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The fundamental solution
for a degenerate parabolic Dirichlet problem

ENRICO PRrIOLA

Abstract. — We study a homogeneous parabolic Dirichlet problem involving a possibly de-
generate Ornstein-Uhlenbeck operator in a half space H of R". We find an explicit
formula for the f-undamental solution. Under the Hormander condition of hypoellip-
ticity, we prove a global regularity result in spaces of continuous and bounded fun-
ctions. We extend our explicit formula to the infinite dimensional setting.

1. — Introduction and Preliminaries.

We consider a parabolic Dirichlet problem in a half space of R" involving the
possibly degenerate Ornstein-Uhlenbeck differential operator

1 1 n n
11  Up= ETr(QD2 $) -+ (Bx, Dp(@) = __21Qijpij¢(m) + 'ZlBij 2, D; p(ax),
L1= 1"7=

x € R"*, where B = B;; is a non zero matrix on R” and Q = Q; is a non negative
symmetric matrix on R". Let voeR", |vo| =1, and define

1.2) H, = {xeR" such that (x, v) >0, xeR"},

oH, = {x e R” such that (x, vo) =0}, H,=H,UGJ3H,. We are concerned with
the problem :

atu(t,x)=‘u,u(t,m), xeH,, t>0,
(1.3) wz,t)=0, zedH,, t>0,
w(0, x) =f(x), wxeH,,

where % :[0, ©)x H, —R and fe UG, (H.), the space of all uniformly conti-
nuous and bounded functions on H., endowed with the supremum norm.
Under some assumptions on the coefficients Q and B, see Hypothesis 1, we
prove that there exists a unique classical solution « of (1.3) and further u(t, x) =
P,f(x), t=0, xeH,, where P, is a transition semigroup of contractions on
U Gy (H . ). By using analytic methods, mainly semigroup theory, we show that the
transition measures, which determine P;, have a density with respect to the Le-
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vide an eaplicit formula for such a density (i.e. we compy.
tion of (1.8)). This density involves Gaussian kernels, g,
s similar to the ones contained in [16] and [18]
er condition on hypoellipticity of U, see (i) i,

Hypothesis 1, some regularity properties of P, are established, see Propositiyy,
9 4 and Theorem 2.7. In particular we obtain that P, f(-) is infinitely differentiap],
on H, with the partial derivatives of any order (in the «x —variable) which ape
bounded on the whole of H . This global regularity result shows that the semj.
group P, has a regularizing effect (in particular it is strong Feller).

We point out that by taking the Laplace transform of P, f(x), see (2.13), it is
possible to investigate a corresponding elliptic Dirichlet problem on H., see
(2.12). We think that the Schauder estimates given in [14] for the elliptic equation
Ap — U@ on R*, >0, could be extended to this elliptic Dirichlet problem.

Concerning possibly degenerate elliptic and parabolic equations on R"”, with
unbounded coefficients, after the pioneering works in [1], [2], some optimal regu-
larity results have been obtained recently by using semigroups theory, probabili-
stic methods and computing explicit formulas for the solutions (we only mention
[6], [7], [14], [5], [15], [18]). These global regularity results are also motivated by
applications to stochastic differential equations, see for instance [8], [11], [20],

and to financial mathematics, see [3].
Let us introduce the following linear operators @,

besgue measure and pro
te the fundamental solu
Proposition 2.3. We use technique
Moreover, assuming the Hérmand

t

(tB)*

(1.4) Q.= feSBQeSB'ds, eB= D, ,  t=01
h k=0 k!

Throughtout the paper we make the following assumptions:

Hypothesis 1
(i) v, is an eigenvector of B*, the adjoint of B, i.e. B*v, = bvy, beR;
(ii) Qu, is an eigenvector of B;
(iii) det@; >0, t>0.

These assumptions are all invariant under any linear transformation of coor-
dinates in R”. It seems a hard problem finding an explicit formula for the funda-
mental solution of (1.3) avoiding (i) and (i) in Hypothesis 1. In Example 2.8 we
consider two matrices @, B and a unitary vector v, which satisfy Hypothesis 1.

Condition (iii) in Hypothesis 1 is equivalent to the fact that the operator U is
hypoelliptic, see [9]. So if fe C*(R2)and y is a distributional solution of Uy =f,
then v € C* (L), for any open set Q ¢ R"™ The hypoellipticity of U may be expres-
sed in other equivalent ways, which we briefly review.

ain subspaces which are invariant for B*

(a) The kernel of Q does not cont
on is equivalent to the hypoellepticity of U).

(Hérmander pointed out that this conditi
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(b) rgnk {LXGy 50, X Y)x)} =n, xeR", where £(X,, ey X, Y) deno-
t(is the Lie algebra generated by the first order differential operators X;=

k§=:1 QyDy,j=1, ...n, Y= (Bzx, D-) (this is the celebrated Hormander condition
on hypoellipticity).

() rank [Q', BQ'Y,...,B" 1Q21=n, where [QY2, BQY2, .. .,
B"~1Q'?] is the matrix obtained «attaching» the matrices Q2, ..., B*~1Q'”?
(this a condition is called the Kalman rank condition and it is well known in con-
trol theory, see [21]).

The equivalence between (a), (b) and (iii) of Hypothesis 1 can be found in [13].
For the equivalence of (c), we refer to Chapter 1 in [21].

Now we fix notations and give some preliminaries. Let us choose once and for
all an orthonormal basis (ex), k =1, ...n, of R", such that v, = e;. By means of the
basis (e), we always identify H, with the canonical open half space

(1.5) R’.’;={x=(x1,x'),x1>0,x'eR"'l}, xk':(x,ek), k:ly-"na

and 6H , with R"~!. We also define R”. = {x = (x;, x’), 2, <0,x’ e R""1}. Let Q

be an open subset of R” and denote by |-| the Euclidean norm of any R¥, k= 1.

The space UGy(L2, R*) stands for the Banach space of all uniformly continuous

and bounded functions f: Q2—R*, endowed with the sup norm: [fll,=

sup |f(x) |, fe UG(L2, RF). We set UG, (R2) = UG, (L2, R). Note that the uniform
Q

Zgntinuity of f allows to consider values of f on 32 and implies that UG, () =
UG,y (R2). The space UCE(R2), keZ,, is the set of all k-times differentiable fun-
ctions f, whose partial derivatives, D, f, aeZ’,, |a| = a, + ... a, <k, are unifor-
mly continuous and bounded on £ up to the order k. It is a Banach space endowed

With the norm ”f”k = ”f”ﬂ + | |Z<k||Daf”0’ fE U@(Q)-
We set UG (2) = N UCHR). If ACR", B,(A) denotes the Banach space of
k=0

all real, bounded and Borel functions on A, endowed with the sup norm. We final-
ly introduce the space

(1.6) UGR™), = {fe UG RY), f(0,2")=0, x'eR" 1},

Let M be a symmetric non negative matrix on R”, we denote by N(x, M), xe R”,
the Gaussian measure on R" with mean x € R” and covariance operator M; it has

density 1 o~ TM @120 with respect to the Lebesgue measure

V (27)" det (M) ] n
dy. Let B be any nonzero matrix on R

on R" we introduce the Ornstein-Uh
and B, as follows

and @ be a non negative symmetric matrix
lenbeck semigroup U,, associated with @

1.7) Utf(x)=ff(e‘3x+y)N(0,Qt)dy, fe B,(R"), xR, t>0,

R
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It is well known that Ue LUGCR"), t=0, and U,, _ UL

U,=1d ny. 0,

£ =0 (f (X, [ly) and (¥, [I-lly) are two real Bafr;ach;pac;es,yce(x, Y) standg 1"

tl;xe Banach space of all bounded linear operators from X into ¥, endoweq With 4
7Te £2X,Y); we define also £(X) = L(X, X)), Ire;

I<) ”Tx”Y,

norm: ||7||ex, vy = su . .
d that w(t, x) = U,g(x) is the «solution» of the Parahqlj,

|
[12], Kolmogorov showe

problem

=

t>0,

w(0, x) =gx), xeR",

{ 8,ut, x) = Uult, ),
(1.8)

for a large class of initial data g. Note that, when no Confusio.n can arise, we wyj|
use the same symbol U to denote the Ornstein-Uhlenbeck differential Operator,

see (1.1), acting or functions defined on R” or on R% .

2. — An explicit formula for the solution.

In this section we will compute the fundamental solution for (1.3). First let us
consider some simple consequences of Hypothesis 1. The first one is that Q> 0.

Indeed we have
. t t
0< <Qt61; 61) = f(QeSB*eli 883*61> dS =y f3286d8<Qel’ 61),
0 0

since B * ¢, = be;. Moreover, by the identity (BQe,, e,) = (Qe;, B*e,), we derive
that_: BQe; = be,. The explicit formula for the solution % of (1.3) is based on the fol-
lowing lemma (see [16] for a similar lemma in the infinite dimensional set-

ting).

LEMMA 2.1. — Ag.;ume that Hypothesis 1 holds and define ¢ : R"— R" as fol-
. _ e
lows: ¢1(x) =x — ~21, ¢ = {(Qe,, e1) = Q1. Then it holds:

(i) $1Qpt = Q; |
(i) 1 (RL)CRL, ¢,(0,2') = (0, '), 3’ cRn-1.

(’L'L’b) (;b% =Ian, ngl = leB.

PROOF. — Remark that ¢ * = 2e
PT(w) = — ~(Qe1, @). Now (i) follows since

¢1Qm=Qx_M=Q¢i"x x e R"
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(iii), we only remark that

2B
Qe, %, = B — 2bQe;
q

since BQe; = bQe; and B*e, = be;. m

B¢1£L‘=B.’E—

x1=¢lB£U, CCER”',

Note that if ¢, is an eigenvector of Q, one has ¢,(x;, ') = (—2;, ') and we
find the standard reflection. By means of ¢, we introduce an extension operator

E: By( ")y— B, (R™),
@.1) B _ { f(x) if xe RE
—flp:(®) if xreR™.

For any fe $B,(R"). Clearly 7 Ef e B, (R") and E is an isometry. Denoting by Rf the
restriction of fe B,(R") to R% and using the semigroup U, see (1.7), let us define
the following family of operators: P,: B,(R") — B, (R™),

def

(2.2) Pi=RUE, t=0, P, flx)= fEf(y) N(e®zx, Q) dy,
Rn

fe B,(R%), x e R% (note that Py = Id). It is clear that P, e £(B,(R™)), t = 0; mo-
reover one has

LEMMA 2.2. — The family of operators P,, see (2.2), is a semigroup of contrac-

tions on By (R%).

Proor. — The proof of the semigroup property of P, is based on the
formula:

2.3) ER(U,Ef)x) = U Ef(x), t=0, fe®B,R%), wxeR"
It is enough to check (2.3) when # € R”. By Lemma 2.1 we get that e ¢, = ¢, e'®
t

and ¢,Q,¢0% = qu)les}ngSB*qh’fds:Qt, t = 0. Using these formulas and Lem-
0

ma 2.1, we compute, by changing variable in the integrals,

ER(U,Ef @) = — | Efty) N(e® ¢ 12, Q) dy =
Rn
— [Efp1y) Ne®o, 6:1Qo1) dy = — | Bfig1y) Ne®e, Q) dy =
R R"

[ Bfy) Ne®, Q) dy = U,Bf@), x<R"
R'n
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(note that — Ef(¢(y)) = Ef(y), for any y ¢ dR" and N(e*z, Q,) (SR%) = 0).
Thus (2.3) is established. Now the semigroup property follows since

P,P, f= (RU,EXRU,E) f=RU,, Ef=U,,, f, fe®B,®R%),t,5=0.
This completes the proof. =
Next we derive an integral representation formula for the semigroup P;.

PROPOSITION 2.3. — For any fe B, R% ), t >0, one has:

xlyl]) N(e®Bx,Q)dy), x=(x;,x)eRY,

t

etb

P

@) Prw=J f (1 — exp [ ~
R%

where B* e, =be;, BQe; = bQey, q; = (Qie1, 1) = QllfﬁZSb ds.

0
ProOF. — First we obtain, by changing variable,

@5 Pfw) = J Efte®x+y) N, Q) dy =

R

[ FINGe®x, Q) — N(¢p1e®w, Q)1dy, weRL, t>0.
R

Now it is useful to compute the Radon-Nikodym derivative of the Gaussian mea-
sure N(¢ eBx, Q,) with respect to N(e®x, Q,), t > 0. We obtain (remind that

¢1(x) —x= — zq””lQeo

dN(¢1et x, Qt) 1 —-1/2 tB tB 2
= ex I—— Q (gb eCxr—ex)|c+
iz\j(gtB ] Qt) (y) exp 2 | t 1 |

(Q Y2 (y —eBx), Q12 (p,eBu— e x))] —

2e%®

(Q '(y — e, Q61>],

262tbx2
exp[— —2—1<Qt_1Q31: er)—

t

yeR", a.e.. Since Q;e; = IGZSb ds Qe;, we finally get, for any t > 0,
0

aN(@1e%5, Q) 20t
dN(etB.’L',Qt) Yy) =exp 5 Y|,

QIGZdeS
0

where y e R”, - a.e.. Now we infer easily the assertion. m
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Let us notice that by (2.5) one also deduces, by usi
, by using the map Ip. (I =1
yER+ and IR+ ('y) =O’ y¢R+)’ P igr, R+(y) ’

@.6) P, f(x) =Rnflg+ (e®z+y, e)) flex+y) N, Q) dy —

Rnflm«qble% +y, e)) figre®z +y) N0, Q) dy

= f fle®Br+y)N(0,Q) dy — f fle®p x+y) N(0,Q) dy

_,th
Y1=> —e 'y y1> ety

The restriction f’f P; to UG, (R™), still denoted by P,, turns out to be a semi-
group of bounded linear operators on UG, (R™ ). This is a consequence of the fol-
lowing result.

PROPOSITION 2.4. — The following statements hold:

(i) Py(B,(RD))c UG (RY) N UCRY Yy, t>0;
(i) let fe UG,(R™). For any ball CcR"., one has:

lim sup |Pyssflx)— P f(x)| =0, t=0;

5—0 LeC

(iti) for any fe UGCy(R%), xeR%, the map: [0, ©) =R, t— P, f(x) is dif-
ferentiable on (0, «); further we have 8, P, f(x) = UP, f(x), £ > 0.

ProoF. — (i) Let fe UG,(R%). To prove that P, fe UC(R™) for k=1, one
differentiates the Gaussian kernel in formula (2.2) with respect to the x-variable
% + 1-times and one shows that all the partial derivatives up to the order k + 1 are
bounded on R” . Similar computations are given in [7]. In particular here we deal

with the first partial derivatives.

DuP,f@) = | Efte®x +y)e® Q 'y, &) N(O, Q) dy =
Rn

[ Efe®a + Q2 y)e™ Q- 1y, ¢ N(O, 1d) dy ;
R'FL

it follows that | Dy P, f(x)| < 1 2e® | flo, k=1, ..m, >0, xeRY.
1
One can prove that @, e || < Cmax(l, W)’ see [19] and the proof of

m 3.4 in [18]; here m<n—1 is the smallest integer such that rank

Theore : .
- B™QY?} =mn (compare with condition (c) in Section 1). Using

[Q 1/2’ BQ 1/2’

the previous estimate we can conclude that

1
(27) ”Dthf”OS(jma‘x(l, _t_l'm) ”f”(]: 'lG:l’ P t>0.
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(ii) First we change variable in (2.2),
@.8) P, f@) = | Ef(e®x+ Qi2y) N(0, Ddy, weR%, t>0.
RTZ

Then to deduce the assertion one can proceed similarly to the proof of Proposi-
tion 4.2 in [17] (we only remark that Ef is continuous on R” apart from a set of Le-

besgue measure 0). :
(iii) Note that one can differentiate P, f(x), with respect to ¢, in (2.2), using

that the density of N(e*®x, Q,) with respect to the Lebesgue measure dy is the
fundamental solution of (1.8). =

are in order. By (i) of Proposition 2.4, we

Some comments on the semigroup P;
). Moreover, following [18],

deduce that P, is not strongly continuous on U G, (R%
one can show that P; is not analytic on U G,(R’;) (the same happens for the Or-

nstein-Uhlenbeck semigroup on UG, (R™), see [4] and [7]). Thanks to Proposition
2.4, the semigroup P; belongs to the class of z-semigroups, see [17]. We review

below some basic concepts from the theory of m-semigroups.

DEFINITION 2.5. — Let £2 be any open set of R". A sequence ( ) cUCy(£2) is
said to be ;r-convergent to a map f, and we shall write f,, 5 fas n—> o, if the follo-

wing conditions hold:

@9 (@) feUGR), supllfll<w; ) [lim ful@)=f®), wze£.

A semigroup of linear contractions S; on UC,(£2) is said to be a m-semigroup of

contractions if it satisfies:
(i) for any fe UG (£2), x € £2, the map [0, *[—R, t— S, f(x) is conti-

nuous;
(ii) for any (f,)cUGy(£2), fn—if implies that Stfn—gStf as n—ow, t=0.

Sh_I, h > 0):

We define a generator B for S; as follows (we set 4, =

D(B) = {fe UR,(2) such that Jge UC,(R), 4, f>g as h—0"},
Bf () défhm?ﬁh f®), feD(®), xef,

WherenA » f—>g means that for any sequence (t,) that converges to 0, we have
4; t,J—f as m—> oo (this implies that sup||d, fll, < ). In [17] it is proved that
h>0
ES‘g(x) = B8,9(x) = S;Bg(x), for any g e D(B), x e 2, t = 0. Moreover B is T-

closed, i.e. for any (fn).cD(&i), one has f,—f and Bf,~>g as n—> o=f€ D(B)
and Bf=g. (this condition implies in particular that B is a closed operator oI
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UG (£2)). The resolvent operator of & is given by

@

(2.10) R, B) fx)=A—B) " flx)= fe”“St fleydt, feUGC(R),xeR,A>0.

0
We will denote by 8 the infinitesimal generator of the semigroup P; on

UG (R™). By (2.10) and (ii) of Proposition 2.4 one deduces that D(B)c
UCRY ). =

Proceeding as in the proof of Theorem 3.4 in [18], one can prove the next re-
sult which gives a characterization of the generator G of P;.

THEOREM 2.6. — Let Dy={geUCR"),NU CE(RY) such that UgeUGC(R%)}.
The following statements hold:
() Dyc D(B) and Bf = Uf, feDy;
(it) w e D(B) <> there exists (,)C Dy such that ¥, >, U= Up.

D(8)={pcUCR™), such that UpeUCRL)},

(111) (2.11)

{ Bp=Up, peD(B), where Ug is in the sense of distributions.
Let us revert to (1.3). A bounded map % : [0, T] % R” —R, T >0, is said to be a
classical solution of (1.3) in [0, T) X R" if it satisfies:

(i) u is continuous on [0, T'] X R” \{t=0} x dR% ; (i) » has the partial deri-
vatives 8;u, Oy, Uy Oz, U j,k=1,...n, on (0, T) x R% and solves (1.3); (iii) the
map u(t, ) is twice differentiable with continuity on R%, te (0, T).

The uniqueness of classical solutions for (1.3) follows by a maximum principle
for parabolic problems, see 8.1.12 and 8.1.17 in [10]. As concerns existence, using
Proposition 2.4 and Definition 2.5, we get the following result.

THEOREM 2.7. — Let us consider problem (1.3). Then it holds:
(i) for any datum feU @, (R™), there exists a unique classical solution
u(t, x) = P; f(x), see (2.4); moreover u(t, *) € Uey (RY), t>0;
(ii) for any datum fe D(B), see (2.11), the classical solution u has the par-
tial derivative 3,u which 18 bounded on [0, o)X R” and continuous on
[0, o) x R% \{t =0} x 8R% ; moreover dyu = P,(Uf).

Let us consider the following elliptic Dirichlet problem:

(2.12) { Jp(e) — Up() =f@), @<RY, 4>0,

w(0,2')=0, x'eR*'7',

According to Theorem 2.6, we write (2.12) as Ay — By = f. For any fe UG,(RY),
there exists a unique «generalized solution» v e D(B). Moreover by (2.10), we ha-
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ve an explicit formula for the solution 3, namely

oo

(2.13) w(x) = fe -p fx)ydt, =zeR%, A>0,

0
where P, is the semigroup introduced in (2.2). Thanks to (2.138), one can investiga-
te regularity properties of y, compare with [7], [141, [5], [16].

EXAMPLE 2.8. — Let us consider R? and take vo = €1 = (1, 0, 0). Define two ma-

trices Q and B as follows

1 0 1 b 0 O
Q=|(0 1 0], B=|0 1 0], b, acR, a=0.
1 0 1 b a O

It is easy to check that @, B and v, satisfy Hypothesis 1.

3. — The infinite dimensional case.

Here we clarify that the semigroup P, makes sense also in the infinite dimen-
sional case. For more details and comments on this section we refer to Zabezyk

[11]. Let H be a real separable Hilbert space (with inner product (-, -) and norm
[-]). Let us fix vy H, |vy| =1, and define the half space H, ={xeH, (x, vo)>0}.

Let @ be a symmetric, non negative, bounded linear operator on H. Let B be
the generator of a strongly continuous semigroup ¢ on H. Assume that for each
t

t > 0, the bounded linear operators Q;, @, x = f e"B Qe xdu, x e H, are nuclear
0

and positive definite (this hypothesis corresponds to (iii) in Hypothesis 1). We

are dealing with the problem (1.3) in which R" is replaced by H and the differen-

tial operator U has the form:

1
Up(x) = ETr[Qqub(x)] +{x, B*D¢(x)), xeH :

.herl'e «Tr» denotes the trace of a nuclear operator and «D» and «D?2», respect-
11ave1y,1 t%}e first and_second Fréchet derivatives. Let U Cy(H) be the sp,ace of all
I;smulrll; ormI%IV continuous and bounded functions on X endowed with the supre-
rm. We can define simi infini i i '
Uhlenboek semigranp. o e similarly to (1.7) an infinite dimensional Ornstein-

U; flw) = =
p Hff(e +y)NO, Q) dy, fe B, (H), xeH, t>0, Uy=1d,
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where N(0, Q) is the Gaussian measure on H with mean 0 and covariance opera-
tor @; (note that such a measure exists since Q, is positive and nuclear, ¢t > 0). Un-
der Hypothesis 1, arguing as in Section 2 and using the techniques developed in
[16], one can show that there exists a semigroup P;e L(UG,(H)), t =0, given by

Py f(x) = fEf(y) N(e®wx, Q) dy =
H

tb
ff(y)(l—exp[—ze xlyl])N(e"Bx, Q)Ndy), xeH,, feUC(H,),
Hy

q:

where the extension & is defined as in (2.1). The map u(t, x) = P, f(x), when fis
«regular» enough, is the «classical solution» of the infinite dimensional parabolic
Dirichlet problem, which generalizes (1.3). Of course several difficulties arise in
studying the regularity properties of P, f in the infinite dimensional setting.
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