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ABSTRACT: We present some results concerning uniform approximation of uni-
formly continuous and bounded functions defined on infinite dimensional spaces, by
means of smoother functions. To this purpose we use heat semigroup in abstract
Wiener spaces. The subject has an interest in view of the treatment of PDE’s with
infinitely many variables.

1991 AMS (MOS) subject classification: 41A65, 41A30, 28C20

1 Introduction and basic notations

In this paper we consider approximations of uniformly continuous and bounded map-
pings by smoother mappings between some Banach spaces. Only uniform approxi-
mations are considered.

Let (E, ‖ · ‖E), (F, ‖ · ‖F ) be real Banach spaces, denote by Cb(E,F ) the Banach
space of all uniformly continuous and bounded maps between E and F , endowed with
the sup norm:

‖f‖0 def
= sup

x∈E
‖f(x)‖F , f ∈ Cb(E,F ).

If F = R, we set Cb(E,R) = Cb(E); this convention will be used for other functional
spaces as well. This work develops into three parts.

The first (Section 2) gives density results for some subspaces of Cb(E,F ), under
suitable assumptions on E and F .

We recall briefly some known results about uniform approximation in Banach
spaces (see also the introduction of [3]). First of all we point out that if dim E <∞
then, using mollifiers and convolution with respect to the Lebesgue measure, it is easy
to prove that C∞b (E,F ) (the space of all functions bounded together with all their
derivatives of any order) is dense in Cb(E,F ).

When E is infinite dimensional the situation is different. Even if F = R, there
exist many separable Banach spaces E, for which there is a function f0 ∈ Cb(E) that
is not uniformly approximable by Fréchet differentiable functions (for instance, take
E = C([0, 1] endowed with the sup norm and f0(x) = min(1, ‖x‖0), x ∈ E), for
details see [2] and [4].

However Goodman was able to prove (see [8]) that, given any separable Banach
space E, a function f ∈ Cb(E) can be approximated by bounded Lipschitz continuous
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functions which are differentiable in the Hadamard sense. We shall improve this re-
sult, showing that the approximating functions have uniformly continuous Hadamard
derivatives, in a weak sense.

When E is a Hilbert space, possibly not separable, then the situation is better.
Lasry and Lions have proved (see [14]) that C1,1b (E) (the space of all bounded Fréchet
differentiable functions, having a Lipschitz continuous and bounded Fréchet deriva-
tive) is dense in Cb(E). However a result of Nemirowskii and Semenov (see [17])
implies that C2b (E) (the space of all functions in C1,1b (E) having a bounded, uniformly
continuous second Fréchet derivative) is not dense even if E is separable. We shall
improve the Lasry-Lions theorem, showing that C2s (E) (the space of all functions in
C1,1b (E) having a weakly uniformly continuous second Hadamard derivative) is dense
in Cb(E).

Approximation results for maps in Cb(E,F ), where F is an infinite dimensional
space, are available in literature. For any pair of Hilbert spaces H,K, a result of
Valentine (see [20] and also [19]) implies that any function f in Cb(H,K) can be
approximated by a sequence (fn) of Lipschitz continuous and bounded functions.
When H is separable, a theorem of Bogachev (see [3, §2]) implies that it is possible to
choose each function fn having a bounded Hadamard derivative in H. We shall show
that each fn can be choosen having also a weakly uniformly continuous Hadamard
derivative.

In general, uniformly continuous functions from a separable Banach space E to a
Hilbert space F cannot be approximated by Lipschitz continuous functions (according
to [3, Remark 1]). However Hölder approximations of order 1/2 are always possible
(see [16]). Other technical results in specific cases (concerning for instance maps
between Lp spaces, see [19]) are available.

In the second part (Section 3), we establish a strict link between uniform approx-
imation in Cb(E) by smooth functions and existence of smooth Urysohn functions on
E.

We conclude the paper (Section 4), by proving an approximation result concerning
real, bounded mappings on a separable Banach space E, which are uniformly contin-
uous with respect to a locally convex topology weaker than the norm topology. This
result implies that whenever E is reflexive, every real, bounded and σ(E,E ′) ( 1 ) -
uniformly continuous function can be approximated by functions in C1b (E) (the space
of all functions in Cb(E) having a bounded, uniformly continuous Fréchet derivative).

Some applications of the density theorems proved here to PDE’s with infinitely
many variables for functions defined on an infinite dimensional space (see for instance
[10] and [13] ), will be given in forthcoming papers. .

Let us introduce some notations that will be used in the following.
Let (E, ‖ · ‖E), (F, ‖ · ‖F ) real Banach spaces. For any f ∈ Cb(E,F ), we denote by
ωf : (0,∞)→ [0,∞), the continuity modulus of f , i.e.

ωf (r) = sup
x,y∈E, ‖x−y‖E≤r

‖f(x)− f(y)‖F , r ≥ 0.

1We denote by E′ = L(E,R), the dual topological space of E, and by σ(E,E′) the weakest
topology on E that makes every l ∈ E′ continuous.
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Let L(E,F ) be the Banach space of all linear, continuous operators from E to F
endowed with the norm

‖T‖L(E,F ) = sup
‖u‖≤1

‖Tu‖F T ∈ L(E,F ).

We shall often use another locally convex topology in L(E,F ): the strong topology (
2). We denote by Ls(E,F ), the space L(E,F ), endowed with the strong topology.
Let G be a Banach space, it easy to verify, by definition, that a map

T : G → Ls(E,F )

is uniformly continuous if and only if T (·)(u) : G → F is uniformly continuous, for
any u ∈ E.
With the above notation, we introduce the set Cs(G,Ls(E,F )) of all uniformly con-
tinuous function T from G to Ls(E,F ) such that:

‖T‖0 def
= sup

u∈G
‖Tu‖L(E,F ) <∞. (1.1)

In view of the uniform boundedness principle, T ∈ Cs(G,Ls(E,F )) if and only if:

T (·)(u) ∈ Cb(G,F ), u ∈ E.

We will need the following straightforward lemma. We give here the simple proof for
the reader’s convenience.

Lemma 1.1 Let E,G, F be Banach spaces, then for a map T : G → Ls(E,F ) the
following conditions are equivalent:

(i) T belongs to Cs(G,Ls(E,F ));
(ii) for any compact set K in E, the map supu∈K T (·)(u) belongs to Cb(G,F );
(iii) for any compact set K in E, the map T (·)(·) belongs to Cb(G×K,F ).

Each above condition implies that the map:

T (·)(·) : G× E → F is continuous. (1.2)

Proof We only prove that (i) ⇒ (iii).
Boundedness of T (·)(·) is clear so we verify uniform continuity. Fix a compact set K
in E, then for any ε > 0, there exists a finite set L = {v1, . . . vn} in K such that for
v ∈ K we can find vk ∈ L with ‖v − vk‖E ≤ ε. Take δ > 0 such
that ωT (·)(vi) ≤ ε, i = 1 . . . n.
Thus for any x, y ∈ G, with ‖x − y‖G ≤ δ, u, v ∈ K with ‖u − v‖E ≤ ε, we can
choose
vk ∈ L such that ‖u− vk‖E ≤ ε and we get

‖T (x)(u)− T (y)(v)‖F ≤ ‖T (x)[u− vk]‖F + ‖[T (x)− T (y)](vk)‖F
2We define the strong topology by nets. A net (Ti : i ∈ I) in L(E,F ) converges to T ∈ L(E,F ),

with respect to the strong topology, if for any v ∈ E, limi∈I Ti(v) = T (v) in F . (see for instance
[22, §IV.7]).
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+ ‖T (y)[vk − v]‖F ≤ 2ε‖T‖0 + ε.

Finally condition (1.2) follows from the following inequality:
‖T (x)(u)−T (z)(v)‖F ≤ ‖ [T (x)−T (z)](u)‖F + ‖T (z)[u− v]‖F , u, v ∈ E, x, z ∈ G.

Recall that a map f : E → F is said to be Gâteaux differentiable at the point
x of E if there exists Df(x) ∈ L(E,F ) such that:

lim
s→0+

f(x+ sv)− f(x)

s
= Df(x)(v), v ∈ E. (1.3)

Moreover if for any compact set K ⊂ E ( resp. bounded set B ⊂ E) the limit in
(1.3) is uniform in v ∈ K (resp. in v ∈ B), then Df(x) is said to be the Hadamard
(resp. Fréchet) derivative of f at x. We remark that the Hadamard derivative is
rarely considered elsewhere despite its many advantages. For a detailed exposition of
the subject we refer to [7].

We introduce the following functions spaces:

C0,1b (E,F )
def
= {f ∈ Cb(E,F ), such that Lip(f)

def
= sup

x,y∈E,x 6=y

‖f(x)− f(y)‖F
‖x− y‖E

<∞},

C1b (E,F )
def
= { f ∈ Cb(E,F ), Fréchet differentiable in E, having the Fréchet

derivative Df ∈ Cb(E,L(E,F )) },

C1,1b (E)
def
= {f ∈ C1b (E), having the Fréchet derivative Df ∈ C0,1b (E,E ′) },

C2b (E)
def
= {f ∈ C1b (E), twise Fréchet differentiable in E, having the

second Fréchet derivative D2f ∈ Cb(E,L(E,E ′)) },

C1s (E,F )
def
= { f ∈ Cb(E,F ), Hadamard differentiable in E, having the Hadamard

derivative Df ∈ Cs(E,Ls(E,F )) },

C2s (E)
def
= {f ∈ C1,1b (E), having the second Hadamard derivative D2f(x), at any

point x ∈ E and D2f ∈ Cs(E,Ls(E,E ′) }.

Now we need the notion of abstract Wiener space. For details see [9], [10] and [13].
Let (E, ‖ · ‖E) be a separable Banach space and (H, ‖ · ‖H) be a separable Hilbert

space, such that H ↪→ E (i.e. H continuously and densely embedded in E). We
identify H with H ′, so that we have the following inclusions:

E ′ ↪→ H ′ ' H ↪→ E. (1.4)

Let p1 be a gaussian measure on B(E) (3) such that supp(p1) = E and such that each
l ∈ E ′ be normally distributed with mean 0 and covariance ‖l‖2H with respect to p1.

3B(E) denotes the σ-algebra of all Borel sets in E.
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The triple (E,H, p1), is called an abstract Wiener space. We use the following
result (see [13, §I.4.4]): for any separable Banach space E, there exists a separable
Hilbert space H and a gaussian measure p1 such that (E,H, p1) is an abstract Wiener
space.
In (E,H, p1) is defined the family of gaussian measures (pt)t>0 on B(E),

pt(B) = p1(
B√
t
), B ∈ B(E).

It is easy to verify that for any t > 0, supp(pt) = E and each l ∈ E ′ is normally
distributed with mean 0 and covariance t‖l‖2H with respect to pt.

If E ′ is equipped with the norm inherited from H, for any pt, the linear map:
Rt : E ′ → L2(E, pt) is an isometry (up to the constant t). Therefore this map
extends uniquely to an isometry, denoted again by Rt,

h 7→ Rt
h, h ∈ H, (1.5)

from H to L2(E, pt). In the sequel we write R instead of Rt to semplify the notation.
We define for any x ∈ E, the gaussian measure pt(x, ·), pt(x,B) = pt(B−x), B ∈
B(E). The Cameron - Martin theorem states that: for any t > 0, the gaussian
measures pt = pt(0, ·) and pt(z, ·), z ∈ E are either equivalent or singular. They are
equivalent if and only if z ∈ H; moreover if h ∈ H, the Radon - Nikodym derivative
of pt(h, ·), with respect to pt is given by the formula:

dpt(h, ·)
dpt

(x) = exp
[
− 1

2t
‖h‖2H +

1

t
Rh(x)

]
, x ∈ E, pt − a.e. . (1.6)

When E is a Hilbert space, with scalar product < ·, · >E, pt admits a covariance
operator tQ on E,

< tQu, v > =
∫
E
< u, y >< v, y > pt(dy), t > 0,

where Q is a positive self-adjoint trace class operator in E. We take H = Q1/2E
endowed with scalar product:

< x, y >H
def
= < Q−1/2x,Q−1/2y >E, x, y ∈ H.

2 Density theorems

We start with a Lemma. Statement (a) is essentially known (see [3, Lemma 1]
and [7, §4.2]). However we give the proof for the sake of completeness.

Lemma 2.1 Let (E, ‖ · ‖E), (F, ‖ · ‖F ) be Banach spaces, D ⊂ E a dense linear
subspace and let f ∈ C0,1b (E,F ). Suppose that:

(i) for any x ∈ E, v ∈ D, there exists:

lim
s→0+

f(x+ sv)− f(x)

s
= A(x, v) ∈ F ;

(ii) for any fixed x ∈ E, A(x, ·) is linear from D in F .
Then it holds:
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(a) f is Hadamard differentiable in E and ‖Df(x)‖L(E,F ) ≤ Lip(f).
If moreover

(iii) the limit in (i) is uniform in x ∈ E,
then we have

(b) f ∈ C1s (E,F )

Proof Assume that (i) and (ii) hold, then fix x, v ∈ E and take (vn)n≥1 ⊂ D such
that vn → v. Consider the mappings:

ψn, ψ : (0, 1] → F, n ≥ 1,

ψn(s)
def
=
f(x+ svn)− f(x)

s
, ψ(s)

def
=
f(x+ sv)− f(x)

s
, s ∈ (0, 1].

It turns out that ψn → ψ uniformly in s ∈ (0, 1]. Indeed

sup
s∈(0,1]

‖ψn(s)− ψ(s)‖F ≤ Lip(f) ‖vn − v‖E → 0,

as n→∞. By hypothesis (i), there exists lim s→0+ ψn(s) = A(x, vn) in F , so we can
deduce that there exists

B(x, v)
def
= lim

s→0+
ψ(s) = lim

n→∞
A(x, vn), x, v ∈ E.

Now, for any x ∈ E, B(x, ·) is linear from E into F (by (ii)) and it is continuous
since we have, for any x, v ∈ E, s ∈ (0, 1],

‖ψ(s)‖F ≤ Lip(f) ‖v‖E, and so ‖B(x, v)‖F ≤ Lip(f) ‖v‖E.

Thus the Gâteaux differentiability of f in E is proved. Denote by Df the Gâteaux
derivative of f . Now we check that f is also Hadamard differentiable in E. Fix x ∈ E,
a compact set K ⊂ E and consider the mappings,

ηs : K → F, s ∈ (0, 1],

ηs(v)
def
=
f(x+ sv)− f(x)

s
, v ∈ K.

We show that for any sequence (sn) ⊂ (0, 1] such that sn → 0, there exists

lim
n→∞

sup
v∈K
‖ηsn (v)−Df(x)(v)‖F = 0 uniformly in v ∈ K. (2.1)

Take any subsequence (s1n) of (sn). Since f is Lipschitz continuous, (ηs1n) is an
equicontinuous sequence of mappings in Cb(K,F ). Moreover for any v ∈ K, the
sequence {ηs1n(v)} is relatively compact in F , since there exists
lims→0+ [ ηs(v)− Df(x)(v) ] = 0 in F.

Therefore applying the Arzela - Ascoli theorem (see for instance [1, §A8.5 ]) we
can deduce that there is a subsequence (s2n) of s1n such that

lim
n→∞

sup
v∈K
‖ηs2n (v) − Df(x)(v)‖F = 0.
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In this way we have proved formula (2.1). The Hadamard differentiability at x ∈ E
is proved.

Assume now that also (iii) holds, then fix v ∈ E and take (vn) ⊂ D, such that vn → v
in E. Define the maps:

φn, φ : (0, 1] → Cb(E,F ), n ≥ 1 such that:

φn(s)
def
=
f(·+ svn)− f(·)

s
, φ(s)

def
=
f(·+ sv)− f(·)

s
, s ∈ (0, 1]. (2.2)

Arguing as for (ψn), we get that φn → φ uniformly in s ∈ (0, 1]. Indeed

lim
n→∞

sup
s∈(0,1]

‖φn(s)− φ(s)‖Cb(E,F ) = lim
n→∞

sup
s∈(0,1]

sup
x∈E
‖f(x+ svn)− f(x+ sv)

s
‖F ≤

≤ Lip(f) lim
n→∞

‖vn − v‖E = 0.

By hypothesis (iii), fixing n ≥ 1, we have that lims→0+ φn(s) = A(·, vn), uniformly
in x ∈ E. Consequently

A(·, vn) ∈ Cb(E,F ), n ≥ 1.

Hence the following limit exists in Cb(E,F ),

lim
s→0+

φ(s) = Df(·)(v) = lim
n→∞

A(·, vn). (2.3)

We have just proved that for any v ∈ E, Df(·)(v) ∈ Cb(E,F ), so the conclusion
follows.

We present our first density result. Proof uses as tool the heat semigroup on
abstract Wiener space as in Goodman’s theorem.

Theorem 2.2 Let E be a separable Banach space, then C1s (E) is dense in Cb(E).

Proof We shall use the fact that C0,1b (E) is dense in Cb(E) (see for instance [10,
§3.2.1].
Moreover we consider E as an abstract Wiener space (E,H, p1). Gross has proved
(see [10]) that if we set:

Otf(x) =
∫
E
f(x+ y) pt(dy), f ∈ Cb(E), x ∈ E t > 0, (2.4)

then Ot is a strongly continuous linear semigroup on Cb(E). We call it the heat
semigroup in Cb(E).

We show that
Ot ( C0,1b (E) ) ⊂ C1s (E), t > 0. (2.5)

By this fact the assertion follows. Indeed for any g ∈ Cb(E), for any ε > 0 there exists
h ∈ C0,1b (E) such that ‖g − h‖0 ≤ ε. Therefore the inequality

‖g − Oth‖0 ≤ ‖g − h‖0 + ‖h−Oth‖0, (2.6)
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allows us to conclude, using that Ot is strongly continuous.
Fix f ∈ C0,1b (E) and t > 0. We shall apply Lemma 2.1, using the density of H in

E. By the Cameron-Martin formula (1.6), see also [10, §9] for details, we know that
for any h ∈ H, x ∈ E, t > 0, there exists

lim
s→0+

Otf(x+ sh)− Otf(x)

s

= lim
s→0+

1

s

∫
E
f(x+ y)

[
exp

(
− s2

2t
‖h‖2H +

s

t
Rh(y)

)
− 1

]
pt(dy)

=
1

t

∫
E
f(x+ y) Rh(y) pt(dy),

(2.7)

where Rh was defined in the introduction (take into account that Rh is a gaussian
random variable with respect to pt and so in particular exp(|Rh|) is pt - integrable).
Formula (2.7) also holds when f is only a Borel bounded function.

We prove that for any h ∈ H, the limit in (2.7) is uniform in x ∈ E as well.

lim
s→0+

sup
x∈E

∣∣∣ Otf(x+ sh)− Otf(x)

s
− 1

t

∫
E
f(x+ y)Rh(y)pt(dy)

∣∣∣
≤ ‖f‖0 lim

s→0+

∫
E

∣∣∣1
s

[
exp

(
− s2

2t
‖h‖2H +

s

t
Rh(y)

)
− 1

]
− 1

t
Rh(y)

∣∣∣ pt(dy) = 0.

(2.8)
We have applied the dominated convergence theorem.

Now since f ∈ C0,1b (E) we have, clearly, that Otf ∈ C0,1b (E), for t > 0 as
well. By Lemma 2.1 and by (2.8), we get that there exists the Hadamard derivative
DOtf ∈ Cs(E,E ′), t > 0. Thus Otf ∈ C1s (E) and the proof is complete.

Let f ∈ C0,1b (E), by the above proof and applying formula (2.3) we also obtain an
explicit formula for the Hadamard derivative DOtf, t > 0.
For any u ∈ E, take any sequence (hn) ⊂ H, such that hn → u, then we find

DOtf(x)(u) = lim
n→∞

1

t

∫
E
f(x+ y) Rhn(y) pt(dy), x ∈ E, t > 0. (2.9)

and the limit is uniform in x ∈ E.

Remark 2.3 V. Goodman actually proved that for any separable Banach space E,
Q1(E) is dense in Cb(E) (see [8]).

To introduce the space Q1(E), he used the notion of “quasi-differentiability” that
we briefly recall. A function f : E → R is said to be quasi-differentiable at x ∈ E, if
there exists ηx ∈ E ′ such that for each function g from a neighbourhood of 0 in R to
E, which takes value x at 0 and has derivative at 0, the function f ◦g has a derivative
at 0 equal to ηx(g

′(0)). The functional ηx is then called the quasi-derivative of f at x.
Q1(E) is the space of all functions f in Cb(E), that are quasi-differentiable in each

point of E with quasi-derivative Df bounded and such that

Df(·)(·) : E × E → R is continuous.
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Now it is know (see [7](§4.2.8)) that quasi-differentiability is equivalent to the Hada-
mard differentiability. Further invoking Lemma 1.1, assertion (1.2), we can state

that
C1s (E) ⊂ Q1(E); moreover the inclusion is strict even when E = R as easily can be
checked.

Remark 2.4 We point out that heat semigroup on Cb(E) does not help us to uni-
formly aproximate any function f ∈ Cb(E) by mappings in C0,1b (E).

Indeed we prove that for any t > 0 we have:

Ot( Cb(E) ) 6⊂ C0,1b (E).

Denote by A the infinitesimal generator of Ot in Cb(E). Gross has proved ([10,
Theorem 3]) that for any g ∈ C0,1b (E) then Otg ∈ Dom(A), for all t > 0.

Assume, by contradiction, that Ot0(Cb(E)) ⊂ C0,1b (E) for such a t0 > 0. Then we
deduce that

Ot0+εf = OεOt0f ∈ Dom(A), f ∈ Cb(E).

But this is not true, since Ot is not eventually differentiable (4), see [21], [6], [11].

To prove other density theorems, note that the heat semigroup can be extended in a
natural way to Cb(E,F ) where E = (E,H, p1) is an abstract Wiener space and F is
any Banach space. We denote by Ôt this semigroup.

Ôtf(x)
def
=
∫
E
f(x+ y)pt(dy), f ∈ Cb(E,F ), t > 0, x ∈ E, (2.10)

where the integral is in Bochner’s sense, using the fact that the E is separable and so
the range of f is also separable in F for any f ∈ Cb(E,F ), (for instance see [5, §1.1]).

It is possible to prove that Ôt is a strongly continuous semigroup on Cb(E,F ) in
the same way as for Ot in Cb(E) (see [10]).

Theorem 2.5 Let E , K be Hilbert spaces and assume that E is separable. Then
C1s (E,K) is dense in Cb(E,K).

Proof We shall use the fact that C0,1b (E,K) is dense in Cb(E,K) (see [20] and [19]).
Moreover we consider E as an abstract Wiener space (E,H, p1). Denoting by Ôt

the heat semigroup in Cb(E,K) (defined by (2.10)), we argue as in proof of Theorem
2.2.

Any map f ∈ Cb(E,K) can be pointwise approximated by a sequence of simple
functions (fn) such that ‖fn(x)− f(x)‖K ↓ 0, for any x ∈ E (see [5, Lemma 1.1]).
Thus, using the Cameron-Martin formula, it holds:

Ôtf(x+h) =
∫
E
f(x+y) exp

(
− 1

2t
‖h‖2H +

1

t
Rh(y)

)
pt(dy), x ∈ E, h ∈ H, t > 0.

4Let Pt be a strongly continuous linear semigroup on a Banach space X. Pt is said to be eventually
differentiable if there exists t̂ ≥ 0 such that for any x ∈ X, the map t 7→ Ptx, from (t̂,∞) to X is
differentiable.
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Therefore formula (2.8) also holds for Ôt and f ∈ Cb(E,K). Now applying Lemma
2.1 we can prove that

Ôt( C0,1b (E,K) ) ⊂ C1s (E,K), t > 0. (2.11)

Arguing as for formula (2.6) we can conclude.

It is known that for any Hilbert space E, C1,1b (E) is dense in Cb(E) (see [14]). We
use this result to prove the following theorem.

Theorem 2.6 Let E, be a separable Hilbert space, with inner product < ·, · >, then
C2s (E) is dense in Cb(E).

Proof We consider E as an abstract Wiener space (E,H, p1). Let us indentify E
with E ′. Consider the following two heat semigroups:

Ot on Cb(E) and Ôt on Cb(E,E),
both defined by integrals with respect to pt (see (2.10)).

Arguing as in the proof of Theorem 2.2, formula (2.6) to prove our assertion it is
enough to show that for any f ∈ C1,1b (E) and t > 0, we have Otf ∈ C2s (E). To this
end fix f ∈ C1,1b (E) and fix t > 0.
First we deduce the Gâteaux differentiability of Otf in E. Denote by Df the Fréchet
derivative of f . Let x ∈ E, for any v ∈ E, s ∈ (0, 1] we have

lim
s→0+

Otf(x+ sv)− Otf(x)

s
=
∫
E
< Df(x+ y), v > pt(dy),

since f is a Lipschitz continuous map and so we can pass to the limit under the
integral, by the dominated convergence theorem. In this way we obtain that there
exists the Gâteaux derivative: DGOtf(x) at any x ∈ E and further that it holds for
every v ∈ E

< DGOtf(x), v > = Ot(< Df(·), v >) (x) = < Ôt(Df)(x), v > and so

DGOtf(x) = ÔtDf(x), x ∈ E, . (2.12)

Now Df ∈ Cb(E,E) implies that ÔtDf ∈ Cb(E,E), with ωÔtDf ≤ ωDf . Invoking
a well known result about differentiability we can deduce that Otf is also Fréchet
differentiable in E and (2.12) holds with the Gâteaux derivative replaced by the
Fréchet derivative.

Remark that, by the assumption, Df ∈ C0,1b (E,E). Applying formula (2.11) in
the proof of Theorem 2.5 (with K = E) we have that ÔtDf ∈ C1s (E,E). This is
equivalent, by (2.12), to state that there exists the second Hadamard derivative of
Otf and that it is in Cs(E,Ls(E)). Thus the proof is complete.

Remark 2.7 We want to show how the heat semigroup can be used to improve other
approximation results.
In [12] it is mentioned, without proof, the following Tsar’kov result:

let E, K be Hilbert spaces, then any uniformly continuous map g : E → K is
uniformly approximable by Fréchet differentiable maps f : H → K, having a bounded
derivative.
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We define the space C1s,F (E,K) = {f ∈ C1s (E,K) which are Fréchet differen-
tiable in E}. Invoking the Tsar’kov theorem we can prove:

let E, K be Hilbert space and assume that E be separable, then C1s,F (E,K) is
dense in Cb(E,K).

Let Ôt the heat semigroup in Cb(E,K) as in Theorem 2.5. Fix g ∈ Cb(E,K). For
any ε > 0, by the above Tsar’kov theorem, we can choose a function f ∈ C0,1b (E,K)
that is Fréchet differentiable in E (with a bounded derivative) and such that ‖g −
f‖0 ≤ ε.

Using the inequality: ‖g − Ôtf‖0 ≤ ‖g − f‖0 + ‖f − Ôtf‖0, t > 0, to get the
assertion it is enough to verify that Ôtf ∈ C1s,F (E,K) for any t > 0.

Fix t > 0, by formula 2.11 we know that Ôtf ∈ C1s (E,K). Thus we only prove that
Ôtf is Fréchet differentiable in E and it holds:

DÔtf(x)(v) = Ôt[Df(·)(v)](x), x, v ∈ E, (2.13)

where DÔtf and Df are Fréchet derivatives. To establish (2.13) we can not argue
as for proving (2.12), since Df is not supposed to be continuous. However fix x ∈ E
and let C be the unit closed ball of E. The assertion (2.13) is equivalent to prove:

lim
s→0+

sup
v∈C

∣∣∣Ôtf(x+ sv)− Ôtf(x)

s
−
∫
E
Df(x+ y)(v)pt(dy)

∣∣∣ = 0.

We define Θ : (0, 1]× C × E → R, for any s ∈ (0, 1], v ∈ C, y ∈ E,

Θ(s, v, y) = ‖f(x+ y + sv)− f(x+ y)

s
− Df(x+ y)(v)‖K .

With this notation to get (2.13), it is sufficient to verify that

lim
s→0+

sup
v∈C

∫
E
|Θ(s, v, y)| pt(dy) = 0.

To this purpose, take a countable dense set D in C. Then Θ(s, ·, y) is uniformly
continuous for any s ∈ (0, 1], y ∈ E so that we have

supv∈D |Θ(s, v, y)| = supv∈C |Θ(s, v, y)|, s ∈ (0, 1], y ∈ E.
Now for any s ∈ (0, 1], v ∈ C, Θ(s, v, ·) is a Borel function and so supv∈D |Θ(s, v, y)|
is still Borel, since D is countable.

Moreover we have |Θ(s, v, y)| ≤ 2‖Df‖0, s ∈ (0, 1], v ∈ C, y ∈ E. Now by
the inequality:

sup
v∈C

∫
E
|Θ(s, v, y)|pt(dy) ≤

∫
E

sup
v∈D
|Θ(s, v, y)| pt(dy),

as s→ 0+ we get 0, using the Lebesgue’s theorem. Thus (2.13) follows.

Remark 2.8 By the previous density theorems we can also approximate mappings
defined only on a subset of a separable Banach space E.

Let S be any subset E. We can define the Banach space Cb(S), endowed with the
sup-norm, in an obvious way. We recall the following McShane result (see [15]).

Let (M,ρ) a metric space with metric ρ and A a subset of M , then any map
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f : A→ R uniformly continuous and bounded can be extended to a map

f̂ : M → R (i.e. f̂(x) = f(x), x ∈ A) uniformly continuous and bounded, having

the same bounds and the same continuity modulus of f .
As a direct consequence of McShane’s theorem and of Theorems 2.2 and 2.6, we find:

(i) the restrictions to S of functions which are in C1s (E) are dense in Cb(S);

(ii) if E is a separable Hilbert space, then the restrictions to S of functions

that are in C2s (E) are dense in Cb(S).

Let Ω be an open set of a separable Hilbert space E. We point out that C2b (Ω) ( 5) is
not dense in Cb(Ω).

This is a consequence of a A.S. Nemirovskii and S. M. Semenov’s result (see [17]).
They have constructed a map f0 ∈ Cb(B), where B denotes the unit open ball of E,
such that f0 is not uniformly approximable by maps in C2b (B).

Take an open ball B̂ ∈ Ω and easily construct a map f̂ ∈ Cb(B̂), using the map
f0, that is not approximable by maps in C2b (B̂). Now using the above McShane result
we can extend f̂ to a map g ∈ Cb(Ω) that is not approximable by maps in C2b (Ω).

3 Uniform approximation and Urysohn maps

We introduce a connection between uniform approximation of real, uniformly continu-
ous and bounded functions and existence of Urysohn maps. Let (M,d) a metric space
with metric d and denote Cb(M) the Banach space of all real, bounded, uniformly
continuous mappings endowed with the sup norm.

Two non empy closed sets A, B are said to be separated if infx∈A,y∈B d(x, y) > 0.
A function f ∈ Cb(M) is said to be an Urysohn function for the pair (A,B) of
separated closed sets if

f : M → [0, 1], f(x) = 1 for any x ∈ A, f(y) = 0 for any y ∈ B.
Remark that for any separated closed sets A, B in M , the function

fA,B =
d(x,B)

d(x,A) + d(x,B)
, x ∈M,

is a Lipschitz continuous Urysohn function for (A,B).

It is known (see for instance [18]) that uniform approximation of functions which
belong to Cb(E), where E is a Banach space, by smooth functions implies existence
of smooth Urysohn functions. We present the following two propositions for the sake
of completeness.

Proposition 3.1 Let E be a separable Hilbert space, for any separated closed sets
A,B, there exists a Urysohn map g for (A,B) that is in C2s (H).

5C2b (Ω) stand for the space of all maps f in Cb(Ω), having a first bounded Fréchet derivative and
a second Fréchet derivative, D2f : Ω→ L(E) that is bounded and uniformly continuous.
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Proof Take a Lipschitz continuous Urysohn map f for (A,B), then by Theorem 2.5,
there exists a map h ∈ C2s (E) such that: h(x) > 3/4 when x ∈ A and h(y) < 1/4
when y ∈ B. Consider a function j ∈ C∞b (R) such that:

j : R→ [0, 1], j(s) = 1 for |s| ≥ 3/4, j(s) = 0, |s| ≤ 1/4.
Finally define g = j ◦ h, g ∈ C2s (E) is the map looked for.

In the same way we can get the next proposition.

Proposition 3.2 Let E be a separable Banach space, for any separated closed sets
A,B, there exists a Urysohn map g for (A,B) that is in C1s (E).

Thus on one hand it is clear the link between uniform approximation and existence
Urysohn functions. On the other hand there is a connection as well. The following
theorem shows that existence of regular Urysohn functions implies existence of regular
uniform approximations.

Theorem 3.3 Let (M,d) be a metric space, with metric d, and S(M) a linear sub-
space of Cb(M). If for any pair of separated closed sets A, B there exists a Urysohn
function f ∈ S(M) for (A,B), then S(M) is dense in Cb(M).

Proof We use an inductive argument as in [10] (Lemma 3.2.1).
Since for any g ∈ Cb(M),

g = max(g, 0)−max(−g, 0) and g = (g − infx∈M g(x)) + infx∈M g(x),

it suffices to consider only non negative functions f in Cb(M) with infx∈M f(x) = 0.
Fix ε > 0 and let

Λn = {f ∈ Cb(M), / f(x) ≤ nε, x ∈M}.

We shall show by induction on n that for any function in Λn there exists a map
h ∈ S(M) such that ‖f − h‖0 ≤ 2ε.

The assertion is true if n = 2, taking h = 0, so suppose that the assumption is
satisfied for all n ≤ k and prove it for n = k + 1, where k ≥ 2. Let f be in Λk+1 but
not in Λk and set

A = {x ∈M, / f(x) ≥ kε}, B = {x ∈M, / f(x) ≤ (k − 1)ε}.

A, B are two non empty closed sets. They are also separated for the uniform conti-
nuity of f . Hence take a map l ∈ S(M) that is Urysohn map for (A,B) and consider
ε l. We have that εl(x) = ε for any x ∈ A and εl(x) = 0 for any x ∈ B so that we get:

0 ≤ f(x)− εl(x) ≤ kε, x ∈M.

Thus f − εl ∈ Λk and by induction hypothesis there is a map g ∈ S(M) such that:

‖f − εl − g‖0 ≤ 2ε.

Taking h = εl + g, we can conclude.

Now using Theorem 3.3 and Remark 2.8 we deduce the following result.

Corollary 3.4 Let E be a separable Hilbert space, then there exist two separated
closed sets A, B in E such that they do not admit any Urysohn function in C2b (E).
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4 Uniform approximation of σ-uniformly continuous maps

We recall some notions on locally convex topologies. Let (E, ‖·‖E) be a Banach space
and let σ be a locally convex Haussdorff topology on E. Γσ denotes the family of all
seminorms on E which are continuous with respect to σ.

We consider three different spaces of real functions on E.

Cσ(E)
def
= {f : (E, σ) → R, uniformly continuous ( 6) and bounded }.

Cσ(E) turns out to be a Banach space endowed with the sup norm.

C0,1σ (E)
def
={f ∈ Cσ(E), for which there exists qf ∈ Γσ, a constant L(f) > 0,

such that |f(x)− f(z)| ≤ L(f) qf (x− z), x, z ∈ E },

C1σ(E)
def
= {f ∈ Cσ(E), having the Fréchet derivative Df in E

such that Df : (E, σ(E,E ′)) → E ′ is uniformly continuous and bounded }.

Clearly if σ is weaker than the norm topology of E we have:
Cσ(E) ⊂ Cb(E), C0,1σ (E) ⊂ C0,1b (E), C1σ(E) ⊂ C1b (E) and the inclusions are strict.
The following lemma shows that C0,1σ (E) is dense in Cσ(E). It is a straightforward
variation of [10, Lemma 3.2.1], we state it without proof.

Lemma 4.1 Let (V, σ) be a real locally convex Haussdorff space, then C0,1σ (V ) is dense
in Cσ(V ).

Now we are ready to prove the following result.

Theorem 4.2 Let E be a separable Banach space, with unit closed ball C, and σ be
a locally convex Haussdorff topology on E such that:

(i) σ is weaker than the norm topology;
(ii) (C, σ), i.e. C endowed with σ, is compact.

Then C1σ(E) is dense in Cσ(E).

Proof As in proof of Theorem 2.2, we consider E has an abstract Wiener space
(E,H, p1), denote by Ot the heat semigroup on Cb(E). It follows, by easy computa-
tions, that if g ∈ Cσ(E) then Otg ∈ Cσ(E) for any t > 0.

By Lemma 4.1, arguing as for formula (2.6), to prove the assertion it is enough to
verify that for any f ∈ C0,1σ (E) then Otf ∈ C1σ(E), for any t > 0. Thus fix f ∈ C0,1σ (E)
and t > 0.

First we remark that, by Hypothesis (i), f ∈ C0,1b (E) and so, by formula (2.5),
Otf ∈ C1s (E). We denote by DOtf the Hadamard derivative of Otf .

Let q ∈ Γσ such that

|f(x)− f(y)| ≤ L(f) q(x− y), x, y ∈ E,

then easily we get

|Otf(x)−Otf(y)| ≤ L(f) q(x− y), x, y ∈ E.
6A map f : (E, σ) → R is uniformly continuous if and only if for any ε > 0, there exist δ > 0

and q ∈ Γσ such that for any x, y ∈ E, q(x− y) ≤ δ implies that |f(x)− f(y)| ≤ ε
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Define the maps:
φs : (C, σ) → Cσ(E), s ∈ (0, 1] such that:

φs(v) =
Otf(·+ sv)−Otf(·)

s
, s ∈ (0, 1], v ∈ C. (4.1)

It is possible to prove, taking into account formulas (2.9) and (2.3), that for any
v ∈ C,

lim
s→0+

Otf(x+ sv)−Otf(x)

s
= DOtf(x)(v)

and this limit is uniform in x ∈ E. Consequently for any v ∈ C,

lim
s→0+

φs(v) = DOtf(·)(v) in Cσ(E). (4.2)

Take any sequence sn ⊂ (0, 1], such that sn → 0. By formula (4.2), for any v ∈ C,
the sequence (φsn(v)) is relatively compact in Cσ(E).
Further (φsn) is an equicontinuous sequence of maps in Cσ(C, Cσ(E))( 7 ), since it
holds:

‖φsn(v)− φsn(v′)‖Cσ(E) ≤ L(f) q(v − v′), v, v′ ∈ C.

Therefore applying the Arzela - Ascoli theorem (as in proof of Lemma 2.1) we de-
duce that limn→∞ φsn(v) = DOtf(·)(v), uniformly in v ∈ C. Consequently for
arbitrariness of (sn), we deduce that

lims→0+ supv∈C ‖φs(v)−DOtf(·)(v)‖Cσ(E)

= lim
s→0+

sup
v∈C

sup
x∈E

∣∣∣ Otf(x+ sv)−Otf(x)

s
− DOtf(x)(v)

∣∣∣ = 0. (4.3)

This formula gives in particular that Otf is Fréchet differentiable in E. Moreover from
(4.3), we also obtain that

DOtf(·)(·) : (C, σ)× (E, σ)→ R is uniformly continuous and bounded.

This fact yields that DOtf is uniformly continuous and bounded from (E, σ) into E ′;
indeed we have:

sup
v∈C
|DOtf(x)(v)−DOtf(z)(v)| = ‖DOtf(x)−DOtf(z)‖E′ , x, z ∈ E.

The proof is complete.

Let E be a separable reflexive Banach space. On E we consider the weak topology
σ(E,E ′). It is well known that the unit closed ball C in E, is compact with respect
to σ(E,E ′). Thus by the above theorem we deduce the following result.

Corollary 4.3 Let (E, ‖ · ‖E) be a separable reflexive Banach space and consider the
weak topology σ = σ(E,E ′) on E. Then C1σ(E) is dense in Cσ(E).

7Cσ(C, Cσ(E)) denotes the Banach space of all g : (C, σ)→ Cσ(E) which are uniformly continuous
and bounded, endowed with the sup norm.
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in Hilbert spaces, preprint, Tübinger Ber. z. Funktionalanalysis, n. 5, pp. 95-101,
to appear in Arch. Math. (Basel).

[7] Flett T. M. (1980), Differential analysis, Cambridge University Press.

[8] Goodman V. (1971), Quasi - differentiable functions on Banach spaces, Proc.
Amer. Math. Soc., 30, n. 2, pp. 367-370.

[9] Gross L. (1965), Abstract Wiener Spaces, Proc. 5th Berkeley Symp. Math. Stat.
Prob., 2, pp. 31- 42.

[10] Gross L. (1967), Potential theory on Hilbert space, J.Funct. Anal. , 1, pp. 123-
181.

[11] Guiotto P., Non differentiability of heat semigroups in infinite-dimensional
Hilbert spaces, to appear in Semigroup Forum.

[12] Konyagin S.V. & Tsar’kov I. G. (1988), On smoothing of maps in normed spaces,
Russian Math. Surveys, Vol.43, n. 4, pp. 213-124.

[13] Kuo H. H. (1975), Gaussian measures in Banach spaces, Lect. Notes in Math.,
Springer-Verlag, 463

[14] Lasry J. M. & Lions P. L. (1986), A remark on regularization in Hilbert spaces,
Israel J. Math., Vol. 55, n. 3, pp. 257-266

16



[15] McShane E.J. (1934), Extension of range of functions, Bull. Amer. Math. Soc.,
Vol. 40, pp. 837-842.

[16] Minty G. J.(1970), On the extension of Lipschitz, Lipschitz-Hölder, continuous
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