
06 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

XML data integration:Schema Extraction and Mapping

Publisher:

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

IGI Global

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/70874 since 2021-04-29T21:26:01Z

XML Data Integration: Schema
Extraction and Mapping

Huiping Cao#1, Yan Qi#2, K Selçuk Candan#3, Maria Luisa Sapino*1

#Department of Computer Science and Engineering, Arizona State University, Tempe,

Arizona, USA
1hcao11@asu.edu, 2yan.qi@asu.edu, 3candan@asu.edu

*Dipartimento di Informatica, University of Torino, Torino, Italy
1mlsapino@di.unito.it

ABSTRACT
Many applications require exchange and integration of data from multiple, heterogeneous
sources. eXtensible Markup Language (XML) is a standard developed to satisfy the convenient
data exchange needs of these applications. However, XML by itself does not address the data
integration requirements. This chapter discusses the challenges and techniques in XML Data
Integration. It first presents a four step outline, illustrating the steps involved in the integration of
XML data. This chapter, then, focuses on the first two of these steps: schema extraction and
data/schema mapping. More specifically, schema extraction presents techniques to extract tree
summaries, DTDs, or XML Schemas from XML documents. The discussion on data/schema
mapping focuses on techniques for aligning XML data and schemas.

KEYWORDS
Data Integration, Data Extraction, Schema Extraction, Matching, Mapping,
Alignment

INTRODUCTION
Data integration is the process of combining multiple heterogeneous and autonomous data
sources. Its purpose is to provide a logically unified view of the data to the users who need to
search or analyze disparate data sources. Data integration is a well studied problem in the data
management community (Doan & Halevy, 2005; A. Halevy, Rajaraman, & Ordille, 2006;
Lenzerini, 2002). Despite decades of work in the area, however, the problem is still open. In this
chapter, we focus on techniques for eXtensible Markup Language (XML) data integration. As we
will see, XML provides opportunities in improving compatibilities across data sources; we will
however see that XML also introduces unique challenges that require innovative solutions.

Applications
Many applications require effective and efficient data integration and, as the number and diversity
of available data sources increase, this requirement gains further significance. In what follows, we
briefly introduce a sample of contemporary applications which require data integration solutions.

• Data warehousing and business intelligence. A data warehouse is a repository storing
large amounts of data collected from different sources (Devlin & Murphy, 1988). The
primary goal of a data warehouse is to provide users unified view of (and efficient access
to) data collections that were originally located at different sources. Data warehouses are
especially useful in enabling large scale data analysis, for example in support of business
intelligence applications. Obviously, unless the contributing data sources are identical in
structure or are partitions of a single schema, to build the data warehouse, we first need to
integrate the data by identifying the correspondences between the data sources and the
data warehouse.

• Peer-to-peer (P2P) systems. P2P systems leverage autonomous data sources (peers) as if
they are part of a single unified data management system (Koloniari & Pitoura, 2005;
Pankowski, 2008). Common usage of such systems includes a user initiating a query
through one of the autonomous peer system, but getting answers from all relevant peers.
Natural challenges include identifying relevant peers across heterogeneous schema and
managing the mappings among the schemas of the peers (Anand & Chawathe, 2004;
Cherukuri & Candan, 2008). In addition, queries and answers need to be routed within
the peers in the system in a way that eliminates redundant query processing (Anand &
Chawathe, 2004).

• Service oriented architectures (SOA) and web information integration. Service oriented
architectures abstract recurring (e.g., business) activity flows, make them available as
independent services, and leverage these services as modules within large software
systems. This approach reduces costs of developing and deploying new applications and
promotes reuse. Consequently, today, the “web” is not only a collection of hyperlinked
pages, but rather a collection of dynamic services that one can use to develop web-based
applications and mashups (Jhingran, 2006). These web services, with their descriptions,
are published so that other people can locate and integrate them into end-to-end
information products. Meanwhile, data spaces (Franklin, Halevy, & Maier, 2005; A. Y.
Halevy, Franklin, & Maier, 2006) help reduce the cost of managing loosely structured
Web data by eliminating the need to impose strict structures on the integrated data.
These, however, requires resolving potential differences between the data service
interfaces and underlying data structures.

• Scientific data management. In many scientific domains (e.g., archeology (Kintigh, 2006)
and biology (Achard, Vaysseixm, & Barillot, 2001)), individual researchers or
communities have different data management conventions, standards, and taxonomies
(Qi, Candan, & Sapino, 2007). For example, bioinformatics data have many new data
types (e.g., microarrays, interaction maps of proteins, etc.) stored in different databases
and in different formats (Achard et al., 2001) . In archaeology, there is almost no
universally agreed structure or ontology to help support integration and eliminate
conflicts that occur due to varying knowledge standards and data interpretations (Kintigh,
2006).

Why XML?
In mid 90's, the growing need for a common platform that can provide uniformity and improve
interoperability between businesses and other enterprises led to the wide acceptance of eXtensible
Markup Language (XML) as an exchange framework. Today, most of the data interchange is

through XML-based data representation standards. XML provides simple, flexible, and self-
describing data representation. Its flexibility is due to the fact that alternative schemas can be
combined effectively using disjunctions. Moreover, it is self-describing in that XML instances
carry the structure of the data in the form of human-readable tags that are associated with data
elements; consequently XML data can be exchanged without associated schemas. This simplicity
and flexibility led to XML's use in many different domains for which ease of data exchange is a
primary requirement, these include peer-to-peer (P2P) applications (Pankowski, 2008),
bioinformatics (Achard et al., 2001), and semantic web (Decker et al., 2000).

On the other hand, these same properties, especially the flexibility of the structure of the data
and the possibility for each user or data contributor to have their own schemas (through
Document Type Definitions (DTDs) and XML schemas (E. Rahm, Do, & Massmann, 2004) as
opposed to committing to a unique, fixed set of constraints constraining the organization of the
data, introduce new challenges in the integration process (Bertino & Ferrari, 2001) . In late 90's,
Halevy (1999) investigated issues that were then considered critical for XML data integration,
including the choice of suitable languages for the description of data sources, the definition of
query reformulation algorithms, the translation among different Document Type Definitions
(DTD's), and the formulation of formalisms for source descriptions.

During the past decade, two key complementary challenges to XML data integration emerged:
(a) finding alignments, similarities, and compatibilities between different XML data schemas or
instances and (b) identifying and resolving conflicts between XML data sources whenever they
are not compatible.

Figure 1
[Put figure fig1.tif here]
[Figure caption: Overview of the XML data integration process]

Outline of the Chapter
This chapter will focus on the challenges and solutions in the XML data integration. Figure 1
provides an overview of the underlying process:

• Schema extraction: A particular challenge introduced by XML is that not all XML data
come with an associated schema. In fact, one of the major differences between XML and
its predecessor Standard Generalized Markup Language (SGML) is the relaxation of the
requirement of each document having an associated document type definition (DTD),
which defines the rules governing the structure. While this enables the use of XML as a
flexible messaging and integration medium, in some cases (especially when the
integration process is schema-aware), it also necessitates a process to extract a schema
from a given collection of schema-less XML documents. We discuss this in Section
“SCHEMA EXTRACTION”.

• Matching and mapping: Finding mappings between data components is a common
problem in almost all integration domains. For example, multi-tenant databases, which
form the core of many Software and Information as a Service solutions (Aulbach, Grust,
Jacobs, & Rittinger, 2008), strive to create integrated/consolidated schemas across
similar, but different, tenant schemas. The mappings from tenant schemas to the
consolidated schema help the system manage multiple tenants as a single tenant, thus
reducing the overall management and maintenance cost. XML data can often be

represented using trees or tree-like graphs (Do & Rahm, 2002; Goldman & Widom,
1997). This impacts solutions for finding mappings between XML data. We discuss XML
matching and mapping methodologies in Section “MATCHING AND MAPPING”.

• XML data/metadata merging: Once the mappings are discovered, the next step in the
process is to integrate the XML data or metadata, depending on whether the system is
operating on data- or schema-level.

• Query processing and conflict resolution: The results of the merge process, however,
may not always be a valid XML data or schema. This step uses the resulting merged data
to support query processing and apply conflict resolution strategies.

In this chapter, we focus on the first two steps. In a separate chapter, titled “XML Data
Integration: Merging, Query Processing and Conflict Resolution”, we will discuss the later two
steps, merging, query processing over integrated XML data, and the strategies that can be used
for resolving conflicts. Finally, we conclude the chapter in Section “CONCLUSION”.

Running Example
All the examples presented to illustrate the algorithms in this chapter are picked from
universities and research institutes application domain, where the underlying data includes

• funding organization information, e.g., organization name, organization location, and title
of grants (or funds);

• university information, e.g., university name, and information about the university
president; and

• faculty information, e.g., faculty name and his/her funding information.

SCHEMA EXTRACTION
While in many cases XML documents are created according to a pre-defined structure (e.g.,
Document Type Definition (DTD) or XML schema (XMLschema)), the existence of a DTD or a
schema is not guaranteed. In fact, it has been observed that many XML documents on the web do
not follow explicit schemas (Barbosa, Mignet, & Veltri, 2005) (i.e., schemas are unavailable
(Barbosa, Mignet, & Veltri, 2006), or the existing schemas are not valid (Bex, Martens, Neven, &
Schwentick, 2005). However, during XML data integration (especially when integration needs to
be supported by mappings extracted from schemas (E. Rahm & Bernstein, 2001; Shvaiko &
Euzenat, 2005), it is critical to have schema information in advance. These lead to research on
learning the (implicit) structure of a given XML corpus through various structure extraction
techniques (Florescu, 2005).

Intuitively, on one hand, the extracted schema must represent all of the input XML documents
(this is referred to as the generalization property); i.e., each input document must be an instance
of the extracted common schema. On the other hand, we do not want to extract an overly-general
schema, which covers significantly more XML documents than the input data; in other words, the
extracted schemas should be specific enough to cover only the input XML documents. This is
referred to as the specification property. With these properties in mind, we can define the schema
extraction problem as follows (Bex, Neven, Schwentick, & Tuyls, 2006; Bex, Neven, &
Vansummeren, 2007; Garofalakis, Gionis, Rastogi, Seshadri, & Shim, 2003; Goldman & Widom,
1997):

Definition. The schema extraction problem is to identify a schema S from a given set of
XML documents D such that S captures the structural information of the documents in D in a
minimal way. (I.e., S is general and specific enough at the same time to cover D).

The schema extraction process is also referred to as schema inference. The underlying

structure of a given collection of XML documents can be described using DTD, XML Schema, or
in a more general representation such as tree or graph. The structure extraction techniques in the
literature target at inferring three kinds of representations: tree or graph summaries (Goldman &
Widom, 1997), DTDs (Bex et al., 2005; Bex et al., 2006; Garofalakis et al., 2003), or XML
Schemas (Bex et al., 2007; Bex, Neven, & Vansummeren, 2008; Hegewald, Naumann, & Weis,
2006). This section considers these different approaches and discusses representative techniques.

Extraction of Tree and Graph Structures
If one ignores the explicit object references, an XML data/document has a hierarchical structure.
OEM (Papakonstantinou, Garcia-Molina, & Widom, 1995) and LORE (McHugh, Abiteboul,
Goldman, & Widom, 1997) are two well-known tree-like data models for XML documents that
leverage the hierarchical nature of XML data. In OEM, for example, database is a rooted, directed
graph, with textual labels on edges and atomic values in leaves. More specifically, each node of
the graph corresponds to an element or an attribute of an element in the XML document. A child
node corresponds to a sub-element or an attribute of its parent node. For each child of a node,
besides the pointer to the child, there is a tag that indicates the name of the child node. If the child
is a sub-element, the name is its element tag. If the child is an attribute, the name is the attribute
name. In fact, a collection of XML documents can also be viewed as a single large DOM tree,
where all the individual documents are rooted at the same node. Figure 2(a) provides an example.
Given such an OEM tree, the schema extraction problem can be posed as understanding the
common structure governing the root to leaf paths on this tree. Based on this observation, in
(Goldman & Widom, 1997), Goldman and Widom present the DataGuide technique for
extracting structures as concise summaries of initially schema-free XML databases.

A DataGuide of an XML database is a graph, where each object node has a unique identifier
and nodes are linked with directed labeled edges. Unlike the graph corresponding to an XML
document, each label path (between a given pair of nodes) in the DataGuide is unique. A
DataGuide is said to represent a given XML database, if there is one and only one label path for
each path in the XML database. More formally, let DG be a DataGuide extracted from a database
D represented in OEM:

• every label path in the database D exists in the DataGuide DG (covers all structural
information),

• every label path in the DataGuide DG exists in D (no redundant information), and
• let tg(l) denote the set of target objects one can reach starting from the root and following

a label path l. In an XML database tg(l) may contain more than one object, but the target
set of a label path in a DataGuide is a singleton set (minimality).

Figure 2
[Put figure fig2a.tif here]
[Insert Figure 2a’s subtitle: (a)]
[Put figure fig2b.tif here]
[Insert Figure 2b’s subtitle: (b)]

[Put figurefig2c.tif here]
[Insert Figure 2c’s subtitle: (c)]
[Insert Figure 2’s caption: Example for DataGuide: (a) a database, (b) a tree structured data

guide, and (c) a graph structured dataguide]

Figure 2(b) shows a DataGuide for the sample database in Figure 2(a). In the original
database, between object nodes ‘1’ and ‘9’, there is a label path org.name; there is a similarly
labeled path (between object nodes ‘14’ and ‘17’ in the DataGuide and this label path is unique.

Note that a given XML data collection may have more than one DataGuide. The graphs in
Figures 2(b) and 2(c) are both DataGuides of the database in Figure 2(a). A strong DataGuide
(Goldman & Widom, 1997) is a DataGuide such that two label paths l1 and l2 point to the same
object (i.e., their target sets are identical) if and only if the target sets of l1 and l2 are exactly the
same in the original database. More formally, given label path l, let LDG(l) be the set of label
paths in the DataGuide DG which have the same target set as l. Similarly, let LD(l) be the set of
label paths in the Database D which have the same target set as l. A strong DataGuide refers to a
DataGuide such that "l LDG(l) = LD(l). Consider Figure 2 as an example and let l be org.name.
The target set of l in D is {5, 9} and the set of label paths sharing this target set is LD(l) =
{org.name}. Consider the same label path in the DataGuide in Figure 2(b); here the target set of l
is {17}, the only label path that reaches this target set is org.name; thus, we have
LDG(l)={org.name}=LD(l) = {org.name}. After similar analysis on other label paths, we can see
that Figure 2(b) is a strong DataGuide of Figure 2(a). Figure 2(c), however, does not show a
strong DataGuide. To see this, consider the same label path org.name; in this case, tg(l) in the
DataGuide is {29} and LDG(l)={org.name, edu.name}, which is different from LD(l). Thus, the
graph is not a strong data guide.

While DataGuides are not unique, Goldman & Widom (1997) show that each XML collection
has one and only one strong DataGuide; moreover, given a tree-structured XML collection,
construction of the corresponding strong DataGuide is linear in space and time, with respect to
the size of the collection. For a more general database (with explicit references, creating a graph),
however, the process has exponential cost (intuitively, DataGuide construction is equivalent to
conversion of a non-deterministic finite automaton into deterministic one). Strong DataGuides are
created by performing a depth-first traversal of the database and recording the target sets of the
label paths visited. Since in strong DataGuides there is a one-to-one correspondence between
source target sets (the target sets of label paths in the source) and DataGuide objects, the
algorithm presented in (Goldman & Widom, 1997) maintains a hash table H to keep the one-to-
one correspondences between the target sets in the source database and the objects in the
DataGuide for examined label paths. To begin with, a DataGuide object is created to correspond
to the root of the source database. That is, an entry ({rootD}: rootDG) is inserted into H. Then, the
unexamined source target sets in H are expanded in a depth-first order to compute new source
target sets and to create corresponding DataGuide objects for them. To expand a source target set
tg (for an entry (tg : o) in H), the algorithm first gets the labels coming out of any object in tg.
Then, through different labels, it gets their reachable source target sets. Once a newly computed
source target object set tg’ does not exist in H, a new DataGuide object o’ is created for tg’ (i.e., a
new entry, (tg' : o'), is added to H) and a link from object o to o’ with label l is created. Otherwise
(i.e., an entry (tg' : o') exists in H), the algorithm simply links o to o’ using label l. Take the
database in Figure 2(a) as an example. Initially, H={({1}:14)}. Next, the target set {1} is
expanded by following two different labels org and edu. Following the first label org, we get

source target set {2, 3}. Since this does not exist in H, we need to create a corresponding
DataGuide object, “15”, for it and insert this information to H, then H has one more entry ({2,
3}:15). This process is recursively applied to source target set {2, 3}, and so on. When every
target set is expanded for label paths starting with org, the expansion continues to label paths
starting with edu. Finally, this algorithm would result in the strong DataGuide shown in Figure
2(b).

Since, especially for graph structured databases, strong DataGuide construction can be
exponential, Jennifer & Widom (1999) introduce approximate data guides that can reduce the
construction cost by relying on approximate hash matches. T-Index (Milo & Suciu, 1999) is also
similar to DataGuides, but the paths represented in a T-index structure are not limited to those
starting from the root. APEX (Chung, Min, & Shim, 2002) is similar to DataGuides and T-
Indexes, but it extracts the structure only for frequent paths in the data.

DTD and XML Schema Extraction and Inference
As described above, DataGuides use graphs as the general form to represent the common
structures of XML collections. DataGuides, however, are not as expressive as Data Type
Definitions (DTDs) (Bex et al., 2005; Bex et al., 2006; Chidlovskii, 2001; Garofalakis et al.,
2003; Min, Ahn, & Chung, 2003; Sankey & Wong, 2001) or XML Schema (Bex et al., 2007; Bex
et al., 2008; Clark; Hegewald et al., 2006), the two most widely used formats to represent the
structure of XML documents.

Figure 3
[Put figure fig3a.tif here]
[Figure 3a subtitle: (a) Initial SOA created for the XML document in Figure 2(a)]
[Put figure fig3b.tif here]
[Figure 3b subtitle: (b) Step 1: apply the optional rule on (a). The edge from “location” to

“send” is removed; The state “state” is changed to “state?”]
[Put figure fig3c.tif here]
[Figure 3c subtitle: (c) Step 2: apply the concatenation rule on states labeled with “location”

and “state?” on (b)]
[Put figure fig3d.tif here]
[Figure 3d subtitle: (d) Step 3: apply disjunction rule on (c) by merging the states “fund”,

“grant”, and “location state?”]
[Figure 3 caption: Transformation of a single occurrence automaton in (a) towards a single

occurrence RE]

DTD Extraction
DTD's are most often used for grammar validation, which is the process through which a service
verifies the validity of a document against a registered DTD to ensure that it is structurally valid
and processable. A DTD can be formally abstracted as quadruple G (I, T, Rt,F), where I is the set
of non-terminals, T = is the set of terminals (S denotes the alphabet of open-tags and
denotes the set of close-tags), Rt is the root, and F is a set of production rules which can be used
to generate XML documents matching the given DTD. In particular, the strings represented by
the right-hand sides of the production rules in F are regular expressions and, thus, can be
recognized by finite state machines (Hopcroft & Ullman, 1979). Balmin, Papakonstantinou, &

SÈS S

Vianu (2004), for example, use this fact to develop an incremental, divide-and-conquer type of
validation mechanism for XML documents. Many works (Chitic & Rosu, 2004; Gottlob, Koch,
Pichler, & Segoufin, 2005; Segoufin & Vianu, 2002) also show that XML documents can be
validated using finite state automata. Based on the observation that DTDs can be abstracted as
regular expressions (REs) that can be recognized by finite state automata, a number of works
focus on learning these REs. Bex et al. (2006) for example, reduce the DTD extraction problem
to learning REs from XML fragments in the XML corpus. Garcia & Vidal (1990) also derive an
RE to represent a given XML corpus. Several researchers observed that REs learned through
these processes tend to be overly complex to be useful in practical settings (Ehrenfeucht &
Zeiger, 1976; Fernau, 2004; Fernau, 2005). Bex, Neven, & Bussche (2004) observe that a
significant majority (99% of XSDs or DTDs in practical use) can be represented as single
occurrence REs (SOREs), where every element name occurs at most once in the expression. For
example, “((b?(a|c))+d)) +e” is a SORE while “a(a|b)*” is not (“a” occurs more than once).

Relying on this observation, Bex et al. (2006) provide a scheme to generate SOREs from
XML data. A SORE, however, may not be found if the DTD corresponding to the given XML
collection cannot be represented using an expressions where each element name occurs only
once. In such cases, Bex et al. apply heuristics to find SOREs that are less accurate (i.e.,
corresponding to a more general DTD than the given XML collection implies). The process is as
follows:

• In the first step, the algorithm collects all label paths from root to leaves. In (Bex et al.,
2006), these label paths are called strings. For example, from the XML document in
Figure 2(a), we can extract strings org.name and org.location.state.

• The second step constructs a so called, single occurrence automaton for these strings.
The automaton has two special states sinit as the starting state and send as the terminal state.
All the other states are labeled with element names. There is an edge from one state sj to
another state sk if (i) sj = sinit and sk is a starting element name in some XML fragment
string, or (ii) sk = send and sj is an ending element name in some XML fragment string, or
(iii) sj sk is a 2-gram extracted from some XML fragment string. Figure 3(a) shows the
automaton we can obtain using the XML fragments in Figure 2(a).

• In the third step, this initial single occurrence automaton is simplified to obtain the SORE
(if it exists) by applying four transformation rules:

o disjunction rule merges the states which share the same predecessors and
successors disjunctively (using “|”),

o concatenation rule concatenates those adjacent states having only one incoming
and outgoing edge,

o self-loop rule removes any self-loop edge on a state “s” and relabels it as “s+”,
o optional rule removes such edges si à sj that there exists another state sk with

siÎprec(sk) and sjÎ succ(sk). In this case, sk is relabeled as sk?.
Figure 3 gives an example illustrating how these rules are used. When we reach Figure 3(d),

the algorithm stops since none of the above rules can be applied. However, Figure 3(d) is not an
RE yet.

• If a SORE cannot be derived using the above rules, the algorithm falls back onto repairs
rules that allow some fuzziness in merging the automaton states. For example,

o an enable-disjunction rule is used to add a minimal number of edges to make the
predecessors and successors of two states are the same.

In Figure 4, this rule adds the bold line from state “edu” to state “location state?|fund|grant”.
Given this new edge, disjunction and concatenation rules can now be applied to obtain the regular
expression in Figure 4(b) and 4(c).

Figure 4
[Put figure fig4a.tif here]
[Figure 4a subtitle: (a) Apply enable-disjunction rule on Figure 3(d)]
[Put figure fig4b.tif here]
[Figure 4b subtitle: (b) Apply disjunction rule on (a)]
[Put figure fig4c.tif here]
[Figure 4c subtitle: (c) Apply Concatenation rule on (b)
[Figure 4 caption: SOA repair]

XML Schema Extraction
XML Schema Definitions (XSDs) are more expressive than DTDs. In particular, XSD introduces
types, which are essentially regular expressions (Martens, Neven, Schwentick, & Bex, 2006) that
can be used to describe elements in the XML schema; each element can take one or more types.
The fundamental difference from DTDs, however is that the type (or the corresponding RE) an
element will take may be determined by the context (i.e., ancestor elements) in which the
elements occur in the XML document. This is in stark contrast to DTDs, where given a
disjunctive element definition of the form A := RE1|RE2, there is absolutely no constraint on
whether A can be expressed in a given document using RE1 or RE2. In XSD, however, the choice
between RE1 and RE2 can be tied to the ancestors of A in the given document.

Since DTD extraction techniques do not look for such dependencies, given a set of documents
that are created using XSDs (where such dependencies exist), DTD extraction techniques will fail
to find them. Bex et al. (2007) argue that in many of the existing XSD extraction approaches,
such as Trang (Clark) and XStrut (Hegewald et al., 2006), while the extracted schemas are in
XSD syntax, they are equivalent to DTDs in expressive power.

When inferring a DTD, since there is no contextual dependence, the algorithm only needs to
distinguish the immediate parent-child relationship among the XML tags to learn the REs
corresponding to elements. In learning XSDs, on the other hand, the algorithm also needs to seek
to identify whether contexts (i.e., the root-to-element paths in the given set of document) have
any impact on the REs corresponding to each element name. This increases the complexity of the
analysis. Due to this inherent complexity, Bex et al. (2007) focus on learning a subclass of XSDs
commonly used in practice. XSDs in this subclass, named k-local single occurrence XSDs
(SOXSDs), satisfy the following two properties: First, in these XSDs, determining one element's
content model (e.g., “name” defined under “org”) only depends on a limited number (e.g., k) of
ancestors of the element -- this is based on the study in (Martens et al., 2006) that, in 98% of the
XSDs, one element's content model can be determined based on the label of itself, its parent, or
its grandparent (i.e., up to k=2); Second, these XSDs only contain elements with different names
as in SOREs discussed above.

MATCHING AND MAPPING
Matching is a vital step in XML data integration. Given schemas of separate data sources, the
matching operation discovers the correspondences or mappings (among constituent objects, such
as attributes or values, from different sources) that are not immediately available (for example,

due to differences in naming convention) (E. Rahm & Bernstein, 2001). A multitude of
approaches (Do & Rahm, 2002; Fuxman et al., 2006; Gal, 2007; Hernández et al., 2007;
Hernández, Papotti, & Tan, 2008; Madhavan, Bernstein, & Rahm, 2001) have been developed to
perform matching operation for different types of data and metadata. . In the context of XML data
integration, the term matching applies to finding correspondences among XML schemas
(including DTDs) or document instances (XML documents). The techniques focusing on
relational database schema matching or ontology matching will not be our focus, but we will refer
to them when they are closely related to XML matching. After obtaining the matching results,
further processing is needed to translate these correspondences to executable scripts (e.g., SQL,
XQuery). Some existing works (Atay, Chebotko, Lu, & Fotouhi, 2007; Fuxman et al., 2006;
Hernández et al., 2007; Hernández et al., 2008; Pankowski, Cybulka, & Meissner, 2007; Popa,
Velegrakis, Miller, Hernández, & Fagin, 2002) call these scripts mappings and call this process
mapping generation. In order to distinguish the results of the basic matching operation and this
one, we call the results of this operation mapping rules and call this operation mapping rule
generation. These mapping rules are used for performing further operations, e.g., data exchange
(Hernández et al., 2008), data translation (Milo & Zohar, 1998; Popa et al., 2002), or query
evaluation (chapter titled “XML Data Integration: Merging, Query Processing and Conflict
Resolution”).

In what follows, we first define the terminology in Section “Terminology”. Then, in Section
“Matching Operation: Identifying Mappings”, we detail some main challenges in schema
matching and some typical techniques. We cover the problem of mapping rule generation in
Section “Mapping Rule Generation”

Terminology
Based on the characteristics of the underlying data and metadata, various types of matching
techniques have been developed: these include schema matching (e.g., relational database
schemas, catalogs, and XML schemas), ontology matching (Shvaiko & Euzenat, 2005; Shvaiko &
Euzenat, 2008), and so forth. Unfortunately, the terminologies used for denoting this operation,
such as matching (Cupid (Madhavan et al., 2001), COMA(Do & Rahm, 2002)), match (Cupid),
alignment (QOM (Ehrig & Staab, 2004)), mapping (QOM (Ehrig & Staab, 2004)), differ from
context to context. For clarity, in this chapter, we use the term matching to denote the operation,
and use correspondences, mapping or alignment to denote the results of this operation.

As stated above, given two data sources S1 and S2, the matching operation identifies
correspondences between parts (e.g., elements or element sets) of S1 and S2. Each such
correspondence has an associated confidence value (or probability) t(Î[0,1]) (the correspondence
is more certain when this value is closer to 1). Many works (e.g. (Madhavan et al., 2001)) use the
convention that a mapping denotes the matching result as a whole, while a correspondence refers
to one pair of matched elements. We also follow this convention. Thus, the set, M = {µ}, of
correspondences is called a mapping (some work (Fuxman et al., 2006) also call the matching
results as matchings). The mapping rules, on the other hand, are pieces of scripts written in
specific languages (e.g., SQL, XQuery, etc.) to reflect a mapping between two sources. The
mapping rule is sometimes referred to an assertion (Candan, Cao, Qi, & Sapino, 2008; Qi et al.,
2007). Each mapping rule from S1 to S2 specifies how relevant parts of S1 can be translated to a
form compatible with S2. Potential uncertainties in mappings (i.e., cases where t < 1.0) leads to
the following observations:

• Non-singleton mapping sets. A part of S1 may match multiple parts of S2, with different
confidence values. Depending on the semantics of the parts being mapped and the
integrity constraints governing S1 and S2, these mappings might be compatible with each
other or conflicting. When only one mapping is allowed, often only the most likely
correspondence is maintained (COMA (Do & Rahm, 2002), LSD(Doan, Domingos, &
Halevy, 2001), Cupid (Madhavan et al., 2001)). Otherwise, by picking correspondences
whose confidence values exceed some threshold, one-to-many mappings can be
preserved (Cupid).

• Matching results are not always symmetric. That is, the results of matching S1 to S2 may
be different from the results obtained from matching S2 to S1 (Do & Rahm, 2002)

• Matching similarity is not necessarily transitive. Let v1, v2 and v3 be three elements in
sources S1, S2, and S3. Let also vi à vj denote a correspondence identified from vi to vj If
v1àv2 and v2 à v3, then in general there is no guarantee that v1àv3.

This of course is a potential problem as it may result in semantically inconsistent scenarios.
While it is hard to avoid this problem with mappings identified through pairwise matching
operations, composite and hybrid matching techniques may avoid it by considering more than two
pairs at a time (COMA (Do & Rahm, 2002)).

For simplicity of the discussion, in the rest of this section, we will focus on mappings of the
form {µ: viàvj (tij)}, where vi and vj are two elements from two different sources S1 and S2.
However, since during data integration, algorithms may need to take as input more general
mappings (Candan et al., 2008; Pottinger & Bernstein, 2003; Qi et al., 2007), in Chapter titled
“XML Data Integration: Merging, Query Processing and Conflict Resolution”, , where we discuss
integration based on mappings, we refer to a more general definition of mappings.

Matching Operation: Identifying Mappings
Matching is challenging (Gal, 2006) due to several reasons. First, identical concepts may be
named or structured differently. Second, the same or similar words may be used to represent
different concepts. To match two sources, one can leverage different types of cues (E. Rahm et
al., 2004): (i) schema information such as data types, element names, or structures, (ii) external
information such as thesauri, (iii) data instance characteristics, and (iv) previous matching results.
Based on how they leverage these, it is possible to classify the available matching techniques
using three broad criteria (E. Rahm & Bernstein, 2001; Shvaiko & Euzenat, 2005):

• Element-level vs. structure-level: We can classify matching algorithms based on whether
the structural relationship among elements are used or not. Element-level algorithms
only analyze elements themselves, but ignoring relationships among them. In contrast,
structure-level matching algorithms match elements based on how they are related to
each other in the overall structure.

• Instance-based vs. schema-based: The former considers data instances while resolving
mappings among schema elements, while the latter only considers schemas during the
matching process.

• Syntax-based vs. semantic-based: The syntax-based (or syntactic) approaches only
consider syntactic cues (e.g., available thesauri), while the semantic-based methods also
leverage available semantics (e.g., integrity constraints).

String-distance based (Cohen, Ravikumar, & Fienberg, 2003; Do, Melnik, & Rahm, 2002;
Madhavan et al., 2001; Melnik, Garcia-Molina, & Rahm, 2002; Noy & Musen, 2001), linguistic
resource based (Bouquet, Serafini, & Zanobini, 2003; Giunchiglia, Shvaiko, & Yatskevich, 2004;

Madhavan et al., 2001; G. A. Miller, 1995; Resnik, 1995), and constraint based (E. Rahm &
Bernstein, 2001; Valtchev & Euzenat, 1997) approaches to matching are not specific to XML
matching. Thus, we will not focus on them here. Instead, we will focus on techniques that
leverage the structure of XML data and schemas as well as hybrid and composite matching
approaches which use multiple (e.g., structure and semantic) techniques.

Structure-based Techniques
As discussed earlier, the tree-like structure of XML data and schemas renders the structure-based
matching techniques play a fundamental role in XML schema matching. Existing structure-based
techniques match elements in trees (or graphs) by either computing their similarity in the initial
tree structure (Do & Rahm, 2002; Madhavan et al., 2001) or by mapping them to a multi-
dimensional space to compute their closeness values (Candan, Kim, Liu, & Suvarna, 2006).

Cupid (Madhavan et al., 2001) is a generic matching approach that can work for both XML
and relational databases. This approach considers both structural similarity and non-structural
(e.g., linguistics and constraints) information in computing the similarity values of two elements.
The similarity value of two elements vi and vj is a weighted similarity of all the above factors. In
this section, we consider the structure-based bottom-up matching algorithm TreeMatch. Given
two schema trees S1 and S2, the initial similarity value for each leaf element pair is initialized
based on an assessment of how compatible the corresponding data types are. Then, TreeMatch
computes the similarity value sim of every element pair (v1,v2) (v1 Î S1 Ù v2 Î S2) by traversing
the two schema trees in post-order. Two cases need to be considered in this computation. In the
first case, where the two elements are leaves, their similarity value is the weighted value of their
structural similarity value ssim and the similarity value lsim computed considering other factors
(e.g., linguistics). The second case occurs when one element is a non-leaf element. In such a
case, the structural similarity of these two elements is measured as the fraction of leaf level
element matches. One leaf element matches another if their weighted similarity value is higher
than some threshold e. Let v1 and v2 be two elements to be matched, Leaves(v1) and Leaves(v2)
represent the leaf element sets in sub-trees rooted at v1 and v2 respectively. Let Å be the union of
these two leaf element sets (i.e., Å=Leaves(v1)ÈLeaves(v2)), V1 represents the set of elements in
Leaves(v1) which matches some element in Leaves(v2). Similarly, let V2 represent the set of
elements in Leaves(v2) which matches some element in Leaves(v1). Then, the ssim(v1,v2) is
computed as . From the structural similarity value, a weighted similarity value sim(v1,v2)

over the two elements is computed. Next, this similarity value of two elements is further
propagated to the leaf-element pairs in their subtrees. In particular, given two thresholds eh and el,
when sim(v1,v2)>eh, the structural similarity value of every leaf element pair is increased by a
factor finc. On the contrary, when sim(v1,v2)<el, ssim(v1,v2) is decreased by a factor fdec. This
process continues until all the element pairs from both trees are traversed.

Figure 5
[Put figure fig5a.tif here]
[Figure 5a subtitle: (a) Part of source schema S1]
[Put figure fig5b.tif here]
[Figure 5b subtitle: (b) Part of source schema S2]
[Figure 5 caption: Two source schemas]

||
|| 21

Å
ÈVV

We can use the two source schemas in Figure 5 to illustrate this process.
In this figure, to distinguish the different element names in different contexts, we associate

with each one a number to make the description easier. Let the matching threshold be e = 0.3. Let
us also assume that initially from the data type compatible matrix, we get that
ssim(name2,gname)=0.5, ssim(name1,sponsor)=0.5, ssim(name3,gname)=0.5, …. When we
compute ssim(fund, grant2), we have that element name2ÎLeaves(fund) matches
gnameÎLeaves(grant2), thus,

Next, ssim(fund,grant2) is adjusted to its weighted score sim(fund,grant2). If
sim(fund,grant2) is bigger than eh, then ssim(name2,sponsor)=finc´ssim(name2,sponsor),
ssim(name2,gname)= finc´ssim(name2,gname), and ssim(name2,amount=
finc´ssim(name2,amount).

Milo & Zohar (1998) also use schema graphs for matching; matching is performed node by
node starting at the “roots” of the tree-like schema graph. More generally, let T(V,E) be a tree
schema. T is called a rooted tree if one of the vertices/nodes is distinguished and called the root. T
is called a node labeled tree if each node in V is assigned a symbol from an alphabet S. T is called
an ordered tree if it is rooted and the order among siblings (nodes under the same parent node) is
also given. An unordered tree is simply a rooted tree. Given two ordered labeled trees, T1 and T2,
T1 is said to match T2 if there is a one-to-one mapping from the nodes of T1 to the nodes of T2
such that (a) the roots map to each other, (b) if a tree node vi maps another tree node vj, then the
children of vi and vj map to each other in left-to-right order and (c) label of vi is equal to the label
of vj. Note that exact matching can be checked in linear time on ordered trees. T1 is said to match
T2 at node v if there is a one-to-one mapping from the nodes of T1 to the nodes of the subtree of
T2 rooted at v. The naive algorithm (which checks for all possible nodes of T2) takes O(nm) time
where n is the size of the T1 and m is the size of T2, while there are algorithms which
leverage special index structures, such as suffix trees for compressed representation and quick
access to sub-paths of T1. While the matching problem is relatively efficient for ordered trees, the
problem quickly becomes intractable for unordered trees. In fact, for unordered trees, the
matching problem is known to be NP-hard (Kilpeläinen & Mannila, 1995).

As opposed to these potentially expensive approaches, Candan et al. present two approaches in
(Candan et al., 2006) and in (Candan, Kim, Liu, & Agarwal, 2007), respectively that use both
data instances and hierarchical structures to match two tree-structured schemas, S1 and S2. These
methods both map the nodes of the tree into a multi-dimensional space (using multi-dimensional
scaling in (J. Kruskal, 1964; J. B. Kruskal & Wish, 1978) and using propagation in (Kim &
Candan, 2006) and compute the similarity values of the elements in this multi-dimensional space.
These approaches work in three steps. First, the nodes in the trees are mapped into two k-
dimensional spaces Rk1 and Rk2, respectively. Then, these spaces are aligned based on common
nodes in the two trees. Finally, once the nodes from both trees are mapped onto a common space,
the algorithms use clustering or nearest-neighbor algorithms to find potentially related nodes.

Hybrid and Composite Methods
The difficulty of the matching problem and the different aspects of the data and schema that can
be used as cues make pure matching solutions (e.g., solely based on instance, or on structure)
inadequate. Due to this, hybrid matching approaches that incorporate multiple information in

5.0
4
2

|},,,2{|
|}{}2{|)2,(==

È
=

amountgnamesponsorname
gnamenamegrantfundssim

)(mnO

matching tend to be more effective. Different from the hybrid matching method, which utilizes
diverse information but still works as one matcher, the composite matching approaches combine
the results of several matching operators. In what follows, we briefly describe some well
recognized hybrid and composite methods which work for XML databases.

Onion (Mitra, Wiederhold, & Kersten, 2000) and its predecessor SKAT (Mitra, Wiederhold,
& Jannink, 1999) are schema-based matching systems that first perform a linguistic matching and
then apply structure-based matching. The structure-based phase, which attempts to match only the
unmatched terms, is based on structural isomorphism detection between the subgraphs. Clio
(Hernández, Miller, & Haas, 2001; R. J. Miller, Haas, & Hernández, 2000)is a mixed schema-
based and instance-based system that proposes a declarative approach to schema matching
between either XML or/and relational schemas. After the first phase in which input schemas are
translated into an internal representation, the system combines sequentially instance-based
attribute classifications (by using a Bayes classifier) with a string matching between elements
names (these n-to-m value correspondences can be also entered by the user through a graphical
user interface). After that, Clio produces a final mapping. Cupid (Madhavan et al., 2001) also
exploits not only structural information, but combines multiple techniques, including linguistic-
based, element-based, structure-based, context-dependent matching. It also leverages internal
structure, similarity of atomic elements, and constraints. In general, to compute the similarity
coefficients between elements from two schemas, first, a linguistic matching is performed to
match elements based on their names, data types, domains, etc. In this step, a thesaurus is also
used to identify synonyms and acronyms. Then, a structural matching is run to match elements
based on the similarity of their contexts or vicinities as described earlier.

Next, a final score measuring the similarity of two elements is calculated by combining the
two scores obtained in the previous two steps. Finally, the mapping is deduced from these
coefficients. In particular, if the adjusted similarity value sim of two elements vi and vj is no
smaller (i.e., equal or bigger) than the given threshold, a correspondence from vi to vj (i.e.,
µ=viàvj (sim)) is generated. In the simplest case, only the leaf-level correspondences are
returned. The mapping in a general case is one-to-many since a source element may map to many
target elements. SF (Melnik et al., 2002) also uses a hybrid combination of name matchers and
SemInt (Li & Clifton, 1994; Li & Clifton, 2000) is a hybrid approach exploiting both schema and
instance information. Since they don't specifically deal with XML documents, we omit their
descriptions here.

COMA (Do & Rahm, 2002) is a composite matching system working for XML database.
Besides using different matching operators, COMA also reuses previous matching results. We
briefly introduce the basic ideas of this system:

1. Given two schemas Si and Sj, COMA finds a set of intermediate schemas, Sk-s, that have
some matching results with Si and Sj: Si « Sk (mapping between Si and Sk) and Sj « Sk.

2. This step computes Si « Sj (i.e., mapping between Si and Si) by using the previous
matching results of other schemas with Si and Sj (maybe generated by other matchers).
Specifically, given l intermediate schemas, for each intermediate schema Sk, COMA uses
a MatchCompose operation to compute Si « Sj from Si « Sk and Sj « Sk. The result of
MatchCompose process using one intermediate schema is a similarity matrix where the
similarity value at the i-th row and j-th column is the similarity value for matching siÎSi
to sjÎSj. l is the number of intermediate schemas. The combined result of MatchCompose
process for all intermediate schema Sk-s is a m´n´l similarity cube where each matrix is
for one intermediate schema.

3. Next, for each element pair (vi, vj) where viÎSi, vjÎSj, COMA computes their similarity
value by aggregating the l similarity values in the similarity cube. This gets a m´n matrix.
The value at the i-th row and j-th column is the aggregated similarity value derived from
the matching results (computed using other matchers) with l other schemas.

4. For the elements in one schema, COMA selects its mapping candidates from the other
schema using this matrix. The matrix computed in the previous step might imply that one
element in a schema may match to many elements in another schema. In this step,
COMA finds the best match candidate for each element.

Figure 6
[Put figure fig6.tif here]
[Figure caption: Intended matching results and automatically discovered matching
results] (Adapted from (Do et al., 2002))

Measuring the Matching Quality
The diversity of the available matching algorithms necessitate objective mechanisms to compare
performances of different matching algorithms. Recently, for example, Duchateau et al. (2007)
proposed a benchmark to compare the quality of different matching tools. This proposal and
others all rely on statistical measures comparing the degrees of false positives (wrongly identified
matches) and false negatives (missed matches) against degrees of true positives (correctly
identified matches) and true negatives (correctly excluded matches).
 Let, as shown in Figure 6, M={(vs1,vt1), (vs2,vt2),…, (vsn,vtn)} denote the matching results
returned by a matching algorithm and M'={(vs1',vt1'), (vs2',vt2'),…, (vsm',vtm')} denote the intended
matching results (i.e., ground truth). Let the number of correct correspondences be denoted as
c=|MÇM'|. Matching accuracy can be quantified by various measures borrowed from the
information retrieval field (Do et al., 2002). These include,

, , . SemInt (Li & Clifton, 2000), for

example, uses all three of these measures to evaluate their matching method. Recall is used in
evaluating the accuracy of LSD (Doan et al., 2001). These standard measures are also used in
ontology matching, e.g., QOM (Ehrig & Staab, 2004).

An alternative to F-measure, which combines precision and recall, is so called, overall
measure first proposed in SF (Melnik et al., 2002), and used in COMA (Do & Rahm, 2002). The
overall measure intends to quantify the user effort that is needed to transform a system returned
matching result into the intended one. Given M, M', and c as before, the number of wrongly
suggested (false positive) correspondences is (n-c) and the number of missing (false negative)
correspondences is (m-c). In total, the amount of corrections (by either deleting false positive

results or adding false negative results) that a user has to make is . Based on this

observation, the overall accuracy can be defined as (note that this measure

can have non-positive values). It is easy to see that ; i.e., overall refines

recall by deducting the percentage of the wrongly suggested correspondences. Comparisons
between overall and F-Measure show that, for the same precision and recall values, overall tends
to provide more pessimistic assessments of the matching quality (Do et al., 2002).

n
cprecision =

m
crecall =

recallprecision
recallprecisionmeasureF

+
´´

=-
2

m
cmcn)()(-+-

m
cmcnoverall)()(1 -+-

-=

m
cnrecalloverall -

-=

Mapping Rule Generation
The correspondences between source and target elements are inherently ambiguous because they
do not contain information on how these elements are interpreted in their own schemas, including
the contexts and the referential constraints. Therefore, these simple correspondences are not
always adequate to retrieve data through one integrated schema from data instances following
other schemas, whereas such data retrieval operation is common in applications like data
translation, data exchange, or query processing over integrated schema. To make such data
retrieval operations possible, more informed mapping rules (assertions) that can semantically
connect the elements in one schema to elements in others are needed. More specifically, for a
given element vÎS1, an assertion specifies how the instances of v should be translated to instances
in S2. The rule is generally represented as a query qS2 in schema S2 in some specific language, e.g,
SQL, XQuery, or XSLT. The process to generate such assertions is called mapping rule
generation.

In data exchange or data translation, the operation of mapping rule generation happens after
the correspondences are identified. The generated rules are used to interpret the data following
one schema to comply with another one. In data integration, the mapping rules are generated
after schema integration, and are further used during query processing (chapter titled “XML Data
Integration: Merging, Query Processing and Conflict Resolution”). To generate mapping rules
among relational schemas, there exist various well known techniques, such as source-to-target
tuple-generating dependencies (source-to-target tgds (Fagin, Kolaitis, Miller, & Popa, 2005)),
GAV (global-as-view (Lenzerini, 2002)), LAV (local-as-view (Lenzerini, 2002)), or GLAV
(global-and-local-as-view (Lenzerini, 2002)) assertions. However, the direct application of these
techniques to XML database is not trivial due to the hierarchical and nested structures in XML.

Attempts to automatically generate mapping rules for XML schemas include (Fuxman et al.,
2006; Hernández et al., 2007; Hernández et al., 2008; Popa et al., 2002; Yu & Popa, 2004)
Pankowski et al. (2007) discuss generation of XML schema mapping rules in the presence of key
constraints and value dependencies. Atay et al. (2007) present approaches to generate XML to
SQL mapping rules for recursive XML schemas. Kementsietsidis, Arenas, & Miller (2003)
propose a language which allows specification of alternative semantics for mapping tables and
shows that a constraint-based treatment of mappings can lead to efficient mechanisms for
inferring new mappings. Arenas & Libkin (2005) propose to use DTDs and source-to-target
dependencies together in data translation. Popa et al. (2002) present a semantic translation
approach to generate mapping rules between hierarchical schemas from simple correspondences
between simple elements. In this semantic translation, source-to-target (s-t) dependencies are
generated to associate elements in the source schema to elements in the target schema in a certain
way by incorporating the semantic constraints in each schema to the element correspondences.
The algorithm first computes the primary paths and logical relations for the source and target
schemas separately. The primary paths from a nested schema (e.g., XML schema) is a set of
elements found on the paths from the root to any non-root element. E.g., oÎorg, noÎorg.name,
eÎedu, neÎedu.name are all primary paths for the nested schema in Figure 2(b). Then, by taking
the referential constraints among elements, the primary paths are combined to logical relations.
Each logical relation is of the form “select * from Ps where Conditions”, where Ps are the
primary paths, and Conditions are some equality conditions relating two elements. Then, based on
the logical relations from the source and target schema, s-t dependencies are generated. A s-t
dependency is in the form of “for A exists B where C” where A and B are logical relations in the

source and target schemas respectively, and C consists of the equality conditions of the subset of
correspondences. To further improve the expressive power of the mapping rules, and the
translation/integration performance, Fuxman et al. in (2006) extended (Popa et al., 2002) to
generate nested mapping rules, which allow nesting and correlation of mappings.

Other Considerations
Piazza (A. Y. Halevy, Ives, Suciu, & Tatarinov, 2003), HepToX (Bonifati, Chang, Ho,
Lakshmanan, & Pottinger, 2005), QUEST(Qi, Candan, Sapino, & Kintigh, 2006), and FICSR
(Candan et al., 2008; Qi et al., 2007) recognize that it is unrealistic to expect an independent data
source entering information exchange to agree to a global mediated schema or to perform
heavyweight operations to map its schema to every other schema in the group. Piazza presents a
mediation language for mapping both the domain and document structures and focuses on certain
answers that hold for every consistent instance. HepToX, on the other hand, focuses on
automated mapping rule generation, without explicitly considering conflicts. FICSR (Candan et
al., 2008; Qi et al., 2007) uses a feedback process to incrementally improve mappings through
users feedback provided within the context of queries they pose. Pay-as-you-go systems (Dong,
Halevy, & Yu, 2007; Jeffery, Franklin, & Halevy, 2008; Sarma, Dong, & Halevy, 2008) consider
probabilistic mappings, which may improve over time with new evidence, as a way of relaxing
the need for enforcing full-, consistent-integration. The idea of applying user feedback to the data
integration is not new. In particular, several works (Doan et al., 2001; Jeffery et al., 2008; Wu,
Yu, Doan, & Meng, 2004) explore the role of user feedback in schema matching. TRIO
(Benjelloun, Sarma, Halevy, & Widom, 2006) also represents alternatives probabilistically and
relies on lineage information for query processing: the lineage information provides the context in
which the validity of the various statements about the data and metadata can be assessed.

FUTURE RESEARCH DIRECTIONS
As discussed above, decades of efforts on schema extraction, mapping, and merging have
produced a lot of promising techniques. However, unfortunately for the users of these techniques,
there is still a lot of room for improvements. In what follows, we outline several trends that
deserve attention.

In this section, we observed that there are many approaches to XML schema matching and
integration. Different algorithms use different kinds of information. Thus, often times, they also
report results on different testing data sets. This state of affairs raises some critical questions:
“how solid are these algorithms?” and “how can one fairly measure the soundness of these
techniques?” Gal pointed in (Gal, 2007) that all participating matchers in a benchmark test
reported very poor results with only 30-40% precision and even worse, 13-45% recall. On the
other hand, “even with such low precision and recall, is it fair to state that these techniques are
useless?” “How useful are these matching algorithms after decades of efforts?” Thus
benchmarking is a critical research direction in this domain. Recently, there are several efforts
(Duchateau et al., 2007) for developing measuring for measuring the qualities of matching
algorithms. At this point, however, there are no benchmarks for measuring the effectiveness of
data mergining. Moreover, even when such benchmarks exist, they end up relying on statistical
measures (like precision and recall), instead of measuring how useful these systems really are in
helping problem solving and decision making. Our community has to answer some tough

questions about how to measure the quality of integrated data and how to develop benchmarks
that measure the utility of the various algorithms to the end-user.

We also note that most recent applications abhor pre-integration of data and, instead, demand
runtime (on-line) integration (E. Rahm, Thor, & Aumueller, 2007). For example, many mashup
applications integrate web contents and services on demand based on specific user’s input
(personalized integration) or the context (context-aware integration). Moreover, some of the new
data management frameworks (such as data spaces) assume very limited schema information and
are based on very loosely structured data. In such highly dynamic and loosely-structured
environments, traditional algorithms may not be efficient. Dynamic (or on-the-fly) data/metadata
matching, “pay-as-you-go” integration are some of proposed solutions to address this challenge.
In Chapter titled “XML Data Integration: Merging, Query Processing and Conflict Resolution”
we will further discuss these problems and solutions.

CONCLUSION
As shown in Figure 1, XML data integration is a multi-stage process. In this chapter, we focused
on the techniques for schema extraction and mapping. We note, however, these are just the
starting steps of XML data integration. In order to integrate the data, we need to further perform
data/metadata merging. Based on the resulting merged data in query processing, we either need to
apply conflict resolution strategies or develop new query processing techniques that can operate
on more relaxed data structures, such as graphs. In fact, conflict resolution process can be
integrated with query processing to support an incremental approach to cleaning the conflicts: as
the user explores the integrated data (and conflicts) within the context of her queries, she can
provide more informed conflict resolution feedback to the system. We will discuss merging,
query processing over integrated XML data, and cover strategies that can be used for resolving
conflicts in a separate chapter, titled “XML Data Integration: Merging, Query Processing and
Conflict Resolution”.

References

Achard, F., Vaysseixm, G., & Barillot, E. (2001). XML, bioinformatics and data integration.

Bioinformatics, 17(2), 115-125.

Anand, A., & Chawathe, S. S. (2004). Cooperative data dissemination in a serverless

environment. CS-TR-4562, University of Maryland, College Park,

Arenas, M., & Libkin, L. (2005). XML data exchange: Consistency and query answering. PODS,

13-24.

Atay, M., Chebotko, A., Lu, S., & Fotouhi, F. (2007). XML-to-SQL query mapping in the

presence of multi-valued schema mappings and recursive XML schemas. DEXA, 603-616.

Aulbach, S., Grust, T., Jacobs, D., & Rittinger, A. K. a. J. (2008). Multi-tenant databases for

software as a service: Schema-mapping techniques. SIGMOD Conference, 1195-1206.

Balmin, A., Papakonstantinou, Y., & Vianu, V. (2004). Incremental validation of XML

documents. ACM Trans.Database Syst., 29(4), 710-751.

Barbosa, D., Mignet, L., & Veltri, P. (2005). Studying the XML web: Gathering statistics from an

XML sample. World Wide Web, 8(4), 413-438.

Barbosa, D., Mignet, L., & Veltri, P. (2006). Studying the XML web: Gathering statistics from an

XML sample. World Wide Web, 9(2), 187-212.

Benjelloun, O., Sarma, A. D., Halevy, A. Y., & Widom, J. (2006). ULDBs: Databases with

uncertainty and lineage. VLDB, 953-964.

Bertino, E., & Ferrari, E. (2001). XML and data integration. IEEE Internet Computing, 5(6), 75-

76.

Bex, G. J., Martens, W., Neven, F., & Schwentick, T. (2005). Expressiveness of XSDs: From

practice to theory, there and back again. WWW, 712-721.

Bex, G. J., Neven, F., & Bussche, J. V. d. (2004). DTDs versus XML schema: A practical study.

WebDB, 79-84.

Bex, G. J., Neven, F., Schwentick, T., & Tuyls, K. (2006). Inference of concise DTDs from XML

data. VLDB, 115-126.

Bex, G. J., Neven, F., & Vansummeren, S. (2007). Inferring XML schema definitions from XML

data. VLDB, 998-1009.

Bex, G. J., Neven, F., & Vansummeren, S. (2008). SchemaScope: A system for inferring and

cleaning XML schemas. SIGMOD Conference, 1259-1262.

Bonifati, A., Chang, E. Q., Ho, T., Lakshmanan, L. V. S., & Pottinger, R. (2005). HePToX:

Marrying XML and heterogeneity in your P2P databases. VLDB, 1267-1270.

Bouquet, P., Serafini, L., & Zanobini, S. (2003). Semantic coordination: A new approach and an

application. International Semantic Web Conference, 130-145.

Candan, K. S., Cao, H., Qi, Y., & Sapino, M. L. (2008). System support for exploration and

expert feedback in resolving conflicts during integration of metadata. VLDB J., 17(6), 1407-

1444.

Candan, K. S., Kim, J. W., Liu, H., & Agarwal, R. S. a. N. (2007). Multimedia data mining and

knowledge discovery. (pp. 259-290) Springer London.

Candan, K. S., Kim, J. W., Liu, H., & Suvarna, R. (2006). Discovering mappings in hierarchical

data from multiple sources using the inherent structure. Knowl.Inf.Syst., 10(2), 185-210.

Cherukuri, V. S., & Candan, K. S. (2008). Propagation-vectors for trees (PVT): Concise yet

effective summaries for hierarchical data and trees. LSDS-IR '08: Proceeding of the 2008

ACM Workshop on Large-Scale Distributed Systems for Information Retrieval, Napa Valley,

California, USA. 3-10.

Chidlovskii, B. (2001). Schema extraction from XML: A grammatical inference approach.

KRDB,

Chitic, C., & Rosu, D. (2004). On validation of XML streams using finite state machines.

WebDB, 85-90.

Chung, C., Min, J., & Shim, K. (2002). APEX: An adaptive path index for XML data. SIGMOD

Conference, 121-132.

Clark, J. Trang: Multi-format schema converter based on RELAX NG

Cohen, W. W., Ravikumar, P., & Fienberg, S. E. (2003). A comparison of string distance metrics

for name-matching tasks. IIWeb, 73-78.

Decker, S., Harmelen, F. V., Broekstra, J., Erdmann, M., Fensel, D., Horrocks, I., et al. (2000).

The semantic web - on the respective roles of XML and RDF. IEEE Internet Computing, 4,

http://www.ontoknow.

Devlin, B. A., & Murphy, P. T. (1988). An architecture for a business and information system.

IBM Systems Journal, 27(1), 60-80.

Do, H. H., Melnik, S., & Rahm, E. (2002). Comparison of schema matching evaluations. Web,

Web-Services, and Database Systems, 221-237.

Do, H. H., & Rahm, E. (2002). COMA - A system for flexible combination of schema matching

approaches. VLDB, 610-621.

Doan, A., Domingos, P., & Halevy, A. Y. (2001). Reconciling schemas of disparate data sources:

A machine-learning approach. SIGMOD Conference, 509-520.

Doan, A., & Halevy, A. Y. (2005). Semantic integration research in the database community: A

brief survey. AI Magazine, 26(1), 83-94.

Dong, X. L., Halevy, A. Y., & Yu, C. (2007). Data integration with uncertainty. VLDB, 687-698.

Duchateau, F., Bellahsene, Z., & Hunt, E. (2007). XBenchMatch: A benchmark for XML schema

matching tools. VLDB, 1318-1321.

Ehrenfeucht, A., & Zeiger, H. P. (1976). Complexity measures for regular expressions.

J.Comput.Syst.Sci., 12(2), 134-146.

Ehrig, M., & Staab, S. (2004). QOM - quick ontology mapping. International Semantic Web

Conference, 683-697.

Fagin, R., Kolaitis, P. G., Miller, R. J., & Popa, L. (2005). Data exchange: Semantics and query

answering. Theor.Comput.Sci., 336(1), 89-124.

Fernau, H. (2004). Extracting minimum length document type definitions is NP-hard. ICGI, 277-

278.

Fernau, H. (2005). Algorithms for learning regular expressions. ALT, 297-311.

Florescu, D. (2005). Managing semi-structured data. ACM Queue, 3(8), 18-24.

Franklin, M. J., Halevy, A. Y., & Maier, D. (2005). From databases to dataspaces: A new

abstraction for information management. SIGMOD Record, 34(4), 27-33.

Fuxman, A., Hernández, M. A., Ho, C. T. H., Miller, R. J., Papotti, P., & Popa, L. (2006). Nested

mappings: Schema mapping reloaded. VLDB, 67-78.

Gal, A. (2006). Why is schema matching tough and what can we do about it? SIGMOD Record,

35(4), 2-5.

Gal, A. (2007). The generation Y of XML schema matching panel description. XSym, 137-139.

Garcia, P., & Vidal, E. (1990). Inference of k-testable languages in the strict sense and

application to syntactic pattern recognition. IEEE Trans.Pattern Anal.Mach.Intell., 12(9),

920-925.

Garofalakis, M. N., Gionis, A., Rastogi, R., Seshadri, S., & Shim, K. (2003). XTRACT: Learning

document type descriptors from XML document collections. Data Min.Knowl.Discov., 7(1),

23-56.

Giunchiglia, F., Shvaiko, P., & Yatskevich, M. (2004). S-match: An algorithm and an

implementation of semantic matching. ESWS, 61-75.

Goldman, R., & Widom, J. (1997). DataGuides: Enabling query formulation and optimization in

semistructured databases. VLDB}'97, 436-445.

Gottlob, G., Koch, C., Pichler, R., & Segoufin, L. (2005). The complexity of XPath query

evaluation and XML typing. J.ACM, 52(2), 284-335.

Halevy, A. (1999). More on data management for XML. White Paper, Available Online at:

Http://www.Cs.Washington.edu/homes/alon/widom-Response.Html,

Halevy, A. Y., Franklin, M. J., & Maier, D. (2006). Principles of dataspace systems. PODS, 1-9.

Halevy, A. Y., Ives, Z. G., Suciu, D., & Tatarinov, I. (2003). Schema mediation in peer data

management systems. In ICDE, 505-516.

Halevy, A., Rajaraman, A., & Ordille, J. (2006). Data integration: The teenage years. VLDB}, 9.

Hegewald, J., Naumann, F., & Weis, M. (2006). XStruct: Efficient schema extraction from

multiple and large XML documents. ICDE Workshops, 81.

Hernández, M. A., Ho, H., Popa, L., Fuxman, A., Miller, R. J., Fukuda, T., et al. (2007). Creating

nested mappings with clio. ICDE, 1487-1488.

Hernández, M. A., Miller, R. J., & Haas, L. M. (2001). Clio: A semi-automatic tool for schema

mapping. SIGMOD Conference, 607.

Hernández, M. A., Papotti, P., & Tan, W. C. (2008). Data exchange with data-metadata

translations. PVLDB, 1(1), 260-273.

Hopcroft, J. E., & Ullman, J. D. (1979). Introduction to automata theory, languages and

computation Addison-Wesley Publishing Company.

Jeffery, S. R., Franklin, M. J., & Halevy, A. Y. (2008). Pay-as-you-go user feedback for

dataspace systems. SIGMOD '08: Proceedings of the 2008 ACM SIGMOD International

Conference on Management of Data, Vancouver, Canada. 847-860.

Jennifer, R. G., & Widom, J. (1999). Approximate DataGuides. In Proceedings of the Workshop

on Query Processing for Semistructured Data and Non-Standard Data Formats, 436-445.

Jhingran, A. (2006). Enterprise information mashups: Integrating information, simply. VLDB, 3-

4.

Kementsietsidis, A., Arenas, M., & Miller, R. J. (2003). Mapping data in peer-to-peer systems:

Semantics and algorithmic issues. SIGMOD Conference, 325-336.

Kilpeläinen, P., & Mannila, H. (1995). Ordered and unordered tree inclusion. SIAM J.Comput.,

24(2), 340-356.

Kim, J. W., & Candan, K. S. (2006). CP/CV: Concept similarity mining without frequency

information from domain describing taxonomies. CIKM, 483-492.

Kintigh, K. W. (2006). The promise and challenge of archaeological data integration. American

Antiquity,

Koloniari, G., & Pitoura, E. (2005). Peer-to-peer management of XML data: Issues and research

challenges. SIGMOD Rec., 34(2), 6-17.

Kruskal, J. (1964). Nonmetric multidimensional scaling: A numerical method. Psychometrika,

29(2), 115-129.

Kruskal, J. B., & Wish, M. (1978). Multidimensional scaling SAGE publications, Beverly Hills.

Lenzerini, M. (2002). Data integration: A theoretical perspective. PODS '02: Proceedings of the

Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems, Madison, Wisconsin. 233-246.

Li, W., & Clifton, C. (1994). Semantic integration in heterogeneous databases using neural

networks. VLDB, 1-12.

Li, W., & Clifton, C. (2000). SEMINT: A tool for identifying attribute correspondences in

heterogeneous databases using neural networks. Data Knowl.Eng., 33(1), 49-84.

Madhavan, J., Bernstein, P. A., & Rahm, E. (2001). Generic schema matching with cupid. VLDB,

49-58.

Martens, W., Neven, F., Schwentick, T., & Bex, G. J. (2006). Expressiveness and complexity of

XML schema. ACM Trans.Database Syst., 31(3), 770-813.

McHugh, J., Abiteboul, S., Goldman, R., & Widom, D. Q. a. J. (1997). Lore: A database

management system for semistructured data. SIGMOD Record, 26(3), 54-66.

Melnik, S., Garcia-Molina, H., & Rahm, E. (2002). Similarity flooding: A versatile graph

matching algorithm and its application to schema matching. ICDE, 117-128.

Miller, G. A. (1995). WordNet: A lexical database for english. , 38(11) 39-41.

Miller, R. J., Haas, L. M., & Hernández, M. A. (2000). Schema mapping as query discovery.

VLDB, 77-88.

Milo, T., & Suciu, D. (1999). Index structures for path expressions. Database Theory - ICDT '99,

7th International Conference, Jerusalem, Israel, January 10-12, 1999, Proceedings; Lecture

Notes in Computer Science, , 1540 277-295.

Milo, T., & Zohar, S. (1998). Using schema matching to simplify heterogeneous data translation.

VLDB, 122-133.

Min, J., Ahn, J., & Chung, C. (2003). Efficient extraction of schemas for XML documents.

Inf.Process.Lett., 85(1), 7-12.

Mitra, P., Wiederhold, G., & Jannink, J. (1999). Semi-automatic integration of knowledge

sources. Proc. 2nd International Conference on Information Fusion, 572–581.

Mitra, P., Wiederhold, G., & Kersten, M. L. (2000). A graph-oriented model for articulation of

ontology interdependencies. EDBT, 86-100.

Noy, N., & Musen, M. (2001). Anchor-PROMPT: Using non-local context for semantic

matching. Proceedings of the Workshop on Ontologies and Information Sharing at the

International Joint Conference on Artificial Intelligence (IJCAI), 63-70.

Pankowski, T. (2008). XML data integration in SixP2P: A theoretical framework. Intl. Workshop

on Data Management in Peer-to-Peer Systems, 11-18.

Pankowski, T., Cybulka, J., & Meissner, A. (2007). XML schema mappings in the presence of

key constraints and value dependencies. EROW,

Papakonstantinou, Y., Garcia-Molina, H., & Widom, J. (1995). Object exchange across

heterogeneous information sources. ICDE, 251-260.

Popa, L., Velegrakis, Y., Miller, R. J., Hernández, M. A., & Fagin, R. (2002). Translating web

data. VLDB, 598-609.

Pottinger, R. A., & Bernstein, P. A. (2003). Merging models based on given correspondences.

VLDB,

Qi, Y., Candan, K. S., & Sapino, M. L. (2007). FICSR: Feedback-based inconsistency resolution

and query processing on misaligned data sources. SIGMOD, 151-162.

Qi, Y., Candan, K. S., Sapino, M. L., & Kintigh, K. W. (2006). QUEST: QUery-driven

exploration of semistructured data with ConflicTs and partial knowledge. CleanDB,

Rahm, E., & Bernstein, P. A. (2001). A survey of approaches to automatic schema matching.

VLDB Journal, 10(4), 334-350.

Rahm, E., Do, H. H., & Massmann, S. (2004). Matching large XML schemas. SIGMOD Record,

33(4), 26-31.

Rahm, E., Thor, A., & Aumueller, D. (2007). Dynamic fusion of web data. XSym, 14-16.

Resnik, P. (1995). Using information content to evaluate semantic similarity in a taxonomy.

IJCAI, 448-453.

Sankey, J., & Wong, R. K. (2001). Structural inference for semistructured data. CIKM, 159-166.

Sarma, A. D., Dong, X., & Halevy, A. (2008). Bootstrapping pay-as-you-go data integration

systems. SIGMOD '08: Proceedings of the 2008 ACM SIGMOD International Conference

on Management of Data, Vancouver, Canada. 861-874.

Segoufin, L., & Vianu, V. (2002). Validating streaming XML documents. PODS, 53-64.

SGML. Standard generalized markup language: Http://www.w3.org/MarkUp/SGML/

Shvaiko, P., & Euzenat, J. (2005). A survey of schema-based matching approaches. J.Data

Semantics IV, , 146-171.

Shvaiko, P., & Euzenat, J. (2008). Ten challenges for ontology matching. OTM Conferences (2),

1164-1182.

Valtchev, P., & Euzenat, J. (1997). Dissimilarity measure for collections of objects and values.

IDA, 259-272.

Wu, W., Yu, C., Doan, A., & Meng, W. (2004). An interactive clustering-based approach to

integrating source query interfaces on the deep web. SIGMOD '04: Proceedings of the 2004

ACM SIGMOD International Conference on Management of Data, Paris, France. 95-106.

XML. Extensible markup language: Http://www.w3.org/XML/

XMLschema. Http://www.w3.org/XML/Schema

Yu, C., & Popa, L. (2004). Constraint-based XML query rewriting for data integration. SIGMOD,

371.

