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ABSTRACT 
Many applications require exchange and integration of data from multiple, heterogeneous 
sources.  eXtensible Markup Language (XML) is a standard developed to satisfy the convenient 
data exchange needs of these applications. However, XML by itself does not address the data 
integration requirements. This chapter discusses the challenges and techniques in XML Data 
Integration. It first presents a four step outline, illustrating the steps involved in the integration of 
XML data. This chapter, then, focuses on the first two of these steps: schema extraction and 
data/schema mapping. More specifically, schema extraction presents techniques to extract tree 
summaries, DTDs, or XML Schemas from XML documents. The discussion on data/schema 
mapping focuses on techniques for aligning XML data and schemas.  
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INTRODUCTION 
Data integration is the process of combining multiple heterogeneous and autonomous data 
sources.  Its purpose is to provide a logically unified view of the data to the users who need to 
search or analyze disparate data sources.  Data integration is a well studied problem in the data 
management community (Doan & Halevy, 2005; A. Halevy, Rajaraman, & Ordille, 2006; 
Lenzerini, 2002).  Despite decades of work in the area, however, the problem is still open. In this 
chapter, we focus on techniques for eXtensible Markup Language (XML) data integration. As we 
will see, XML provides opportunities in improving compatibilities across data sources; we will 
however see that XML also introduces unique challenges that require innovative solutions.  
 
Applications 
Many applications require effective and efficient data integration and, as the number and diversity 
of available data sources increase, this requirement gains further significance. In what follows, we 
briefly introduce a sample of contemporary applications which require data integration solutions.   



 

 

• Data warehousing and business intelligence.  A data warehouse is a repository storing 
large amounts of data collected from different sources (Devlin & Murphy, 1988).  The 
primary goal of a data warehouse is to provide users unified view of (and efficient access 
to) data collections that were originally located at different sources. Data warehouses are 
especially useful in enabling large scale data analysis, for example in support of business 
intelligence applications. Obviously, unless the contributing data sources are identical in 
structure or are partitions of a single schema, to build the data warehouse, we first need to 
integrate the data by identifying the correspondences between the data sources and the 
data warehouse.  

• Peer-to-peer (P2P) systems.  P2P systems leverage autonomous data sources (peers) as if 
they are part of a single unified data management system (Koloniari & Pitoura, 2005; 
Pankowski, 2008). Common usage of such systems includes a user initiating a query 
through one of the autonomous peer system, but getting answers from all relevant peers.  
Natural challenges include identifying relevant peers across heterogeneous schema and 
managing the mappings among the schemas of the peers (Anand & Chawathe, 2004; 
Cherukuri & Candan, 2008). In addition, queries and answers need to be routed within 
the peers in the system in a way that eliminates redundant query processing (Anand & 
Chawathe, 2004).  

• Service oriented architectures (SOA) and web information integration. Service oriented 
architectures abstract recurring (e.g., business) activity flows, make them available as 
independent services, and leverage these services as modules within large software 
systems. This approach reduces costs of developing and deploying new applications and 
promotes reuse. Consequently, today, the “web” is not only a collection of hyperlinked 
pages, but rather a collection of dynamic services that one can use to develop web-based 
applications and mashups (Jhingran, 2006). These web services, with their descriptions, 
are published so that other people can locate and integrate them into end-to-end 
information products. Meanwhile, data spaces (Franklin, Halevy, & Maier, 2005; A. Y. 
Halevy, Franklin, & Maier, 2006) help reduce the cost of managing loosely structured 
Web data by eliminating the need to impose strict structures on the integrated data. 
These, however, requires resolving potential differences between the data service 
interfaces and underlying data structures.   

• Scientific data management. In many scientific domains (e.g., archeology (Kintigh, 2006) 
and biology (Achard, Vaysseixm, & Barillot, 2001)), individual researchers or 
communities have different data management conventions, standards, and taxonomies 
(Qi, Candan, & Sapino, 2007).  For example, bioinformatics data have many new data 
types (e.g., microarrays, interaction maps of proteins, etc.)  stored in different databases 
and in different formats (Achard et al., 2001) . In archaeology, there is almost no 
universally agreed structure or ontology to help support integration and eliminate 
conflicts that occur due to varying knowledge standards and data interpretations (Kintigh, 
2006).  

 
 

Why XML? 
In mid 90's, the growing need for a common platform that can provide uniformity and improve 
interoperability between businesses and other enterprises led to the wide acceptance of eXtensible 
Markup Language (XML) as an exchange framework. Today, most of the data interchange is 



 

 

through XML-based data representation standards. XML provides simple, flexible, and self-
describing data representation. Its flexibility is due to the fact that alternative schemas can be 
combined effectively using disjunctions. Moreover, it is self-describing in that XML instances 
carry the structure of the data in the form of human-readable tags that are associated with data 
elements; consequently XML data can be exchanged without associated schemas. This simplicity 
and flexibility led to XML's use in many different domains for which ease of data exchange is a 
primary requirement, these include peer-to-peer (P2P) applications (Pankowski, 2008), 
bioinformatics (Achard et al., 2001), and semantic web (Decker et al., 2000).  

On the other hand, these same properties, especially the flexibility of the structure of the data 
and the possibility for each user or data contributor to have their own schemas (through 
Document Type Definitions (DTDs) and XML schemas (E. Rahm, Do, & Massmann, 2004) as 
opposed to committing to a unique, fixed set of constraints constraining the organization of the 
data, introduce new challenges in the integration process (Bertino & Ferrari, 2001) .  In late 90's, 
Halevy (1999) investigated issues that were then considered critical for XML data integration, 
including the choice of suitable languages for the description of data sources, the definition of 
query reformulation algorithms, the translation among different Document Type Definitions 
(DTD's), and the formulation of formalisms for source descriptions. 

During the past decade, two key complementary challenges to XML data integration emerged: 
(a) finding alignments, similarities, and compatibilities between different XML data schemas or 
instances and (b) identifying and resolving conflicts between XML data sources whenever they 
are not compatible. 
 

Figure 1  
[Put figure fig1.tif here] 
[Figure caption: Overview of the XML data integration process]  

 
Outline of the Chapter 
This chapter will focus on the challenges and solutions in the XML data integration.  Figure 1 
provides an overview of the underlying process:   
 

• Schema extraction: A particular challenge introduced by XML is that not all XML data 
come with an associated schema. In fact, one of the major differences between XML and 
its predecessor Standard Generalized Markup Language (SGML) is the relaxation of the 
requirement of each document having an associated document type definition (DTD), 
which defines the rules governing the structure. While this enables the use of XML as a 
flexible messaging and integration medium, in some cases (especially when the 
integration process is schema-aware), it also necessitates a process to extract a schema 
from a given collection of schema-less XML documents. We discuss this in Section 
“SCHEMA EXTRACTION”. 

• Matching and mapping: Finding mappings between data components is a common 
problem in almost all integration domains. For example, multi-tenant databases, which 
form the core of many Software and Information as a Service solutions (Aulbach, Grust, 
Jacobs, & Rittinger, 2008), strive to create integrated/consolidated schemas across 
similar, but different, tenant schemas.  The mappings from tenant schemas to the 
consolidated schema help the system manage multiple tenants as a single tenant, thus 
reducing the overall management and maintenance cost. XML data can often be 



 

 

represented using trees or tree-like graphs (Do & Rahm, 2002; Goldman & Widom, 
1997). This impacts solutions for finding mappings between XML data. We discuss XML 
matching and mapping methodologies in Section “MATCHING AND MAPPING”. 

• XML data/metadata merging: Once the mappings are discovered, the next step in the 
process is to integrate the XML data or metadata, depending on whether the system is 
operating on data- or schema-level.  

• Query processing and conflict resolution: The results of the merge process, however, 
may not always be a valid XML data or schema. This step uses the resulting merged data 
to support query processing and apply conflict resolution strategies.  

In this chapter, we focus on the first two steps. In a separate chapter, titled “XML Data 
Integration: Merging, Query Processing and Conflict Resolution”, we will discuss the later two 
steps, merging, query processing over integrated XML data, and the strategies that can be used 
for resolving conflicts. Finally, we conclude the chapter in Section “CONCLUSION”. 

 
Running Example 
All the examples presented to illustrate the algorithms in this chapter are picked from   
universities and research institutes application domain, where the underlying data includes 

• funding organization information, e.g., organization name, organization location, and title 
of grants (or funds); 

• university information, e.g., university name, and information about the university 
president; and 

• faculty information, e.g., faculty name and his/her funding information.  
 

SCHEMA EXTRACTION 
While in many cases XML documents are created according to a pre-defined structure (e.g., 
Document Type Definition (DTD) or XML schema (XMLschema)), the existence of a DTD or a 
schema is not guaranteed.  In fact, it has been observed that many XML documents on the web do 
not follow explicit schemas (Barbosa, Mignet, & Veltri, 2005) (i.e., schemas are unavailable 
(Barbosa, Mignet, & Veltri, 2006), or the existing schemas are not valid (Bex, Martens, Neven, & 
Schwentick, 2005).  However, during XML data integration (especially when integration needs to 
be supported by mappings extracted from schemas (E. Rahm & Bernstein, 2001; Shvaiko & 
Euzenat, 2005), it is critical to have schema information in advance.  These lead to research on 
learning the (implicit) structure of a given XML corpus through various structure extraction 
techniques (Florescu, 2005). 

Intuitively, on one hand, the extracted schema must represent all of the input XML documents 
(this is referred to as the generalization property); i.e., each input document must be an instance 
of the extracted common schema. On the other hand, we do not want to extract an overly-general 
schema, which covers significantly more XML documents than the input data; in other words, the 
extracted schemas should be specific enough to cover only the input XML documents. This is 
referred to as the specification property. With these properties in mind, we can define the schema 
extraction problem as follows (Bex, Neven, Schwentick, & Tuyls, 2006; Bex, Neven, & 
Vansummeren, 2007; Garofalakis, Gionis, Rastogi, Seshadri, & Shim, 2003; Goldman & Widom, 
1997): 

 



 

 

Definition. The schema extraction problem is to identify a schema S from a given set of 
XML documents D such that S captures the structural information of the documents in D in a 
minimal way.  (I.e., S is general and specific enough at the same time to cover D).  

 
The schema extraction process is also referred to as schema inference. The underlying 

structure of a given collection of XML documents can be described using DTD, XML Schema, or 
in a more general representation such as tree or graph.  The structure extraction techniques in the 
literature target at inferring three kinds of representations: tree or graph summaries (Goldman & 
Widom, 1997), DTDs (Bex et al., 2005; Bex et al., 2006; Garofalakis et al., 2003), or XML 
Schemas (Bex et al., 2007; Bex, Neven, & Vansummeren, 2008; Hegewald, Naumann, & Weis, 
2006).  This section considers these different approaches and discusses representative techniques. 

 
Extraction of Tree and Graph Structures 
If one ignores the explicit object references, an XML data/document has a hierarchical structure.   
OEM (Papakonstantinou, Garcia-Molina, & Widom, 1995) and LORE (McHugh, Abiteboul, 
Goldman, & Widom, 1997) are two well-known tree-like data models for XML documents that 
leverage the hierarchical nature of XML data. In OEM, for example, database is a rooted, directed 
graph, with textual labels on edges and atomic values in leaves. More specifically, each node of 
the graph corresponds to an element or an attribute of an element in the XML document. A child 
node corresponds to a sub-element or an attribute of its parent node. For each child of a node, 
besides the pointer to the child, there is a tag that indicates the name of the child node. If the child 
is a sub-element, the name is its element tag. If the child is an attribute, the name is the attribute 
name. In fact, a collection of XML documents can also be viewed as a single large DOM tree, 
where all the individual documents are rooted at the same node.  Figure 2(a) provides an example. 
Given such an OEM tree, the schema extraction problem can be posed as understanding the 
common structure governing the root to leaf paths on this tree. Based on this observation, in 
(Goldman & Widom, 1997), Goldman and Widom present the DataGuide technique for 
extracting structures as concise summaries of initially schema-free XML databases.  

A DataGuide of an XML database is a graph, where each object node has a unique identifier 
and nodes are linked with directed labeled edges.  Unlike the graph corresponding to an XML 
document, each label path (between a given pair of nodes) in the DataGuide is unique. A 
DataGuide is said to represent a given XML database, if there is one and only one label path for 
each path in the XML database. More formally, let DG be a DataGuide extracted from a database 
D represented in OEM: 

• every label path in the database D exists in the DataGuide DG (covers all structural 
information), 

• every label path in the DataGuide DG exists in D (no redundant information), and 
• let tg(l) denote the set of target objects one can reach starting from the root and following 

a label path l. In an XML database tg(l) may contain more than one object, but the target 
set of a label path in a DataGuide is a singleton set (minimality). 

 
Figure 2  
[Put figure fig2a.tif here] 
[Insert Figure 2a’s subtitle: (a)] 
[Put figure fig2b.tif here] 
[Insert Figure 2b’s subtitle: (b)] 



 

 

[Put figurefig2c.tif here] 
[Insert Figure 2c’s subtitle: (c)] 
[Insert Figure 2’s caption: Example for DataGuide: (a) a database, (b) a tree structured data 

guide, and (c) a graph structured dataguide]  
 

Figure 2(b) shows a DataGuide for the sample database in Figure 2(a). In the original 
database, between object nodes ‘1’ and ‘9’, there is a label path org.name; there is a similarly 
labeled path (between object nodes ‘14’ and ‘17’ in the DataGuide and this label path is unique. 

Note that a given XML data collection may have more than one DataGuide. The graphs in 
Figures 2(b) and 2(c) are both DataGuides of the database in Figure 2(a). A strong DataGuide 
(Goldman & Widom, 1997) is a DataGuide such that two label paths l1 and l2 point to the same 
object (i.e., their target sets are identical) if and only if the target sets of l1 and l2 are exactly the 
same in the original database.  More formally, given label path l, let LDG(l) be the set of label 
paths in the DataGuide DG which have the same target set as l.  Similarly, let LD(l) be the set of 
label paths in the Database D which have the same target set as l.  A strong DataGuide refers to a 
DataGuide such that "l LDG(l) = LD(l).  Consider Figure 2 as an example and let l be org.name. 
The target set of l in D is {5, 9} and the set of label paths sharing this target set is LD(l) = 
{org.name}.  Consider the same label path in the DataGuide in Figure 2(b); here the target set of l 
is {17}, the only label path that reaches this target set is org.name; thus, we have 
LDG(l)={org.name}=LD(l) = {org.name}.  After similar analysis on other label paths, we can see 
that Figure 2(b) is a strong DataGuide of Figure 2(a).  Figure 2(c), however, does not show a 
strong DataGuide. To see this, consider the same label path org.name; in this case, tg(l) in the 
DataGuide is {29} and LDG(l)={org.name, edu.name}, which is different from LD(l). Thus, the 
graph is not a strong data guide. 

While DataGuides are not unique, Goldman & Widom (1997) show that each XML collection 
has one and only one strong DataGuide; moreover, given a tree-structured XML collection, 
construction of the corresponding strong DataGuide is linear in space and time, with respect to 
the size of the collection. For a more general database (with explicit references, creating a graph), 
however, the process has exponential cost (intuitively, DataGuide construction is equivalent to 
conversion of a non-deterministic finite automaton into deterministic one). Strong DataGuides are 
created by performing a depth-first traversal of the database and recording the target sets of the 
label paths visited. Since in strong DataGuides there is a one-to-one correspondence between 
source target sets (the target sets of label paths in the source) and DataGuide objects, the 
algorithm presented in (Goldman & Widom, 1997) maintains a hash table H to keep the one-to-
one correspondences between the target sets in the source database and the objects in the 
DataGuide for examined label paths.  To begin with, a DataGuide object is created to correspond 
to the root of the source database.  That is, an entry ({rootD}: rootDG) is inserted into H.  Then, the 
unexamined source target sets in H are expanded in a depth-first order to compute new source 
target sets and to create corresponding DataGuide objects for them.  To expand a source target set 
tg (for an entry (tg : o) in H), the algorithm first gets the labels coming out of any object in tg.  
Then, through different labels, it gets their reachable source target sets.  Once a newly computed 
source target object set tg’ does not exist in H, a new DataGuide object o’ is created for tg’ (i.e., a 
new entry, (tg' : o'), is added to H) and a link from object o to o’ with label l is created. Otherwise 
(i.e., an entry (tg' : o') exists in H), the algorithm simply links o to o’ using label l. Take the 
database in Figure 2(a) as an example. Initially, H={({1}:14)}. Next, the target set {1} is 
expanded by following two different labels org and edu. Following the first label org, we get 



 

 

source target set {2, 3}. Since this does not exist in H, we need to create a corresponding 
DataGuide object, “15”, for it and insert this information to H, then H has one more entry ({2, 
3}:15).  This process is recursively applied to source target set {2, 3}, and so on.  When every 
target set is expanded for label paths starting with org, the expansion continues to label paths 
starting with edu.  Finally, this algorithm would result in the strong DataGuide shown in Figure 
2(b).  

Since, especially for graph structured databases, strong DataGuide construction can be 
exponential, Jennifer & Widom (1999) introduce approximate data guides that can reduce the 
construction cost by relying on approximate hash matches. T-Index (Milo & Suciu, 1999) is also 
similar to DataGuides, but the paths represented in a T-index structure are not limited to those 
starting from the root. APEX (Chung, Min, & Shim, 2002) is similar to DataGuides and T-
Indexes, but it extracts the structure only for frequent paths in the data. 

 
DTD and XML Schema Extraction and Inference 
As described above, DataGuides use graphs as the general form to represent the common 
structures of XML collections.  DataGuides, however, are not as expressive as Data Type 
Definitions (DTDs)  (Bex et al., 2005; Bex et al., 2006; Chidlovskii, 2001; Garofalakis et al., 
2003; Min, Ahn, & Chung, 2003; Sankey & Wong, 2001) or XML Schema (Bex et al., 2007; Bex 
et al., 2008; Clark; Hegewald et al., 2006), the two most widely used formats to represent the 
structure of XML documents. 
 

Figure 3 
[Put figure fig3a.tif here] 
[Figure 3a subtitle: (a) Initial SOA created for the XML document in Figure 2(a)] 
[Put figure fig3b.tif here] 
[Figure 3b subtitle: (b) Step 1: apply the optional rule on (a). The edge from “location” to 

“send” is removed; The state “state” is changed to “state?”] 
[Put figure fig3c.tif here] 
[Figure 3c subtitle: (c) Step 2: apply the concatenation rule on states labeled with “location” 

and “state?” on (b)] 
[Put figure fig3d.tif here] 
[Figure 3d subtitle: (d) Step 3: apply disjunction rule on (c) by merging the states “fund”, 

“grant”, and “location state?”] 
[Figure 3 caption: Transformation of a single occurrence automaton in (a) towards a single 

occurrence RE]  
 

DTD Extraction 
DTD's are most often used for grammar validation, which is the process through which a service 
verifies the validity of a document against a registered DTD to ensure that it is structurally valid 
and processable. A DTD can be formally abstracted as quadruple G (I, T, Rt,F), where I is the set 
of non-terminals, T =  is the set of terminals (S denotes the alphabet of open-tags and  
denotes the set of close-tags), Rt is the root, and F is a set of production rules which can be used 
to generate XML documents  matching the given DTD.  In particular, the strings represented by 
the right-hand sides of the production rules in F are regular expressions and, thus, can be 
recognized by finite state machines (Hopcroft & Ullman, 1979).  Balmin, Papakonstantinou, & 
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Vianu (2004), for example, use this fact to develop an incremental, divide-and-conquer type of 
validation mechanism for XML documents. Many works (Chitic & Rosu, 2004; Gottlob, Koch, 
Pichler, & Segoufin, 2005; Segoufin & Vianu, 2002) also show that XML documents can be 
validated using finite state automata. Based on the observation that DTDs can be abstracted as 
regular expressions (REs) that can be recognized by finite state automata, a number of works 
focus on learning these REs.  Bex et al. (2006) for example, reduce the DTD extraction problem 
to learning REs from XML fragments in the XML corpus. Garcia & Vidal (1990) also derive an 
RE to represent a given XML corpus. Several researchers observed that REs learned through 
these processes tend to be overly complex to be useful in practical settings (Ehrenfeucht & 
Zeiger, 1976; Fernau, 2004; Fernau, 2005). Bex, Neven, & Bussche (2004) observe that a 
significant majority (99% of XSDs or DTDs in practical use) can be represented as single 
occurrence REs (SOREs), where every element name occurs at most once in the expression. For 
example, “((b?(a|c))+d)) +e” is a SORE while “a(a|b)*” is not (“a” occurs more than once). 

Relying on this observation, Bex et al. (2006) provide a scheme to generate SOREs from 
XML data. A SORE, however, may not be found if the DTD corresponding to the given XML 
collection cannot be represented using an expressions where each element name occurs only 
once. In such cases, Bex et al. apply heuristics to find SOREs that are less accurate (i.e., 
corresponding to a more general DTD than the given XML collection implies).  The process is as 
follows:  

• In the first step, the algorithm collects all label paths from root to leaves. In (Bex et al., 
2006), these label paths are called strings.  For example, from the XML document in 
Figure 2(a), we can extract strings org.name and org.location.state. 

• The second step constructs a so called, single occurrence automaton for these strings.  
The automaton has two special states sinit as the starting state and send as the terminal state. 
All the other states are labeled with element names.  There is an edge from one state sj to 
another state sk if (i) sj = sinit and sk is a starting element name in some XML fragment 
string, or (ii) sk = send and sj is an ending element name in some XML fragment string, or 
(iii) sj sk is a 2-gram extracted from some XML fragment string. Figure 3(a) shows the 
automaton we can obtain using the XML fragments in Figure 2(a).  

• In the third step, this initial single occurrence automaton is simplified to obtain the SORE 
(if it exists) by applying four transformation rules:  

o disjunction rule merges the states which share the same predecessors and 
successors disjunctively (using “|”), 

o concatenation rule concatenates those adjacent states having only one incoming 
and outgoing edge,  

o self-loop rule removes any self-loop edge on a state “s” and relabels it as “s+”,  
o optional rule removes such edges si à sj that there exists another state sk with 

siÎprec(sk) and sjÎ succ(sk).  In this case, sk is relabeled as sk?. 
Figure 3 gives an example illustrating how these rules are used. When we reach Figure 3(d), 

the algorithm stops since none of the above rules can be applied. However, Figure 3(d) is not an 
RE yet.  

• If a SORE cannot be derived using the above rules, the algorithm falls back onto repairs 
rules that allow some fuzziness in merging the automaton states. For example,  

o an enable-disjunction rule is used to add a minimal number of edges to make the 
predecessors and successors of two states are the same. 



 

 

In Figure 4, this rule adds the bold line from state “edu” to state “location state?|fund|grant”.  
Given this new edge, disjunction and concatenation rules can now be applied to obtain the regular 
expression in Figure 4(b) and 4(c). 

 
Figure 4 
[Put figure fig4a.tif here] 
[Figure 4a subtitle: (a) Apply enable-disjunction rule on Figure 3(d)] 
[Put figure fig4b.tif here] 
[Figure 4b subtitle: (b) Apply disjunction rule on (a)] 
[Put figure fig4c.tif here] 
[Figure 4c subtitle: (c) Apply Concatenation rule on (b) 
[Figure 4 caption: SOA repair]  
 

XML Schema Extraction 
XML Schema Definitions (XSDs) are more expressive than DTDs. In particular, XSD introduces 
types, which are essentially regular expressions (Martens, Neven, Schwentick, & Bex, 2006) that 
can be used to describe elements in the XML schema; each element can take one or more types. 
The fundamental difference from DTDs, however is that the type (or the corresponding RE) an 
element will take may be determined by the context (i.e., ancestor elements) in which the 
elements occur in the XML document. This is in stark contrast to DTDs, where given a 
disjunctive element definition of the form A := RE1|RE2, there is absolutely no constraint on 
whether A can be expressed in a given document using RE1 or RE2. In XSD, however, the choice 
between RE1 and RE2 can be tied to the ancestors of A in the given document. 

Since DTD extraction techniques do not look for such dependencies, given a set of documents 
that are created using XSDs (where such dependencies exist), DTD extraction techniques will fail 
to find them. Bex et al. (2007) argue that in many of the existing XSD extraction approaches, 
such as Trang (Clark) and XStrut (Hegewald et al., 2006), while the extracted schemas are in 
XSD syntax, they are equivalent to DTDs in expressive power. 

When inferring a DTD, since there is no contextual dependence, the algorithm only needs to 
distinguish the immediate parent-child relationship among the XML tags to learn the REs 
corresponding to elements. In learning XSDs, on the other hand, the algorithm also needs to seek 
to identify whether contexts (i.e., the root-to-element paths in the given set of document) have 
any impact on the REs corresponding to each element name. This increases the complexity of the 
analysis. Due to this inherent complexity, Bex et al. (2007) focus on learning a subclass of XSDs 
commonly used in practice.  XSDs in this subclass, named k-local single occurrence XSDs 
(SOXSDs), satisfy the following two properties: First, in these XSDs, determining one element's 
content model (e.g., “name” defined under “org”) only depends on a limited number (e.g., k) of 
ancestors of the element -- this is based on the study in (Martens et al., 2006) that, in 98% of the 
XSDs, one element's content model can be determined based on the label of itself, its parent, or 
its grandparent (i.e., up to k=2);  Second, these XSDs only contain elements with different names 
as in SOREs discussed above. 

 
MATCHING AND MAPPING 
Matching is a vital step in XML data integration.  Given schemas of separate data sources, the 
matching operation discovers the correspondences or mappings (among constituent objects, such 
as attributes or values, from different sources) that are not immediately available (for example, 



 

 

due to differences in naming convention) (E. Rahm & Bernstein, 2001). A multitude of 
approaches (Do & Rahm, 2002; Fuxman et al., 2006; Gal, 2007; Hernández et al., 2007; 
Hernández, Papotti, & Tan, 2008; Madhavan, Bernstein, & Rahm, 2001) have been developed to 
perform matching operation for different types of data and metadata. . In the context of XML data 
integration, the term matching applies to finding correspondences among XML schemas 
(including DTDs) or document instances (XML documents).  The techniques focusing on 
relational database schema matching or ontology matching will not be our focus, but we will refer 
to them when they are closely related to XML matching.  After obtaining the matching results, 
further processing is needed to translate these correspondences to executable scripts (e.g., SQL, 
XQuery).  Some existing works (Atay, Chebotko, Lu, & Fotouhi, 2007; Fuxman et al., 2006; 
Hernández et al., 2007; Hernández et al., 2008; Pankowski, Cybulka, & Meissner, 2007; Popa, 
Velegrakis, Miller, Hernández, & Fagin, 2002) call these scripts mappings and call this process 
mapping generation.  In order to distinguish the results of the basic matching operation and this 
one, we call the results of this operation mapping rules and call this operation mapping rule 
generation.  These mapping rules are used for performing further operations, e.g., data exchange 
(Hernández et al., 2008), data translation (Milo & Zohar, 1998; Popa et al., 2002), or query 
evaluation (chapter titled “XML Data Integration: Merging, Query Processing and Conflict 
Resolution”).  

In what follows, we first define the terminology in Section “Terminology”.  Then, in Section 
“Matching Operation: Identifying Mappings”, we detail some main challenges in schema 
matching and some typical techniques. We cover the problem of mapping rule generation in 
Section “Mapping Rule Generation” 

 
Terminology 
Based on the characteristics of the underlying data and metadata, various types of matching 
techniques have been developed: these include schema matching (e.g., relational database 
schemas, catalogs, and XML schemas), ontology matching (Shvaiko & Euzenat, 2005; Shvaiko & 
Euzenat, 2008), and so forth. Unfortunately, the terminologies used for denoting this operation, 
such as matching (Cupid (Madhavan et al., 2001), COMA(Do & Rahm, 2002)), match (Cupid), 
alignment (QOM (Ehrig & Staab, 2004)), mapping (QOM (Ehrig & Staab, 2004)), differ from 
context to context.  For clarity, in this chapter, we use the term matching to denote the operation, 
and use correspondences, mapping or alignment to denote the results of this operation. 

As stated above, given two data sources S1 and S2, the matching operation identifies 
correspondences between parts (e.g., elements or element sets) of S1 and S2. Each such 
correspondence has an associated confidence value (or probability) t(Î[0,1]) (the correspondence 
is more certain when this value is closer to 1). Many works (e.g. (Madhavan et al., 2001)) use the 
convention that a mapping denotes the matching result as a whole, while a correspondence refers 
to one pair of matched elements. We also follow this convention. Thus, the set, M = {µ}, of 
correspondences is called a mapping (some work  (Fuxman et al., 2006) also call the matching 
results as matchings). The mapping rules, on the other hand, are pieces of scripts written in 
specific languages (e.g., SQL, XQuery, etc.) to reflect a mapping between two sources.  The 
mapping rule is sometimes referred to an assertion (Candan, Cao, Qi, & Sapino, 2008; Qi et al., 
2007). Each mapping rule from S1 to S2 specifies how relevant parts of S1 can be translated to a 
form compatible with S2.  Potential uncertainties in mappings (i.e., cases where t < 1.0) leads to 
the following observations: 



 

 

• Non-singleton mapping sets. A part of S1 may match multiple parts of S2, with different 
confidence values. Depending on the semantics of the parts being mapped and the 
integrity constraints governing S1 and S2, these mappings might be compatible with each 
other or conflicting. When only one mapping is allowed, often only the most likely 
correspondence is    maintained (COMA (Do & Rahm, 2002), LSD(Doan, Domingos, & 
Halevy, 2001), Cupid (Madhavan et al., 2001)). Otherwise, by picking correspondences 
whose confidence values exceed some threshold, one-to-many mappings can be 
preserved (Cupid). 

• Matching results are not always symmetric. That is, the results of matching S1 to S2 may 
be different from the results obtained from matching S2 to S1 (Do & Rahm, 2002) 

• Matching similarity is not necessarily transitive. Let v1, v2 and v3 be three elements in 
sources S1, S2, and S3. Let also vi à vj denote a correspondence identified from vi to vj If 
v1àv2 and v2 à v3, then in general there is no guarantee that v1àv3.  

This of course is a potential problem as it may result in semantically inconsistent scenarios. 
While it is hard to avoid this problem with mappings identified through pairwise matching 
operations, composite and hybrid matching techniques may avoid it by considering more than two 
pairs at a time (COMA (Do & Rahm, 2002)).  

For simplicity of the discussion, in the rest of this section, we will focus on mappings of the 
form {µ: viàvj (tij)}, where vi and vj are two elements from two different sources S1 and S2.  
However, since during data integration, algorithms may need to take as input more general 
mappings (Candan et al., 2008; Pottinger & Bernstein, 2003; Qi et al., 2007), in Chapter titled 
“XML Data Integration: Merging, Query Processing and Conflict Resolution”, , where we discuss 
integration based on mappings, we refer to a more general definition of mappings. 

 
Matching Operation: Identifying Mappings 
Matching is challenging (Gal, 2006) due to several reasons.  First, identical concepts may be 
named or structured differently.  Second, the same or similar words may be used to represent 
different concepts. To match two sources, one can leverage different types of cues (E. Rahm et 
al., 2004): (i) schema information such as data types, element names, or structures, (ii) external 
information such as thesauri, (iii) data instance characteristics, and (iv) previous matching results.  
Based on how they leverage these, it is possible to classify the available matching techniques 
using three broad criteria (E. Rahm & Bernstein, 2001; Shvaiko & Euzenat, 2005): 

• Element-level vs. structure-level: We can classify matching algorithms based on whether 
the structural relationship among elements are used or not.  Element-level algorithms 
only analyze elements themselves, but ignoring relationships among them.  In contrast, 
structure-level matching algorithms match elements based on how they are related to 
each other in the overall structure. 

• Instance-based vs. schema-based: The former considers data instances while resolving 
mappings among schema elements, while the latter only considers schemas during the 
matching process. 

• Syntax-based vs. semantic-based: The syntax-based (or syntactic) approaches only 
consider syntactic cues (e.g., available thesauri), while the semantic-based methods also 
leverage available semantics (e.g., integrity constraints). 

String-distance  based (Cohen, Ravikumar, & Fienberg, 2003; Do, Melnik, & Rahm, 2002; 
Madhavan et al., 2001; Melnik, Garcia-Molina, & Rahm, 2002; Noy & Musen, 2001),  linguistic 
resource  based (Bouquet, Serafini, & Zanobini, 2003; Giunchiglia, Shvaiko, & Yatskevich, 2004; 



 

 

Madhavan et al., 2001; G. A. Miller, 1995; Resnik, 1995), and constraint based (E. Rahm & 
Bernstein, 2001; Valtchev & Euzenat, 1997) approaches to matching are not specific to XML 
matching. Thus, we will not focus on them here.  Instead, we will focus on techniques that 
leverage the structure of XML data and schemas as well as hybrid and composite matching 
approaches which use multiple (e.g., structure and semantic) techniques. 

 
Structure-based Techniques 
As discussed earlier, the tree-like structure of XML data and schemas renders the structure-based 
matching techniques play a fundamental role in XML schema matching.  Existing structure-based 
techniques match elements in trees (or graphs) by either computing their similarity in the initial 
tree structure (Do & Rahm, 2002; Madhavan et al., 2001) or by mapping them to a multi-
dimensional space to compute their closeness values (Candan, Kim, Liu, & Suvarna, 2006).  

Cupid (Madhavan et al., 2001) is a generic matching approach that can work for both XML 
and relational databases.  This approach considers both structural similarity and non-structural 
(e.g., linguistics and constraints) information in computing the similarity values of two elements.  
The similarity value of two elements vi and vj is a weighted similarity of all the above factors.  In 
this section, we consider the structure-based bottom-up matching algorithm TreeMatch. Given 
two schema trees S1 and S2, the initial similarity value for each leaf element pair is initialized 
based on an assessment of how compatible the corresponding data types are.  Then, TreeMatch 
computes the similarity value sim of every element pair (v1,v2)  (v1 Î S1 Ù v2 Î S2) by traversing 
the two schema trees in post-order.  Two cases need to be considered in this computation.  In the 
first case, where the two elements are leaves, their similarity value is the weighted value of their 
structural similarity value ssim and the similarity value lsim computed considering other factors 
(e.g., linguistics).  The second case occurs when one element is a non-leaf element.  In such a 
case, the structural similarity of these two elements is measured as the fraction of leaf level 
element matches.  One leaf element matches another if their weighted similarity value is higher 
than some threshold e.  Let v1 and v2 be two elements to be matched, Leaves(v1) and Leaves(v2) 
represent the leaf element sets in sub-trees rooted at v1 and v2 respectively.  Let Å be the union of 
these two leaf element sets (i.e., Å=Leaves(v1)ÈLeaves(v2)), V1 represents the set of elements in 
Leaves(v1) which matches some element in Leaves(v2).  Similarly, let V2 represent the set of 
elements in Leaves(v2) which matches some element in Leaves(v1). Then, the ssim(v1,v2) is 
computed as .  From the structural similarity value, a weighted similarity value sim(v1,v2) 

over the two elements is computed. Next, this similarity value of two elements is further 
propagated to the leaf-element pairs in their subtrees. In particular, given two thresholds eh and el, 
when sim(v1,v2)>eh, the structural similarity value of every leaf element pair is increased by a 
factor finc. On the contrary, when sim(v1,v2)<el, ssim(v1,v2) is decreased by a factor fdec.  This 
process continues until all the element pairs from both trees are traversed.  

 
Figure 5 
[Put figure fig5a.tif here] 
[Figure 5a subtitle: (a) Part of source schema S1] 
[Put figure fig5b.tif here] 
[Figure 5b subtitle: (b) Part of source schema S2] 
[Figure 5 caption: Two source schemas]  
 

||
|| 21

Å
ÈVV



 

 

We can use the two source schemas in Figure 5 to illustrate this process. 
In this figure, to distinguish the different element names in different contexts, we associate 

with each one a number to make the description easier.  Let the matching threshold be e = 0.3. Let 
us also assume that initially from the data type compatible matrix, we get that 
ssim(name2,gname)=0.5, ssim(name1,sponsor)=0.5, ssim(name3,gname)=0.5, ….  When we 
compute ssim(fund, grant2), we have that element name2ÎLeaves(fund) matches 
gnameÎLeaves(grant2), thus,  

 

Next, ssim(fund,grant2) is adjusted to its weighted score sim(fund,grant2). If  
sim(fund,grant2) is bigger than eh, then ssim(name2,sponsor)=finc´ssim(name2,sponsor),  
ssim(name2,gname)= finc´ssim(name2,gname), and ssim(name2,amount= 
finc´ssim(name2,amount).  

Milo & Zohar (1998) also use schema graphs for matching; matching is performed node by 
node starting at the “roots” of the tree-like schema graph. More generally, let T(V,E) be a tree 
schema. T is called a rooted tree if one of the vertices/nodes is distinguished and called the root. T 
is called a node labeled tree if each node in V is assigned a symbol from an alphabet S. T is called 
an ordered tree if it is rooted and the order among siblings (nodes under the same parent node) is 
also given. An unordered tree is simply a rooted tree. Given two ordered labeled trees, T1 and T2, 
T1 is said to match T2 if there is a one-to-one mapping from the nodes of T1 to the nodes of T2 
such that (a) the roots map to each other, (b) if a tree node vi maps another tree node vj, then the 
children of vi and vj map to each other in left-to-right order and (c) label of vi is equal to the label 
of vj. Note that exact matching can be checked in linear time on ordered trees. T1 is said to match 
T2 at node v if there is a one-to-one mapping from the nodes of T1 to the nodes of the subtree of 
T2 rooted at v. The naive algorithm (which checks for all possible nodes of T2) takes O(nm) time 
where n is the size of the T1 and m is the size of T2, while there are algorithms which 
leverage special index structures, such as suffix trees for compressed representation and quick 
access to sub-paths of T1. While the matching problem is relatively efficient for ordered trees, the 
problem quickly becomes intractable for unordered trees. In fact, for unordered trees, the 
matching problem is known to be NP-hard (Kilpeläinen & Mannila, 1995).   

As opposed to these potentially expensive approaches, Candan et al. present two approaches in 
(Candan et al., 2006) and in (Candan, Kim, Liu, & Agarwal, 2007), respectively that use both 
data instances and hierarchical structures to match two tree-structured schemas, S1 and S2.  These 
methods both map the nodes of the tree into a multi-dimensional space (using multi-dimensional 
scaling in (J. Kruskal, 1964; J. B. Kruskal & Wish, 1978) and using propagation in (Kim & 
Candan, 2006) and compute the similarity values of the elements in this multi-dimensional space.  
These approaches work in three steps.  First, the nodes in the trees are mapped into two k-
dimensional spaces Rk1 and Rk2, respectively.  Then, these spaces are aligned based on common 
nodes in the two trees.  Finally, once the nodes from both trees are mapped onto a common space, 
the algorithms use clustering or nearest-neighbor algorithms to find potentially related nodes. 

 
Hybrid and Composite Methods 
The difficulty of the matching problem and the different aspects of the data and schema that can 
be used as cues make pure matching solutions (e.g., solely based on instance, or on structure) 
inadequate.  Due to this, hybrid matching approaches that incorporate multiple information in 

5.0
4
2

|},,,2{|
|}{}2{|)2,( ==

È
=

amountgnamesponsorname
gnamenamegrantfundssim

)( mnO



 

 

matching tend to be more effective.  Different from the hybrid matching method, which utilizes 
diverse information but still works as one matcher, the composite matching approaches combine 
the results of several matching operators. In what follows, we briefly describe some well 
recognized hybrid and composite methods which work for XML databases. 

Onion (Mitra, Wiederhold, & Kersten, 2000) and its predecessor SKAT (Mitra, Wiederhold, 
& Jannink, 1999) are schema-based matching systems that first perform a linguistic matching and 
then apply structure-based matching. The structure-based phase, which attempts to match only the 
unmatched terms, is based on structural isomorphism detection between the subgraphs.  Clio 
(Hernández, Miller, & Haas, 2001; R. J. Miller, Haas, & Hernández, 2000)is a mixed schema-
based and instance-based system that proposes a declarative approach to schema matching 
between either XML or/and relational schemas. After the first phase in which input schemas are 
translated into an internal representation, the system combines sequentially instance-based 
attribute classifications (by using a Bayes classifier) with a string matching between elements 
names (these n-to-m value correspondences can be also entered by the user through a graphical 
user interface). After that, Clio produces a final mapping.  Cupid (Madhavan et al., 2001) also 
exploits not only structural information, but combines multiple techniques, including linguistic-
based, element-based, structure-based, context-dependent matching. It also leverages internal 
structure, similarity of atomic elements, and constraints.  In general, to compute the similarity 
coefficients between elements from two schemas, first, a linguistic matching is performed to 
match elements based on their names, data types, domains, etc. In this step, a thesaurus is also 
used to identify synonyms and acronyms.  Then, a structural matching is run to match elements 
based on the similarity of their contexts or vicinities as described earlier. 

Next, a final score measuring the similarity of two elements is calculated by combining the 
two scores obtained in the previous two steps.  Finally, the mapping is deduced from these 
coefficients. In particular, if the adjusted similarity value sim of two elements vi and vj is no 
smaller (i.e., equal or bigger) than the given threshold, a correspondence from vi to vj (i.e.,  
µ=viàvj (sim)) is generated.  In the simplest case, only the leaf-level correspondences are 
returned.  The mapping in a general case is one-to-many since a source element may map to many 
target elements. SF (Melnik et al., 2002) also uses a hybrid combination of name matchers and 
SemInt (Li & Clifton, 1994; Li & Clifton, 2000) is a hybrid approach exploiting both schema and 
instance information. Since they don't specifically deal with XML documents, we omit their 
descriptions here. 

COMA (Do & Rahm, 2002) is a composite matching system working for XML database.  
Besides using different matching operators, COMA also reuses previous matching results.  We 
briefly introduce the basic ideas of this system: 

1. Given two schemas Si and Sj, COMA finds a set of intermediate schemas, Sk-s, that have 
some matching results with Si and Sj:  Si « Sk (mapping between Si and Sk) and Sj « Sk.  

2. This step computes Si « Sj (i.e., mapping between Si and Si) by using the previous 
matching results of other schemas with Si and Sj (maybe generated by other matchers). 
Specifically, given l intermediate schemas, for each intermediate schema Sk, COMA uses 
a MatchCompose operation to compute Si  « Sj from Si « Sk and Sj « Sk.  The result of 
MatchCompose process using one intermediate schema is a similarity matrix where the 
similarity value at the i-th row and j-th column is the similarity value for matching siÎSi 
to sjÎSj. l is the number of intermediate schemas. The combined result of MatchCompose 
process for all intermediate schema Sk-s is a m´n´l similarity cube where each matrix is 
for one intermediate schema. 



 

 

3.  Next, for each element pair (vi, vj) where viÎSi, vjÎSj, COMA computes their similarity 
value by aggregating the l similarity values in the similarity cube. This gets a m´n matrix.  
The value at the i-th row and j-th column is the aggregated similarity value derived from 
the matching results (computed using other matchers) with l other schemas.  

4. For the elements in one schema, COMA selects its mapping candidates from the other 
schema using this matrix.  The matrix computed in the previous step might imply that one 
element in a schema may match to many elements in another schema.  In this step, 
COMA finds the best match candidate for each element. 

 
Figure 6 
[Put figure fig6.tif here] 
[Figure caption: Intended matching results and automatically discovered matching 
results] (Adapted from (Do et al., 2002)) 
 
Measuring the Matching Quality 
The diversity of the available matching algorithms necessitate objective mechanisms to compare 
performances of different matching algorithms. Recently, for example,   Duchateau et al. (2007) 
proposed a benchmark to compare the quality of different matching tools. This proposal and 
others all rely on statistical measures comparing the degrees of false positives (wrongly identified 
matches) and false negatives (missed matches) against degrees of true positives (correctly 
identified matches) and true negatives (correctly excluded matches).   
 Let, as shown in Figure 6, M={(vs1,vt1), (vs2,vt2),…, (vsn,vtn)} denote the matching results 
returned by a matching algorithm and M'={(vs1',vt1'), (vs2',vt2'),…, (vsm',vtm')} denote the intended 
matching results (i.e., ground truth).  Let the number of correct correspondences be denoted as 
c=|MÇM'|.  Matching accuracy can be quantified by various measures borrowed from the 
information retrieval field (Do et al., 2002). These include, 

, , . SemInt (Li & Clifton, 2000), for 

example, uses all three of these measures to evaluate their matching method.  Recall is used in 
evaluating the accuracy of LSD (Doan et al., 2001). These standard measures are also used in 
ontology matching, e.g., QOM (Ehrig & Staab, 2004).  

An alternative to F-measure, which combines precision and recall, is so called, overall 
measure first proposed in SF (Melnik et al., 2002), and used in COMA (Do & Rahm, 2002). The 
overall measure intends to quantify the user effort that is needed to transform a system returned 
matching result into the intended one.  Given M, M', and c as before, the number of wrongly 
suggested (false positive) correspondences is (n-c) and the number of missing (false negative) 
correspondences is (m-c).  In total, the amount of corrections (by either deleting false positive 

results or adding false negative results) that a user has to make is .  Based on this 

observation, the overall accuracy can be defined as (note that this measure 

can have non-positive values).  It is easy to see that ; i.e., overall refines 

recall by deducting the percentage of the wrongly suggested correspondences. Comparisons 
between overall and F-Measure show that, for the same precision and recall values, overall tends 
to provide more pessimistic assessments of the matching quality (Do et al., 2002). 
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Mapping Rule Generation 
The correspondences between source and target elements are inherently ambiguous because they 
do not contain information on how these elements are interpreted in their own schemas, including 
the contexts and the referential constraints.  Therefore, these simple correspondences are not 
always adequate to retrieve data through one integrated schema from data instances following 
other schemas, whereas such data retrieval operation is common in applications like data 
translation, data exchange, or query processing over integrated schema.  To make such data 
retrieval operations possible, more informed mapping rules (assertions) that can semantically 
connect the elements in one schema to elements in others are needed.  More specifically, for a 
given element vÎS1, an assertion specifies how the instances of v should be translated to instances 
in S2. The rule is generally represented as a query qS2 in schema S2 in some specific language, e.g, 
SQL, XQuery, or XSLT.  The process to generate such assertions is called mapping rule 
generation.  

In data exchange or data translation, the operation of mapping rule generation happens after 
the correspondences are identified.  The generated rules are used to interpret the data following 
one schema to comply with another one.  In data integration, the mapping rules are generated 
after schema integration, and are further used during query processing (chapter titled “XML Data 
Integration: Merging, Query Processing and Conflict Resolution”). To generate mapping rules 
among relational schemas, there exist various well known techniques, such as source-to-target 
tuple-generating dependencies (source-to-target tgds (Fagin, Kolaitis, Miller, & Popa, 2005)), 
GAV (global-as-view (Lenzerini, 2002)), LAV (local-as-view (Lenzerini, 2002)), or GLAV 
(global-and-local-as-view (Lenzerini, 2002)) assertions.  However, the direct application of these 
techniques to XML database is not trivial due to the hierarchical and nested structures in XML.  

Attempts to automatically generate mapping rules for XML schemas include (Fuxman et al., 
2006; Hernández et al., 2007; Hernández et al., 2008; Popa et al., 2002; Yu & Popa, 2004)   
Pankowski et al. (2007) discuss generation of XML schema mapping rules in the presence of key 
constraints and value dependencies. Atay et al. (2007) present approaches to generate XML to 
SQL mapping rules for recursive XML schemas. Kementsietsidis, Arenas, & Miller  (2003) 
propose a language which allows specification of alternative semantics for mapping tables and 
shows that a constraint-based treatment of mappings can lead to efficient mechanisms for 
inferring new mappings. Arenas & Libkin (2005) propose to use DTDs and source-to-target 
dependencies together in data translation. Popa et al. (2002) present a semantic translation 
approach to generate mapping rules between hierarchical schemas from simple correspondences 
between simple elements.  In this semantic translation, source-to-target (s-t) dependencies are 
generated to associate elements in the source schema to elements in the target schema in a certain 
way by incorporating the semantic constraints in each schema to the element correspondences. 
The algorithm first computes the primary paths and logical relations for the source and target 
schemas separately.  The primary paths from a nested schema (e.g., XML schema) is a set of 
elements found on the paths from the root to any non-root element.  E.g., oÎorg, noÎorg.name, 
eÎedu, neÎedu.name are all primary paths for the nested schema in Figure 2(b).  Then, by taking 
the referential constraints among elements, the primary paths are combined to logical relations.  
Each logical relation is of the form “select * from Ps where Conditions”, where Ps are the 
primary paths, and Conditions are some equality conditions relating two elements. Then, based on 
the logical relations from the source and target schema, s-t dependencies are generated.  A s-t 
dependency is in the form of “for A exists B where C” where A and B are logical relations in the 



 

 

source and target schemas respectively, and C consists of the equality conditions of the subset of 
correspondences. To further improve the expressive power of the mapping rules, and the 
translation/integration performance, Fuxman et al. in (2006) extended (Popa et al., 2002) to 
generate nested mapping rules, which allow nesting and correlation of mappings.   

 
Other Considerations  
Piazza (A. Y. Halevy, Ives, Suciu, & Tatarinov, 2003), HepToX (Bonifati, Chang, Ho, 
Lakshmanan, & Pottinger, 2005), QUEST(Qi, Candan, Sapino, & Kintigh, 2006), and FICSR 
(Candan et al., 2008; Qi et al., 2007) recognize that it is unrealistic to expect an independent data 
source entering information exchange to agree to a global mediated schema or to perform 
heavyweight operations to map its schema to every other schema in the group. Piazza presents a 
mediation language for mapping both the domain and document structures and focuses on certain 
answers that hold for every consistent instance.  HepToX, on the other hand, focuses on 
automated mapping rule generation, without explicitly considering conflicts. FICSR (Candan et 
al., 2008; Qi et al., 2007) uses a feedback process to incrementally improve mappings through 
users feedback provided within the context of queries they pose. Pay-as-you-go systems (Dong, 
Halevy, & Yu, 2007; Jeffery, Franklin, & Halevy, 2008; Sarma, Dong, & Halevy, 2008) consider 
probabilistic mappings, which may improve over time with new evidence, as a way of relaxing 
the need for enforcing full-, consistent-integration.  The idea of applying user feedback to the data 
integration is not new.  In particular, several works (Doan et al., 2001; Jeffery et al., 2008; Wu, 
Yu, Doan, & Meng, 2004) explore the role of user feedback in schema matching.  TRIO 
(Benjelloun, Sarma, Halevy, & Widom, 2006) also represents alternatives probabilistically and 
relies on lineage information for query processing: the lineage information provides the context in 
which the validity of the various statements about the data and metadata can be assessed. 

  
FUTURE RESEARCH DIRECTIONS 
As discussed above, decades of efforts on schema extraction, mapping, and merging have 
produced a lot of promising techniques. However, unfortunately for the users of these techniques, 
there is still a lot of room for improvements. In what follows, we outline several trends that 
deserve attention.  

In this section, we observed that there are many approaches to XML schema matching and 
integration. Different algorithms use different kinds of information. Thus, often times, they also 
report results on different testing data sets. This state of affairs raises some critical questions:  
“how solid are these algorithms?” and “how can one fairly measure the soundness of these 
techniques?” Gal pointed in (Gal, 2007) that all participating matchers in a benchmark test 
reported very poor results with only 30-40% precision and even worse, 13-45% recall. On the 
other hand, “even with such low precision and recall, is it fair to state that these techniques are 
useless?” “How useful are these matching algorithms after decades of efforts?” Thus 
benchmarking is a critical research direction in this domain. Recently, there are several efforts 
(Duchateau et al., 2007) for developing measuring for measuring the qualities of matching 
algorithms. At this point, however, there are no benchmarks for measuring the effectiveness of 
data mergining. Moreover, even when such benchmarks exist, they end up relying on statistical 
measures (like precision and recall), instead of measuring how useful these systems really are in 
helping problem solving and decision making. Our community has to answer some tough 



 

 

questions about  how to measure the quality of integrated data and how to develop benchmarks 
that measure the utility of the various algorithms to  the end-user.  

We also note that most  recent applications abhor pre-integration of data and, instead, demand 
runtime (on-line) integration (E. Rahm, Thor, & Aumueller, 2007). For example, many mashup 
applications integrate web contents and services on demand based on specific user’s input 
(personalized integration) or the context (context-aware integration). Moreover, some of the new 
data management frameworks (such as data spaces) assume very limited schema information and 
are based on very loosely structured data. In such highly dynamic and loosely-structured 
environments, traditional algorithms may not be efficient. Dynamic (or on-the-fly) data/metadata 
matching, “pay-as-you-go” integration are some of proposed solutions to address this challenge. 
In Chapter titled “XML Data Integration: Merging, Query Processing and Conflict Resolution” 
we will further discuss these problems and solutions.  

 
CONCLUSION 
As shown in Figure 1, XML data integration is a multi-stage process. In this chapter, we focused 
on the techniques for schema extraction and mapping. We note, however, these are just the 
starting steps of XML data integration. In order to integrate the data, we need to further perform 
data/metadata merging. Based on the resulting merged data in query processing, we either need to 
apply conflict resolution strategies or develop new query processing techniques that can operate 
on more relaxed data structures, such as graphs. In fact, conflict resolution process can be 
integrated with query processing to support an incremental approach to cleaning the conflicts: as 
the user explores the integrated data (and conflicts) within the context of her queries, she can 
provide more informed conflict resolution feedback to the system. We will discuss merging, 
query processing over integrated XML data, and cover strategies that can be used for resolving 
conflicts in a separate chapter, titled “XML Data Integration: Merging, Query Processing and 
Conflict Resolution”. 
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