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Abstract

Background: Identifying variants that drive tumor progression (driver variants) and distinguishing these from variants
that are a byproduct of the uncontrolled cell growth in cancer (passenger variants) is a crucial step for understanding
tumorigenesis and precision oncology. Various bioinformatics methods have attempted to solve this complex task.

Results: In this study, we investigate the assumptions on which these methods are based, showing that the different
definitions of driver and passenger variants influence the difficulty of the prediction task. More importantly, we prove
that the data sets have a construction bias which prevents the machine learning (ML) methods to actually learn
variant-level functional effects, despite their excellent performance. This effect results from the fact that in these data
sets, the driver variants map to a few driver genes, while the passenger variants spread across thousands of genes, and
thus just learning to recognize driver genes provides almost perfect predictions.

Conclusions: To mitigate this issue, we propose a novel data set that minimizes this bias by ensuring that all genes
covered by the data contain both driver and passenger variants. As a result, we show that the tested predictors
experience a significant drop in performance, which should not be considered as poorer modeling, but rather as
correcting unwarranted optimism. Finally, we propose a weighting procedure to completely eliminate the gene
effects on such predictions, thus precisely evaluating the ability of predictors to model the functional effects of single
variants, and we show that indeed this task is still open.
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Background
Cancer genomes present a very high mutation rate, but
it is estimated that only a small fraction of the observed
variants have a significant effect on tumor progression
[1–3]. The variants identified by high-throughput DNA
sequencing studies of cancer samples [4, 5] can be divided
into “driver” variants, that provide a functional advantage
to the cancer cell, and “passenger” variants, that do not
favor tumor progression and are just a byproduct of the
increased mutation rate and uncontrolled cell divisions
typical of tumors [2, 5].
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Reliable identification of driver mutations is crucial to
improve our understanding of the molecular mechanisms
underlying cancer [2, 6, 7] and to enable precision oncol-
ogy, which aims at tailoring each patient’s treatment to
the specific pattern of variants driving cancer progression
[4, 7, 8]. Reliable functional characterization of variants
found in cancer samples is thus of the utmost impor-
tance to fight this disease [7]. Currently, the validation
of driver variants is done with in vivo or in vitro experi-
ments [4, 7, 9], but these approaches cannot scale to the
huge number of somatic mutations detected in cancer
samples [10], and the most recent techniques allow only
moderate-throughput testing [7].
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To tackle this crucial challenge, in silico models aimed
at the discrimination between driver and passenger vari-
ants have been developed [4, 5, 11]. However, determin-
ing the functional effects of variants is in general an
extremely complex problem [4, 7, 12]. These computa-
tional approaches use various algorithmic solutions, that
can be roughly divided into supervised machine learn-
ing (ML) methods [13, 14], unsupervised ML [15], and
statistical approaches [6, 16].
Besides algorithmic differences, a crucial aspect of can-

cer driver prediction is that there is currently no con-
sensus on which data should be used to evaluate their
accuracy and for their development [7, 15]. Each tool is
thus built using different data, and therefore the result-
ing methods tackle different flavors of the driver vs.
passenger discrimination problem. For example, com-
mon definitions for passenger variants (negative samples)
are (1) neutral germline variants, (2) deleterious (non-
cancerous) germline variants, (3) both neutral and dele-
terious germline variants, and (4) non-recurrent variants
from TCGA samples [17]. Similarly, two common defini-
tions for driver variants (positive samples) are (1) experi-
mentally verified cancer driver variants and (2) recurrent
variants in TCGA samples. From these premises, it is clear
that different combinations of driver and passenger defini-
tions can be used to define positive and negative samples
for the training and testing data sets for each predictor,
which could influence dramatically (1) the patterns that
the method is expected to learn and (2) the difficulty of
the prediction task.
In this study, we benchmark 6 of the most widely used

cancer driver variant predictors and 5 variant-effect pre-
dictors, which aim at discriminating deleterious from
neutral germline variants, against 4 different definitions
of passenger and driver variants. We show that the diffi-
culty of the prediction challenge is affected by the design
choices of the positive and negative samples in the data
sets. Even more importantly, we show that the commonly
adopted data set design choices could lead to learning a
Clever Hans model [18], which exploits confounders in
the data to provide correct predictions while following an
invalid decision process (or at least different from what
is assumed or claimed) [18]. In other words, a predictive
model could deliver good predictions on a given data set
while not solving the task it was intended for. More specif-
ically, we show that following the vast majority of the data
set building strategies, driver variants are by definition
mapped on the few driver genes [3], while the vast major-
ity of passenger variants are spread across all genes or they
are even defined as variants not mapped on driver genes
[10, 14].
These definitions allow models to solve the driver vari-

ant prediction task by just learning to discriminate driver
genes from non-driver genes and use this shortcut to avoid

the much more complex task of modeling the functional
effects of each variant. To expose this Clever Hans behav-
ior [18], we built the largest possible data set containing
experimentally determined driver variants and passenger
variants mapped on driver genes only, and we show that
this constitutes the hardest task for the predictors. The
gene-level information does not provide a useful short-
cut to predict the single variants anymore, causing a 8-28
percentage-point drop in performance of the tested meth-
ods (in terms of area under the receiver-operating curve
(AUC)). We thus propose this data set as validation set for
the validation of the next generation of predictors, making
it freely available as Additional file 1.
Moreover, we propose also a new validation procedure

based on re-weighting the predictions errors on each
gene, which is inversely proportional to the likelihood of
the gene to host driver or passenger variants exclusively.
Also, this approach is thought to be adopted during the
validation of future methods, as it directly aims at evaluat-
ing the ability of predictors to compute predictions which
are truly based on the functional effects of each variant.

Results
The notions of driver variant and driver gene are
intertwined
Many cancer driver variant predictors have been devel-
oped so far, relying on different algorithmic solutions.
Supervised methods need training and testing data sets,
while unsupervised methods and statistical models need a
testing data set to validate their performance. There is cur-
rently no agreement [7, 10, 11, 15] on a gold standard data
set to train or validate these methods, and thus various
design philosophies are usually followed by researchers,
resulting each time in a different flavor of the driver vs
passenger discrimination problem.
As shown in Table 1, common definitions for the nega-

tive samples (passenger variants) are (1) neutral germline
variants (called NEUT in the rest of the article), (2) dele-
terious (non-cancerous) germline variants (called DEL),
(3) both neutral and deleterious germline variants (ALL),
(4) non-recurrent variants from TCGA samples (NON-
REC), and (5) synthetically generated passenger variants
(SYNTH) [13]. Similarly, two common definitions for
driver variants (positive samples) are (see also Table 1): (1)
experimentally verified cancer driver variants (EXPDRV)
and (2) recurrent variants in TCGA samples (REC).
To show some examples of these definitions in the lit-

erature, we analyzed the state-of-the-art cancer driver
variant predictors. The authors of FATHMM cancer [6]
built the training set with positive samples defined as
cancer-associated variants (germline and somatic) from
Canprovar [19] and negative samples defined as neu-
tral polymorphisms from Humsavar [20]. They tested the
method using various data sets built as combinations of
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Table 1 Summary of the different definitions of positive (driver
variants) and negative (passenger variants) samples used in the
construction of cancer driver variant predictors data sets

Negative samples Positive samples

Neutral germline
variants

NEUT Experimentally verified
cancer drivers

EXPDRV

Deleterious
germline variants

DEL Recurrent variants in
cancer samples

REC

Both DEL and NEUT ALL

Non-recurrent
variants in cancer
samples

NONREC

Synthetically
generated
passenger
mutation

SYNTH

REC or EXPDRV versus NEUT, DEL, and ALL types of
negative samples, providing an extensive validation of the
performance. In CanDrA [14], the authors built the train-
ing set by defining positive samples as variants occurring
in genes mutated in the cancer type under scrutiny that
are observed in at least 3 primary tumor samples. The
negative samples were defined as variants not mapped
on cancer genes (taken from the COSMIC cancer census
[21]) that are occurring only once in primary tumor sam-
ples. The positives and negatives in the testing data set
are defined respectively as variants observed in at least
2 cancer samples and variants from hypermutated sam-
ples that are not mapped to cancer genes (taken from
[21]).
In ChasmPlus [10], the positive samples are TCGAmis-

sense variants mapped to a curated set of 125 driver genes
extracted from [22]. The negative class consists of the
remaining missense variants on the same TCGA sam-
ples. The mutation frequency-based approach they used
for this selection could nevertheless allow some passenger
variants to be mapped on the 125 driver genes.
Also in ParsSNP [15] the authors tested their method

on various combinations of REC and EXPDRV as posi-
tive samples and NEUT, ALL, and NONREC as negative
samples.
Interestingly, in CHASM [13], the authors used as pas-

senger mutations a set of synthetic variants. They ran-
domly generated variants on genes which are known hav-
ingmutations in at least four types of tumors. The strategy
of sampling synthetic variants addresses the fact that
the selective pressure that fixes germline variants in the
population is likely very different from the pressure that
fixes somatic mutations in tumors. The former allows the
development of organisms to fit better the environment,
while the latter only acts at the cell replication level. Thus,

a benchmark that combines NEUT and DEL germline
variants may still not fully represent the somatic passen-
ger mutation landscape in tumors. Nevertheless, random
sampling of realistic somatic passenger variants is not
a trivial procedure either and depending on the strat-
egy adopted also the synthetic variants might suffer from
some deficiencies in their representativeness.

Different definitions of driver and passenger variants
influence the difficulty of the prediction task
In this study, we devised 3 data sets to determine how the
data set design choices affects the difficulty of the pre-
diction task. As a definition for positive samples, we used
experimentally validated cancer driver variants extracted
from CGI [23], which is an effort towards the integration
and harmonization of experimentally determined can-
cer driver variants coming from different sources. We
extracted 1991 variants from CGI and we refer to this data
set as EXPDRV.
We coupled themwith 3 definitions of negative samples,

built by considering as passenger all the 63,525 germline
variants (not related to cancer) in Humsavar [20] (we call
this set ALL), only the 37,263 neutral variants in Hum-
savar (NEUT) and only the 28,252 deleterious variants in
Humsavar. In this way, we thus built the EXPDRV vs. ALL,
EXPDRV vs. NEUT and EXPDRV vs. DEL benchmark
data sets.
Table 2 shows the performances of ParsSNP [15],

CanDrA [14], CHASM [13], TransFic [16], ChasmPlus
[10], FATHMM for cancer [6], DEOGEN2 [24], MetaSVM
[25], CADD [26], Condel [27], and M-CAP [28] on these
three benchmark data sets. We can see that the bench-
marked methods have generally higher performances on
the EXPDRV+NEUT data set, both in terms of Area
Under the ROC curve (AUC) and Area Under the Pre-
cision Recall curve (AUPRC). This is probably because
experimentally validated cancer driver variants have a
very strong functional impact on the affected proteins
[3], while the negative samples in the NEUT data set
are germline variants with no or mild functional impact.
This difference is further magnified by the fact that the
majority of the samples in EXPDRV are somatic variants
and thus are not subject to the same selective pressure
of germline variants [3, 23]. The data set composed of
driver variants from EXPDRV and amixture of deleterious
and neutral germline variants (EXPDRV+ALL) produces
a harder prediction task, because of the higher func-
tional impact of non-cancer-related germline deleterious
variants (see Table 2), but the hardest prediction task in
this benchmark is provided by the EXPDRV+DEL data
set, because the non-driver germline deleterious variants
used as negative samples have indeed a strong functional
effect and are thus more difficult to distinguish from the
functional effect of driver variants.
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Table 2 Comparison of cancer driver variant predictors on the EXPDRV+NEUT and EXPDRV+ALL benchmark data sets

EXPDRV+ALL EXPDRV+NEUT EXPDRV+DEL

Method AUC AUPRC AUC AUPRC AUC AUPRC

ParsSNP 86.9 30.0 90.1 61.9 82.6 33.9

CanDrA v+ 87.1 47.2 87.2 57.6 86.9 58.8

Chasm 3.1 91.1 54.5 94.0 73.7 87.3 58.8

CHASMplus 94.3 56.9 96.6 80.5 91.1 60.4

FATHMM cancer 91.0 39.1 93.2 67.3 87.7 43.6

TransFIC 68.0 6.0 80.6 22.0 51.0 7.9

Condel 64.3 4.5 83.9 24.3 38.5 5.6

DEOGEN2 68.8 4.6 91.3 43.7 38.9 5.2

CADD 73.7 6.4 88.5 26.5 54.0 7.9

M-CAP 54.0 4.9 83.1 37.9 38.9 5.4

MetaSVM 66.8 4.5 89.4 34.0 36.8 5.2

Dummy 98.1 46.6 98.7 67.9 97.4 59.7

Table 2 shows also that the methods specifically
designed to discriminate driver from passenger variants
(top section) have higher performance than variant-effect
predictors (middle section), namely computational tools
trained to distinguish between germline variants with
neutral or deleterious effects (e.g., polymorphisms vs. rare
variants causing genetic disorders). Even though some
studies suggest that some of these predictors may be suit-
able to identify cancer driver variants [11], from Table 2,
we can clearly see that they have relatively good perfor-
mances only on the EXPDRV+NEUT, where there is a
strong difference in the functional effect of the positive
and negative variants. When the raw impact of the variant
on the protein does not provide any signal for the discrim-
ination (EXPDRV+DEL) data set, their AUC and AUPRC
fall drastically, indicating that their reliability varies wildly
as a function of the definition of positive and negative
samples used to build the benchmark data sets.

Cancer driver variants are unevenly distributed across
human genes
From Table 2, we can see that changing the definition of
passenger variant from neutral germline variants (with no
or mild functional effect) to include deleterious germline
variants (with more severe functional effect) causes a
decrease of the prediction performances of the tested
methods.
If we further analyze the construction strategy of these

data sets, we notice an even more striking issue. In situ-
ations where the positive samples are defined as experi-
mentally validated driver variants, these variants will be
mapped on cancer driver genes, since the definition of
“driver gene” is indeed based on the notion that it can

host variants that either have activating effects (on onco-
genes) or inactivating effects (on tumor suppressors)
[3, 7, 29], effectively driving tumor progression. When the
positive samples are defined as recurrent variants in can-
cer samples (e.g., from TCGA [17]), there is a risk of intro-
ducing too much noise through this labeling, since there
is no definitive experimental evidence that all the recur-
rent variants contribute to tumor growth. Two strategies
are commonly adopted to reduce this noise. The first is to
define the positive samples as recurrent variants that map
to curated sets of driver genes (as in [10]), and the second
is to make sure that the negative samples do not map to
known lists of cancer driver genes (as in [14]).
In all the cases mentioned so far, the adopted strategies

end up building data sets in which all the positive sam-
ples map on a restricted subset of genes (driver genes),
while the negative samples spread across the genome, with
null or negligible intersection. While this appears to be
a straightforward way to establish a robust ground truth
labeling to develop predictive models, it provides, by con-
struction, a shortcut that can allow the minimization of
the classification error without considering the effects of
the target variants at all, since it is sufficient to predict
as positives all the variants mapping to driver genes to
achieve an almost perfect AUC.
To show the extent of this behavior in the 3 data sets we

used so far, we used conditional entropy H(label|gene) =
H(label, gene) −H(gene) to quantify the amount of infor-
mation needed to describe the driver/passenger status
of the variants (label) given the “driver” status of the
genes on which they are mapped. A situation in which
H(label|gene) = 0 indicates that the variable gene is suf-
ficient to completely determine the variable label, while
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H(label|gene)/H(label) = 1 indicates that the variables
are independent. ComputingH(label|gene)/H(label) then
for the EXPDRV vs. ALL, NEUT, and DEL data sets used
in Table 2, we respectively obtained 0.33, 0.24, 0.31 bits,
indicating that knowing whether the gene hosting the
variants is a driver gene conveys a significant part of the
information needed to classify the variants on these data
sets.
To provide empirical evidence for this phenomenon, we

built a “dummy” predictor (see last row of Table 2) that
implements the following strategy: for each variant, if it is
mapped on a gene that contains at least one positive sam-
ple, it assigns it to the positive class; else, it assigns it to the
negative class. Even though this Dummy predictor does
not model in any way the functional effect of the variants,
from Table 2, we can see that it outperforms all the other
methods, reaching nearly perfect AUC on all data sets,
outperforming the benchmarked methods. We can also
see that the AUPRC scores obtained by Dummy, which
are bounded by the ratio of driver and passenger variants
on driver genes is similar to the best AUPRCs obtained by
the other methods, suggesting that also their precision is
impacted by the proportion of negative samples that are
unexpectedly found on driver genes, since this situation is
previously unseen in many of their training data sets.

Forcing the predictors to discriminate between variants: a
new benchmark data set
To test how these methods would perform in a situation
in which no shortcut allows to bypass the real task of dis-
criminating between the functional effects of variants, we
built a specific benchmark data set. From the EXPDRV
and ALL data sets, we considered only the genes with at
least one positive and one negative sample mapped onto
them. This data set, called DRGN (DRiver GeNes), con-
tains 4093 variants mapping to 153 driver genes, and thus
gene level information has a much more limited effect in
discriminating between positive and negative samples.
Table 3 shows the AUC and the AUPRC of the same

methods mentioned in Table 2 when they are tested on
DRGN. The DRGN data set clearly provides the hardest
prediction task proposed so far, since all the driver vari-
ant predictors show a significant drop in AUC between
EXPDRV+ALL and DRGN (ParsSNP has the highest drop
among with respect to Table 2). Interestingly, the AUCs
of the variant-effect predictors are not as affected as in
the EXPDRV+DEL case, because (1) they are not specif-
ically trained to expect exclusively positive samples on
driver genes and (2) the DRGN data set contains some
neutral (low functional impact) variants among its neg-
ative samples, which these methods are able to pick up.
The Dummy model, which was the better performing one
in Table 2, is now producing random predictions, with an
AUC of 50.0, because all the genes in DRGN are driver

Table 3 Comparison of cancer driver variant predictors on the
DRGN benchmark data sets. The last column shows the AUC
drop with respect the EXPDRV+ALL data set in Table 2

Method AUC AUPRC AUC drop

ParsSNP 59.4 52.0 27.5

CanDrA v+ 66.2 64.7 20.9

Chasm 3.1 76.6 74.1 14.5

CHASMplus 72.3 69.8 22.0

FATHMM 69.1 65.9 21.9

TransFIC 59.6 53.0 8.4

Condel 55.9 51.7 8.4

DEOGEN2 57.2 48.7 11.6

CADD 63.6 55.5 10.1

M-CAP 47.4 45.9 6.6

MetaSVM 55.7 49.2 11.1

Dummy 50.0 44.2 48.1

genes and thus this notion alone does not provide discrim-
inatory signal anymore. The AUPRC of the Dummymodel
is still bounded to 44.2, which corresponds to the propor-
tion of driver and passenger variants mapped on driver
genes.
We further confirmed this result by computing the

H(label|gene) conditional entropy of the DRGN data set,
obtaining 0.99 bits, which is identical to H(label) = 0.99
on the same data set. The fact that H(label|gene) =
H(label) indicates that the driver/passenger status of the
variants are independent from the driver gene status,
meaning that knowing the status of the genes provides no
information about the labels. This is also consistent with
Fig. 1, which shows the distribution of the entropy com-
puted on each gene across the 4 data sets. EXPDRV vs.
ALL, NEUT, and DEL have distributions of gene entropy
heavily skewed towards zero, meaning that the genes in
these data sets contain variants predominantly from a
single class, while the genes in the DRGN data set have
a much higher entropy, indicating that they contain a
much more balanced ratio of positive and negative sam-
ples. The Wilcoxon ranksums p values between the first
three distributions in Fig. 1 and the DRGNdistribution are
always lower than 10−90 and the Cohen’s d effect sizes are
respectively−7.9,−7.9,−4.7, indicating very large effects.

All driver genes are equal, but some driver genes are more
equal than others
The DRGN data set contains passenger and driver vari-
ants, which map to driver genes only, and thus does not
contain a bias as obvious as EXPDRV vs. ALL, NEUT, or
DEL. Additional file 2: Figure S1 shows the distribution of
the log-odds of hosting driver vs. passenger variants for
each gene in each data set, and we can see that DRGN
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Fig. 1 Per-gene entropy across the four data sets. The entropy distributions of all the data sets mentioned in Table 2 are heavily skewed towards 0,
indicating that the genes in these data sets contain predominantly variants mapped on a single class, while the DRGN data set contains genes with
significantly higher entropy

has the most balanced distribution, with a mean close to 0
(perfect balance between positive and negative samples on
the genes), while in the other data sets the genes have pre-
dominantly negative log-odds, indicating that themajority
of the genes host predominantly passenger variants (also
shown in Fig. 1).
Once we deploy a nonlinear ML method on a data

set, we rarely are in control of what it actually learns
[18, 30], and thus, it is of the utmost importance to ensure
that the data sets do not present hidden spurious patterns
that we do not want to model or do not realize we are
modeling. While DRGN mitigates the major driver gene
bias present in the other data sets (see Fig. 1 and Addi-
tional file 2: Figure S1), this solution is not perfectly safe
either. Figure 2 shows the distributions obtained when
each variant v in the data sets is represented as the log-
odds of hosting driver vs. passenger variants of the gene

on which v is mapped. While the fact that driver vari-
ants are mapped on genes with higher tendency of hosting
only driver variants is more pronounced on the EXP-
DRV+ALL and EXPDRV+NEUT data sets, we can see
that also in DRGN driver and passenger variants are not
always evenly mapped among genes, and thus, the log-
odd the hosting gene can be used to identify, through its
log-odd score, the likelihood of the class of each variant
for prediction purposes. TheWilcoxon ranksums p values
of the differences between the distributions are < 10−300

in all cases and the Cohen’s d effect sizes are respectively
−2.8,−3.7,−3.9,−1.8 standard deviations. To empirically
show this possibility, we built the DummyLogOdd predic-
tor, which simply assigns to each variant a prediction score
equal to the log-odd of the hosting gene to contain posi-
tives vs negative samples. Even though DummyLogOdd
does not model the functional impact of the variants, but

Fig. 2 Gene log-odds of containing driver variants are still predictive. Plots showing the distributions obtained when, on the three data sets, each
variant is represented by the log-odd of hosting positive samples of the genes to which they map
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only the ratio of positive and negative samples on each
gene, it reaches an AUC of 88.7 and an AUPRC of 84.8 on
DRGN.
Nevertheless, this hidden structure in the data is less

dramatic than the one highlighted by the Dummy model
in Table 2 on the EXPDRV vs. ALL, DEL, and NEUT data
sets. First, not all genes are equal, and indeed they phys-
iologically may have varying likelihoods to drive cancer
growth upon mutation [4, 29]. Moreover, they are subject
to different degrees of selective pressure andmay be sensi-
tive to differentmutation patterns [31]. Second, this shows
the importance of testing ML-based bioinformatics meth-
ods with a cross-validation (CV) that is stratified at the
gene level, meaning that the cross-validation folds are not
randomly split, but are specifically built to ensure that all
the variantsmapped on a geneGi are in the same fold, thus
ensuring that they are used either as training set or test
set in each iteration of the CV [32]. Indeed, the log-odds
used by the DummyLogOdd model are learned across the
entire data set and applying a stratified CV would have
prevented it to learn any log-odd for the genes in the fold
used as testing, since they are not present in the folds
used as training set. An even more stringent stratification
would be selecting the genes in each fold in function of
their sequence similarity, thus ensuring that genes with a
sequence identity greater that 20 or 30% are assigned to
the same fold, since above this twilight threshold some
structural (and thus possibly functional) similarity is likely
to be present [12, 32].

A specific validation procedure for cancer driver variant
predictors
As shown in Fig. 2, even while building a controlled data
set to train or test driver variant predictors, it is not
possible to remove all the gene-level patterns that could
facilitate the prediction of the driver or passenger status
of the variants, since part of these patterns indeed mirror
existing biological mechanisms [4, 29].
To evaluate the extent to which driver variant predic-

tors can model the functional effect of individual variants
knowing that certain genes are more likely to host driver
variants, we propose a novel scoring procedure that can
be applied to any method and data set. Since the ease with
which a predictor can predict the outcome V of a variant
located on a gene G is negatively related to the entropy
H(G), we weight the cost of erroneously predicted variants
on each gene G in function of the likelihood of G to host
predominantly negative or positive samples, effectively
correcting the misclassification error for the entropy of
each gene (in this case the entropy distributions are shown
in Fig. 1). To do so, we upsampled variants belonging to
the underrepresented class in each gene, thus obtaining a
true estimation of how well a predictor can discriminate
between the functional effects of variants disregarding the

possible biases or gene-level patterns present in the data
set.
Table 4 shows the AUC and AUPRC performances of

6 cancer driver predictors on the DRGN data set when
we apply this weighting procedure designed to further
remove gene-level information. All methods suffer from
a further performance drop from the results on DRGN
shown in Table 3, and an even more drastic drop with
respect to the scores shown in Table 2, where no filtering
was applied to the data sets. The best performing method
is Chasm 3.1, but the low AUC score (64.5) indicates the
real difficulty of discriminating between driver and pas-
senger variants relying on the modeling of their functional
impact alone, instead than exploiting contextual informa-
tion, such as the genes on which they are hosted. Table 4
shows also that with this more stringent validation pro-
cedure, also the DummyLogOdd model produces random
performance, because every gene now contains an equal
number of positive and negative samples.

Discussion
Cancer driver variant prediction performance is
overestimated
Prediction of mutations that can be characterized as pas-
sengers or drivers is critical in cancer research. Although
researchers agree on the theoretical concept of passenger
and driver variants, there are different operative defini-
tions (see Table 1 for a summary), which lead to different
prediction outcomes (see Table 2). A possible alternative
data set for driver variants could have for example been
[33], which provides a similar selection of driver genes and
variants. Nevertheless, since the bias that we highlight in
this study is rooted in the enrichment of positive samples
on the few driver genes, any suitable selection of positive
samples will show this effect, because the current notion
of cancer driver variant is deeply connected with that of
cancer driver genes, which consist of a tiny portion of the
human proteome.

Table 4 Comparison of cancer driver variant predictors on the
DRGN benchmark, with weighting of the predictions of the
variants on each gene in function of the likelihood of Gi to host
predominantly positive or negative samples. The last column
shows the AUC drop with respect the EXPDRV+ALL data set in
Table 2

Method AUC AUPRC AUC drop

ParsSNP 52.9 52.3 34.0

CanDrA v+ 51.7 52.1 35.4

Chasm 3.1 64.5 61.4 26.6

CHASMplus 59.2 57.9 35.1

TransFIC 57.5 54.8 10.5

FATHMM Cancer 57.6 54.7 33.4

DummyLogOdd 50.0 50.0 48.1
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Another source of confusion is generated by the fact that
current data sets allow predictors to mix up the effects
observed at the gene level (driver vs. non-driver genes),
with those found at the variant level (driver vs. passenger
mutations), because driver variants map to driver genes
only. This causes an overestimation of the prediction per-
formance of cancer driver variant predictors, as shown by
the huge drop in AUC and AUPRC when these methods
are tested on data sets in which this bias is mitigated (see
Tables 3 and 4).
In Fig. 3, we visualize the conditional dependencies

underlying this behavior. If there is a bias in the data set
on the gene distributions (driver genes contain almost all
driver variants and vice versa), the major predictor fea-
tures come from the gene variable (Fig. 3a). However,
we can remove the gene confounding effect using a ran-
domization approach (Fig. 3b), as we did progressively in
Tables 3 and 4, respectively by (1) building a more bal-
anced data set and (2) by proposing a validation procedure
that weighs the cost of each wrong prediction to mir-
ror the gene-specific baseline difficulty of discriminating
passenger and driver variants.
When we applied the re-weighting shown in Fig. 3b to

the validation of cancer driver variant predictors, it pro-
duced a drastic drop in performances (see Table 4). This
result indicates that, even though the published perfor-
mances of cancer driver variant predictors kept increasing
in the past years [6, 10, 11, 14, 15], this improvement was
mostly apparent in and was likely the result of improve-
ments in modeling the dependence of the inputs and the

labels from the Gene variable (see Fig. 3a). The reassur-
ing increase in performance of state-of the art methods
thus masked the fact that their actual ability to truly
model the molecular-level functional effects of each vari-
ant advanced at a much lower pace.
To reverse this trend, and thus ensuring that future

cancer driver variant predictors will actually aim at mod-
eling the effects of the variants—free from confounding
effects—we propose two solutions. First, we provide a new
test set composed of 4,093 variants over 153 genes in
which every gene has at least one driver and one passenger
mapped to it, called DRGN. Second, we propose a strin-
gent validation procedure that implements the schema
shown in Fig. 3b by using a re-weighting of the costs of
prediction errors. Both approaches can thus be used for
the unbiased validation of future predictors.

The Clever Hans effect, or why prediction performance
cannot be trusted without transparency in the prediction
process
ML methods are valuable in countless tasks, including
many major challenges in the biological sciences. Nev-
ertheless, ML models are just functions parameterized
by some trainable weights that are tuned to minimize a
certain error produced by a loss function over a certain
training data set. This means that, even in non pathologic
bias-variance tradeoff conditions (e.g. optimal balance
between under and over-fitting), the quality of the deci-
sion strategy learned by the model depends on (1) the
data set on which it is trained and (2) the loss function

Fig. 3 Dependency graph and prediction flux. The black lines represent conditional dependencies while the red dotted lines represent the
information flow for a predictor
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used for the optimization. If the training set is truly rep-
resentative of the general population of samples and the
model is properly regularized, then the patterns learned
by the model may be applicable to unseen cases, and the
model will thus be able to generalize [18]. By contrast, even
with a properly trained model, if confounders are present
in the data used for modeling, the model can exploit
such patterns to achieve apparently higher performance
on the training and test set, while failing to actually model
the real-world mechanisms that the researcher aims to
characterize.
This problem is thus not one of overfitting, but rather

a deeper issue related to the model robustness, which
is not addressed by the conventional sequence-similarity
based stratification approaches used to avoid information
leakage during cross-validation [12, 24, 32]. Issues like
this occur in various data sets and prediction tasks and
they have recently gained attention in the ML community
under the name of “Clever Hans” phenomena [18] from
the analogous effect observed in psychology [18]. Various
cases of Clever Hans predictors are known [34–36], with
the notable cases of the debunked ML re-implementation
of Cesare Lombroso’s approach to physiognomic crimi-
nology [37] that turned out to be detecting the presence
of smiles instead of predicting criminal history and a
“sexual orientation predictor” [38] that turned out to be a
stereotype predictor [39].
Researchers developing predictors often use various

means of biological contextualization [12, 24] to provide
their ML with a more informed worldview on the task
they need to solve, using gene- pathway- or tissue-level
information as features describing each variant. On a well-
balanced data set, this approach is indeed an effective
way to improve the predictions, but if the data is biased
or constructed in such a way that this contextual infor-
mation is sufficient to saturate the prediction signal, this
information could allow the ML to bypass the need to
actually model the actual prediction task, which in this
case is modeling the molecular-level functional effects
of variants. While in carefully controlled settings using
contextual information might add crucial pieces of infor-
mation to the model, in other circumstances, this can lead
to a Clever Hans predictor.
While researchers are driven to adopt more and more

sophisticated ML methods to improve the state of the art,
a comparable effort should be spent towards improving
the quality of the training and testing data sets, thus ana-
lyzing the details for their structure to clean them from
spurious correlations that could lead to learning Clever
Hans models on them. Otherwise, MLmethods may learn
to exploit these correlations [34, 35], substantially fool-
ing the researcher developing the model. The Clever Hans
behavior can be quite difficult to detect, since at first
glance it is indistinguishable from a successfully trained

model. As argued in [18], a way out from this problem is
to introduce as a standard procedure, besides the evalua-
tion of themodel performance, also efforts to interpret the
model’s prediction strategy, thus investigating the mean-
ingfulness of the correlations and patterns on which its
predictions are based [18, 40].
Although nonlinear models have been considered hope-

lessly black box for a long time, methods that reach
various degrees of detailed interpretation of their pre-
diction strategy have been developed. Methods such as
linear models, Random Forests [41], and Neural Networks
[42, 43] are nowadays interpretable to a variable extent,
and also model-independent approaches [18, 44] exist.
Moreover, in the context of ML applied to biological
sciences, investigating the decision strategy used by the
model to classify the target samples has been shown valu-
able to improve our understanding of genetic disorders
[41, 45] or molecular mechanisms that were unknowingly
exploited by already existent black box approaches [46].

Conclusion
Identifying driver variants is crucial to improve our under-
standing of cancer growth and for precision oncology. To
help in this daunting task, various bioinformatics tools
aimed at discriminating driver versus passenger variants
have been developed, but although researchers agree on
the need for this variant-level classification, there is no
consensus for a ground truth labeling that could be used
to define training and testing data sets. This leads to a
variability of the definitions used for positive (driver) and
negative (passenger) samples during the development of
various predictors and benchmarks.
In this study, we investigated some of the main assump-

tions behind the construction of these data sets, showing
that the different definitions used for the negative sam-
ples significantly influence the observed prediction per-
formance. Moreover, we show that these data sets may
lead, by construction, to learning a Clever Hans model if
used as training sets. This is because the definitions of
driver variants and driver genes are intertwined to the
point that all the positive samples map to few driver genes,
while passenger variants are widespread across thou-
sands of genes. This bias allows any sufficiently complex
model exploit this gene-level shortcut to classify driver
and passenger variants by solving instead the simpler
task of identifying the few driver genes, without need-
ing to learn to model the functional effects of the single
variants.
To overcome this issue, we provide a novel benchmark

data set in which this bias is minimized, since it con-
tains only driver genes on which both passenger and driver
variants are mapped. Moreover, we propose also an even
more stringent weighting procedure as additional valida-
tion, which completely removes the gene-level effects and
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allows to evaluate the extent to which ML methods can
model the functional effects of variants.
Our analysis shows that the prediction of cancer driver

variants consists of two complementary but distinct ques-
tions: Is the gene to which the variant map likely to be a
driver gene? Is a given variant in a driver gene a driver
or passenger variant? Considering predictive performance
for the question “is this variant likely to be a driver variant
or not?” is methodologically tricky because predicting that
a variant in a known driver gene is a driver vs. passenger
variant is a fundamentally different task from predicting
that a variant is a driver variant in an uncharacterized
gene.

Methods
Data sets
We retrieved 1990 variants that are demonstrated to drive
tumor growth or predispose to cancer from the Cancer
Genome Interpreter (CGI) [23], and we considered them
as “positives” in our prediction. The data in CGI consist
of a manually curated combination of the data available
in the Database of Curated Mutations in cancer [47],
ClinVar [48], and OncoKB [49]. We refer to this data set as
EXPDRV.
From the November 2018 version of Humsavar [20], we

retrieved deleterious and neutral variants. From this set,
we removed all the variants (1) with “Unclassified” pheno-
typic annotation and (2) that are associated with cancer,
both germline and somatic. Moreover, we removed from
both Humsavar and EXPDRV data sets all the variants
that were present in both with inconsistent functional
annotation. After these filtering steps, we obtained 61,535
variants annotated with their deleterious or neutral phe-
notypic effect (26,260 of them are listed as deleterious, and
35,273 are neutral). We refer to this subset of Humsavar
as ALL. From the ALL data set, we extract the subsets
of neutral and deleterious variants, and we called them
respectively NEUT and DEL.
We used these data sets to build 4 benchmark data sets

for cancer driver variant predictors. In the first 3 data
sets, we used the variants in EXPDRV as positive samples
and we paired them with ALL, NEUT, and DEL vari-
ants as negative samples, obtaining the EXPDRV+ALL,
EXPDRV+NEUT, and EXPDRV+DEL data sets. They
contain respectively 63525, 37263, and 28252 variants.
The last data set is called DRGN and contains all the

variants from EXPDRV and ALL that map to genes that
are present in both data sets. In other words, the genes
present in DRGN are the intersection of the genes in the
EXPDRV and ALL data sets, and thus all these genes have
at least one positive (driver) and one negative (passenger)
variant mapped onto them. DRGN contains 4093 variants,
with 1809 driver and 2284 passenger variants.
All the data sets are available as Additional file 1.

Prediction methods
We used our 4 data sets to benchmark the most widely
used cancer driver variant predictors. We retrieved
CHASM 3.1 [13] predictions from the CRAVAT [50]
web server, using the “Other” type of cancer. We
installed locally CanDrA Plus [14] (http://bioinformatics.
mdanderson.org/main/CanDrA) and used the “cancer-in-
general” model. We obtained TransFIC [16] predictions
from (http://bbglab.irbbarcelona.org/transfic/home).
We retrieved CHASMplus [10] predictions by locally
installing OpenCRAVAT [51]. We computed FATHMM-
cancer [6] predictions from their web server (http://
fathmm.biocompute.org.uk/cancer.html). We installed
and ran locally ParsSNP [15]. We retrieved the predic-
tions of CADD [26], DEOGEN2 [24], M-CAP [28], and
MetaSVM [25] from dbNSFP [52].

Implementation details
We computed the per-gene entropy H(gene) with the for-
mula H(gene) = − ∑i<n

i=0 P(xi|gene) log2 P(xi|gene), where
n = 2 and P(xi|gene) corresponds to the probability of the
gene to host negative (0) and positive (1) labeled variants.
The predictions of the Dummy model used in Table 2

have been computed by simply assigning 1 to each variant
v if the gene on which v is mapped contains at least one
positive variant (driver variant), and 0 otherwise.
The predictions of the DummyLogOdd model used in

Table 4 have been computed by assigning to each vari-
ant v the log-odd of the gene on which v is mapped to
host positive versus negative samples (driver vs passenger
variants).
The procedure we propose in order to ensure a complete

removal of the driver gene-based bias aims at re-weighting
the cost of a wrong prediction in function of the entropy of
the gene on which each variant is mapped, since variants
on genes with high entropy are harder to predict. To do
so, within each gene, we upsampled the variants belonging
to the underrepresented class, artificially ensuring a per-
gene log-odd of hosting driver vs passenger variants equal
to 0. This procedure is general and can be performed on
any data set, provided that the genes contain at least one
positive and negative sample.

Evaluation procedure
We evaluated the performances of the methods by using
the area under the ROC curve (AUC) and the area under
the precision recall curve (AUPRC) computed with the
scikit-learn library [53]. We based our study on these two
scores because they are independent from the threshold
used to binarize the predictions into positive and negative
classes, which may be a strong determinant for the evalu-
ation of metrics, such as Matthews correlation coefficient
(MCC), sensitivity, specificity, and precision.We thus pre-
ferred to remain agnostic about the optimal threshold that

http:// bioinformatics.mdanderson.org/main/CanDrA
http:// bioinformatics.mdanderson.org/main/CanDrA
http://bbglab.irbbarcelona.org/transfic/home
http://fathmm.biocompute.org.uk/cancer.html
http://fathmm.biocompute.org.uk/cancer.html
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should be used to binarize their predictions and focus on
evaluating their ability to consistently assign higher values
to positive samples and vice versa.

Supplementary Information
The online version contains supplementary material available at
https://doi.org/10.1186/s12915-020-00930-0.

Additional file 1: Zip file containing the datasets used as benchmark in
this paper.

Additional file 2: Figure S1: Plot showing the distributions of the
per-gene log-odds of containing driver vs passenger variants over the four
datasets. Table S1: Table showing the percentages of the missing
predictions for each cancer driver predictor on each dataset. Section S1:
details of the entropy computations.
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