
bioengineering

Communication

SeqFu: A Suite of Utilities for the Robust and Reproducible
Manipulation of Sequence Files

Andrea Telatin 1 , Piero Fariselli 2,* and Giovanni Birolo 2

����������
�������

Citation: Telatin, A.; Fariselli, P.;

Birolo, G. SeqFu: A Suite of Utilities

for the Robust and Reproducible

Manipulation of Sequence Files.

Bioengineering 2021, 8, 59.

https://doi.org/10.3390/

bioengineering8050059

Academic Editor: Florencio Pazos

Received: 10 March 2021

Accepted: 5 May 2021

Published: 7 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK;
andrea.telatin@quadram.ac.uk

2 Department of Medical Sciences, University of Turin, 10126 Torino, Italy; giovanni.birolo@unito.it
* Correspondence: piero.fariselli@unito.it;

Abstract: Sequence files formats (FASTA and FASTQ) are commonly used in bioinformatics, molecu-
lar biology and biochemistry. With the advent of next-generation sequencing (NGS) technologies, the
number of FASTQ datasets produced and analyzed has grown exponentially, urging the development
of dedicated software to handle, parse, and manipulate such files efficiently. Several bioinformatics
packages are available to filter and manipulate FASTA and FASTQ files, yet some essential tasks
remain poorly supported, leaving gaps that any workflow analysis of NGS datasets must fill with
custom scripts. This can introduce harmful variability and performance bottlenecks in pivotal steps.
Here we present a suite of tools, called SeqFu (Sequence Fastx utilities), that provides a broad range
of commands to perform both common and specialist operations with ease and is designed to be
easily implemented in high-performance analytical pipelines. SeqFu includes high-performance
implementation of algorithms to interleave and deinterleave FASTQ files, merge Illumina lanes, and
perform various quality controls (identification of degenerate primers, analysis of length statistics,
extraction of portions of the datasets). SeqFu dereplicates sequences from multiple files keeping track
of their provenance. SeqFu is developed in Nim for high-performance processing, is freely available,
and can be installed with the popular package manager Miniconda.

Keywords: bioinformatics; FASTQ; FASTA; software; next-generation sequencing

1. Introduction

The FASTA format was introduced in 1985 with the homonym software package
developed by Lipman and Pearson [1]. It is still the de facto standard format for nucleotide
and protein sequences. With the advent of automatic capillary sequencing, the FASTQ
format was introduced to store a quality score for each base [1,2]. These two file formats are
ubiquitous in bioinformatics, and a broad set of utilities have been released over the years
to help the users access and manipulate the sequences (from filtering tools like Cutadapt [3]
and Fastp [4], to general toolkits like SeqKit [5] and SeqTk [6]).

Here we present SeqFu, a novel suite of utilities to manipulate FASTA and FASTQ
files. It is written in the Nim programming language which combines an intuitive syntax
inspired by Python with the performance (and ease of distribution) of compiled programs.

SeqFu provides easy access to commonly used operations (e.g., interleaving/deinterlea-
ving FASTQ files), tools to facilitate testing and manual troubleshooting (e.g., inspecting
FASTQ files and checking for the presence of oligonucleotide sequences), and more special-
ized utilities.

Generic templates to prototype ad hoc tools are also available from the software repository.

2. Materials and Methods

SeqFu is written in Nim, a high-performance compiled language, was tested using
three compiler versions (1.0, 1.2, and 1.4), and implements the FASTA/FASTQ parsing algo-
rithm written by Heng Li [7], which is available from the repository https://github.com/

Bioengineering 2021, 8, 59. https://doi.org/10.3390/bioengineering8050059 https://www.mdpi.com/journal/bioengineering

https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0001-7619-281X
https://orcid.org/0000-0003-0160-9312
https://doi.org/10.3390/bioengineering8050059
https://doi.org/10.3390/bioengineering8050059
https://doi.org/10.3390/bioengineering8050059
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/lh3/biofast/
https://github.com/lh3/biofast/
https://doi.org/10.3390/bioengineering8050059
https://github.com/lh3/biofast/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering8050059?type=check_update&version=1

Bioengineering 2021, 8, 59 2 of 7

lh3/biofast/ (accessed on 12 April 2021). SeqFu was designed and tested to run on Linux
and macOS, but it should be possible to compile it for other POSIX compliant systems.

Some modules and templates use an alternative implementation of the same algorithm
called readfq (https://github.com/andreas-wilm/nimreadfq, accessed on 12 April 2021),
while k-mer counting is achieved using the implementation given by the nimbioseq library
(https://github.com/jhbadger/nimbioseq, accessed on 12 April 2021).

The Perl library (FASTX::Reader), which implements the same algorithm for FASTX
file parsing, is platform-independent and requires Perl 5.12 or greater.

The full SeqFu code is freely available from the GitHub repository (https://github.
com/telatin/seqfu2, accessed on 12 April 2021), and its documentation is available at
https://telatin.github.io/seqfu2 (accessed on 12 April 2021).

The suite is automatically checked at each release by a set of tests.

3. Results

SeqFu consists of a set of core modules bundled in a main ‘seqfu’ executable and an
additional set of corollary utilities, each in a separate binary executable with the ‘fu-’ prefix.

The FASTQ/FASTA parsing library we adopted allows FASTA or FASTQ files to be
used as input files, compressed with or without gzip, and includes support for the less
common ‘Sanger FASTQ’ format that allowed a single sequence to span multiple lines.

The algorithm to scan for sub-sequences in a sequence string allows the query to be
inserted using IUPAC ambiguous bases and will return full or partial matches from both
strands of the target sequence.

When paired-end input files are expected, the programs only specify the first pair file
name, autodetecting the paired reverse.

3.1. Manual Inspection of Datasets

SeqFu facilitates the testing of pipelines and workflows and has tools to inspect input
files and view or extract the first or last sequences of a dataset.

The seqfu view subprogram will render the quality string in the form of a coloured bar
plot using Unicode characters and includes an ‘oligonucleotide match’ function to visually
highlight the presence of primers, adaptors, or other sequences of interest in the input file.
This utility can be helpful for performing a first manual inspection of datasets or evaluating
the efficacy of trimming steps and inspecting their output files. A screenshot of seqfu view
with oligonucleotide matches highlighted is shown in Figure 1.

The seqfu head and seqfu tail functions allow extraction of the first (or last) sequences
from a dataset, mimicking the commonly used head and tail Unix utilities, with the addition
of parameters to skip a number of sequences allowing, for example, the user to extract one
sequence every 12, limited to the first 100 occurrences.

Similarly, seqfu grep mimics the ‘GNU grep’ utility but allows for queries, both in the
sequence name (either exact matches or regular expressions), and in the sequence itself. In
the latter case, the oligonucleotide match is achieved as described above, allowing both
strands to be queried and setting thresholds to allow for partial matches.

A first overview of a FASTQ dataset can be obtained with seqfu qual, that will report the
inferred quality encoding (e.g., ‘Illumina 1.8’) and an average quality profile of the reads.

3.2. FASTQ Dataset Management

There are routine operations on FASTQ datasets (and specifically Illumina paired-
end FASTQ datasets) that are commonly performed using Bash scripts, but which would
definitely benefit from a more robust implementation with consistency checks and better
performance and reliability from the unit tests.

Paired-end sequences can be stored in two separate files or in a single ‘interleaved’
file, where its paired reverse sequence follows each forward sequence. SeqFu implements
the interleave and deinterleave functions that convert separate pairs into a single interleaved
file or split an interleaved file into separate pairs, respectively.

https://github.com/lh3/biofast/
https://github.com/lh3/biofast/
https://github.com/andreas-wilm/nimreadfq
https://github.com/jhbadger/nimbioseq
https://github.com/telatin/seqfu2
https://github.com/telatin/seqfu2
https://telatin.github.io/seqfu2
https://telatin.github.io/seqfu2

Bioengineering 2021, 8, 59 3 of 7

Another commonly performed task is merging the FASTQ files coming from different
lanes of some Illumina sequencers. This task can be achieved with a seqfu lanes function,
which processes a full run with a single command that requires half the time needed for a
popular Bash script to achieve the same operation (see Section 3.7).

Bioengineering 2021, 8, x FOR PEER REVIEW 3 of 8

Figure 1. Example of the rendering of a FASTQ file by seqfu view, where the quality track is repre-
sented by a block of variable height and colors (gray, red, yellow, and green) and oligonucleotide
matches are rendered as colored arrows.

The seqfu head and seqfu tail functions allow extraction of the first (or last) sequences
from a dataset, mimicking the commonly used head and tail Unix utilities, with the addi-
tion of parameters to skip a number of sequences allowing, for example, the user to extract
one sequence every 12, limited to the first 100 occurrences.

Similarly, seqfu grep mimics the ‘GNU grep’ utility but allows for queries, both in the
sequence name (either exact matches or regular expressions), and in the sequence itself.
In the latter case, the oligonucleotide match is achieved as described above, allowing both
strands to be queried and setting thresholds to allow for partial matches.

A first overview of a FASTQ dataset can be obtained with seqfu qual, that will report
the inferred quality encoding (e.g., ‘Illumina 1.8’) and an average quality profile of the
reads.

3.2. FASTQ Dataset Management
There are routine operations on FASTQ datasets (and specifically Illumina paired-

end FASTQ datasets) that are commonly performed using Bash scripts, but which would
definitely benefit from a more robust implementation with consistency checks and better
performance and reliability from the unit tests.

Paired-end sequences can be stored in two separate files or in a single ‘interleaved’
file, where its paired reverse sequence follows each forward sequence. SeqFu implements
the interleave and deinterleave functions that convert separate pairs into a single interleaved
file or split an interleaved file into separate pairs, respectively.

Another commonly performed task is merging the FASTQ files coming from differ-
ent lanes of some Illumina sequencers. This task can be achieved with a seqfu lanes func-
tion, which processes a full run with a single command that requires half the time needed
for a popular Bash script to achieve the same operation (see Section 3.7).

Figure 1. Example of the rendering of a FASTQ file by seqfu view, where the quality track is represented
by a block of variable height and colors (gray, red, yellow, and green) and oligonucleotide matches
are rendered as colored arrows.

3.3. Sequence Statistics

A common operation, also performed by other tools like SeqKit, is counting the
number of sequences in one or more files. Seqfu count performs this operation for all
supplied input files. It still detects paired-end datasets and prints the reads count only
once per paired dataset, ensuring that both files have the same number of sequences; if the
numbers are not the same, then an error is reported.

The seqfu stats utility calculates a set of statistics based on the length of sequences in
the input files (including the widely adopted N50, and the less commonly used auN [8,9]).
It offers the option to print the output as raw tables, screen-friendly tables, or as a MultiQC-
ready file that can be incorporated with ease into a report generated by the MultiQC
tool [10]. An example of a MultiQC report generated with seqfu stats is shown in Figure 2.

Seqkit provides a similar function, so we compared the performance of seqfu stats with
seqkit stat (see Section 3.8), and found an improvement in speed despite the additional
calculations performed.

3.4. Other Utilities

Seqfu derep allows the dereplication of FASTA and FASTQ datasets, removing duplicate
sequences and keeping track of the total number of occurrences found in the original dataset.
SeqFu adds some user-friendly features compared with other tools (e.g., VSEARCH [11]),
such as the possibility of propagating the number of identical sequences initially present in
a file.

This means that, if a pipeline requires multiple dereplication steps, it remains possible
to identify the initial number of sequences of a specific type; this is because the information
is passed at each step via the ‘size = NUMBER’ tag in the sequence header. The program

Bioengineering 2021, 8, 59 4 of 7

can also generate a report, in JSON format, on the origin of the duplicated reads (to identify
which files contained each sequence and how many times per file).

Bioengineering 2021, 8, x FOR PEER REVIEW 4 of 8

3.3. Sequence Statistics
A common operation, also performed by other tools like SeqKit, is counting the num-

ber of sequences in one or more files. Seqfu count performs this operation for all supplied
input files. It still detects paired-end datasets and prints the reads count only once per
paired dataset, ensuring that both files have the same number of sequences; if the numbers
are not the same, then an error is reported.

The seqfu stats utility calculates a set of statistics based on the length of sequences in the
input files (including the widely adopted N50, and the less commonly used auN [8,9]). It
offers the option to print the output as raw tables, screen-friendly tables, or as a MultiQC-
ready file that can be incorporated with ease into a report generated by the MultiQC tool
[10]. An example of a MultiQC report generated with seqfu stats is shown in Figure 2.

Seqkit provides a similar function, so we compared the performance of seqfu stats with
seqkit stat (see Section 3.8), and found an improvement in speed despite the additional cal-
culations performed.

Figure 2. MultiQC report generated by seqfu stats. Furthermore, seqfu counts can generate a similar
table.

3.4. Other Utilities
Seqfu derep allows the dereplication of FASTA and FASTQ datasets, removing dupli-

cate sequences and keeping track of the total number of occurrences found in the original
dataset. SeqFu adds some user-friendly features compared with other tools (e.g.,
VSEARCH [11]), such as the possibility of propagating the number of identical sequences
initially present in a file.

This means that, if a pipeline requires multiple dereplication steps, it remains possi-
ble to identify the initial number of sequences of a specific type; this is because the infor-
mation is passed at each step via the ‘size = NUMBER’ tag in the sequence header. The
program can also generate a report, in JSON format, on the origin of the duplicated reads
(to identify which files contained each sequence and how many times per file).

These features, missing in alternative packages, can provide the foundation for per-
formance improvements in metagenomics and metabarcoding pipelines.

Figure 2. MultiQC report generated by seqfu stats. Furthermore, seqfu counts can generate a similar table.

These features, missing in alternative packages, can provide the foundation for perfor-
mance improvements in metagenomics and metabarcoding pipelines.

The tool fu-orf allows the extraction of open reading frames (ORFs) from nucleotide
datasets, including paired-end reads that are joined before ORF extraction. The module
translates each input sequence using the standard genetic code and will return all the open
reading frames (that can be filtered requiring a minimum length).

Other utilities include seqfu sort (to sort sequences by size), fu-sw (to perform a local
alignment against a target sequence using the Smith-Waterman algorithm [12]), seqfu rc
(to reverse complement sequences, supporting degenerate bases written as IUPAC DNA
characters), and fu-primers (to mask degenerate primers from FASTQ files).

3.5. Generic FASTX Utility Templates

The software repository contains a set of templates for custom application based on
FASTA or FASTQ file parsing. When each sequence is processed in an independent task,
the process can be engineered in a multithreading application, for which we also provide
specific templates.

3.6. Perl Library with The FASTX Parser

The FASTA/FASTQ parser used in SeqFu is also available as a Perl module (FASTX::
Reader), that can be found in MetaCPAN (https://metacpan.org/release/FASTX-Reader,
accessed on 20 April 2021) and BioConda (as ‘perl-fastx-reader’).

3.7. SeqFu Performance of Interleave, Deinterleave

We evaluated the SeqFu performance of interleave, deinterleave, and lanes programs
were compared with commonly used Bash one-liners (that usually lack any control of input
and output integrity). To make the comparison more relevant, we used uncompressed
FASTQ files and restricted the commands to a single core. These three subprograms were
implemented in SeqFu using a single thread.

https://metacpan.org/release/FASTX-Reader

Bioengineering 2021, 8, 59 5 of 7

We compared seqfu interleave and seqfu deinterleave with the Bash commands shown in
Figure 3.

Bioengineering 2021, 8, x FOR PEER REVIEW 5 of 8

The tool fu-orf allows the extraction of open reading frames (ORFs) from nucleotide
datasets, including paired-end reads that are joined before ORF extraction. The module
translates each input sequence using the standard genetic code and will return all the open
reading frames (that can be filtered requiring a minimum length).

Other utilities include seqfu sort (to sort sequences by size), fu-sw (to perform a local
alignment against a target sequence using the Smith-Waterman algorithm [12]), seqfu rc
(to reverse complement sequences, supporting degenerate bases written as IUPAC DNA
characters), and fu-primers (to mask degenerate primers from FASTQ files).

3.5. Generic FASTX Utility Templates
The software repository contains a set of templates for custom application based on

FASTA or FASTQ file parsing. When each sequence is processed in an independent task,
the process can be engineered in a multithreading application, for which we also provide
specific templates.

3.6. Perl Library with The FASTX Parser
The FASTA/FASTQ parser used in SeqFu is also available as a Perl module

(FASTX::Reader), that can be found in MetaCPAN (https://metacpan.org/release/FASTX-
Reader, accessed on 20 April 2021) and BioConda (as ‘perl-fastx-reader’).

3.7. SeqFu Performance of Interleave, Deinterleave
We evaluated the SeqFu performance of interleave, deinterleave, and lanes programs

were compared with commonly used Bash one-liners (that usually lack any control of in-
put and output integrity). To make the comparison more relevant, we used uncompressed
FASTQ files and restricted the commands to a single core. These three subprograms were
implemented in SeqFu using a single thread.

We compared seqfu interleave and seqfu deinterleave with the Bash commands shown
in Figure 3.

Figure 3. Bash script commonly used to interleave and deinterleave FASTQ files. At line 2 the
command used to interleave two FASTQ files; at line 7 the command used to deinterleave a
FASTQ file.

SeqFu was two times faster than Bash for interleaving, taking 4.7 ± 0.14 s versus 11.4
± 0.07 s and three times faster for deinterleaving, taking 3.9 ± 0.08 s versus 12.8 ± 0.10 s. It
should be noted that SeqFu provides easier access to the functions and a set of tests to
prevent reading-corrupted input files or producing invalid output.

The seqfu lanes program has been compared with a popular Bash script available via
GitHub (https://github.com/stephenturner/mergelanes, accessed on 01 May 2021), which
benefits from the multithreading capabilities of Bash pipes, but does not perform any in-
tegrity check on the input files, with the possibility of producing corrupted datasets. We
detected a 10-fold increase in speed (2.6 ± 0.9 ms for seqfu lanes compared with 31.8 ± 4.0
ms for the Bash script).

Figure 3. Bash script commonly used to interleave and deinterleave FASTQ files. At line 2 the com-
mand used to interleave two FASTQ files; at line 7 the command used to deinterleave a FASTQ file.

SeqFu was two times faster than Bash for interleaving, taking 4.7 ± 0.14 s ver-
sus 11.4 ± 0.07 s and three times faster for deinterleaving, taking 3.9 ± 0.08 s versus
12.8 ± 0.10 s. It should be noted that SeqFu provides easier access to the functions and a
set of tests to prevent reading-corrupted input files or producing invalid output.

The seqfu lanes program has been compared with a popular Bash script available via
GitHub (https://github.com/stephenturner/mergelanes, accessed on 1 May 2021), which
benefits from the multithreading capabilities of Bash pipes, but does not perform any in-
tegrity check on the input files, with the possibility of producing corrupted datasets. We de-
tected a 10-fold increase in speed (2.6 ± 0.9 ms for seqfu lanes compared with 31.8 ± 4.0 ms
for the Bash script).

3.8. Comparison between SeqFu and SeqKit

We compared the performance of the stats module with two other utilities: ‘SeqKit’
and ‘n50’, both available from BioConda. We used a file with only a few large sequences
(the human genome reference) and another file with many small sequences (reference
bacterial genomes of the gastrointestinal tract from the NIH Human Microbiome Project),
both used to benchmark SeqKit (https://bioinf.shenwei.me/seqkit/benchmark/, accessed
on 28 April 2021). Both datasets account for ~3 Gbp, but the Human genome reference is
composed of 194 sequences, while the other is more fragmented with 67,748 sequences.

We used ‘seqfu stats’, ‘seqkit stats --all’ and ‘n50 -x’ to ensure a similar output (by
default, SeqKit does not calculate the N50), finding that SeqFu is four times faster with the
human genome, and 1.1 times faster with the other dataset (thus the programs have similar
performance with many sequences). We also compared the (peak) memory usage, which is
similar for the considered programs (~1 Mb for the human genome, ~40 kb for the short
sequences), and is determined by the size of the largest sequence parsed (see Figure 4).

https://github.com/stephenturner/mergelanes
https://bioinf.shenwei.me/seqkit/benchmark/

Bioengineering 2021, 8, 59 6 of 7

Bioengineering 2021, 8, x FOR PEER REVIEW 6 of 8

3.8. Comparison between SeqFu and SeqKit
We compared the performance of the stats module with two other utilities: ‘SeqKit’

and ‘n50’, both available from BioConda. We used a file with only a few large sequences
(the human genome reference) and another file with many small sequences (reference
bacterial genomes of the gastrointestinal tract from the NIH Human Microbiome Project),
both used to benchmark SeqKit (https://bioinf.shenwei.me/seqkit/benchmark/, accessed
on 28 April 2021). Both datasets account for ~3 Gbp, but the Human genome reference is
composed of 194 sequences, while the other is more fragmented with 67,748 sequences.

We used ‘seqfu stats’, ‘seqkit stats --all’ and ‘n50 -x’ to ensure a similar output (by de-
fault, SeqKit does not calculate the N50), finding that SeqFu is four times faster with the
human genome, and 1.1 times faster with the other dataset (thus the programs have sim-
ilar performance with many sequences). We also compared the (peak) memory usage,
which is similar for the considered programs (~1 Mb for the human genome, ~40 kb for
the short sequences), and is determined by the size of the largest sequence parsed (see
Figure 4).

Figure 4. Memory consumption and execution times of Seqkit, SeqFu and n50 using two datasets
(reference bacterial genomes from the gastrointestinal tract, left, and the human genome, right). Se-
qKit has been used with default parameters (no N50) which skips the calculation of extended statis-
tics, and with the ‘—all’ parameter (labelled as Seqkit all). SeqFu is the faster tool in both datasets,
with a remarkable difference when parsing a file with few large sequences (human genome).

4. Discussion
In bioinformatics, it is currently possible and relatively easy to find software to per-

form complex tasks (such as sequence alignment, variant calling, genomic assembly).
Many choices are available, and the community converges towards well-performing,
high-quality and thoroughly-tested solutions. The situation is different for simpler tasks:
for many of these the available solutions are few and often lacking in some way, since
there is little merit in publishing these type of tools. Thus, it is common to rely on home-
made scripts, bash hacks, and ‘glue’ code, resulting in slow, hard-to-use, and untested
applications.

SeqFu aims to improve this situation by providing an easily deployable set of well-
documented, tested, and high-performance utilities. The recommended deployment strat-
egy is through the widely adopted ‘Miniconda’ package manager (and specifically via the
‘BioConda’ channel [11]), while the code is published on GitHub. Full documentation is
available online and in a compact format in the built-in command help.

High-performance follows from using a compiled language, which is relevant for a
tool to be used on real data. Since we focused on features unavailable in other tools, it is

Figure 4. Memory consumption and execution times of Seqkit, SeqFu and n50 using two datasets (reference bacterial
genomes from the gastrointestinal tract, left, and the human genome, right). SeqKit has been used with default parameters
(no N50) which skips the calculation of extended statistics, and with the ‘—all’ parameter (labelled as Seqkit all). SeqFu is the
faster tool in both datasets, with a remarkable difference when parsing a file with few large sequences (human genome).

4. Discussion

In bioinformatics, it is currently possible and relatively easy to find software to perform
complex tasks (such as sequence alignment, variant calling, genomic assembly). Many
choices are available, and the community converges towards well-performing, high-quality
and thoroughly-tested solutions. The situation is different for simpler tasks: for many of
these the available solutions are few and often lacking in some way, since there is little
merit in publishing these type of tools. Thus, it is common to rely on home-made scripts,
bash hacks, and ‘glue’ code, resulting in slow, hard-to-use, and untested applications.

SeqFu aims to improve this situation by providing an easily deployable set of well-
documented, tested, and high-performance utilities. The recommended deployment strat-
egy is through the widely adopted ‘Miniconda’ package manager (and specifically via the
‘BioConda’ channel [11]), while the code is published on GitHub. Full documentation is
available online and in a compact format in the built-in command help.

High-performance follows from using a compiled language, which is relevant for a
tool to be used on real data. Since we focused on features unavailable in other tools, it is
difficult to perform a comprehensive performance comparison due to the lack of alternative
implementations. The common tasks of interleaving and deinterleaving paired-end reads,
for example, are often performed with Bash scripts that are harder to implement, more
error-prone, but also less efficient than SeqFu, which is up to three times faster. Similarly,
the common operation of merging reads from multiple lanes of Illumina sequencers is ten
times faster than the implementation provided by a popular Bash script. SeqFu stats is a
subcommand that has a direct alternative in the well-known SeqKit tool. However, SeqFu
is up to four times faster than SeqKit on datasets with large sequences.

The provided commands are reasonably generic, providing many options to customize
the results. However, by design, we keep the scope of each command limited to simple
commands for simple tasks.

In addition to common tasks, there are several scenarios where ad hoc scripts are
required to perform operations tailored for custom sequencing libraries or downstream
applications. It is common practice to use high-end programming languages like Python
for these kinds of tasks, given the simple syntax and excellent parsing libraries available.
We believe Nim to be an equally accessible language (thanks to a Python-inspired syntax)

Bioengineering 2021, 8, 59 7 of 7

that can bring a performance boost in these scenarios (being a compiled language), hence
our decision to curate a set of program templates that are easy to compile and distribute.

5. Conclusions

The SeqFu suite is an easy-to-install set of tools to manipulate FASTA and FASTQ
files that fills some gaps left by other software in this category. SeqFu offers templates to
build custom programs that can manipulate sequencing datasets with the performance
advantage offered by a compiled language and multithreading support.

Finally, SeqFu provides novel approaches for high performance processing of NGS
datasets, like an improved dereplication tool (that can be particularly beneficial in metage-
nomics and metabarcoding pipelines), and simplify the reporting of its results both via
JSON and MultiQC-enabled output.

Author Contributions: Conceptualization A.T., G.B. and P.F.; Methodology, A.T. and G.B.; Software,
A.T.; writing—original draft preparation, A.T. and G.B.; Validation G.B.; writing—review and editing,
P.F.; All authors have read and agreed to the published version of the manuscript.

Funding: This research has been possible thanks to the support of the Biotechnology and Biological
Sciences Research Council (BBSRC); this research was funded by the BBSRC Institute Strategic Pro-
gramme Gut Microbes and Health BB/R012490/1 and its constituent project BBS/E/F/000PR10353
and the collaboration supported by the BBSRC Flexible Talent Mobility Accounts (BB/R506552/1);
Development and tests were performed on CLIMB-BIG-DATA computing infrastructure, funded by
the UK’s Medical Research Council through grant MR/T030062/1.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The published version of the software has been archived in Zenodo,
and available at https://doi.org/10.5281/zenodo.4740106 (accessed on 6 May 2021).

Acknowledgments: The authors would like to express their gratitude to Rebecca Ansorge, for testing
the software, and to Judith Pell for carefully reviewing the manuscript. P.F. and G.B. thank the Italian
Ministry for Education, University and Research under the programme “Dipartimenti di Eccellenza
2018–2022 D15D18000410001”.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wikipedia Contributors. FASTQ Format—Wikipedia, The Free Encyclopedia, Wikipedia: 2021. Available online: https://en.wikipedia.

org/wiki/FASTQ_format (accessed on 6 May 2021).
2. Li, H.; Ruan, J.; Durbin, R. Mapping Short DNA Sequencing Reads and Calling Variants Using Mapping Quality Scores. Genome

Res. 2008, 18, 1851–1858. [CrossRef] [PubMed]
3. Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet. J. 2011, 17, 10. [CrossRef]
4. Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890.

[CrossRef] [PubMed]
5. Shen, W.; Le, S.; Li, Y.; Hu, F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS ONE 2016, 11,

e0163962. [CrossRef] [PubMed]
6. Li, H. SeqTk. Available online: https://github.com/lh3/seqtk (accessed on 6 May 2021).
7. Li, H. Fast High-Level Programming Languages. Heng Lis Blog. 2020. Available online: https://lh3.github.io/2020/05/17/fast-

high-level-programming-languages (accessed on 6 May 2021).
8. Salzberg, S.L.; Phillippy, A.M.; Zimin, A.; Puiu, D.; Magoc, T.; Koren, S.; Treangen, T.J.; Schatz, M.C.; Delcher, A.L.; Roberts, M.;

et al. GAGE: A Critical Evaluation of Genome Assemblies and Assembly Algorithms. Genome Res. 2012, 22, 557–567. [CrossRef]
[PubMed]

9. Li, H. AuN: A New Metric to Measure Assembly Contiguity. Heng Lis Blog. 2020. Available online: https://lh3.github.io/2020/0
4/08/a-new-metric-on-assembly-contiguity (accessed on 6 May 2021).

10. Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a
Single Report. Bioinform. Oxf. Engl. 2016, 32, 3047–3048. [CrossRef] [PubMed]

11. The Bioconda Team; Grüning, B.; Dale, R.; Sjödin, A.; Chapman, B.A.; Rowe, J.; Tomkins-Tinch, C.H.; Valieris, R.; Köster, J.
Bioconda: Sustainable and Comprehensive Software Distribution for the Life Sciences. Nat. Methods 2018, 15, 475–476. [CrossRef]

12. Smith, T.F.; Waterman, M.S. Identification of Common Molecular Subsequences. J. Mol. Biol. 1981, 147, 195–197. [CrossRef]

https://doi.org/10.5281/zenodo.4740106
https://en.wikipedia.org/wiki/FASTQ_format
https://en.wikipedia.org/wiki/FASTQ_format
http://doi.org/10.1101/gr.078212.108
http://www.ncbi.nlm.nih.gov/pubmed/18714091
http://doi.org/10.14806/ej.17.1.200
http://doi.org/10.1093/bioinformatics/bty560
http://www.ncbi.nlm.nih.gov/pubmed/30423086
http://doi.org/10.1371/journal.pone.0163962
http://www.ncbi.nlm.nih.gov/pubmed/27706213
https://github.com/lh3/seqtk
https://lh3.github.io/2020/05/17/fast-high-level-programming-languages
https://lh3.github.io/2020/05/17/fast-high-level-programming-languages
http://doi.org/10.1101/gr.131383.111
http://www.ncbi.nlm.nih.gov/pubmed/22147368
https://lh3.github.io/2020/04/08/a-new-metric-on-assembly-contiguity
https://lh3.github.io/2020/04/08/a-new-metric-on-assembly-contiguity
http://doi.org/10.1093/bioinformatics/btw354
http://www.ncbi.nlm.nih.gov/pubmed/27312411
http://doi.org/10.1038/s41592-018-0046-7
http://doi.org/10.1016/0022-2836(81)90087-5

	Introduction
	Materials and Methods
	Results
	Manual Inspection of Datasets
	FASTQ Dataset Management
	Sequence Statistics
	Other Utilities
	Generic FASTX Utility Templates
	Perl Library with The FASTX Parser
	SeqFu Performance of Interleave, Deinterleave
	Comparison between SeqFu and SeqKit

	Discussion
	Conclusions
	References

