �, it is straightforward to get the relation

J 0 � B√
,
GE +

i√
1 + ,

(
GM − GE

2

)
(� × �) · � ; (F.5)

where we have introduced the Sachs form factors GE = F1 − ,F2 and GM = F1 + F2, and have used
the relations

C � ,+ � · � ; (F.6)

B2 � ,(1 + ,+ 2� · �) : (F.7)

Expression (F.5) coincides with the leading-order expressions obtained in previous work [66,73];
in those studies a diGerent approach was taken which, while more cumbersome, does yield terms of
higher order than the ones considered in the present work. It is important to remark again that no
expansions have been made in terms of the transferred energy and transferred momentum; indeed,
B, C and , may be arbitrarily large in our approach.
Let us consider now the case of space components. Thus, we have

J(P′s′;Ps) = u(p′; s′)Ju(p; s) = >†s′J>s : (F.8)

Introducing the matrix form of the vector component for the single-nucleon electromagnetic current
operator in general relation (F.3), one can 8nally write

J � 1√
1 + ,

{
iGM(� × �) +

(
GE +

,
2
GM

)
�+ GE�

− GM

2(1 + ,)
(� · �)� − iGE

2(1 + ,)
(� × �)� · �

− i,(GM − GE=2)(� × �) + i(GM − GE)
2(1 + ,)

(� × �)� · �
}

; (F.9)

where we have used the relations given by Eqs. (F.6) and (F.7).
In order to compare with [73], we write the expression for the transverse component of the current,

i.e., J
⊥
= J − (J · �=B2)�. After some algebra we get the 8nal result

J
⊥ � 1√

1 + ,

{
iGM(� × �) +

(
GE +

,
2
GM

)(
�− � · �

B2 �
)

− iGM

1 + ,
(� × �)� · �+ iGM

2(1 + ,)
(�× �)� · �

}
: (F.10)

It is straightforward to prove that this expression coincides with the result given by Eq. (25) in [73]
for an expansion in powers of � up to 8rst order.
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Therefore, as can be seen from Eqs. (F.5) and (F.10), at linear order in � we retain the spin–orbit
part of the charge and one of the relativistic corrections to the transverse current, the 8rst-order
convective spin–orbit term. It is also important to remark here that the current operators given
by Eqs. (F.5) and (F.9) satisfy the property of current conservation CJ0 = � · J. Finally, it is also
interesting to quote the results obtained in the traditional non-relativistic reduction [73,95–98], where
it is assumed that B�1 and C�1:

J 0
nonrel = GE ; (F.11)

J
⊥
nonrel =−iGM[� × �] + GE

[
�−

(� · �
B2

)
�
]

: (F.12)

Note that this traditional non-relativistic reduction contains both terms of zeroth and 8rst order in �,
i.e., the convection current, and is therefore not actually of lowest order in �.

We see that the expansion of the current to >rst order in the variable � = p=m yields quite
simple expressions; moreover, the various surviving pieces of the relativized current (i.e., charge
and spin–orbit in the longitudinal and magnetization and convection in the transverse) diGer from
the traditional non-relativistic expressions only by multiplicative (q; !)-dependent factors such as
B=
√
, or 1=

√
1 + ,, and therefore are easy to implement in already existing non-relativistic models.
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