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Abstract  

The relevance of extracellular vesicles (EV) as mediators of cardiac damage or recovery upon Is-

chemia Reperfusion Injury (IRI) and Remote Ischemic PreConditioning (RIPC) is controversial. 

This study aimed to investigate whether serum-derived EV, recovered from patients with Acute 

Coronary Syndrome (ACS) and subjected to the RIPC or sham procedures, may be a suitable thera-

peutic approach to prevent IRI during Percutaneous-Coronary-Intervention (PCI). A double-blind, 

randomized, sham-controlled study (NCT02195726) has been extended, and EV were recovered 

from 30 patients who were randomly assigned (1:1) to undergo the RIPC- (EV-RIPC) or sham-

procedures (EV-naive) before PCI. Patient-derived EV were analysed by TEM, FACS and western 

blot. We found that troponin (TnT) was enriched in EV, compared to healthy subjects, regardless of 

diagnosis. EV-naive induced protection against IRI, both in-vitro and in the rat heart, unlike EV-

RIPC. We noticed that EV-naive led to STAT-3 phosphorylation, while EV-RIPC to Erk-1/2 activa-

tion in the rat heart. Pre-treatment of the rat heart with specific STAT-3 and Erk-1/2 inhibitors led 

us to demonstrate that STAT-3 is crucial for EV-naive-mediated protection. In the same model, 

Erk-1/2 inhibition rescued STAT-3 activation and protection upon EV-RIPC treatment. 84 Human 

Cardiovascular Disease mRNAs were screened and DUSP6 mRNA was found enriched in patient-

derived EV-naive. Indeed, DUSP6 silencing in EV-naive prevented STAT-3 phosphorylation and 

cardio-protection in the rat heart.  

This analysis of ACS-patients’ EV proved: i.) EV-naive cardio-protective activity and mechanism 

of action; ii.) the lack of EV-RIPC-mediated cardio-protection; iii.) the properness of the in-vitro 

assay to predict EV effectiveness in-vivo. 
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INTRODUCTION 

Acute coronary syndrome (ACS) remains one of the leading causes of mortality worldwide. 

Reperfusion via percutaneous coronary intervention (PCI) has amended the outcomes of patients 

with ACS by rescuing the myocardium from ischemia damage [1]. However, its lack of effective-

ness in avoiding reperfusion injury, means that it fails to prevent long-term complications in pa-

tients [2]. Reperfusion injury occurs as the result of several pathophysiological mechanisms that are 

triggered when oxygen is reintroduced after an ischemic period [3]. The "no-reflow" phenomenon 

[4], and "lethal reperfusion injury" are the most relevant pathological features of reperfusion injury 

during PCI [5].  

Ex-vivo and in-vivo studies have shown that intrinsic cardio-protective mechanisms that are 

activated by brief periods of non-lethal ischemia protect the myocardium from Ische-

mia/Reperfusion injury (IRI) [6]. A conditioning stimulus that can be applied before (PreCondition-

ing) [7], or immediately after (PostConditioning) [8,9] ischemia has been shown to preserve the 

myocardium from damage. More recently, Remote Ischemic PreConditioning (RIPC) has also been 

found effective in preclinical models of IRI [10–13]. In-vivo preclinical studies have suggested that 

the release of humoral mediators boost a neuronal, anti-inflammatory and antithrombotic cascade 

during conditioning procedures, resulting in tissue salvage [10,14,15].  

It is generally accepted that cardio-protection relies on the activation of protective myocar-

dial signals, mainly involving the activation of the reperfusion injury salvage kinase (RISK) and the 

survivor activating factor enhancement (SAFE) pathways [4]. In particular, the RISK pathway, first 

described by Yellon et al. [3], involves the activation of several kinases, such as PI3k-Akt, Mek/Erk 

[16–18], and the downstream effector, GSK3β [19]. The SAFE cascade has been found to involve 

Janus Kinase (Jak) and STAT-3 [20–22], resulting in the inhibition of mPTP opening [23]. RISK 

and SAFE are not parallel pathways, and crosstalk between them has been described [24]. Autoph-

agy [25], PKC [26] and nitric oxide-activated signalling [27], are additional cardio-protective path-

ways that have been reported.  

Although both pharmacological and mechanical procedures have provided consistent bene-

fits in preclinical models, protection in humans is still debated [28]. The variety in end-points, the 

failure to estimate long-term complications and the presence of patients’ co-morbidities [29,30], un-

like in animals, are the most relevant drawbacks in transferring cardio-protective procedures from 

preclinical models to humans [31]. The CONDI2/ERIC-PPCI trial was the last and the largest out-

come trial to demonstrate a lack of cardio-protection in patients subjected to a RIPC procedure [32]. 
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Extracellular vesicles (EV) have recently been found to act as mediators of intercellular 

communication during cardiac IRI by transferring their contents, which can be lipids, amino-acids, 

proteins, mRNAs, and miRNAs [33]. The same is true for EV that are released from the heart after 

ischemic PreConditioning [34,35]. Based on the "Minimal Information for Studies of EV" (MISEV) 

classification, EV are classified as small EV (<0.1μm) and medium-large EV (>0.1μm) [36]. EV are 

released from almost all cell types, can be detected in several biological fluids [37], and have been 

found to be involved in several pathophysiological processes [38–40].  

EV that are derived from different cell types are also involved in cardio-protection and have 

therefore been recommended as both disease biomarkers and therapeutic tools [41–43]. It has been 

shown that EV that are released from the ischemic myocardium “shape” the local inflammatory re-

sponse [44], while serum-derived EV from patients that have undergone coronary artery bypass 

grafts have been found enriched in miRNA-21 [45]. Additionally, Ma et al. [46] have shown a rapid 

increase of cardio-protective micro-particles, mainly derived from platelets, upon RIPC procedure 

in rats. Recently Abel et al. [47] have investigated EV derived from anaesthetized patients who 

have been undergone RIPC and coronary artery bypass graft surgery. This study demonstrated that 

EV released in response to RIPC are protective against hypoxia-induced H9c2 apoptosis. Their ef-

fects on Hypoxia/Reoxygenation (H/R) was not investigated [47]. Apart from the study by Haller et 

al. [48], describing the cell of origin of EV in patients with STEMI and subjected to RIPC, the car-

dio-protective properties of circulating EV isolated from ACS patients, whether they have been sub-

jected to RIPC procedure or otherwise, were never studied. Shedding light on the functional proper-

ties of EV recovered before PCI would be relevant, particularly if they may impact on IRI.  

In the present study, for ethical reasons, we have recovered circulating EV from 30 ACS pa-

tients requiring elective PCI. These patients were randomized to receive RIPC or sham-procedures 

before PCI. The EV from the two arms of the study, were characterized and evaluated in-vitro and 

ex-vivo for their cardio-protective properties. The cardio-protective pathway(s) and EV mechanism 

of action have also been thoroughly investigated.  
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MATERIALS AND METHODS 

Study design and participants 

The executive committee designed and oversaw the trial procedures and analysis. The trial 

and study protocols were approved by the Ethics committee at the Città della Salute e della Scienza 

Hospital. All procedures agreed with the principles of the Helsinki Declaration and all participants 

provided written informed consent. 

A randomized-controlled trial (Clinical Trial number: NCT02195726) [49]  has been ex-

tended to evaluate whether and how EV may be involved in reducing IRI after PCI and RIPC. 

Briefly, 30 Unstable Angina (UA) and Non-ST Elevation Myocardial Infarction (NSTEMI) patients 

(12 UA and 18 NSTEMI) were newly recruited from the Cardiology Department of the University 

of Turin from January 2019 through to September 2019. 

For ethical reasons (timing requested to perform PCI) the inclusion criteria were: 

UA/NSTEMI, age >40 and <85, while exclusion criteria were: Glomerular Filtration Rate (eGFR) < 

30ml/min, previous or active cancer, body mass index (BMI) >29 kg/m2, diabetes mellitus, critical 

stenosis of the lower limbs and carotids, and STEMI (for ethical reasons). 

Patients were randomly assigned (1:1) to receive RIPC- or a sham-PreConditioning proce-

dure by four designated study team members (FA, AC, LF, AG) who were unmasked to treatment 

allocation. All the other team members, interventional cardiologists, those performing experimental 

research and experimental analysis were blinded to the treatment allocation. Randomization was 

performed using a web-based clinical trial support system that uses blocks of 5 patients 

(http://www.randomization.com/). Patients that did not undergo coronary revascularization after 

randomization were also excluded from the study. Four individuals (age >25<60) without cardio-

vascular disease were used as controls where indicated. All patients underwent PCI within 48 hours 

from the admission to the emergency department.  

The RIPC protocol consisted of four 5-minute cycles of manual blood pressure cuff inflation 

to 200 mmHg (or 50 mmHg over the baseline if systolic blood pressure was >150mmHg) around 

the non-dominant arm, and this was alternated with 5-minute deflations. In the sham group, Pre-

Conditioning was performed by inflating the cuff to 20mmHg alternated with 5-minute deflation. 

Coronary angiography was performed within 120 minutes from the last inflation. Based on different 

studies [50,51], EV were collected from either radial or femoral artery blood samples before the 

PCI (Fig. 1). All data are reported as median and interquartile ranges (IQRs)±SEM.  
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EV isolation from human serum  

After serum collection, the biological samples were subjected to precipitation, as previously 

described [52]. Moreover, in selected experiments EV isolated by ultracentrifugation were used 

[53]. After isolation EV were stored for further evaluation. Details are in the Supplementary Data. 

EV characterization 

After isolation, EV flow cytometry analysis was performed using FACS on a GUAVA [53]. 

Antibodies directed to CD11b, CD14, CD62p, CD144, CD81, caveolin 3 and Troponin t (TnT) 

were used [54]. TRITON X100 was used in selected experiments to verify the TnT-EV-content as 

described in [55]. Details are in the Supplementary Data. 

Transmission electron microscopy  

Transmission electron microscopy (TEM) was performed on EV as previously described 

[52]. Details are in the Supplementary Data. 

Human endothelial cell (HMEC-1) and rat embryonic cardiac myoblast (H9c2) cultures. 

HMEC-1 and H9c2 cells were obtained from the American Type Culture Collection (ATCC; 

Manassas, VA) and cultured as previously described [56,57]. Details are in the Supplementary Da-

ta. 

In-vitro assay  

In-vitro experiments were performed using the trans-well assay [53,58]. Cells were subject-

ed to Hypoxia/Reoxygenation (H/R) in the presence of either EV-naive or EV-RIPC. At the end of 

the re-oxygenation period, H9c2 cell viability was evaluated using an MTT assay as previously de-

scribed [57]. Details are in the Supplementary Data. 

Ex-vivo model 

Male Wistar rats were used for ex-vivo experiments as specified below in the Ische-

mia/Reperfusion (I/R) studies. Rats received humane care in compliance with the European Di-

rective 2010/63/EU on the protection of animals used for scientific purposes. The local “Animal 

Use and Care Committee” approved the animal protocol (protocol no: E669C.N.OVL). The isolated 

hearts were processed previously described [59]. Details are in the Supplementary Data. 
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Protocols: 

1) I/R group (n=6): after stabilization, the I/R protocol was performed [59]; 

2) EV-naive group (n=15+n=3 as controls for siRNA experiments): EV-naive (1x109/ml final 

concentration) were infused into hearts for 10 minutes before the I/R protocol; 

3) EV-RIPC group (n=15): EV-RIPC (1x109/ml final concentration) were infused into hearts for 

10 minutes before the I/R protocol; 

4) EV-naive+STATTIC group (n=4): STATTIC (STAT-3 inhibitor, 10µM) [60] was infused on 

its own into hearts for 5 minutes, and then together with EV-naive (1x109/ml final concentration) 

for 10 minutes before the I/R protocol; 

5) EV-naive+U0126 group (n=4): U0126 (Erk-1/2 inhibitor, 60µM) [61] was infused on its own 

into hearts for 5 minutes, and then together with EV-naive (1x109/ml final concentration) for 10 

minutes before the I/R protocol; 

6) EV-RIPC+U0126 group (n=4): U0126 (60µM) [61] was infused on its own into hearts for 5 

minutes, and then together with EV-RIPC (1x109/ml final concentration) for 10 minutes before the 

I/R protocol; 

7) STATTIC group (n=3): STATTIC (10µM) [60] was infused on its own into hearts for 15 

minutes before the I/R protocol;  

8) U0126 group (n=3): U0126 (60µM) [61] was infused on its own into hearts for 15 minutes be-

fore the I/R protocol;  

9) EV-naive+SCRAMBLE group (n=3): EV-naive that were transfected with the SCRAMBLE 

sequence (1x109/ml final concentration) were infused into hearts for 10 minutes before the I/R pro-

tocol; 

10) EV-naive+DUSP6-siRNA group (n=3): EV-naive that were transfected with DUSP6-siRNA 

[62] (1x109/ml final concentration) were infused into hearts for 10 minutes before the I/R protocol; 

11) The hearts infused with KHS served as internal controls (n=3). 
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Infarct size assessment 

At the end of each experiment, the hearts were processed as previously described [63]. De-

tails are in the Supplementary Data. 

Western blot analysis 

The hearts were lysed, and the proteins were quantified using the Bradford method before 

western blotting was performed. Anti-p-tyr705 STAT-3, anti-p-Erk-1/2, and anti-vinculin antibodies 

were used as the primary antibodies. The results were normalized to vinculin [53]. Details are in the 

Supplementary Data.  

Microarray and interaction network  

Six samples, three for each experimental group, were retro-transcribed with the RT2First 

Strand Kit, and gene expression was analyzed using PAHS 174Z RT2 ProfilerTM Human Cardio-

vascular Disease PCR Array (QIAGEN, Hilden, Germany) according to manufacturer’s protocol. 

Details are in the Supplementary Data. 

Real-time PCR 

Real-time PCR (qRT-PCR) was performed to detect DUSP6 expression. Total RNA from 

EV-naive (n=15) and EV-RIPC (n=15) samples was extracted using the RNA/DNA/Protein Purifi-

cation Plus Kit (Norgen Biotek). DUSP6 primer sequences are in the Supplementary Data. 

Electroporation protocol and validation of siRNA EV loading  

EV-naive were engineered using electroporation that was performed on a Neon Transfection 

System (Thermo Fisher Scientific) as previously described [64]. Briefly, EV-naive (n=3) (1.2x1011) 

were engineered with four different siRNAs for DUSP6 as previously described [62]. The target se-

quences for DUSP6 siRNAs and the detailed methodology are in the Supplementary Data. 

Statistical analysis 

All data from the in-vitro and ex-vivo experiments are reported as means±SEM. Comparisons be-

tween two groups were carried out using the Mann-Whitney test or the paired t-test, while compari-

son between ≥3 groups were performed using one way ANOVA followed by Tukey’s multiple 

comparison test. Our data passed normality and equal variance tests. The cut-off for statistical sig-

nificance was set at p <0.05. In-vitro and ex-vivo results are representative of at least 3 independent 
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experiments. All statistical analyses were performed using Graph Pad Prism version 8.2.1 (Graph 

Pad Software, Inc, USA). 
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RESULTS 

Patient characteristics 

Of the 72 patients screened, 30 UA and NSTEMI patients were randomly allocated; with 15 

being allocated to the RIPC group, and 15 to the sham group (Fig. 1). Baseline clinical and proce-

dural characteristics are reported in Table 1. The treatment groups were well balanced and no dif-

ferences in medical therapy at the time of PreConditioning were present. The median age was 67.5 

years (IQR 56.8-80.3), 26.6% were female and 40% had a history of acute myocardial infarction 

(AMI). Overall, 60% of patients presented NSTEMI and the remaining 40% UA, with a median 

ejection fraction on admission of 60% (IQR 53.8-60.3%) and 29 out of 30 patients having a New 

York Heart Association class of I or II (96.6%). There were no procedural complications, stroke, or 

death. Only one patient had a new AMI during hospitalization (RIPC group). 
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Fig. 1. Clinical trial protocol. Patients included in the study were randomly assigned to the RIPC- or sham-

procedures (see Methods). EV were collected from blood samples before the PCI procedure.  
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Table 1. Clinical and procedural patient characteristics at baseline 
  RIPC Sham p value 

Gender Male 10 (67%) 12 (80%)  0.68 

 Female 5 (33%) 3 (20%)   

  Age (years) 68 (63-
70) 

64 (61-74)  0.56 

  Body Mass Index (Kg/m2) 25.4 (24-
26) 

26.6 (23-
29) 

 0.23 

Known Comorbidi-
ties 

Hypertension 11 (73%) 11 (73%) 1.00 

 Active smoker 8 (53%) 10 (67%) 0.74 

 Dyslipidemia 7 (47%) 10 (67%) 0.46 

 Previous AMI 5 (33%) 7 (47%) 0.71 

 Chronic Heart Failure 1 (7%) 3 (20%) 0.30 

 CKD (eGFR<60ml/min/m2) 1 (7%) 4 (27%) 0.33 

 COPD 1 (7%) 0 0.50 

 Cerebral Vascular Disease 1 (7%) 2 (13%) 0.50 

 Past history of cancer disease 
(5 years negative to follow up) 

3 (20%) 0 0.11 

Patient medication-
before admission 

Beta blockers 6 (40%) 6 (40%) 1.00 

ACE-I/ARBs 9 (60%) 7 (47%) 0.69 

Calcium channel blockers 1 (7%) 5 (33%) 0.09 

ASA 5 (33%) 8 (53%) 0.52 

Clopidogrel 2 (13%) 0 0.26 

Nitrates 3 (20%) 2 (13%) 0.55 

Statins 4 (27%) 5 (33%) 0.56 

Acute coronary NSTEMI 9 (60%) 9 (60%) 1.00 
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syndrome classifica-
tion 

Unstable Angina 6 (40%) 6 (40%)   

Other clinical fea-
tures at admission 

Hemoglobin (g/dl) 13.6  14.1  0.36 

Mean eGFR (ml/min/m2) 80.7 75.9 0.58 

Left Ventricular Ejection Frac-
tion 

54% 57% 0.45 

 Time from onset to admission 
(h) 

44 42 0.78 

Clinical features du-
ring hospitalization 

Mean Number of implanted 
stents 

2 2 1 

Mean Contrast Agent volume 
(ml) 

228 237 0.77 

Number of vessels 
affected by signifi-
cant disease 

1 5 (33%) 2 (13%) 0.36 

2 5 (33%) 7 (47%)   

3 5 (33%) 6 (40%)   

Complications du-
ring hospitalization 

New AMI during hospitaliza-
tion 

1 (7%) 0 0.5 

Intra stent thrombosis 0 0   

Mortality during hospitaliza-
tion 

0 0   

 Additional PCI  2 (13%) 3 (20%) 0.5 

BARC bleeding 0 12 (80%) 15 (100%) 0.09 

 1 1 (7%) 0   

 2 2 (13%) 0   

 

EV-naive and EV-RIPC characterization  

EV that derived from the serum of all patients were subjected to NanoSight, TEM (Fig. 2A) 

and GUAVA FACS analyses (Fig. 2B). The size distribution and the number of EV-naive and EV-

RIPC did not show significant differences (Supplemental Fig. 1). As shown in Fig. 2C, exosomal 
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markers CD9, CD63 and CD81 were detected in healthy subject serum-derived EV (Ctrl+), EV-

naive and EV-RIPC. GM130 protein served as EV negative marker. GUAVA FACS analysis 

showed no significant differences in the expression of CD11b, CD14, CD62p, CD144, caveolin 3 

(leukocyte, macrophage, platelet, endothelial and cardiac markers respectively), and TnT in EV-

naive and EV-RIPC. TnT was barely detected in the control samples (Fig. 2D).  

A significant difference in EV-TnT content was detected between patients and healthy sub-

jects (HS) (p=0.04 NSTEMI patients EV-TnT vs HS EV-TnT; p=0.002 UA patients EV-TnT vs HS 

EV-TnT). Caveolin 3 (surrogate marker of cardiomyocyte-derived EV) was undetectable in the EV 

from both groups (Fig. 2B). It is worth noting that EV-TnT content was independent of the study 

arm and patient diagnosis (Fig. 2D). To further validate these results, EV from both NSTEMI (n=2) 

and UA patients (n=2) were subjected to Triton X 100 treatment which was reported to remove the 

EV membrane bound proteins [54]. Consistent to our hypothesis, EV-TnT content was no longer 

detected upon Triton X 100 treatment (Fig. 2E) (% mean value of patient EV-TnT content 

13.25±0.15 (n=4); % mean value of healthy subject EV-TnT content 4.8±0.52 (n=4); % mean value 

of patient EV-TnT content after Triton X 100 5.25±1.27 (n=4); p=0.01 patient EV-TnT content vs 

patient EV-TnT content after Triton X 100), indicating that EV enriched in TnT can be also found in 

ACS patients.  
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Fig. 2. Characterization of EV-naive and EV-RIPC. A. Representative images of TEM performed on EV-

naive and EV-RIPC (n=3/each group). Original magnification 140K, scale bar: 100nm. B. EV-naive and EV-

RIPC flow cytometry analysis performed with GUAVA FACS. C. Representative western blot of exosomal 

markers, CD9, CD63 and CD81, detected in serum-derived EV (Ctrl+), EV-naive and EV-RIPC. GM130 

protein served as negative marker of EV (n=3/each group). D. EV-TnT expression (%) in all patients and in 

four healthy subjects. E. Representative images reporting the exosomal marker CD81 and EV-TnT content 

before (left panel) and after Triton X100 treatment (right panel) (n=4). *HS=Healthy subjects. 

EV-naive, unlike EV-RIPC, protect H9c2 cells from H/R injury in-vitro and IRI in isolated 

hearts 

To better recapitulate the in-vivo effect of circulating EV, the cardio-protective action of EV-naive 

and EV-RIPC was evaluated on a trans-well assay (Fig. 3A). As shown in Fig. 3B, EV-naive signif-

icantly improved cell viability not only when compared to untreated H/R cells (NONE) (p<0.0001), 

but also to the EV-RIPC group (p=0.0007). Of note, EV-RIPC failed to induce protection in-vitro. 

Neither EV-naive nor EV-RIPC were able to induce protection on cultured HMEC-1 and H9c2 cells 

exposed to H/R when used at the same number/cell (Supplemental Fig. 2). Similar results were ob-

tained when the experiments were performed using EV isolated by ultracentrifugation (data not 

shown). This suggests that, as we recently showed [53], an EC-mediated mechanism(s) is required 

for EV-naive-induced in-vitro cardio-protection.  

To validate these results, isolated rat hearts were infused with 1x109 EV, before the ische-

mia/reperfusion (I/R) protocol (found effective in preliminary studies) (Fig. 3C). As reported in Fig. 

3D, the infarct size in the I/R group was 58.7±1% of the left ventricular mass. Pre-treatment with 

EV-naive induced a significant reduction in infarct size, corresponding to 42.9±4%. This protection 

was not detected in the hearts that were pre-treated with EV-RIPC (58.3±1%) (p=0.004 I/R vs EV-
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naive; p<0.0001 EV-naive vs EV-RIPC). 

 

Fig. 3. EV-naive, unlike EV-RIPC, protect H9c2 cells from H/R injury and the heart from IRI. A. Ex-

perimental protocol using the trans-well assay. HMEC-1 were treated with EV-naive or EV-RIPC (2h), or 

left untreated, and subjected to the H/R protocol (H2h/R1h). B. Cell viability on H9c2 cells. The MTT assay 

was performed on H9c2 cells using EV-naive and EV-RIPC Data were normalized to the mean value of 

normoxic control (n=30). C. Timeline of ex-vivo I/R protocol. The hearts were subjected to 30 minutes of 

global ischemia, followed by 60 minutes of reperfusion. EV were infused for 10 minutes before ischemia. D. 

Infarct size in isolated rat hearts, treated as indicated. The necrotic mass was measured at the end of reperfu-

sion and reported as percentage of the left ventricle mass (LV; % IS/LV). E-F. Representative Western blot 

analysis and histograms of myocardial tissues after EV-naive and EV-RIPC treatment. p-STAT-3 and p-Erk-

1/2 expression were normalized to vinculin (n=30). 

EV-naive-induced cardio-protection relies on STAT-3 phosphorylation  

To evaluate the mechanisms of cardio-protection associated with EV-naive, the phosphorylation of 

proteins that are activated by the RISK and SAFE pathways was investigated in all samples from 

both groups. The results reported in Fig. 3E demonstrate that EV-naive can induce a significant in-

crease in STAT-3 phosphorylation (p=0.037 I/R vs EV-naive). No significant differences were 

found between EV-naive and EV-RIPC. On the other hand, Erk-1/2 phosphorylation was signifi-



 

 

16 

cantly increased in hearts that were subjected to EV-RIPC challenge compared to both I/R and EV-

naive (p=0.04 EV-naive vs EV-RIPC) (Fig. 3F). This further confirms that Erk1/2 activation is the 

most relevant mechanism associated with RIPC procedure [13,51]. To confirm the involvement of 

STAT-3 in cardio-protection, further experiments were performed on isolated rat hearts using 

STATTIC (STAT-3 inhibitor) and U0126 (Erk-1/2 inhibitor) [59,60] (Fig. 4A). As shown in Fig. 

4B, EV-naive-mediated (n=4) protection was abolished in the hearts that were pre-treated with 

STATTIC (p=0.0002 EV-naive vs EV-naive+STATTIC). STATTIC alone had no effect (p=0.0038 

EV-naive vs STATTIC) (Fig. 4B). On the other hand, EV-naive-mediated protection was main-

tained in the EV-naive+U0126 group (n=4). (p<0.0001 I/R vs EV-naive+U0126; p=0.003 U0126 vs 

EV-naive+U0126), indicating that EV-naive-mediated cardio-protection does not require Erk-1/2 

phosphorylation. The U0126 group served as an internal control. Surprisingly, infusion of both EV-

RIPC and U0126 (EV-RIPC+U0126) (n=4) rescued cardio-protection (p=0.0018 I/R vs EV-

RIPC+U0126; p=0.0004 EV-RIPC vs EV-RIPC+U0126; p=0.0075 U0126 vs EV-RIPC+U0126) 

(Fig. 4B). All samples were also analyzed using Western Blot to confirm the inhibition of STAT-3 

phosphorylation by STATTIC (p=0.0002 EV-naive vs EV-naive+STATTIC; p=0.0003 EV-naive vs 

STATTIC) (Fig. 4C) and the inhibition of Erk-1/2 phosphorylation by U0126 pretreatment 

(p=0.021 I/R vs EV-naive+U0126; p=0.029 I/R vs U0126; p=0.038 EV-naive vs EV-naive+U0126) 

(Fig. 4C). The SAFE and RISK pathway reciprocal interaction was also evaluated. As shown in Fig. 

4C, STATTIC did not significantly affect Erk-1/2 phosphorylation, whether alone or in combina-

tion with EV (Fig. 4C). According to the persistence of cardio-protection, STAT-3 phosphorylation 

did not change upon treatment with EV-naive+U0126 (p=0.0017 I/R vs EV-naive+U0126; 

p=0.0021 EV-naive vs U0126; p=0.0086 EV-naive+U0126 vs U0126). It is worth noting that con-

sistent with the rescue of protection observed in the EV-RIPC+U0126 group, the phosphorylation 

of STAT-3 was reestablished (p=0.041 I/R vs EV-RIPC+U0126; p=0.014 EV-RIPC vs EV-

RIPC+U0126). Western blot analysis confirmed the inhibition of Erk-1/2 phosphorylation (p=0.002 

I/R vs EV-RIPC+U0126; p=0.0001 EV-RIPC vs EV-RIPC+U0126; p<0.0001 EV-RIPC vs U0126) 

(Fig. 4C). 
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Fig. 4. EV-naive protection relies on STAT-3 phosphorylation. A. Timeline of ex-vivo I/R protocol. The 

hearts were infused with either STATTIC or U0126 alone (n=3/each inhibitor) for 5 minutes followed by 

EV-naive or EV-RIPC for 10 minutes (n=4/each group). B. Infarct size in isolated rat hearts treated with EV-

naive or EV-RIPC with or without STATTIC or U0126. C. Western blot analysis and histograms of myocar-

dial tissues recovered upon EV-naive and EV-RIPC untreated or pre-treated with STATTIC or U0126. p-

STAT-3 and p-Erk-1/2 expression were normalized to vinculin. 

Gene-expression profiling of EV-naive and EV-RIPC 

To investigate the EV mechanism of action, we focused on their mRNA content. To this aim EV 

were analyzed using a cardiovascular-specific gene array. The gene-expression profiling of EV-

naive and EV-RIPC were compared. Fig. 5A shows the heatmap of expressed genes. Of these 

genes, that were differentially expressed in EV-naive and EV-RIPC, we selected DUSP6 (down-

regulated in EV-RIPC, fold regulation: -5.58) for further investigation, as it is a phosphatase that 

acts on Erk-1/2 [65]. Accordingly, the network predicted using the STRING database revealed that 

Erk-1/2 and JAK2/STAT3 are among the identified nodes related to DUSP6 (Fig. 5B). As shown in 

Fig. 5C, DUSP6 mRNA expression was validated in EV from all patients. DUSP6 mRNA was 

found enriched in almost all EV-naive samples (n=13/15), while its expression was barely detected, 
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and in a small proportion of EV-RIPC samples (n=6/15). This suggests that, unlike EV-RIPC, EV-

naive can transfer DUSP6 mRNA to their target cell to prompt a specific biological action. 

 

Fig. 5. Heatmap, network platform and DUSP6 validation. A. Hierarchical clustering of the entire dataset 

of expressed cardiovascular-linked genes. Clustergram displaying hierarchical clustering of the entire dataset 

of expressed genes across two different experimental groups: EV-RIPC and EV-naive (n=3/each group). 

RNAs with higher differential expression levels are represented in red, while RNAs with lower detection 

levels are shown in green. Genes with similar expression patterns are grouped. B. String Database functional 

association network platform. Filtered and assessed functional genomic data exploring the predicted interac-

tion networks. C. DUSP6 mRNA expression in EV-naive and EV-RIPC by qRT-PCR (n=30).  

DUSP6 gene silencing prevents EV-naive-induced cardio-protection 

To investigate the role of DUSP6 mRNA in mediating EV-naive action, EV-naive (n=3/EV-naive) 

were either transfected with a SCRAMBLE sequence or DUSP6 specific siRNA (n=4), and DUSP6 

silencing was validated by qRT-PCR (Supplemental Fig. 3). DUSP6 silenced EV-naive were there-

fore used ex-vivo. As shown in Fig. 6A, EV-naive that were silenced for DUSP6 were no longer 

able to induce protection, unlike EV-naive and EV-naive that were transfected with the scramble 

sequence (p=0.0005 I/R vs EV-naive SCRAMBLE; p=0.0084 EV-naive vs EV-naive siRNA 

DUSP6; p=0.0049 EV-naive SCRAMBLE vs EV-naive siRNA DUSP6). Western blot analyses on 
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myocardial tissues demonstrated that DUSP6-silenced EV-naive failed to trigger STAT-3 phos-

phorylation (p=0.009 EV-naive vs EV-naive siRNA DUSP6; p=0.02 EV-naive SCRAMBLE vs 

EV-naive siRNA DUSP6) while induced a slight increase of Erk-1/2 activation (Fig. 6B) which al-

most recapitulates the results reported in Fig 3F.  

 

 

Fig. 6. EV-naive silenced for DUSP6 fail to protect against IRI. A. Infarct size in isolated rat hearts treat-

ed as indicated (n=3/each group). B. Western blot analysis of myocardial tissues after treatment with EV-

naive or DUSP6-silenced EV-naive. p-STAT-3 and p-Erk-1/2 expression were normalized to vinculin.  



 

 

20 

DISCUSSION 

This is the first study aimed to investigate the cardio-protective properties of circulating EV that 

were recovered from NSTEMI and UA patients who had been randomized to receive RIPC (named 

EV-RIPC) or sham (named EV-naive) procedures before PCI. EV were characterized by TEM 

western blot and FACS analyses and functionally investigated using in-vitro and ex-vivo models of 

IRI. We noticed that: i. EV-naive were effective in reducing IRI, unlike EV-RIPC; ii. the SAFE 

pathway is crucial for EV-naive-mediated cardio-protection; iii. Erk-1/2 targeting rescues EV-RIPC 

STAT-3 phosphorylation and cardio-protection; iv. DUSP6 mRNA enrichment in EV-naive con-

tributes to STAT-3 activation and cardio-protection in the whole heart as DUSP6-silenced in EV-

naive was no more effective.  

Overall, these data provide evidence for the cardio-protective properties of circulating EV-

naive, and for their mechanism of action. Intriguingly, EV were found enriched in TnT regardless 

of patient diagnosis (NSTEMI or UA), and RIPC or sham procedures. 

EV have attracted interest for therapeutic approaches [66,67]. However, several hurdles 

must be overcome before the move from preclinical to clinical studies can be made. Firstly, the iso-

lation procedure should provide adequate yields and feasibility [68,69]. We have demonstrated that 

the precipitation protocol [52] provides a high EV yield. We have also demonstrated that the EV 

from all the patients do not differ in size, number, and cell of origin at the early time points [48], 

and, in accordance with previous studies, expressed higher levels of platelet and endothelial mark-

ers [70]. It can be argued that EV obtained by precipitation is not the gold-standard for EV isolation 

[36]. However, additional purification to remove the most relevant contaminants did not change 

their effectiveness and similar results were obtained using EV isolated by ultracentrifugation. 

Moreover, the expression of exosomal markers, and the TEM and FACS analyses sustain the prop-

erness of our proposed protocol and its feasibility for widespread adoption in clinical settings that 

are equipped with a blood transfusion service. Interestingly, we discovered that circulating EV are 

significantly enriched in TnT, regardless of patient diagnosis. These data indicate that the TnT ve-

sicular compartment is more sensitive than serum TnT and point toward the possibility that myo-

cardial cell distress/damage may be even present in UA patients.  

EV transfer to the clinic also requires the availability of a simple and rapid in-vitro assay 

that can predict their therapeutic efficacy in-vivo (test of potency) [6]. We have demonstrated that 

the trans-well assay [71,72] is suitable for the investigation of EV-naive- and EV-RIPC-mediated 

cardio-protection and can be proposed as an assay to predict their ex-vivo effectiveness. In fact, the 
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in-vitro protection of EV-naive was recapitulated ex-vivo. It is worth noting that both assays 

demonstrated that EV-RIPC were ineffective in conveying protection. 

The most efficient cardio-protective signaling requires the activation of the RISK and SAFE 

pathways [24]. In accordance with previous studies [3,18], the results reported herein have demon-

strated that IRI led to the activation of Erk-1/2 (a component of the RISK pathway). Moreover, we 

have demonstrated that EV-RIPC were able to boost Erk-1/2 activation [73]. This observation is 

consistent with preclinical studies demonstrating the contribute of Erk-1/2 activation in RIPC-

mediated cardio-protection [13,51]. However, in contrast with our initial hypothesis and with pre-

clinical studies investigating the salvage properties of EV recovered from the rat hearts or from 

isoflurane anesthetized patients subjected to the RIPC [47,74], we failed to detect cardio-protection 

upon treatment with human EV-RIPC. Such a difference can be ascribed to the use of rat derived 

EV [74] and the protocol applied by Abel et al. [47] which lacks the re-oxygenation procedure [47]. 

The Erk-1/2 signaling cascade has been shown to be involved in both adaptive and maladaptive hy-

pertrophy, depending on the pathophysiological context [75]. This suggests that the ERK cascade is 

fine-tuned in pathophysiological settings and its regulation is more complex and intricate than ex-

pected [76]. Our study confirms that RIPC procedure modifies EV features. However, these chang-

es did not impact on cardio-protection. "Hyperconditioning" [77] may explain the loss of EV-RIPC-

mediated cardio-protection in ACS patients. More importantly, this is the first study aimed to eval-

uate cardio-protection in response to circulating EV recovered from ACS patients who had been 

undergone to RIPC procedure.  

The contribution of STAT-3 to cardio-protection has been proven in several preclinical 

models [22,78]. We herein provide evidence that EV-naive also boost STAT-3 phosphorylation in 

its tyr705 residue, and that this translates into cardio-protection in the whole heart. These data have 

been further confirmed by STATTIC [79]  pretreatment. Interestingly, we found that the SAFE 

pathway is the cornerstone of EV-naive-mediated cardio-protection, regardless the activation of 

Erk-1/2, since U0126 pretreatment does not impair EV-naive-mediated cardio-protection. This sug-

gests that STAT-3 phosphorylation, unlike Erk-1/2, is crucial for the action of EV-naive in ACS pa-

tients. It has been shown that the inhibition of mPTP opening is the most relevant mechanism in 

STAT-3-mediated cardio-protection [23]. STAT-3 phosphorylation can be detected in mitochondria 

at both the tyr705 and ser727 residues. However, phosphorylation at ser727 was found to be crucial to 

preserving the activity of the mitochondrial respiratory chain [16,80]. We do not have evidence to 

support the role that EV-naive may play in improving the mitochondrial respiratory chain [23], 

since tyr705, unlike ser727 (data not shown), residue underwent phosphorylation in response to EV-
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naive. However, we cannot definitively rule out the possibility that EV-naive-mediated cardio-

protection may also rely on a mitochondrial-dependent mechanism.  

No significant change in STAT-3 phosphorylation was found in hearts that had been treated 

with EV-RIPC compared to EV-naive. The sample size, or alternatively differences in EV cargo 

may explain this observation. Surprisingly, U0126 pretreatment rescued protection, by restoring 

STAT-3 phosphorylation in the hearts that had been treated with EV-RIPC. These data, besides 

supporting the central role of STAT-3 in EV-naive-induced cardio-protection, strengthen the rele-

vance of Erk-1/2 in the local response to IRI. Additionally, the questions of whether the fine-tuned 

modulation of Erk-1/2 is crucial for STAT-3’s ability to induce myocardial protection, and, alterna-

tively whether the over-activation of Erk-1/2 interferes with STAT-3-mediated protection should 

both be considered [81]. This is further sustained by the observation that STAT-3 phosphorylation 

did not differ in EV-RIPC and EV-naive treated hearts, while Erk-1/2 activation was significantly 

higher in response to EV-RIPC compared to EV-naive. 

EV exert their biological effects through the transfer of protein and/or genomic materials in-

to the target cell [82–84]. miRNA transfer and their beneficial effects against IRI have been exten-

sively described [85–87]. To gain insight into the EV mechanism of action, we focused on their 

mRNA content. Similarly to U0126, DUSP6, which was found down-regulated in EV-RIPC, acts as 

a phosphatase that inactivates Erk-1/2 [88,89]. This drove us to select the gene encoding for the 

DUSP6 protein from among differentially expressed genes identified by mRNA profiling. qRT-

PCR, performed in all EV samples, clearly demonstrated the enrichment of DUSP6 mRNA in EV-

naive. Moreover, in accordance with our hypothesis, we have demonstrated that DUSP6 silencing 

prevented EV-naive-mediated STAT-3 phosphorylation and cardio-protection in the whole heart. 

Moreover, consistent with the possibility that even trivial changes in Erk-1/2 activation may fine-

tune STAT-3 activation, we found that EV-naive silenced for DUSP6 slightly increased Erk-1/2 

phosphorylation. 

Overall, this study provides evidence that EV-naive display cardio-protective properties both 

in-vitro and in isolated rat hearts, and that they do so by activating the SAFE pathway. However, 

EV-RIPC were found to be ineffective against IRI. The enrichment of DUSP6 mRNA in EV-naive 

was found to be relevant for their mechanism of action, possibly by tuning Erk-1/2 activation, while 

the lack of this in EV-RIPC may explain their failure to induce protection. Nevertheless, EV biolog-

ical functions depend on their entire cargo, and the possibility that additional genomic materials, li-

pids, or proteins carried by EV may contribute to their cardio-protective action should be consid-

ered, and the same can be said of the lack of efficacy of EV-RIPC. The identification of an in-vitro 
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test of potency that can predict EV-naive ex-vivo effectiveness provides valid support to our study 

and for a clinical application of autologous EV-naive to interfere with IRI during PCI. Finally, we 

have demonstrated that TnT is enriched in circulating EV from ACS patients regardless of their di-

agnosis. This suggests that TnT vesicular content may be considered a worthwhile marker of myo-

cardial cell distress/damage.  

We did not perform sample size calculation due to the explorative design of the study, as 

this should be considered a pilot study that can move us towards a deeper investigation of the thera-

peutic effectiveness and long-term benefit of circulating ACS patient-derived EV. Our study sug-

gests that RIPC does not add further significant benefits to EV cardio-protective properties. The 

strengths of the present study are the identification of an efficient isolation procedure and a potency 

test to identify patients that may benefit from autologous EV administration to prevent IRI during 

PCI. Overall, EV-naive should be deeper investigated as a novel therapeutic tool to prevent reperfu-

sion damage during PCI. 
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