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Energy consumption is one of the major issues in today’s computer science, and an increasing number of scientific communities
are interested in evaluating the tradeoff between time-to-solution and energy-to-solution. Despite, in the last two decades,
computing which revolved around centralized computing infrastructures, such as supercomputing and data centers, the wide
adoption of the Internet of &ings (IoT) paradigm is currently inverting this trend due to the huge amount of data it generates,
pushing computing power back to places where the data are generated—the so-called fog/edge computing. &is shift towards a
decentralized model requires an equivalent change in the software engineering paradigms, development environments, hardware
tools, languages, and computation models for scientific programming because the local computational capabilities are typically
limited and require a careful evaluation of power consumption. &is paper aims to present how these concepts can be actually
implemented in scientific software by presenting the state of the art of powerful, less power-hungry processors from one side and
energy-aware tools and techniques from the other one.

1. Introduction

Information and communication technologies (ICT) play a
fundamental role in supporting human activities for the
global economic, social, and environmentally sustainable
developments [1]. However, energy consumption is one of
the most relevant issues for present computing platforms,
and this trend is expected to continue in the foreseeable
future. &is implies that the electricity bill increasingly
dominates costs related to the running of applications and
the consequent environmental pollution [2].

&is situation is evident for high-performance com-
puting (HPC) infrastructures, where the sum of the energy
bills over a supercomputer’s lifetime is comparable to the

acquisition cost and represents one of the most relevant
elements of the total cost of ownership [3]. &is is because
energy is used not only for computation but also for cooling,
communication, storage, and display [4].

&e focus of performance-at-any-cost computer oper-
ations has led to the emergence of supercomputers that
consume vast amounts of electrical power and produce so
much heat in that extended cooling facilities must be
constructed to ensure proper performance.&e consequence
is that, in the context of deploying an exascale system, the
simple scaling of current technologies would result in a
supercomputer with a power consumption of 100MW,
while a limit of 20MW has been estimated as the maximum
acceptable limit [5]. &e attention to the flop-per-watt
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performance has been demonstrated by the introduction, in
2007, of the Green500 List [6] that ranks the top 500 su-
percomputers by energy efficiency [7].

&e same problem also arises in general-purpose data
centers: in the US, such infrastructures consumed about 70
billion kWh in 2014, representing 1.8% of total US electricity
consumption, as reported in [8]. Some projections estimate
for 2020 an electricity demand that varies by about 135
billion kWh, depending on the adoption rate of efficiency
measures [9].

&is scenario must be combined because in the past two
decades, computing has been focused around centralized
(and possibly complex [10]) infrastructures, but the wider
diffusion of cyber-physical systems (CPSs) is currently
inverting this trend, pushing computing power back to
where data are generated. In both cases, the energy con-
sumption of telecommunication networks is very relevant
[11]. A striking example of the trend is the Internet of&ings
(IoT) paradigm, by whichmillions of devices generate a huge
amount of data that are pre-elaborated locally before being
integrated remotely in a data analytics context. Nevertheless,
also considering science, the diffusion of powerful data
acquisition devices boosted the diffusion of pre-elaboration
computational architectures, such as in bioinformatics
[12, 13].

While HPC is a well-specific market sector, the so-called
“embedded HPC” is an emerging topic [14] to develop and
employ microservers/highly parallel embedded computing
systems in the CPS. &erefore, the adoption of energy-ef-
ficient systems represents a crucial aspect considering the
characteristics of fog/edge computing environments [15].

We can formulate the problem as the need to assess a
satisfactory tradeoff between time-to-solution and energy-
to-solution. &is problem has been faced with different
approaches, which can be summarised as follows: vendors
work on power-efficient processor architectures and soft-
ware developers on how to use them. However, to reach
exascale computing, an effective solution is possible only by
properly managing all layers of the system, from the software
stack to the cooling system [16] passing by less power-
hungry CPUs. &is can be achieved by reducing the energy
consumed in the total system via both power-efficient
software and hardware integrated solutions [17, 18].

Energy efficiency is a key design challenge for modern
computing systems for many years. Even more now, the Big
Data paradigm requires addressing both issues related to the
efficient processing of such an enormous amount of data and
how to achieve this goal in a green way, i.e., considering
issues related to sustainability and environmental concerns
[19].

&erefore, many papers proposing novel techniques for
managing power aspects and presenting real-world expe-
riences, together with surveys and overviews, have been
published. A critical analysis on how to greening the whole
life cycle of big data systems is presented in [20]. On a more
technical perspective, Czarnul et al. [21] focused on the
available methods and tools allowing proper configuration,

management, and simulation of HPC systems for energy-
aware processing. An overview of application performance
analysis tools, including the energetic profiling of an ap-
plication and auto-tuning tools for energy saving, has been
presented in [22]. &e usage of low-power System-on-Chip
(SoC) architectures for scientific (and industrial) applica-
tions is discussed in [23], intending to assess the tradeoff
among time-to-solution, energy-to-solution, and economic
aspects for both scientific and commercial purposes they can
achieve in comparison to traditional server-grade archi-
tectures adopted in present infrastructures.

However, an issue is represented by the fact that nearly
all the existing surveys focus on only one of the two main
strategies, i.e.,

(i) &e development and usage of new energy-efficient
CPUs and SoCs

(ii) &e use of software tools and frameworks for re-
ducing the power consumption of software using an
existing CPU

Moreover, as recognized by most of these papers, this is a
rapidly evolving research field where new results are con-
tinuously presented. For example, at the time of writing, the
following five European research projects and initiatives are
ongoing:

(i) Mont-Blanc 2020, European scalable, modular, and
power-efficient HPC processor

(ii) HiPEAC, High Performance and Embedded Ar-
chitecture and Compilation

(iii) LEGaTO, Low-Energy Toolset for Heterogeneous
Computing

(iv) SDK4ED, Software Development toolKit for Energy
optimization and technical Debt elimination

(v) TeamPlay, Time, Energy and security Analysis for
Multi/Many-core heterogeneous PLAtforms

&is is because the European Commission has been
aware since at least 2010 that the ICTsector is responsible for
carbon emissions which are rapidly growing and should be
kept to a minimum and therefore is supporting the devel-
opment of more energy-efficient computing technologies.

&erefore, this work’s main goal is to present the most
relevant available solutions for users interested in improving
the energy consumption of scientific software focusing on
computation. &is is achieved by investigating the avail-
ability and performance of current hardware devices and
software tools for scientific applications.

&is means that the aspects related to energy efficiency in
communications are not considered here. Interested readers
can rely on [24, 25].

&e structure of the paper is as follows: Section 2
presents hardware techniques and solutions for achieving
energy-savvy processing, Section 3 discusses tools and
methodologies for supporting developers in producing
energy-aware software, while the last section concludes the
paper.
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2. Energy-Efficient Architectures

2.1. General-Purpose Techniques. Firstly, let us review the
techniques that exploit hardware characteristics to reduce
energy consumption. Most of the present architectures, in
fact, implement energy-saving techniques.&ey are based on
the use of low-level electronic characteristics to run no faster
than necessary at a voltage no higher than acceptable. &ey
are

(i) Dynamic frequency scaling (DFS)
(ii) Dynamic voltage scaling (DVS)
(iii) Dynamic voltage and frequency scaling (DVFS)
(iv) Near-threshold voltage (NTV)
(v) Dynamic power management (DPM)

Dynamic frequency (DFS) or voltage (DVS) scaling
allows to modulate the power consumption processor and
memory [26], scaling the clock frequency of one or both
subsystems according to the execution of memory- or
compute-bound application kernels [27].

For example, voltage reduction has to be considered for
the heterogeneous accelerators equipping current systems
also because the efficient reduction of the total power can be
achieved with different voltage reduction levels for each
available chip [28].

Very often, voltage and frequency ranges are fully in-
terdependent, i.e., a change in clock frequency does imply
changes in the supply voltage, and vice versa: in these cases,
the technique is called dynamic voltage and frequency
scaling (DFVS) [29]. Specific hardware mechanisms can
implement DVFS with minimal software and operating
system involvement or through enabling software.

For example, DVFS is implemented in the Linux kernel
with the CPUfreq subsystem [30, 31]. &e original imple-
mentation of kernel 2.6 has been designed to be used when
no real-time tasks are executed. However, it is possible to
relax this constraint [32].

More recently, other projects focused on near-threshold
voltage (NTV) computing [33], making the processors work
at even lower voltages. Since this may lead to computation
errors, appropriate checks and recomputation have to be
added to algorithms in this case.

On the contrary, the Intel Turbo Boost technology op-
portunistically allows the processor to run faster than the
nominal frequency if the CPU is operating below the defined
power and temperature limits to speed up compute-inten-
sive applications [34]. In detail, as explained in [35], “the
thermal design power (TDP) represents the maximum
amount of power the cooling system in a computer requires
to dissipate. &is is the power budget under which the
system needs to operate. Nevertheless, this is not the same as
the maximum power the processor can consume. &e
processor can consume more than the TDP for a short time
without it being thermally significant.” More details on this
and the hardware power controller called Running Average
Power Limit (RAPL) introduced with the Sandy Bridge
architecture are provided in [36]. A similar solution, the

NVIDIA Management Library (NVML), has been provided
for NVIDIA GPUs [37, 38].

&e Advanced Configuration and Power Interface
specification has been developed since 1996 to provide the
possibility to manage these aspects via software, e.g., at the
operative system level. For example, ACPI defines up to 16
active states, named P0–P15, associated with a set of power/
performance/latency characteristics [39]. In P0, the process
runs at the maximum power and frequency level, while these
values are decreased from P1 till maximum supported Pi
[40].

2.2. Commercial-Off-the-Shelf Low-Power Devices. &e en-
ergy-efficient architectures range from many-core archi-
tectures, such as the Graphics Processing Unit (GPU) to
System on Chip (SoC), to Systems-on-Chip (SoCs). GPUs
feature a high performance-per-watt ratio. At the time of
writing this paper, the most powerful GPU devices, AMD
MI100 and NVIDIA A100, presented, respectively, a peak
performance of 38.33 gigaflops per watt (GFlops/W) and
24.25GFlops/W considering 64 bit floating-point opera-
tions, with a power consumption of, respectively, 300 and
260watt. It is, therefore, clear that GPUs aim at one side at
energy efficiency, but they require careful programming and
optimization to provide high computing performance.

&e increasingly adopted class of low-power processors,
often called System-on-Chip (SoC), originally designed for
the embedded and mobile market, represents an attractive
solution for scientific and industrial applications given their
increasing computing performance coupled with relatively
low cost and low electrical power demand.

SoC hardware platforms typically embed in the same die
low-power multicore processors possibly combined with a
GPU and all the circuitry needed for several I/O devices. For
the case of off-the-shelf SoCs, various limitations may arise,
such as 32 bit-only architectures, small CPU caches, small
RAM sizes, high latency interconnections, and unavailability
of ECC memory.

However, some solutions are progressively reducing the
performance gap with high-end processors, with the added
value of keeping a competitive edge on costs, reducing their
carbon footprint, and preserving the environment. For these
reasons, in this paper, we disregard devices such as Arduino
or Raspberry Pi devices that, even if considered for compute-
intensive applications [41], are mainly used for equipping
IoT systems [42, 43] without significant, local preprocessing
of data.

Fugaku represents the most important example of the
adoption of SoCs for HPC—the first supercomputer in the
TOP500 list of November 2020 and the most recent at the
time of writing this paper—which is equipped with Fujitsu’s
48-core A64FX SoC, providing a comparable performance-
per-watt value with respect to GPU-based systems [44].

In the corresponding Green500 List, we can see that
Fugaku appears in position 10 with a value of 15.418GFlops/
W, while NVIDIA DGX SuperPOD, the most energy-savvy
system which is equipped with NVIDIA A100 GPUs,

Scientific Programming 3



provides 26.195GFlops/W but is ranked only at position 170
in the TOP500. A more interesting comparison is between
Fugaku and Selene, again a supercomputer equipped with
A100 GPUs: this last appears in position 5 in both lists, with
a value of 23.983GFlops/W but providing only
63,460 TFlops/s with respect to 442,010 TFlops/s provided
by Fugaku.

As for most HPC architectures, the question remains this
[45]: do the raw numbers related to performance per second
and watt correspond to achievable performance figures for
most of the scientific applications and, in particular, for the
application I am interested into?

&is was the goal of the Computing On SOC Archi-
tecture (COSA) project [46, 47], an initiative funded by the
Italian Institute for Nuclear Physics (INFN) between 2015
and 2018. In particular, the COSA project focused on
assessing the energy consumption behavior of a wide set of
state-of-the-art architectures using benchmarks and soft-
ware widely used in many scientific applications.

In particular, an in-depth comparison of the perfor-
mance of x86-based SoCs (i.e., Pentium N3700 and J4205,
Avoton C2750, Xeon D1540, and Atom C3958) and low-
power GPUs (i.e., Jetson TK1 and TX1) for state-of-the-art
high-end solutions (i.e., Xeon E5-2683 and Tesla K20) is
discussed in [23] with two benchmarks, represented by the
widely used, computationally intensive N-body algorithm
and the use of a deep learning approach applied to a clas-
sification problem, together with the real-world application
taken from the field of molecular biology.

Although comparing high-end commercial/HPC servers
with motherboards based on low-power SoC taken from the
mobile and embedded world can be considered unfair, the
results assess that the use of low-power architectures rep-
resents a feasible choice in terms of tradeoff among time-to-
solution, energy-to-solution, and economic aspects.

&e authors also discuss the economic aspects in [15, 48]
by showing how a proper placement of the computational
services considering edge and fog’s composition cloud in-
frastructures is the key factor for achieving the best tradeoff
between costs, performance, and power consumption.

Regarding the usage of SoCs based on ARM instruction
set architectures (ISAs) or FPGAs, a quantitative evaluation
is presented, for example, in [49], again using the N-body
algorithm. Both these devices have been exploited in the
ExaNoDe project to build a prototype of computing element
for exascale [50].

However, it is to note that the porting of the code on
these architectures is a bit more complex because the de-
velopment and tuning tools have not yet reached the ma-
turity level, ease of use, and does not provide the wide set of
functionalities as those provided for free by Intel or NVIDIA
[51].

2.3. HPC Low-Power Devices. If we move from off-the-shelf
products to the design of new solutions for joining high
performance and energy efficiency, one of the most im-
portant references is represented by the Mont-Blanc project,
started in 2011. Its goal is to foster the development of a low-

power European processor for Exascale, with a target of
50GFlops/W at the processor level.&is project is part of the
European Processor Initiative, a Framework Partnership
Agreement to develop the European skills in the design and
exploitation of such processors.

Also, this project, together with ExaNoDe [52], is part of
a wider group of EU-funded projects (e.g., ExaNeSt [53]
focused on interconnection and storage and Ecoscale [54]
focused on the heterogeneous architecture and, in particular,
on the use of FPGAs), pursuing a strategic vision for eco-
nomical, low-power approaches.

Also, the Mont-Blanc projects consider the use of ARM
instruction set architectures (ISAs), such as the &underX
processor family [55], and quantitative evaluations about
different energy-performance tradeoffs achievable when
designing an architecture based on mobile market tech-
nologies have been presented [56].

Heterogeneity seems to represent the most promising
way, e.g., by integrating CPUs (X86 or ARM), GPUs, and
FPGA in a single platform [57]. Also, the great efforts in
developing unified programming models and API sup-
porting all these heterogeneous hardware architectures such
as OpenCL, SYCL, and oneAPI [58] demonstrate this trend.

3. Tools for Energy-Efficient Computing

In the previous section, we saw that power and energy
consumption had become the driving metrics for computing
hardware design and the most interesting CPUs. However,
the advances in hardware efficiency must be followed by
energy-aware algorithms, appropriate choice and allocation
of specific hardware to applications, and adequate man-
agement techniques.

One of the most complete and interesting introductions
to the problem was presented by Prof. Gallaghers [59] in
summer school “ICT-Energy: Energy consumption in future
ICTdevice” organized in 2016 within the context of the ICT-
Energy European project [60].

&e key concept is that energy is consumed by hardware,
but this occurs under the control of software. Normal high-
level languages (e.g., C++ and Java) hide the hardware
characteristics, but the key aspect is that there could be many
differences in the same high-level code (e.g., C++) machine
instruction programs with different energy consumption
figures. To this extent, an interesting tool is represented by
Compiler Explorer [61], an open-source web application for
interactive compiler code generation observation based on
Node.js [62]. It shows the assembly output of the compiled
code with different compilers and compiler versions to
extract valuable information as, for example, for evaluating
the power consumption.

&erefore, energy saving has to start at the software level
to be propagated to the hardware level. Techniques for
saving energy with power-aware hardware management or
power capping [63] described in the previous section can
represent a valuable complement. However, a key aspect,
neglected by nearly all programmers, is their active en-
gagement to inspect where a program wastes energy and,
therefore, experiment with different designs. &is is
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obviously coupled with the fact that results have to be
produced within an acceptable deadline [64], an aspect often
disregarded approaching the energy efficiency problem.

3.1. Profiling Tools. &e first step for achieving energy-effi-
cient behavior is to investigate software behavior using
information gathered as a program executes (i.e., profiling it)
or simulating this through a performance model.

One of the most used tools for profiling is the Perfor-
mance API (PAPI) analysis library [65]. PAPI is platform
independent and provides developers with an interface and
methodology for gathering performance-related data made
available by hardware. &e basic principle is to allow de-
velopers to see the relation between the software perfor-
mance and processor events. As regards the power
consumption, PAPI has been extended to measure and
report energy and power values also on complex architec-
tures [66].

Also, the PowerPack framework [67] provides a set of
tools for analyzing the energetic performance. Unlike PAPI,
the measurements are gathered on a separate machine in
order to limit probe effects.

&e scalable performance measurement infrastructure
for parallel codes (Score-P) [68] has been extended for
collecting information from technologies such as the
aforementioned Intel RAPL.

Extrae is a tool relying on PAPI that allows collecting its
countermetrics (including power and thermal data) for
parallel programs [37]. Paraver effectively supports the
analysis of such information, a visual data browser devel-
oped at the Barcelona Supercomputing Center as the pre-
vious one [69].

&e Energy-Aware COmputing Framework (EACOF)
has been designed to allow developers to profile their code
for energy consumption [70]. In particular, it allows pro-
filing codes in order to know exactly where energy is being
used. Moreover, it allows applications to adapt at runtime
based on current energy consumption. As an example ap-
plication, the authors proposed a video player that may
intelligently adapt based on energy consumption readings to
ensure a video will complete before the battery runs out. &e
framework is available on GitHub [71], but no updates have
been published since 2015.

In general, many tools such as these two have been
presented in the literature. It is worth citing EProf [72],
having the main feature to support fine-grained attributions
of energy consumption to a particular function/software
segment. However, in most cases, they are not actively
maintained at the end of the projects where they have been
developed, and software becomes difficult—if not impos-
sible—to find and run.

A similar fate occurred for the Multiple Metrics Mod-
eling Infrastructure (MuMMI) [73] project, focused on
integrating existing tools such as PAPI and PowerPack for
facilitating measurement, modeling, and prediction of
software for multicore systems.

3.2. Dynamic Tuning. Some tools aim to achieve energy-
saving figures automatically. In detail, many of them have
been proposed, e.g., [74, 75], but, as stated before, not ac-
tively maintained. Here, we present just two of them because
they are not part of wider and integrated solutions, which are
discussed below.

&e Global Extensible Open Power Manager (GEOPM)
is a framework for exploring power and energy optimiza-
tions targeting high-performance computing [76]. One of
the most interesting features is the possibility to dynamically
coordinate hardware settings across all compute nodes used
by an application in response to the application’s behavior
and requests from the resource manager. For example, it is
possible to optimize MPI applications to improve energy
efficiency or reduce the effects of work imbalance, system
jitter, and manufacturing variation through built-in or user-
defined control algorithms. &e framework is available on
GitHub [77].

&eCOUNTDOWNSlack library [78] allows identifying
and automatically reducing power consumption during
communication and synchronization primitives [79]. &e
library faces the problem of power wasting in communi-
cation and synchronization operations because of the
adopted blocking mechanisms [80]: for example, nearly all
MPI implementations use a busy-waiting mechanism. &is
library, on the contrary, is able to run a processor in a low-
power mode, resulting in lower power consumption with
limited or no impact on the execution time [81].

3.3. Integrated Solutions. &e Runtime Exploitation of Ap-
plication Dynamism for Energy-efficient eXascale com-
puting (READEX) project has been funded by the European
Union’s Horizon 2020 research program between 2015 and
2018 to develop a tool-aided methodology for dynamic auto-
tuning for performance and energy efficiency [82]. &e tool
suite was released in 2018, and it is available via GitHub [83].

&e methodology is based on instrumenting an appli-
cation with Score-P. &is can be performed in an automatic
way by compiling it with Score-P.&en, the dynamism of the
application is detected and analyzed in order to identify the
significant regions that will be managed with the project
tuning methodology at runtime.

&e key advantage of this suite is that it can be exploited
by any developer even if she/he is unaware of the READEX
methodology, with the result of increasing the energy effi-
ciency of her/his application. It has been estimated that the
application of the READEX tool suite to a nearly complex
application can take several days [84], mainly for compiling
the application with Score-P.

&e Low-Energy Toolset for Heterogeneous Computing
(LEGaTO) project has been funded by the European Union’s
Horizon 2020 research program between 2017 and 2020 to
design and develop a software toolchain for energy-effi-
ciency computing on heterogeneous hardware, i.e., a system
equipped with CPUs, GPUs, and FPGA [57, 85].
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&e toolchain was released in 2020, and it is available via
GitHub [86]. It is composed by several software components
integrated to achieve a consistent programming environ-
ment across heterogeneous hardware platforms.

&e hearth of the toolchain is represented by OmpSs
[87], an extension to OpenMP developed at the Barcelona
Supercomputing Center for supporting the asynchronous
parallelism on heterogeneous resources as multicore CPUs,
GPUs, and FPGAs.

An application in the OmpSs programming model is
composed of one or more tasks with possible data depen-
dency flow among some of them. &e runtime environment
analyses the resulting graph and produces a correct and
possibly concurrent order of task execution. Several com-
piler and runtime systems (e.g., Nanos6, XiTAO [88], and
Mercurium) support the process and manage all the energy
efficiency, security, and fault-tolerance aspects [89].

&ree use cases have been defined in healthcare, IoT for
Smart Homes and Cities, and machine learning because they
have different requirements in terms of energy efficiency,
fault tolerance, and security. Results have been published in
Deliverable 5.4 [90].

&e Software Development toolKit for Energy optimi-
zation and technical Debt elimination (SDK4ED) project has
been funded by the European Union’s Horizon 2020 re-
search program between 2018 and 2020 tominimize the cost,
the development time, and the complexity of low-energy
software development processes by designing a methodo-
logical approach and a software toolchain [91].

&e SDK4ED platform [92] consists of five toolboxes:
Technical Debt Management, Energy Optimization, De-
pendability Optimization, Forecaster, and Decision Support.
&ey are implemented following the microservice paradigm
as Docker images containing the specific web service.

Focusing on the Energy toolbox, it analyses projects
available in an online repository (e.g., GitHub) on the
machine running the Docker container with regard to its
energy efficiency. &is means it finds the energy hotspots,
estimates the energy consumption through static or dynamic
analysis [93, 94], and inspects possible solutions by sug-
gesting specific code refactoring.&is is a valuable approach,
in particular, for software reusing [95].

&e project ended at the end of 2020. &erefore, at the
time of writing, not all the details and the code are available.

&e Time, Energy, and security Analysis for Multi/
Many-core heterogeneous PLAtforms (TeamPlay) project
has been funded by the European Union’s Horizon 2020
research program since 2018 to design and develop new
techniques for producing highly parallel software for low-
energy systems, such as IoT devices and CPS [96].

&e idea is to develop a set of tools for allowing pro-
grammers to reason about time, energy, and security at the
program source level. &e idea is to design new language
constructs to manage these extrafunctional properties as
first-class citizens of the source code and express contracts in
the source code that are machine-checkable by an under-
lying proof system.

&e project is ongoing; therefore, at the time of writing,
little information and software components were available.

4. Conclusions

Energy consumption is increasingly becoming one of the
most relevant issues concerning the computing platforms for
scientific applications and workloads.

As stated in [97], the huge level of energy consumption
of ICT systems is probably due to the fact that nobody really
cared for a long time, but today, things are changing because
of economic reasons and also because our way of thinking
has changed.

In this paper, we presented state-of-the-art solutions,
both hardware and software, and methodological ap-
proaches for pursuing energy efficiency in scientific software
to provide interested readers an updated introduction to the
topic. &e conclusion we can derive is that there are an
increasing number of projects focusing on these topics, and
some interesting SoC-based solutions are available. From the
software side, instead, the situation is not satisfactory be-
cause tools are sometimes difficult to be found, not inte-
grated, and, very often, disappear after the end of the project
that developed them. What is actually needed is the defi-
nition of a common methodology and a coordination effort
of groups acting in this field comparable with that of the
Virtual Institute-High-Productivity Supercomputing (VI-
HPS) [98], having in mind the tradeoff among time-to-
solution, energy-to-solution, and usability of the proposed
tools.
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