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Abstract In this article multiobjective optimization

of vaccinations is studied using graph-based modelling

and simulations of the spreading of the disease. Real-life

dataset of animal movements between farms and pas-

tures in the Piedmont region of Italy is used, from which

a dynamic network of contacts is reconstructed. Evolu-

tionary multiobjective optimization of vaccinations is

compared with vaccination strategies based on degrees

or strengths of graph nodes, number of animals in the

farms as well as with the ring vaccination strategy. In

the article the influence of uncertainties represented by

the lack of knowledge of initial disease cases and the

change of the contacts network by a rewiring process

on the vaccination optimization is studied.

Results of experiments show that evolutionary op-

timization of vaccinations can outperform vaccina-

tion strategies when enough information is provided.

When many disease cases remain unknown or when the

changes in the contacts network are large, the perfor-

mance of the optimization algorithm is adversely af-

fected. Obtained results motivate further research on

modelling changes in animal movement patterns, as well

as hybrid methods combining evolutionary optimiza-

tion with vaccination strategies.
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1 Introduction

The optimization problem tackled in this article is op-

timization of a vaccination scheme intended to stop an

epidemic spreading among animal farms through ani-

mal movements. In this section key concepts are intro-

duced, such as multiobjective metaheuristic optimiza-

tion and graph-based epidemic modelling. This section

concludes by presenting highlights and structure of the

article.

1.1 Multiobjective metaheuristic optimization

Metaheuristic optimization methods are commonly

used for solving complex optimization problems with

large search spaces and high computational complexity.
Application domains range from engineering applica-

tions (Biswas and Pal (2019)), through transportation

optimization (Barma et al. (2019); Roy et al. (2019)) to

project scheduling (Pellerin et al. (2020)). Population-

based metaheuristics, such as evolutionary algorithms

are often used for solving multiobjective optimization

problems (Talbi et al. (2012); Zavala et al. (2014)).

Without the loss of generality a multiobjective opti-

mization problem (MOP) can be formalized in the fol-

lowing way:

minimize F (x) = (f1(x), . . . , fm(x))

subject to x ∈ Ω,
(1)

where:

Ω - the decision space,

m - the number of objectives.

Because in MOPs conflicting objectives very often

exist it is usually not possible to find one, the best,
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solution. Therefore, a concept of Pareto dominance was

introduced (Deb (2001); Miettinen (1999)).

Let F (x1) and F (x2) be the objectives of two solu-

tions x1, x2 ∈ Ω:

F (x1) = (f1(x1), . . . , fm(x1))

F (x2) = (f1(x2), . . . , fm(x2))
(2)

We say that x1 Pareto-dominates x2 (x1 � x2) iff:

∀i ∈ {1, . . . ,m} : fi(x1) ≤ fi(x2)

∃i ∈ {1, . . . ,m} : fi(x1) < fi(x2)
(3)

A solution x is said to be nondominated (Pareto

optimal) iff:

¬∃x′ ∈ Ω : x′ � x. (4)

Typically, an algorithm solving a multiobjective op-

timization problem searches for a good approximation

of the Pareto set which consists of nondominated solu-

tions in the decision space Ω. Vectors of objectives of

solutions in the Pareto set form the Pareto front in the

objective space Rm. As mentioned before, in MOPs it

is often impossible to select a better one from two solu-

tions because one solution can be better with respect to

one objective and the other solution can be better with

respect to some other objective. On the other hand, op-

timization methods need to select preferred solutions,

for example in order to perform mating pool selection

in evolutionary algorithms, or solution acceptance in lo-

cal search methods. In Pareto-based methods, such as

the Non-dominated Sorting Genetic Algorithm, NSGA-

II (Deb et al. (2002)) and the Strength Pareto Evolu-

tionary Algorithm, SPEA2 (Zitzler et al. (2002a)) the

Pareto dominance relation (equation (3)) is used do de-

cide which solutions to select. In decomposition-based

methods, such as the Multiobjective Evolutionary Al-

gorithm Based on Decomposition, MOEA/D (Li and

Zhang (2009); Zhang and Li (2007)) the multiobjective

optimization problem is decomposed to a set of single-

objective optimization subproblems. In these subprob-

lems the objectives f1, . . . , fm are combined to a single

value, for example using weights assigned to each of

the objectives. Through such scalarization a single ob-

jective is obtained, which can be used for selection in

evolutionary algorithms, or for solution acceptance in

local search methods.

1.2 Graph-based epidemic modelling

Numerous real-life systems, such as computer networks,

social relationships and business contacts, can be stud-

ied using a graph model in which nodes represent en-

tities, for example computers, people, and businesses,

and edges represent network connections, personal con-

tacts, etc. In networked systems various threats may

emerge and spread, such as computer viruses, epi-

demics, and waves of bankruptcies. Obviously, when the

system is affected by a threat, various actions are taken

to limit the damage. Such scenarios naturally give rise

to optimization problems in which, for example, the

cost of protective actions has to be minimized while

maximization of protection effectiveness is expected. In

the area of combinatorial optimization the Firefighter

Problem (FFP) (Hartnell (1995)) is often studied in

which fire spreads from node to node on a graph in dis-

crete time steps and the goal of the optimization is to

decide which nodes to protect in order to save as large

portion of the graph as possible. Various metaheuris-

tic methods were used to solve this problem, such as

Ant-Colony Optimization (Blum et al. (2014)), Evo-

lutionary Algorithms (Michalak (2014a)), Estimation

of Distribution Algorithms (Lipinski (2017)) and Vari-

able Neighbourhood Search (Hu et al. (2015)). Apart

from the classical single-objective, deterministic FFP,

different variants were studied, such as the multiobjec-

tive (Michalak (2019)) and non-deterministic version

(Michalak and Knowles (2016)).

Vaccination optimization (Parousis-Orthodoxou

and Vlachos (2014)) is an example of a real-life

optimization problem in which a spreading threat

has to be stopped. This problem can be solved as

an optimal control problem (Witbooi et al. (2015))

using compartmental models (Brauer (2008)), such as

the Susceptible-Vaccinated-Infected-Recovered, SVIR

model (Tornatore et al. (2014)) in which four classes

(compartments) are used, instead of individuals, to

represent the population. In the case of the SVIR

model these classes contain all the susceptible (’S’),

vaccinated (’V’), infected (’I’) and recovered (’R’)

individuals. In more complex, hybrid compartmental

models (Yu et al. (2016)), compartments can represent

more properties of the individuals than just the state

(for example geographical location). Another approach

to vaccination optimization is to use individual-based

modelling (Grimm and Railsback (2005)) which can

be combined with metaheuristic algorithms in order

to find optimal vaccination schemes (da Cruz et al.

(2017)). In this approach graph-based representation

is often used, with graph nodes representing various

entities (people, animal farms, cities, etc.) and edges

representing contacts which allow the pathogen to

spread. In order to evaluate a given solution x to

the tackled optimization problem, simulations of the

spreading of the disease are performed (Juan et al.

(2015)). Counter-epidemic actions encoded by the

solution x are used to limit the spreading, and solution
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evaluation usually involves counting infected individu-

als, and calculating costs of counter-epidemic actions,

such as vaccinations. An obvious advantage of this

approach is that complex scenarios can be evaluated,

taking into account information regarding individuals

or contacts much more detailed than that represented

by a compartmental model. Also, there exist studies

showing the superiority of individual-based optimiza-

tion of vaccine allocation strategies in comparison

to deriving such strategies using the compartmental

model (Dalgıç et al. (2017)). On the other hand,

simulations are usually lengthy, necessitating the use

of considerable computational resources.

As mentioned above, the graph-based approach to

epidemic modelling has the advantage in that it al-

lows incorporating detailed information about individu-

als and/or contacts. For example, in the case of animal

diseases, data describing animal movements are often

available allowing detailed modelling of the spreading

of the pathogen (Dubé et al. (2009)). In this article

a real-life dataset of animal movements between farms

and pastures in the Piedmont region of Italy is used

to reconstruct a dynamic graph of contacts over which

the disease spreads. Numerous works stress the impor-

tance of dynamical modelling of the contacts network

(Bajardi et al. (2011)), because temporal correlations

between contacts cannot be adequately reflected us-

ing weighted static graphs, leading in some cases to

a greatly underestimated final epidemic size (Vernon

and Keeling (2009)). A problem that arises in epidemics

control on the contacts network using movements data

is that prediction of epidemic spreading requires knowl-

edge of future movements, while, naturally, only past

movements are known.

In real-life epidemic modelling various kinds of un-

certainties are encountered that influence the accuracy

of predictions produced by computational methods. For

example, parameters of compartmental models cannot

be determined with certainty (Danila et al. (2014)).

Individual-based methods are also affected by uncer-

tainties, such as limited knowledge of initial outbreaks

(Bozzette et al. (2003)) and difficult to predict out-

comes of various preventive actions (Li et al. (2017)).

1.3 Highlights of this article

Key points summarizing the contents of this article are:

– Vaccination optimization is studied using simula-

tions of the spreading of the disease on the

graph of animal movements.

– A real-life dataset of animal movements between

farms and pastures in the Piedmont region of Italy

is used, from which a dynamic network of contacts

is reconstructed. Note, that it is assumed that an-

imal movements cannot be stopped, because they

help satisfy vital business needs of the farms, such

as animal trading and moving animals to pastures

for grazing. Therefore, the article focuses on vacci-

nations as a measure to stop the epidemic without

disrupting animal movements.

– Evolutionary multiobjective optimization of

vaccinations is studied, with three optimization al-

gorithms compared to each other and with typical

vaccination strategies, for example based on degrees

or strengths of graph nodes.

– To improve the working of the evolutionary algo-

rithm a local search procedure dedicated to

the solved problem is used in this article and

shown to achieve a statistically significant improve-

ment of the optimization results with respect to al-

gorithms without this local search.

– Two kinds of uncertainties are considered: lim-

ited knowledge of initial disease cases, and dif-

ferences between known past animal movements

used for simulations and unknown future move-

ments driving the real-life epidemic. In this article

a method of modelling and parameterizing

changes in the dynamic network of contacts

over which the disease spreads is proposed.

– The analysis of the influence of uncertainties shows

both strengths and limitations of evolution-

ary optimization as well as vaccination strate-

gies. This knowledge can be useful for making

decisions and determining situations when general

vaccination strategies are better suited, and when

optimization of the vaccination scheme can be per-

formed.

The article is structured as follows. Section 2 de-

scribes the epidemic scenario considered in this article.

Section 3 defines the optimization problem. Section 4

describes the experiments. Section 5 discusses the re-

sults and section 6 concludes the article.

2 Epidemic Scenario

This section describes the details of the epidemic mod-

elling: the movements dataset and contacts network;

epidemic parameters, the initial state of the system,

and disease spreading dynamic; and uncertainties.

2.1 The movements dataset and contacts network

The epidemic studied in this article is modelled on

a graph in which nodes are farms and pastures in the
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Piedmont region of Italy, and edges represent move-

ments of animals between these locations in the year

2017. There are 9313 farms housing 560812 animals,

and 573 pastures. Movements can occur between farms

and other farms, as well as pastures, and for each move-

ment the date of the movement and the number of an-

imals are known. The time period considered in this

article is from 2017.01.01 to 2017.12.31. The number of

farm-to-farm movements is 36293 involving 118146 an-

imals and 50289 animals are moved between farms and

pastures in 1998 farm-to-pasture movements and 2037

pasture-to-farm movements. In order to reduce noise,

a practice proposed by other authors was followed (Ba-

jardi et al. (2011); Rautureau et al. (2011)) and move-

ments were aggregated in 7-day periods thereby forming

53 time periods.

2.2 Epidemic parameters and disease spreading

dynamic

The epidemic is modelled on a graph G = 〈V,E〉, with

|V | = 9886 nodes (farms and pastures) in Nt = 53 time

steps, following the Susceptible-Vaccinated-Infected-

Recovered, SVIR model (Tornatore et al. (2014)). For

each node in the graph the number of animals in each

of the ’S’, ’V’, ’I’, and ’R’ states is recorded. The size

of the initial outbreak was set to αinf = 1% of the

farms, so 93 farms are randomly selected with uniform

probability and all the animals in these farms are set to

the ’I’ state. Within nodes the spreading of the disease

is simulated assuming a full network of contacts be-

tween animals in that node. Disease transmission prob-

ability per a time step is assumed to be βs = 0.5 for

susceptible animals and βv = 0.01 for vaccinated an-

imals. Spreading of the disease between nodes is only

possible when animals are moved. When a movement

occurs, a required number of animals is selected from

the source node with the states selected in proportion

to those present in that node when the movement oc-

curs. For example if 20 animals are to be moved from

a node that contains 40 ’S’, 20 ’V’, 10 ’I’ and 30 ’R’

animals (100 animals in total) the movement will con-

tain 8 ’S’, 4 ’V’, 2 ’I’ and 6 ’R’ animals. Counters in the

source and destination nodes are updated accordingly.

Figure 1 presents spreading of the disease with αinf =

0.01, βs = 0.5 and βv = 0.01 during one year (53 time

periods). Node color is assigned proportionally to the

fraction of animals that are infected in each node with

blue representing a node with no infected animals and

red representing a node with all infected animals. Node

radius is proportional to the square root of the number

of animals.

Fig. 1 Spreading of the disease with αinf = 0.01, βs = 0.5
and βv = 0.01 during one year (53 time periods). Axes show
geographic coordinates.

2.3 Uncertainties

In this article two kinds of uncertainties are taken into

account. First, it is assumed that not all initially in-

fected farms are known, but only a fraction αknown. To

compensate for this lack of knowledge, additional, ran-

domly selected farms can be treated as infected. The

actual initial state of the epidemic is a binary vector

S0 ∈ {0, 1}Nfarms in which Ninf randomly selected

farms are infected (elements of S0 set to 1). However,

vaccination optimization or selection of farms to vac-

cinate using the strategies is not performed using the

actual initial state S0, but rather using a different initial

state S′0 in which only αknown ·Ninf randomly selected

farms from S0 are known to be infected. A multiplica-

tion factor Ra is used to control the addition of ran-

domly selected infected farms to S′0. For Ra = 0 no
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artificial infected farms are added, for Ra = 1 there are

as many additional as the known infected farms, etc.

The motivation for studying this kind of uncertainties

is that in real life not all infections have to be initially

detected and there may exist additional initial cases of

the disease at locations which are not easy to determine.

The second kind of uncertainties regards the move-

ments of animals. As mentioned before, a database of

animal movements is available, but these are, obviously,

movements recorded in the past. When an epidemic

breaks out, the spreading of the disease depends on fu-

ture movements which may, or may not, resemble those

from the past. In order to study the influence of differ-

ences in animal movements on the vaccination schemes

the network of movements is rewired in the following

manner. Movements (edges of the graph G) are rewired

by taking pairs of movements of the same type (farm-

to-farm, farm-to-pasture, or pasture-to-farm), keeping

the number of moved animals unchanged, but swapping

the destinations. So, if two edges 〈v1, v2〉 and 〈v3, v4〉 are

selected, the rewiring removes these two edges and in-

serts two new ones: 〈v1, v4〉 and 〈v3, v2〉. The parameter

αrewire is used to determine how many movements will

be changed. The number of rewired pairs of movements

is αrewire · |E|/2, where |E| is the number of edges in

the graph G. In the later part of the article we will de-

note the contacts network obtained using the rewiring

mechanism as G′(αrewire). The motivation for rewiring

movements in this manner is that animal movements

are performed to satisfy certain business needs, such as

selling animals to another farm or moving animals to

pastures for grazing. Here, it is assumed that if a farm

v1 sells animals to another farm v2 the same number an-

imals will be sold in the modified set of movements, but

possibly to a different farm. Note, that, while motivated

by realistic assumptions, this rewiring mechanism does

not change the degrees nor strengths of the nodes and

thus may favor degree- and strength-based vaccination

strategies.

3 Optimization Problem

This section defines the vaccination optimization prob-

lem tackled in this article. We assume that vaccinations

are performed for entire farms, that is, when a farm is

vaccinated, all animals change their state to ’V’. Vac-

cinations are performed in a reactive manner, that is,

the outbreak of the disease happens first, and then the

vaccine is administered. This assumption is motivated

by the fact that in the case of some animal diseases,

such as the Foot-and-Mouth Disease (FMD), preemp-

tive mass vaccinations are prohibited in certain coun-

tries. For example, in the European Union only reactive

FMD vaccinations are allowed. If animals at a given

farm are initially infected it is not possible to vaccinate

such farm, because vaccinations would be ineffective.

Also, it is not possible to vaccinate animals in pastures,

only in farms. Therefore, the search space in this op-

timization problem is Ω = {0, 1}Nfarms where: Nfarms

= |Vf | and Vf denotes the set of those nodes in graph

G which are farms (therefore, Nfarms = 9313 in this

article). Farms for which the corresponding element in

a solution x ∈ Ω equals 1 are vaccinated.

The optimization problem studied in this article is

a biobjective one, because it is desirable to reduce vac-

cination costs and the number of infected animals at the

same time. For a given solution x ∈ Ω two objectives

f1(x) and f2(x) are calculated, both of which are to be

minimized. Objective f1 is the number of animals in

the vaccinated farms. It is calculated by simply adding

the number of animals for those farms for which a cor-

responding element in x is set to one, excluding those

which are initially infected:

f1(x) =

Nfarms∑
i=1

Nanim[i]x[i](1− S0[i]) , (5)

where:

Nanim[i] - the number of animals in the i-th farm,

S0 - the initial state in which the elements set to 1

correspond to initially infected farms.

Objective f2 is the number of animals infected in

a simulation starting with farms infected according to

the initial state S0 and with vaccinations performed

according to the solution x. After vaccinations are per-

formed, the spreading of the disease is simulated us-

ing the pathogen spreading mechanism described in

section 2. Since the spreading of the disease is non-

deterministic, Nsim > 1 simulations are performed for

a given S0 and x in order to reduce random variation.

The value of the f2 objective is calculated by averaging

the results of these Nsim simulations.

Note, that because of uncertainties, evaluations per-

formed when optimizing vaccinations use different data

than those performed when solutions found using differ-

ent methods are compared. Evaluations performed by

the optimization algorithm start from the initial state

S′0 in which only a fraction αknown of farms infected in

the true initial state S0 is known, but additional num-

ber Ra · αknown ·Ninf of randomly selected farms may

be assumed to be infected. Also, these evaluations use

the rewired contact network G′(αrewire), instead of the

original graph G, for simulating the spreading of the

disease. When comparing solutions generated by vari-

ous methods the true initial state S0 is used and the
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spreading of the disease is simulated on the original

graph G. This way the optimization algorithm works

without the full knowledge of the outbreak and the

movements, but the solutions it finds are evaluated as

if applied to a real scenario.

4 Experiments

The experiments described in this article were aimed at

the following goals:

– Comparing three multiobjective optimization algo-

rithms: MOEA/D, NSGA-II and SPEA2 and select-

ing the best one for the vaccination optimization

problem.

– Testing the local search procedure (Algorithm 2),

dedicated to the vaccination optimization problem.

– Determining the effectiveness of vaccination opti-

mization, in particular comparing solutions gener-

ated by the optimization algorithm and those pro-

duced using various vaccination strategies.

– Understanding the impact of uncertainties on the

optimization process as well as the effectiveness of

the strategies. A related goal was to study the pos-

sibility of using randomly selected ’infected’ farms

in order to compensate for the missing information

about really infected farms.

4.1 Vaccination Strategies

In epidemiology a number of strategies are known which

aim to detect good targets for vaccination, based on the
attributes of individuals (e.g. age, occupation) or prop-

erties of the contacts network. Among the latter, vac-

cinating high-degree (or high-strength) nodes is espe-

cially popular, because estimating the node degree and

strength using local information is relatively easy and

is computationally cheap. In this article several order-

based strategies were used in which a selected criterion

determines which farms are preferred for vaccination.

These strategies do not determine how many nodes or

animals to vaccinate, but only order the farms in a cer-

tain way and so they do not produce any predetermined

value for the objective f1 (the number of vaccinated an-

imals). In order to make these strategies comparable to

the results of a multiobjective optimization algorithm

a set of solutions was generated using each strategy by

iteratively setting f1 to 10000, 20000, . . . , 560000 and

using the strategy to determine which farms to vacci-

nate (Algorithm 1). Note, that, similarly as for opti-

mization, the farms that were known to be infected at

the time of vaccinations were omitted.

Algorithm 1: Generating solutions using order-

based strategies.

Inputs:
Nfarms - the number of farms
Nanim - a vector containing the number

of animals for each farm
Attr - farm attributes (e.g. node de-

grees)
S′0 - the initial (known) state of the

epidemic
Output:

P ⊂ Ω - a set of generated solutions

// Farms preferred by the strategy are placed first

R := {1, . . . , Nfarms}
R := StrategySort(R, Attr)

// Vaccinate an increasing number of animals

P := ∅
for Maxvacc := 10000, 20000, . . . , 560000 do

// A vector of 9313 zeros

x :=
−→
0

Nvacc := 0
for i := 1, . . . , Nfarms do

// Select the i-th best farm according

// to the strategy
j := R[i]

// Vaccinate if not initially infected and not

// exceeding the maximum number of animals
if S′0[j] = 0 and Nvacc +Nanim[j] ≤Maxvacc
then
x[j] := 1
Nvacc := Nvacc + Nanim[j]

P := P ∪ {x}

The selection of farms for vaccination using the

strategies was always performed using the known initial

state S′0, not the true one S0, and similarly graph-based

attributes were calculated using the rewired graph

G′(αrewire). The StrategySort procedure in Algorithm 1

sorted the farms according to the adopted strategy. The

following order-based strategies were used in the exper-

iments:

– Strength-based that prefers nodes of the graph with

a higher strength. In the experiments the strength

was calculated using either the number of animals

transported (NumAnimalsInMovements), the num-

ber of movements in which a given node was in-

volved (NumMovements) or the number of locations

to which the node was connected (NumLocations,

which is equal to the node degree). Each measure

was calculated in the In, Out and Both directions,

so the total number of strength based strategies was
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nine: (NumAnimalsInMovements, NumMovements,

NumLocations) × (In, Out, Both).

– Farm size that prefers farms with more animals.

– Random that shuffles the farms in a random order.

Apart from order-based strategies a strategy called

Rings was used which combined the idea of ring vacci-

nation (Toma et al. (2002)) and acquaintance vaccina-

tion (Ball and Sirl (2013)). Ring vaccination strategy

calls for vaccinating all nodes adjacent to the infected

ones, with an obvious intent to cut off the infected

nodes from the rest of the graph. Acquaintance vacci-

nation strategy suggests vaccinating nodes adjacent to

previously vaccinated ones. The observation supporting

the use of this strategy is that those ”adjacent nodes”

have higher probability of being selected from high-

degree nodes. The Rings strategy generates a set of

solutions P = {x0, x1, ..., }. The solution x0 is a vector

in Ω = {0, 1}Nfarms in which farms adjacent to those

infected in S′0 are marked by the value 1 (selected for

vaccination). For n = 1, . . . the solution xn+1 is con-

structed by selecting for vaccination all farms from xn
and farms adjacent to them. As with all previously dis-

cussed strategies, this strategy uses the known initial

state S′0 and the rewired graph G′(αrewire) to decide

which farms to vaccinate. Only after the decision which

farms to vaccinate is made, the solutions are evaluated

using the true initial state S0 and the original graph G

as if applied to a real scenario.

4.2 Evolutionary Algorithms

Apart from the strategies, three multiobjective evo-

lutionary algorithms were used for generating solu-

tions to the vaccination optimization problem. These

algorithms belong to two main groups of multiobjec-

tive evolutionary algorithms: based on decomposition

(MOEA/D) and based on Pareto dominance (NSGA-II

and SPEA2). The MOEA/D algorithm (Li and Zhang

(2009); Zhang and Li (2007)) is one of the most popu-

lar decomposition-based algorithms used in the litera-

ture for solving multiobjective optimization problems.

In this article Tchebycheff decomposition was used for

scalarizing multiple objectives in the MOEA/D algo-

rithm.

As the Pareto-based methods NSGA-II (Deb et al.

(2002)) and SPEA2 (Zitzler et al. (2002a)) algorithms

were used. Both algorithms were, to date, used for solv-

ing numerous optimization problems such as stock mar-

ket portfolio optimization (Kaucic et al. (2019)), inven-

tory optimization (Cholodowicz and Orlowski (2017))

and engineering problems (Gadhvi et al. (2016)).

Since the search space in the vaccination optimiza-

tion problem isΩ = {0, 1}Nfarms the solutions were rep-

resented using binary vectors of length Nfarms = 9313

in all the algorithms. Three crossover operators (Sin-

glePoint, TwoPoint and Uniform) were used as well as

six mutation operators (BitFlip, Displacement, Inser-

tion, Inversion, Scramble and Transpose). To determine

the probabilities for applying the operators an auto-

adaptation mechanism described in (Michalak (2014a))

was used.

4.2.1 Local Search

Solutions to the vaccination optimization problem are

evaluated using simulations. When simulations are per-

formed, it is possible to store the number of times each

node in the graph was infected in a vector Finfected ∈
NNfarms . This information can be used for improving

the search capabilities of the evolutionary algorithm

with a dedicated local search.

The local search starts from a solution x0 ∈ Ω and

attempts to construct a solution with fewer vaccinated

farms x− by setting to 0 those elements of the vector

x0 which are equal to 1 and correspond to the low-

est values in the Finfected vector (indicating rarely in-

fected farms). Conversely, a solution with more vacci-

nated farms x+ can be constructed by setting to 1 those

elements of the vector x0 which are equal to 0 and cor-

respond to the highest values in the Finfected vector

(indicating frequently infected farms). In each run of

the local search a fraction αLS of the elements of x0
can be changed.

Algorithm 2 presents the working of the local search

used in this article. In this algorithm the Evaluate pro-

cedure is used for evaluating a solution in the same way

as in the evolutionary algorithm. The notation x1 � x2
signifies that the solution x1 is considered better than

x2 and thus should be accepted by the local search. Of

course, in multiobjective optimization problems solu-

tions cannot be ordered linearly because one solution

may be better with respect to some objectives and the

other solution with respect to some other objectives.

This issue can be addressed by scalarizing multiple ob-

jectives or by using the concept of Pareto dominance

(equation (3)). Therefore, the working of the � oper-

ator used in the local search procedure is different for

the MOEA/D, which uses scalarized objectives and for

the Pareto-based algorithms (NSGA-II and SPEA2).

Since the MOEA/D algorithm uses weight vectors

for multiobjective problem decomposition, solutions

tested by the local search starting from the solution

x0 are compared by scalarization using the weight vec-

tor λ0 assigned by the MOEA/D to x0. The local search
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procedure uses the utopia point x(U) (best values of the

objectives found so far) and the nadir point x(N) (worst

values of the objectives found so far) for objective val-

ues normalization. When the � operator compares two

solutions x1 and x2 the vectors of objectives:

F (x1) = (f1(x1), . . . , fm(x1))

F (x2) = (f1(x2), . . . , fm(x2))
(6)

are normalized using the positions of the utopia point

x(U) and the nadir point x(N):

∀j = 1, . . . ,m :

f ′j(x1) =
fj(x1)∣∣∣x(N)

j − x(U)
j

∣∣∣ , (7)

f ′j(x2) =
fj(x2)∣∣∣x(N)

j − x(U)
j

∣∣∣ .
The normalized vectors of objectives:

F ′(x1) = (f ′1(x1), . . . , f ′m(x1))

F ′(x2) = (f ′1(x2), . . . , f ′m(x2))
(8)

are scalarized using the weight vector λ0 and the result-

ing scalar values are used for comparing the solutions:

x1 � x2 ≡ λ0 · F ′(x1) < λ0 · F ′(x2) , (9)

where · denotes a dot product of the weight vector λ0
and the corresponding vector of objectives.

When the local search is used with the NSGA-II

and SPEA2 the x1 � x2 condition signifies that x1
Pareto-dominates x2 (equation (3)), which is in line

with the main idea used in these algorithms, that is,

Pareto-dominance.

In the experiments the local search described in this

section was run for each solution found by the evolu-

tionary algorithm with a probability PLS .

4.3 Experimental Setup

In the experiments the evolutionary algorithms de-

scribed in section 4.2 were tested and compared to

twelve strategies described in section 4.1: nine strength-

based strategies with edge types (NumAnimalsInMove-

ments, NumMovements, NumLocations) and edge di-

rections (In, Out, Both), and the strategies FarmSize,

Random and Rings.

As discussed in previous sections test scenarios con-

sidered in this article are parameterized with several

parameters. Two parameters that describe how much

Algorithm 2: Local search used in this article.

Inputs:
x0 - the initial solution found by

the evolutionary algorithm
F (x0) - vector of objectives for x0
Finfected - infection counters for farms

Inputs used only with MOEA/D:
λ0 - the weight vector correspond-

ing to x0
x(U) - the utopia point
x(N) - the nadir point

Output:
x′0 - an improved solution (or x0 if

none found)

// Number of elements to change

NLS := αLS ·Nfarms

// Ordering of the farms in the order of ascending
// infection counters

R := {1, . . . , Nfarms}
R := Sort(R, Finfected, ’ascending’)

// A solution with fewer vaccinated farms

x− := x0
Nchanged := 0
for i := 1, . . . , Nfarms do

if x−[R[i]] = 1 then

x−[R[i]] := 0
Nchanged := Nchanged + 1
if Nchanged ≥ NLS then

break

// Replace the original solution by a better one
if Nchanged > 0 then

F (x−) := Evaluate(x−)

x(U) := min(x(U), F (x−))

x(N) := max(x(N), F (x−))
if x− � x0 then

x0 := x−

F (x0) := F (x−)

// A solution x+ with more vaccinated farms

// constructed and tested in the same way as x−

. . .

// Return the updated solution
x′0 := x0

(or little) is known about the actual outbreak and ani-

mal movements are: the fraction of known disease cases

αknown and the fraction of rewired edges in the contact

network αrewire. In the experiments these parameters

were set to αknown = 0.1, 0.2, 0.5, 0.8, 0.9 and 1.0, and

αrewire = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, 0.30,

0.40 and 0.50. These parameters are intended to repre-

sent the difference between information available when
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vaccination scheme is decided upon and when vacci-

nations are actually performed. Obviously, their values

cannot be adjusted by any of the tested methods, but

have to be treated as given. The Ra parameter control-

ling the generation of additional disease cases was set

to three values: Ra = 0, 1 and 2 and was not mod-

ified by the tested methods. Therefore, each method

was tested on each triple of values 〈αrewire, αknown, Ra〉
(180 different triples, overall). For each triple of the

parameter values 30 tests were performed using initial

states S0 and S′0 for initializing simulations, and the

original graph G and the rewired graph G(αrewire) for

simulating the spread of the disease. The initial states

and graphs were independently, randomly generated for

each of the parameter triples and 30 test instances.

In order to obtain comparable results, each method

tested in one of the 30 tests for a given triple of values

〈αrewire, αknown, Ra〉 was run with the same S0, S′0, G,

and G(αrewire).

In each test each method generated a set of solutions

using the known initial state S′0 and the rewired graph

G(αrewire). For example, the Rings strategy selected for

vaccination the nodes adjacent to those infected in S′0.

Subsequently nodes connected to the vaccinated ones

with edges of the graph G(αrewire) were selected. Simi-

larly, the evolutionary algorithm performed evaluations

of solutions by simulating the epidemic spreading on

the graph G(αrewire) starting from the known initial

state S′0. After the methods finished generating solu-

tions, these solutions were evaluated again using sim-

ulations starting from the true initial state S0 and us-

ing the original graph G in order to simulate using the

discovered solutions in a real epidemic. The results of

this final evaluation were used for comparing methods

tested in the experiments.

Since the vaccination optimization problem is mul-

tiobjective, the tested methods produced Pareto fronts

of non-dominated solutions. In order to compare these

Pareto fronts the hypervolume indicator (Zitzler et al.

(2002b)) was used. The hypervolume is calculated for

a set of points P as the Lebesgue measure of the portion

of the objective space that is dominated by solutions in

P collectively and bounded by a reference point r(N):

HV (P ) = L

(⋃
x∈P

[
f1(x), r

(N)
1

]
× . . .×

[
fm(x), r(N)

m

])
,

(10)

where:

m - the dimensionality of the objective space,

fi(·), i = 1, . . .m - the objective functions,

r(N) = (r
(N)
1 , . . . , r

(N)
m ) - a reference point,

L(·) - the Lebesgue measure on Rm.

For a minimization problem the reference point r(N)

should be selected in such a way that all the points in

the compared Pareto fronts have coordinates smaller

than r(N). Thus, most often the reference point r(N) is

obtained by calculating the global nadir point (contain-

ing the worst coordinates) from all solutions found by

the tested methods. In the biobjective case, the hyper-

volume is equal to the area of the subset of the objective

space that is dominated by a given set of solutions. For

each of the 30 tests the hypervolume was calculated and

the median of these results was used as the final result

attained by a given method.

5 Results

In this section the results of the experiments are dis-

cussed. Because evolutionary algorithms and the local

search require setting some parameters, parameter tun-

ing of these methods was performed first, then a com-

parison with vaccination strategies was performed, and

finally the addition of artificial disease cases was tested

as a mechanism for substituting the unknown ones.

Since the vaccination optimization problem is mul-

tiobjective, numerical comparison of the results pro-

duced by various methods was performed using the

hypervolume indicator. The reference point r(N) =

[560623, 240724.4] used for hypervolume calculation (cf.

equation (10)) was obtained from all solutions found by

the tested methods.

5.1 Parameter Tuning

The optimization algorithms used in the experiments,

as well as the local search procedure, require setting

some parameters, which can influence their perfor-

mance. The MOEA/D algorithm requires, apart from

the population size and operator probabilities, also

some parameters determining how large the neighbour-

hood of each solution is and how it is used in the al-

gorithm. Based on values available in the literature, in

particular in the original articles on MOEA/D (Li and

Zhang (2009); Zhang and Li (2007)) the values of the

maximum number of neighbours replaced nr = 2 and

the probability of selecting parents from the neighbour-

hood δ = 0.9 were selected. According to the findings

in the article (Michalak (2014b)) the number of neigh-

bours was set to an odd number T = 21 rather than an

even one. The population size Npop, the crossover prob-

ability Pcross, and the mutation probability Pmut for

the evolutionary algorithms were tuned using the grid
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search approach in preliminary experiments. Tested val-

ues were in the range: Npop ∈ { 50, 100, 200, 500 },
Pcross ∈ { 0.2, 0.4, 0.6, 0.8, 1.0 } and Pmut ∈ { 0.02,

0.04, 0.06, 0.08, 0.10 }. The stopping criterion was set

to maxFE = 10000 solution evaluations and tests were

performed using all possible triples of the Npop, Pcross,

and Pmut parameter values. The values of these param-

eters for which the highest median hypervolume was

produced were selected as the best ones. After tuning

the parameters for evolutionary algorithms, the param-

eters of the local search were tuned in the same manner.

The tested ranges for the local search parameters were

PLS ∈ { 0.2, 0.4, 0.6, 0.8, 1.0 } and αLS ∈ { 0.02,

0.04, 0.06, 0.08, 0.10 }. Table 1 lists the values of the

parameters obtained in the parameter-tuning phase of

experiments for each algorithm separately.

Table 1 The values of the parameters obtained using the grid
search approach.

Parameter name MOEA/D NSGA-II SPEA2

Population

size Npop 200 100 100

Crossover

probability Pcross 1.0 1.0 1.0

Mutation

probability Pmut 0.08 0.02 0.02

LS probability

(per solution) PLS 0.6 0.4 0.6

Fraction of positions

changed αLS 0.10 0.04 0.04

It can be observed that MOEA/D works better with

a larger population (Npop = 200) and Pareto-based al-

gorithms (NSGA-II and SPEA2) require smaller pop-

ulations (Npop = 100). Also, MOEA/D works better

with a higher mutation rate (Pmut = 0.08 vs. Pmut =

0.02). The best crossover probability for all three al-

gorithms turned out to be 1.0. Clearly, it is beneficial

to perform the local search on about half the solutions

in the population as the best probability of applying

the local search is PLS = 0.4 or 0.6 depending on the

evolutionary algorithm used. Interestingly, the best pa-

rameter settings for both Pareto-based algorithms are

the same with the MOEA/D requiring a larger popula-

tion, a higher mutation rate and a more intensive local

search (higher values of PLS and αLS).

Figure 2 shows combined Pareto fronts obtained

from 30 runs using the three evolutionary algorithms

with and without local search with the best parame-

ter settings. Table 2 shows median hypervolume values

obtained from 30 runs of these algorithms. The same

table contains p-values obtained using the Wilcoxon

statistical test (Wilcoxon (1945)) with the null hypoth-

esis stating the equality of the medians. Each p-value

shows if the difference between median hypervolume

attained by two algorithms (corresponding to the row

and column) is statistically significant. Only the differ-

ence between NSGA-II and SPEA2 without local search

cannot be considered statistically significant (p-value of

0.504). In all the other cases p-values are lower than

0.001 indicating statistically significant differences be-

tween median hypervolume values produced by differ-

ent algorithms. In the ”Hypervolume” column it can be

seen that the best performing method is the MOEA/D

with local search. This observation corresponds to Pa-

reto fronts shown in Figure 2, because the Pareto front

for MOEA/D with local search contains the most di-

versified solutions with the lowest values of both objec-

tives.

Pareto fronts presented in Figure 2 and numerical

results shown in Table 2 confirm that the local search

used in this article improves the search capabilities of

all the algorithms. Hypervolume values in Table 2 are

higher for algorithms with local search than without it

and differences between algorithms with and without

local search are statistically significant. Pareto fronts

obtained using local search extend much wider, offer-

ing a greater range of possibilities for a decision maker

to choose from including scenarios with very few vacci-

nations (good when the vaccine is in short supply) and

those with numerous vaccinations reducing the num-

ber of infections. Overall, the best algorithm is the

MOEA/D with the local search with the parameters

shown in Table 1.
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Fig. 2 Comparison of Pareto fronts obtained from 30 runs
of the three tested evolutionary algorithms with and without
local search with the best parameter settings.
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Table 2 Median hypervolume values obtained from 30 runs of all three evolutionary algorithms with and without local search
with the best parameter settings. The p-values were obtained using the Wilcoxon statistical test with the null hypothesis
stating the equality of the medians.

Algorithm Hyper- p-value

name volume MOEA/D NSGA-II SPEA2 MOEA/D NSGA-II SPEA2

(no LS) (no LS) (no LS) (with LS) (with LS) (with LS)

MOEA/D (no LS) 7.11 · 1010 — 1.74 · 10−4 1.89 · 10−4 1.73 · 10−6 1.73 · 10−6 1.73 · 10−6

NSGA-II (no LS) 6.98 · 1010 1.74 · 10−4 — 5.04 · 10−1 1.73 · 10−6 1.73 · 10−6 1.73 · 10−6

SPEA2 (no LS) 7.01 · 1010 1.89 · 10−4 5.04 · 10−1 — 1.73 · 10−6 1.73 · 10−6 1.73 · 10−6

MOEA/D (with LS) 1.13 · 1011 1.73 · 10−6 1.73 · 10−6 1.73 · 10−6 — 1.73 · 10−6 1.73 · 10−6

NSGA-II (with LS) 9.07 · 1010 1.73 · 10−6 1.73 · 10−6 1.73 · 10−6 1.73 · 10−6 — 1.89 · 10−4

SPEA2 (with LS) 9.72 · 1010 1.73 · 10−6 1.73 · 10−6 1.73 · 10−6 1.73 · 10−6 1.89 · 10−4 —

5.2 Comparison of evolutionary optimization and

vaccination strategies

In this round of experiments MOEA/D, NSGA-II and

SPEA2 were compared with vaccination strategies de-

scribed in Section 4.1.

First, the tested methods were compared sep-

arately for each of the 180 triples of values

〈αrewire, αknown, Ra〉 and the number of times each

method attained the best median hypervolume calcu-

lated from 30 repetitions of the tests was counted. In the

count only results statistically significant at the level

α = 0.01 were considered. When no statistically signif-

icant difference was found for a given triple of param-

eters 〈αrewire, αknown, Ra〉 such results were not in-

cluded in the count. Table 3 presents the results of this

comparison. There are three methods that attained the

best hypervolume for at least one of the 180 triples of

parameters: the MOEA/D optimization algorithm and

two strength-based strategies using the number of loca-

tions to which a node is connected (NumLocations) and

the number of animal movements (NumMovements). In

both cases the strength was based on incoming as well

as outgoing movements (the direction is Both).

Clearly, when node strength was used in the vaccina-

tion strategy, the most important characteristics turned

out to be the number of locations to which the node was

connected and the number of movements which went

from, or to the node. The NumLocations parameter is

the node degree and determines how many locations the

disease may spread to, so is understandably important.

The NumMovements parameter is important, because

of the temporal dependencies in the system. The dis-

ease can only spread from a node with movements that

occur after that node is infected. Therefore, if a node

is involved in multiple movements the chances that the

disease will spread from this node increase.

In order to better understand the influence of the

uncertainties quantified by the parameters αknown and

Table 3 Comparison of performance of the tested methods
with respect to the median hypervolume calculated from 30
repetitions of the tests for each of the 180 triples of values
〈αrewire, αknown, Ra〉. #best is the number of times a method
performed better than all the other methods for a given
〈αrewire, αknown, Ra〉 triple. In the count only results statis-
tically significant at the level α = 0.01 were considered.

Method #best

MOEA/D 61

NSGA-II 0

SPEA2 0

Strength(NumLocations, Both) 40

Strength(NumLocations, In) 0

Strength(NumLocations, Out) 0

Strength(NumAnimalsInMovements, Both) 0

Strength(NumAnimalsInMovements, In) 0

Strength(NumAnimalsInMovements, Out) 0

Strength(NumMovements, Both) 7

Strength(NumMovements, In) 0

Strength(NumMovements, Out) 0

Farm size 0

Random 0

Ring 0

αrewire the number of times evolutionary optimization

produced the best result was compared to the number

of times vaccination strategies produced the best result,

separately for each value of each of these parameters.

In the comparison the methods that obtained the best

result at least one time were included, that is MOEA/D

and two strategies: Strength(NumLocations, Both) and

Strength(NumMovements, Both). Similarly as with the

values presented in Table 3 only results statistically sig-

nificant at the level α = 0.01 were considered. Results

for the known cases fraction αknown are presented in

Figure 3. It can be observed that vaccination strategies

perform well when only a small fraction of initial dis-

ease cases are known. The MOEA/D outperforms the
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strategies when at least 80% of initial disease cases are

known when optimization is performed.
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Fig. 3 The number of times evolutionary optimization and
vaccination strategies attained the best result. Counted sep-
arately for each value of the known fraction of initial disease
cases αknown.

Results for the rewired movements fraction αrewire

are presented in Figure 4. It can be observed that vac-

cination strategies are the most effective when a large

fraction of movements is rewired. The MOEA/D out-

performs vaccination strategies when at most 20% of

movements are rewired. For 30% of movements changed

by rewiring or more, evolutionary optimization per-

forms worse than vaccination strategies. It should be

noted, however, that the adopted rewiring scheme,

while based on realistic assumptions, does not change

the degrees and strengths of the nodes and thus favors

the strategies based on these node attributes.

The influence of unknown disease cases on the Pa-

reto fronts can be assessed by comparing Figure 5 a)

and b). When only 10% of the disease cases are known

(αknown = 0.1) the performance of all three optimiza-

tion algorithms is deteriorated, with MOEA/D produc-

ing the most diversified Pareto front of the three evo-

lutionary algorithms, but worse than the vaccination

strategies. The influence of changes in the network of

contacts on the Pareto fronts can be assessed by com-

paring Figure 5 a) and c). In the presence of intensive

rewiring (αrewire = 0.50) the performance of evolution-

ary algorithms is deteriorated, with MOEA/D being

less impacted that NSGA-II and SPEA2.

5.3 Influence of artificial disease cases

From the results presented in Section 5.2 it can be con-

cluded, that optimization is able to outperform vacci-
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Fig. 4 The number of times evolutionary optimization and
vaccination strategies attained the best result. Counted sep-
arately for each value of the rewired movements fraction
αrewire.

nation strategies if enough initial cases of the disease

are known (αknown ≥ 0.8) and when the change in the

contacts network is not large (αrewire ≤ 0.2). In the

experiments artificial disease cases were generated in

order to compensate for the lack of knowledge of the

initial cases of the disease. This section presents results

obtained when optimization was performed with and

without artificial disease cases. In the comparison the

results obtained using MOEA/D were used, because its

performance was the best from the three tested evolu-

tionary algorithms. The performance of the evolution-

ary optimizer was compared to the results obtained us-

ing vaccination strategies. Figure 6 presents values of

rewired movements fraction αrewire and known disease

cases fraction αknown for which a better hypervolume

was attained by the MOEA/D (orange) and those for

which a better hypervolume was attained by one of the

strength-based strategies (gray). Subplots in this figure

present comparison of MOEA/D and strategies for Ra

= 0, 1, 2 and, in the subplot entitled ”Ra = best”, a sit-

uation when the best of results obtained for Ra = 0, 1,

2 are compared. It can be seen that generating artifi-

cial disease cases (Ra = 2) can improve optimization

results when only a half of the initial disease cases are

known (αknown = 0.5). However, this improvement is

obtained at the cost of deteriorating the results when

most disease cases are actually known (Ra = 2, αknown

= 0.9 and 1.0). In an idealized case (Ra = all) the

MOEA/D is able to outperform vaccination strategies

up to αknown = 0.5 and, although not simultaneously,

αrewired = 0.3. The setting of Ra = all corresponds to

selecting the best possible value of Ra for a given value

of αknown.
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a) αknown = 1.0, αrewire = 0.00
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b) αknown = 0.1, αrewire = 0.00
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c) αknown = 1.0, αrewire = 0.50

Fig. 5 Pareto fronts obtained in optimization scenarios with
a) no unknown disease cases and no rewiring (αknown = 1.0,
αrewire = 0.00); b) most of the disease cases unknown and
no rewiring (αknown = 0.1, αrewire = 0.00); c) no unknown
disease cases and intensive rewiring (αknown = 1.0, αrewire

= 0.50).

Similar conclusions can be drawn from Fig-

ure 7 which presents hypervolume values attained by

MOEA/D (orange) and the best of the strength-based

strategies (gray) depending on the value of rewired

movements fraction αrewire and known disease cases

fraction αknown. In this figure the decrease of the hyper-

volume caused by unknown disease cases is larger than

the decrease cause by rewiring, an effect that can also

be seen in Figure 5 showing Pareto fronts. The Pareto

front attained by MOEA/D is close to the one pro-

duced by vaccination strategies when αrewire = 0.50,

but is much worse for αknown = 0.1. In Figure 7 it can

be seen that adding artificial disease cases improves op-

timization results when only a few initial disease cases

are known (low values of αknown), but deteriorates the

results when most of the initial cases are known (high

values of αknown).

6 Conclusions

In this article evolutionary optimization of vaccinations

was compared with vaccination strategies such as those

prioritizing vaccination of nodes with a high strength or

degree. In the experiments the influence of uncertain-

ties was tested, represented by the lack of knowledge

of initial disease cases and the change of the contacts

network by a rewiring process. The experiments shown

that the MOEA/D algorithm used for optimization can

outperform vaccination strategies, however, its perfor-

mance is degraded when unknown initial cases of the

disease are present (αknown < 0.8). Also, changes in

the contacts network have a negative impact on opti-

mization as evidenced by the fact that the evolution-

ary algorithm performed worse than the strategies for

αrewire > 0.3. Naturally, it is important to note, that

the adopted rewiring process rewards the degree- and

strength-based vaccination strategies, because degrees

and strengths of the graph nodes remain unchanged.

Nevertheless, the performance of the optimization al-

gorithm is somewhat degraded also in absolute values.

Presented research shows strengths and weaknesses

of both the optimization of vaccinations and vaccina-

tion strategies discussed in this article. Evolutionary

optimization produces good solutions, but when there

are many unknown disease cases the performance is de-

graded. This effect can be mitigated by adding artifi-

cial disease cases to the simulations used when evalu-

ating solutions in the evolutionary algorithm. However,

this approach has to be applied carefully, because when

too many artificial disease cases are added the perfor-

mance can be degraded. Solutions provided by vaccina-

tion strategies are inferior to the optimized ones when

most of the disease cases are known, but vaccination
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Ra = 0 Ra = 1

Ra = 2 Ra = best

Fig. 6 Values of rewired movements fraction αrewire and known disease cases fraction αknown for which a better hypervolume
was attained by the MOEA/D (orange) and those for which a better hypervolume was attained by one of the strength-based
strategies (gray).

Ra = 0 Ra = 1

Ra = 2 Ra = best

Fig. 7 Hypervolume values attained by the MOEA/D (orange) and the best of the strength-based strategies (gray) depending
on the value of rewired movements fraction αrewire and known disease cases fraction αknown.
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strategies are less affected by uncertainties as evidenced

in Figure 7 by a smaller decrease of hypervolume for

larger values of αrewire and smaller values of αknown.

Obtained results motivate further work on optimiza-

tion methods for the vaccination optimization prob-

lem described in this article aimed at reducing the

impact of uncertainties on optimization and combin-

ing the strengths of both evolutionary optimization

and vaccination strategies. Because of the large impact

of uncertainties on the performance of the optimiza-

tion algorithms it seems worthwhile to attempt mod-

elling and predicting changes in the patterns of animal

movements. Another approach that could be attempted

would be to better model the unknown initial cases of

the disease. The comparison performed in an idealized

case (selecting the value of Ra producing the best re-

sults) suggests that optimization methods may benefit

from correct identification of the fraction of unknown

disease cases. The fact that different types of methods

show good performance under different conditions sug-

gests that hybrid methods combining evolutionary opti-

mization and vaccination strategies could be effective in

solving the vaccination optimization problem described

in this article.
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