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Area 4: Distal Zone Up-Valley of the Campsite (“Distal Up”)

Area 4 encompasses the marginal zone of the landslide between Lillooet 
River and the unaffected forest to the east, and is northwest of the British Co-
lumbia Forest Service campsite (Fig. 1). The distal-up area is 470 m wide and 
450 m long (area 4 in Figs. 1 and 2). The maximum thickness of the debris 
is 4 m. Piles of trees up to 3 m high form the eastern edge of the landslide. 
 Lillooet River sediments were entrained by the landslide in this area. The most 
distinctive feature in area 4 is a 2.5–4-m-high scarp, which marks the underly-
ing, pre-landslide east bank of Lillooet River.

Two units of landslide debris are present in the distal-up area (Figs. 9A and 
9B). Unit a is <1 m thick and consists mainly of mixed and woody debris facies, 
but includes hummocks of both block and entrained facies that were bulldozed 
to the margin of the deposit (Fig. 9A). Tree stems are oriented orthogonal to 
the flow direction and are in contact with standing, abraded, and tilted trees. 
At the river edge, entrained fluvial sediment was bulldozed into compressional 
ridges and hummocks.

Unit b is thicker and comprises debris similar to the deposits that form the 
plug, with meter-high hummocks and compressional ridges (Fig. 9A). In the 
northwestern part of area 4, unit b can be further subdivided into two different 
subunits. One has compressional ridges up to 3 m high and 20 m long and is 
in contact with the buried bank of Lillooet River. The other, which laps onto the 
first, has subdued ridges and lobes and some faults. Unit a flowed onto the 
terrace on which the Forest Service campsite is located, whereas unit b was 
stopped by it (Fig. 9B).

Moving downstream (southeast) in area 4, a fan-shaped lobe of thick debris 
covers the terrace and terminates in a 3–4-m-high front that is in contact with 
standing trees. Some trees were pushed forward and tilted back into the debris 
field by this lobe.

Farther downstream, at the southeastern end of area 4, Lillooet River has 
eroded the terrace to form a new bank. The contact between the river sedi-
ments and the landslide debris is exposed in the riverbank, and here the debris 
is 0.5–2 m thick.

Area 4: Interpretation

The deposit in area 4 reflects interactions with preexisting topography and 
different flow rheologies. The riverbank divided the flow in two: the water-rich 
phase (unit a) ran up over the bank, whereas the water-poor debris (unit b) 
was largely redirected and channeled by the bank. At the downstream end of 
area 4, unit b is in contact with, and laps onto, unit a.

The debris avalanche displaced Lillooet River water in area 4. Thus the fluid 
front is well developed here, extending as much as 180 m beyond the dense 
deposit. Eyewitnesses described a rush of muddy water along the logging 
road behind the campsite associated with this phase of the landslide (Guthrie 
et al., 2012a).

Area 5: Distal Zone Down-Valley of the Campsite (“Distal Down”)

Area 5 is the most distal part of the landslide, located southeast (down-
stream) of the Forest Service campsite and extending from Lillooet River to 
the undisturbed forest on the east. The distal-down area is ~1000 m wide and 
350 m long (area 5 in Figs. 1 and 2). The deposit thickness decreases from 
~5–7 m to zero in the direction of flow.

We recognize two main depositional units (a and b) in area 5 (Figs. 10A and 
10B). Unit a is the transition from a zone of dead drowned trees into woody 
debris, and then into a zone of sparse debris and small hummocks. In unit a, 
the number of standing trees decreases inward toward unit b. Some trees are 
tilted and their stems abraded to heights of 6 m, with pebbles and cobbles 
embedded in the wood. The zone of dead drowned trees with no debris (Fig. 
10A) is 500 m wide and up to 200 m long with respect to the northeastern flow 
direction. An accumulation of woody debris, which lies west of the zone of 
dead trees, is up to 6 m thick and has a width of 8–100 m. Still farther west is 
an area of discontinuous debris with small (1–9 m3) hummocks of block and 
entrained facies and sparse tree stems (Fig. 10B). The debris in this area occurs 
in several lobes, the largest of which is 20–180 m wide.

Unit b is a deposit of hummocky debris up to 7 m thick. It extends as much 
as 150 m outward (northeast) from Lillooet River (Fig. 10A). The hummocks are 
mainly block facies and have volumes of 100–120 m3 (Fig. 10B). Areas between 
hummocks have a slightly ridged morphology, but the structure is not well 
expressed. This unit laps onto unit a; locally the two are separated by a scarp 
~2 m high.

Area 5: Interpretation

The deposits in area 5 record a succession of events. A flood of water-rich 
material arrived first. It inundated the forest at the distal margin of the debris 
avalanche and left a frontal log jam and, just behind it, a zone of small hum-
mocks (unit a). Water-poor debris arrived next, depositing unit b against the 
water-rich deposits. As was the case in area 4 upstream of the campsite, the 
front of the debris avalanche incorporated or displaced water from Lillooet 
River, sending unit a as much as 350 m beyond the limit of the denser material.

DISCUSSION

Detailed study of the facies and surface morphology of the 2010 Mount 
Meager debris avalanche allows us to infer emplacement mechanisms, the 
relative timing of phases, and flow rheology. The structure and form of the 
deposit differ along the landslide path, providing information on transport and 
depositional processes and the evolution of the debris avalanche. Our inter-
pretation of the flow dynamics and flow separation is presented below, along 
with their hazard implications.
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Figure 9. (A) Orthophoto of the distal part 
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upstream of the unaffected Forest Service 
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terrace scarp showing the boundary be
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Lithology and Grain Size

The lithology of the landslide debris provides insight into its depositional 
processes. The distribution of altered material is particularly instructive. Al-
tered materials are associated with block facies and sheared block facies 
streaks. Altered block and sheared block facies are more common at the 
downstream end of the plug than at the upstream end. Mud balls and altered 
sheared block facies streaks were also noted along the downstream margin of 
the terrace area. Conversely, the Meager barrier has less debris of the altered 
block and sheared block facies; it is primarily composed of very large gray por-
phyritic rhyodacite blocks within mixed material. We infer that this lithological 
zoning reflects the structure of the original rock mass in the source area: hydro-
thermally altered rock at the base of the source scarp and fresh rock typical of 
the volcanic plug higher up on the scarp.

The mixed material is dominantly silty clayey sand with clay percentages 
ranging from 5% to 8%. Altered sheared block facies samples may have up to 
30% clay, whereas the fresh unaltered sheared block facies is 2%–5% clay (Fig. 
4). The average clay content by facies is 6.1% mixed, 24.6% altered block, and 
3.6% pulverized block. A mixing ratio of 12% altered to 88% pulverized is re-
quired to get 6.1% clay in the mixed facies. This simple analysis suggests that 
~12% of the failed rock mass was hydrothermally altered. Furthermore, within 
the mixed material there is no apparent trend in the mean clay content from 
upstream to downstream, suggesting that the material became well mixed as 
it traversed Capricorn Creek.

Rheology Phases

There is evidence of multiple pulses of flow of diminishing magnitude over 
time, but the deposits can be generally classified into two main rheology types: 
water-poor and water-rich (Fig. 11). These two rheology types are, in reality, 
end members in what was a continuum. The water-poor end member pro-
duced thick debris avalanche–like deposits, with abundant large hummocks. 
Kinematic structures reveal sequential movement related to pulses in the em-
placement process (Fig. 12A). The water-rich end member is responsible for a 
flood-like deposit with sparse tree stems amid standing trees with meter- high 
splash lines and trunk erosion, and has no significant lithic debris (Fig. 12B). 
This end member, however, transitions into woody debris, which in turn tran-
sitions into an area with hummocks morphologically similar to those of the 
debris flow and hyperconcentrated flow deposits. Structural discontinuities, 
including faults, shear zones, and compressional ridges, delineate zones with 
distinct internal morphological characteristics that are related to one of the two 
end members. However, the boundaries between these deposits are not sharp 
everywhere, suggesting gradual phase transitions (areas 4 and 5). Distinct de-
bris lines indicate multiple pulses (areas 1 and 2) with different rheologies.

The water-rich phase is evident along the margins of the debris avalanche 
deposit, except at the front of the plug area. Water-rich flow deposits are over-

lain by, but extend beyond, the deposits of the water-poor phase. In the plug 
area (area 3), the debris terminates with a sharp front and there is no evi-
dence of a leading water-rich phase, suggesting that the two phases followed 
different trajectories as they entered the Meager Creek–Lillooet River conflu-
ence area.

The two phases had different velocities and different paths that were con-
trolled by the complex topography over which the debris avalanche traveled. 
The sinuous longitudinal form of Capricorn Creek valley (Fig. 1) resulted in 
centripetal and centrifugal forces that generated a marked separation of de-
bris. The water-rich phase accelerated, achieving higher velocities and thus 
reaching farther up the valley sides, while the less-mobile water-poor core 
moved along the valley bottom. These differences in trajectory led to different 
deposits along Meager Creek and in Lillooet River valley.

Our evidence suggests that the water-rich phase preceded the water-poor 
phase, in contrast with the conclusion of Guthrie et  al. (2012b) that a first, 
drier front came to rest in the plug area ~10  km from the source area and 
“the flow crossed the Lillooet River on both sides and over this plug” (p. 670). 
A water-rich phase followed by a water-poor phase is not unusual in debris 
flows and debris avalanches (cf. Oso landslide, Washington, USA; Iverson 
et al., 2015).

However, the water-rich slurries at the west end and margins of the plug 
suggest that some water-rich flows followed the emplacement of the plug. 
Copious water may have flowed from the source scar and remobilized part of 
the newly deposited material after the plug came to rest. It is thus difficult to 
distinguish a fluid tail contemporaneous with the debris avalanche from sec-
ondary debris mobilization by water flowing down Capricorn Creek.

Summary of the Event

Figure 13 summarizes our view of the 2010 Mount Meager debris avalanche 
in terms of rheology and velocity from its beginning to its end. The x-axis in 
the figure is the proportion of water and sediment in the flow, from debris 
avalanche to clear-water flood; the y-axis indicates both the strain rate and 
velocity. The different fields are based primarily on morphology. We postulate 
four stages in this history:

• Stage 1. The south flank of Mount Meager failed following infiltration of 
water generated by snowmelt and permafrost thaw into hydrothermally 
altered rock and colluvium on the lower part of the slope. In the first sev-
eral seconds, the collapsed material behaved as a single mass and the 
motion was relatively slow, with an average speed of 4 m/s (Allstadt, 
2013) (Fig. 14A).

• Stage 2. The failed mass accelerated rapidly, disaggregated, and spread 
as it started to flow down the valley of Capricorn Creek. High water pres-
sure caused liquefaction and forced the water upward and outward, cre-
ating a mobile, water-rich frontal flow (Fig. 14B).
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Figure 11. Top: Summary sketch map 
showing the distribution of waterrich 
and waterpoor deposits of the Mount 
Meager landslide. Bottom: Flow chart 
summarizing the correlation between 
rheology phases, areas, and deposits. The 
waterrich phase produced the high debris 
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• Stage 3. The water-rich flow accelerated and superelevated at the 
bends in Capricorn Creek valley, causing the high runups documented 
by  Guthrie et al. (2012a, 2012b). It entered Meager Creek valley slightly 
in advance of the slower water-poor flow. Both ran up the opposing 
valley wall and turned back toward the opposite side of the valley. The 
water-rich phase split in two lobes (Fig. 14C). One lobe overrode the ter-
race (area 2) and then flowed back toward Meager Creek to affect area 
5 down-valley of the Forest Service campsite. A second lobe was de-
flected by the terrace and followed a straight trajectory to area 4 up-val-
ley of the campsite. Both lobes decelerated, leaving thin debris, small 
hummocks, and standing water, indicative of further flow separation. 

The most distal deposit of the water-rich phase in areas 4 and 5 shows 
evidence of extreme water content as the flow displaced and incorpo-
rated water from Lillooet River.

• Stage 4. After impacting the southeast wall of Meager Creek valley, the 
water-poor phase deposited thick debris in the Meager Creek–Lillooet 
River confluence area (Fig. 14D). During final emplacement, it separated 
into three lobes: a central, less mobile one (area 3) and two lateral wings 
that flowed farther, crossing Lillooet River and leaving the water-poor 
 deposits in areas 4 and 5. As the water-poor phase decelerated and came 
to rest, it developed ductile-brittle deformation structures. It did not travel 
as far as the water-rich phase.

~5 m 
A

B
Figure 12. Rheology endmember deposits, 
Mount Meager landslide. (A) Thick debris, 
hummocks, and faults of the waterpoor 
phase in area 3. The red line marks strike
slip faults; the white dotted lines delineate 
block and sheared block facies. (B) Woody 
debris and dead trees of the waterrich 
phase downstream of the unaffected Forest 
Service campsite. White arrow indicates 
the direction of movement.
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Although the water-rich and water-poor phases had different trajec-
tories due to their differences in volumes and velocities, they did not behave 
totally independently. The presence of intermediate deposits suggests that 
they interacted. Furthermore, their separation in time was minor, perhaps 
only seconds.

The scenario outlined above is consistent with an analysis of seismic re-
cords of the landslide by Allstadt (2013). She concluded that “there is even a 
hint of what could be interpreted as two separate surges visible in the verti-
cal component of the force-time function. The vertical component of the force 
… has a shorter duration than the eastward component and is followed by a 
second smaller upward pulse” (p. 15). The multiple debris lines on the valley 
sides, however, suggest more than two surge waves; some may not have been 
large enough to generate clear seismic signals.

Hazard Implications

Transformation of a dry debris avalanche into a saturated debris flow has 
been inferred for many events (Palmer and Neall, 1989; Vallance and Scott, 
1997; Capra and Macias, 2000; Scott et al., 2002; Tost et al., 2014). In the case of 

the Mount Meager event, the transformation was partial, and multiple rheol-
ogies coexisted, with different mobilities, velocities, and trajectories. Our ob-
servations show that debris avalanches can be multiphase events with debris 
avalanche, debris flow, hyperconcentrated flow, debris flood, and flood-like 
components or phases (Fig. 13). This complexity may be more common than 
presently thought and may apply to other debris avalanche events. Here, dif-
ferent rheologies were clearly expressed in the deposit textures because the 
high sinuosity of the valley caused extreme separation of water-rich and wa-
ter-poor phases. Also, the photo documentation immediately after the event 
allowed us to differentiate ephemeral water-rich deposits and flow traces that 
are not preserved in older events.

Numerical modeling of debris avalanches takes into account only dry gran-
ular material (Pudasaini and Hutter, 2003; Zahibo et al., 2010), and the models 
typically are single phase (Takahashi, 2007; Pudasaini, 2011). Only simplified, 
two-phase models traditionally are used for debris flows (Iverson, 1997; Puda-
saini et al., 2005; Jakob et al., 2013). Recently, Pudasaini (2012) and Pudasaini 
and Krautblatter (2014) have proposed a more complete two-phase model for 
debris flows and debris avalanches that simulates the separation of a fluid 
front, drier core, and fluid tail.

The complexity of the 2010 Mount Meager debris avalanche highlights 
the difficulties of modeling such events and assessing the risk they pose to 
down-valley populations and infrastructure. The separation of water-poor and 
water-rich phases in complex topography has to be simulated to reproduce the 
different deposit types and the runout of each phase.

SUMMARY AND CONCLUSIONS

Field evidence and detailed geomorphic mapping of the 2010 Mount Mea-
ger landslide allowed us to document the development of multiple rheology 
phases with different mobilities and trajectories. As the collapsed mass dis-
aggre gated and started to flow along Capricorn Creek, it separated into a 
faster water-rich phase and a slower water-poor phase. The water-rich phase 
 caromed down Capricorn Creek, ran high up the southeastern wall of Meager 
Creek valley, and overtopped a terrace on the opposite side of the valley, while 
the water-poor phase was more confined to the valley floor. The shapes of 
Capricorn and Meager Creek valleys contributed to the phase separation and 
deposit emplacement. The water-rich phase left the most distal deposit, but 
its deposit is not observed everywhere at the distal margin because the flow 
separated and was deflected by the topography. The less-mobile, water-poor 
phase left a continuous deposit.

Lithological zones in the deposit preserve the original distribution of rock 
in the source area, with hydrothermally altered rock derived from the base of 
the scar reaching the distal limit of the debris avalanche and gray rhyodacite 
rock higher on the flank of Mount Meager dominating more proximal deposits. 
Grain-size analysis and rough mixing estimates suggest that ~12% of the failed 
rock mass was hydrothermally altered.
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Figure 13. Conceptual diagram showing stages in the evolution of the Mount Meager debris 
avalanche. (1) The south flank of Mount Meager fails. (2) The rock mass breaks up, spreads, and 
liquefies as it begins to accelerate down Capricorn Creek valley. Water escapes from beneath the 
debris avalanche, forming the advance waterrich phase (blue line); the bulk of the mass, in com
parison, is relatively dry (red line). Although the two phases interact, they follow different paths 
and leave separate deposits. (3) Both phases achieve very high velocities before impacting the 
south valley wall of Meager Creek. They decelerate as they spread up and down Meager Creek 
and into Lillooet River valley. (4) Final deceleration and cessation of flow.
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Finally, this event raises new challenges for multi-rheology phase model-
ing of debris avalanches and hazard mapping. There were no fatalities in this 
particular event, but lack of understanding of the complex behavior of such 
landslides could result in inaccurate hazard assessment, placing populations 
at risk from catastrophic rock slope failures.
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