
Data Mining and Knowledge Discovery
https://doi.org/10.1007/s10618-021-00778-0

Differentially Private Distance Learning in Categorical Data

Elena Battaglia1 · Simone Celano1 · Ruggero G. Pensa1

Received: 20 November 2020 / Accepted: 26 June 2021
© The Author(s) 2021

Abstract
Most privacy-preserving machine learning methods are designed around continuous
or numeric data, but categorical attributes are common in many application scenarios,
including clinical and health records, census and survey data. Distance-basedmethods,
in particular, have limited applicability to categorical data, since they do not capture
the complexity of the relationships among different values of a categorical attribute.
Although distance learning algorithms exist for categorical data, they may disclose
private information about individual records if applied to a secret dataset. To address
this problem, we introduce a differentially private family of algorithms for learning
distances between any pair of values of a categorical attribute according to the way
they are co-distributed with the values of other categorical attributes forming the so-
called context. We define different variants of our algorithm and we show empirically
that our approach consumes little privacy budget while providing accurate distances,
making it suitable in distance-based applications, such as clustering and classification.

Keywords Differential privacy · Metric learning · Categorical attributes ·
Distance-based methods

1 Introduction

Most machine learning and data analysis methods rely, directly or indirectly, on their
ability to compute distances or similarities between data objects. Distance-based clus-
tering (e.g., k-means, hierarchical clustering, k-medoids) is only the most glaring
example, but distance-based methods range from classification (e.g., kNN, SVM)
and anomaly detection algorithms to proximity search (e.g., nearest neighbor search).
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Furthermore, many graph-based methods (spectral clustering (Shi and Malik 1997),
semi-supervised label propagation (Yamaguchi et al. 2016), graph convolutional neu-
ral networks (Velickovic et al. 2018) leverage distances or similarities among data
objects to compute adjacency matrices or k-NN graphs and perform consequent oper-
ations on them. Although different definitions of distance/similarity exist, they are
relatively easy to compute, provided that data are given in form of numeric vectors.
Additionally, for most of the above-mentioned distance-based methods, differentially
private counterparts of them have been proposed as well. Differential privacy (Dwork
and Roth 2014) is a computational paradigm which guarantees that the output of a
statistical query applied to a secret dataset does not allow to understand whether a par-
ticular data object is present in the dataset or not. In recent years, many differentially
private variants have been proposed for most distance based algorithms, including
kNN (Gursoy et al. 2017), SVM (Chaudhuri et al. 2011) and k-means (Su et al. 2017).

When data are described by categorical features/attributes, instead, distances can
only account for the match or mismatch of the values of an attribute between two data
objects, leading to poorer and less expressive proximity measures (e.g., the Jaccard
similarity). And yet, intuitively, a patient whose disease is “gastritis” should be closer
to a patient affected by “ulcer” than to one having “migraine”1. An efficient solution
consists in using some distance learning algorithm to infer the distance between any
pair of different values of the same categorical attribute from data. Among all existing
methods, DILCA (Ienco et al. 2012) is one of the most effective, although, more
recently, other distance learning techniques have been proposed for ordinal data only
(Zhang and Cheung 2020). DILCA’s objective is to compute the distance between any
pair of values of a categorical attribute by taking into account the way the two values
are co-distributed with respect to the values of other categorical attributes forming
the so-called context. According to DILCA, if two values of a categorical attribute
are similarly distributed w.r.t. the values of the context attributes, then their distance
is lower than that computed for two values of the same attribute that are divergently
distributedw.r.t. the values of the samecontext attributes.DILCAhas been successfully
used in different scenarios including clustering (Ienco et al. 2012), semi-supervised
learning (Ienco and Pensa 2016) and anomaly detection (Ienco et al. 2017). However,
if applied to a secret dataset, it may disclose a lot of private information. To understand
this point, let us consider the following example.

Example 1 (motivating example) Let us consider a dataset containing information
about people living in a country. For each person, there are only two pieces of infor-
mation: the city of residence andher or his income.DILCAuses the information carried
by attribute “income” (the so-called context) to compute the distances between the
values of attribute “city of residence”. Thus, we expect close cities (according to this
distance) to have a similar average income; on the other side, we expect cities with a
different average income level to be far one from each other. Let us suppose now that
DILCA returns a very small distance between cities A and B. A is a notoriously rich
city, while B is a small village in which we would expect to have an average income
much lower than that of A. On the other hand, we know that a very rich person (able

1 Although semantic similarities could be exploited as well, ontologies or taxonomies of categorical values
are not always available.
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to significantly raise B’s average income level on its own) lives in B. From the result
of the distance computation between A and B we are therefore able to understand that
the “atypical” person was probably included in the secret dataset, harming his privacy.

In this paper, we address the problem of learning meaningful distances for cat-
egorical data in a differentially private way. To this purpose, we first introduce a
straightforward extension of DILCA where the values co-occurrence counts of two
different categorical attributes are computed using theLaplacemechanism (Dwork and
Roth 2014). However, we show that this algorithm consumes toomuch privacy budget,
and propose less expensive alternatives (adopting either the Laplace or the exponen-
tial mechanisms). We proof theoretically that our distance-learning algorithms satisfy
ε-differential privacy, and show experimentally that they provide accurate distances
even with relatively small values of privacy budget ε. Additionally, we show that our
family of algorithms (which we call DP-DILCA) is effective in two distance-based
learning scenarios, including clustering and k-NN classification.

2 Background and RelatedWork

In this section, we introduce the necessary background required to understand the the-
oretical foundations of our method and, contextually, we introduce its related scientific
literature.

2.1 Differential Privacy

Differential privacy (Dwork and Roth 2014) is a privacy definition that guarantees
the outcome of a calculation to be insensitive to any particular record in the data set.
Informally, differential privacy requires the output of a data analysis mechanism to
be approximately the same if any single tuple is replaced with a new one. In order
to obtain this privacy guarantee, the algorithm employed to compute the result of
the analysis must contain some form of randomness: in this way, the probability of
obtaining a particular outcome r from dataset D is associated to any pair dataset-
outcome (D, r). The intuition behind the definition of differential privacy is that, if
the probability that outcome r comes from a particular dataset D is very close to the
probability that the same outcome comes from any “similar” dataset D′, then it is
impossible to exactly identify dataset D just looking at the result r . To protect the
identity of any single record, we consider as “similar” (or “adjacent”) two datasets
that differ for only one record. There are different interpretation in literature of the
notion of adjacent datasets. Many papers consider two datasets D and D′ adjacent if
one of them contains all the records of the other plus a new record (Friedman and
Schuster 2010; Su et al. 2017). Other papers consider D and D′ adjacent if one can be
obtained from the other replacing only one record (Dwork and Roth 2014; Chaudhuri
et al. 2011). We opt for this last definition, so we will consider the number of record
N fixed. More formally, we report the following definitions (Dwork and Roth 2014):

Definition 1 (Neighboring/adjacent datasets) Let D and D′ be two datasets of the
same data universe Ω , with N records. We say that D and D′ are neighboring or
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adjacent (in symbols, D ∼ D′) if there exist two records d in D and d ′ in D′ such
that D′ = (D \ {d}) ∪ {d ′}.
Definition 2 (ε-differential privacy) LetM : Ω −→ R be a randomized mechanism
(i.e. a stochastic function with values in a generic set R) and consider a real number
ε > 0. We say that M preserves ε-differential privacy if ∀D, D′ ∈ Ω such that
D ∼ D′ and ∀r ∈ R

P(M(D) = r)

P(M(D′) = r)
≤ eε.

The parameter ε (also called privacy budget) allows us to control the level of privacy
of the mechanism. Lower values of ε mean stronger privacy, as for ε near 0 we have
eε ≈ 1 and the probability that outcome r comes from dataset D or from dataset D′
is almost the same.2

Differential privacy satisfies the following properties (Dwork and Roth 2014).

Theorem 1 (Composition) Let M1 : Ω −→ R,M2 : Ω −→ S be two randomized
mechanism and let g : R × S −→ T be a function. If M1 preserves ε1-differential
privacy and M2 preserves ε2-differential privacy, then g(M1,M2) preserves (ε1 +
ε2)-differential privacy.

Theorem 2 (Post-processing) Let M : Ω −→ R be a randomized mechanism pre-
serving ε-differential privacy and let f be any function with domainR. Then f ◦ M
preserves ε-differential privacy.

Theorem 1 states that by combining the results of several differentially private
mechanisms, the outcome will be differentially private too, and the overall level ε

of privacy guaranteed will be the sum of the level of privacy of each mechanism. In
this sense, the ε parameter can be interpreted as the total privacy budget, and one can
allocate part of it for any computation required to obtain the final outcome. On the
other hand, Theorem 2 says that once a quantity r has been computed in a differentially
private way, any following transformation of this quantity is still differentially private,
with no need to spend part of the privacy budget for it. The two theorems together
provide a useful and complete tool that allows one to modify an existing algorithm
in order to make it differentially private: any time the algorithm needs to access the
original data, some differentially private mechanism can be used, spending part of the
overall privacy budget; all the other steps of the algorithm can be left unchanged.

Notice that in the definition of differential privacy there is no reference to the
fact that a good mechanism needs to be accurate. Anyway, accuracy is an important
property of any good differentially private mechanism: if the goal is to compute a
differentially private query q over a dataset D, in addition to making the result private,
the mechanisms should also render the same result “realistic”, i.e. the result obtained
through the application of a differentially private mechanism should be near to the
actual result q(D). A formal definition of the accuracy of a mechanism, inspired by
Dwork and Roth (2014), can be the following:

2 When ε is much less than 1, eε is approximately 1 + ε. When ε > 1, eε grows very fast. For example,
when ε = 3 eε is about 20, and when ε = 5 it is about 148.4.
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Definition 3 (Accuracy) Let q : Ω −→ R be a function andM a differentially private
mechanism. M has accuracy a ∈ R with probability 1 − δ if, for any D,

P(d(M(D), q(D)) > a) ≤ δ

where d is a distance defined on R and δ ∈ (0, 1).

Several mechanisms and techniques preserving differential privacy have been pro-
posed in literature. Two of the most famous mechanisms, that we will use in the
remainder of the paper, are the Laplace and the Exponential mechanisms (Dwork and
Roth 2014; McSherry and Talwar 2007). The first can be applied to compute the result
of a numeric function in a differentially private way; the second can be used to choose,
within a given set, the element that maximizes a utility function whose result depends
on some secret dataset D. Both thesemechanism calibrate the amount of random noise
they inject in the computation by looking at the sensitivity of the function (or utility
function) considered.

Definition 4 (Global sensitivity) Let q : Ω −→ R
d be a numeric function. The global

sensitivity GS(q) is a measure of the maximal variation of function q when computed
over two adjacent datasets and is defined as

GS(q) = max
D∼D′ ||q(D) − q(D′)||1.

Definition 5 (Laplace Mechanism) Let q : Ω −→ R
d be a numeric function. The

Laplacemechanism isM(D) = q(D)+(X1, . . . , Xd), where X1, . . . , Xk are random

variables extracted from a Laplace distribution with parameters
(
0, GS(q)

ε

)
, where

GS(q) is the global sensitivity of q.

Definition 6 (Exponential Mechanism) Let q : Ω −→ R be the function that returns,
among all possible values inR, the one that maximizes some utility function u : Ω ×
R −→ R. The Exponential mechanism M(D) returns a value of R with probability

proportional to exp
(

ε·u(D,r)
2GS(u)

)
, where GS(u) is the global sensitivity of the utility

function.

It can be proved that these mechanisms preserve ε-differential privacy (Dwork and
Roth 2014). In both the mechanisms, the amount of noise introduced depends on the
value of ε: there is a trade-off between the accuracy of the mechanisms and the level
of privacy protection they guarantee. If a large value of ε is chosen, the mechanism
will return a result that is close to the actual one with high probability. But, as ε gets
smaller, the probability of adding a significant amount of noise to the result grows.
How to choose a good value for ε is still an open issue. This is evident in the literature,
where algorithms have been evaluated with ε ranging from as little as 0.01 to as much
as 10 (see Table 1 of (Hsu et al. 2014)). Many academic works tend to prefer low
values of ε (less than 1), probably because for small values of ε the quantity eε can be
approximate to 1+ε, which makes it easier to understand the meaning of Definition 2.
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In practical applications, however, higher values of ε are usually adopted (Domingo-
Ferrer et al. 2021). For a recent discussion on the choice of ε, the reader can refer to
Dwork et al. (2019).

2.2 DILCA and Private Categorical Distance Computation

Measuring similarities or distances between two data objects is a crucial step for many
machine learning and data mining tasks. While the notion of similarity for continuous
data is relatively well-understood and extensively studied, for categorical data the
similarity computation is not straightforward. The simplest comparison measure for
categorical data is overlap (Kasif et al. 1998): given two tuples, it counts the number of
attributes whose values in the two tuples are the same. The overlap measure does not
distinguish different values of attributes, hence matches and mismatches are treated
equally. Boriah et al. (2008) present 14 different categorical measures using different
heuristics to weight the mismatch of the values of the same attributes. Alamuri et al.
(2014) survey themain approaches to distance computation for categorical data. Zhang
et al. (2015) create the co-occurence graph of all the values of all the categorical
attributes and then compute the shortest path distance between two values of the same
attribute as a proximity measure.

Among all the proposed methods for distance computation, we focus on DILCA
(Ienco et al. 2012), a framework to learn context-based distances between each pair of
values of a categorical attribute Y . Themain idea behindDILCA is that the distribution
of the co-occurrences of the values of Y and the values of the other attributes in the
dataset may help define a distance between the values of Y (intuitively, two values
that are similarly co-distributed w.r.t. all the other values of all the other attributes are
similar and so they should be close in the new distance). However, not all the other
attributes in the dataset should be taken in consideration, but only those that are more
relevant to Y . We call this set of relevant attributes with respect to Y the context of
Y . The problem of identifying a set of attributes that are relevant (and not redundant)
for a target attribute Y is a classic problem in data mining named supervised feature
selection.

Let F be a set of m categorical attributes and let us consider a target attribute Y .
DILCA computes the distances between the values of Y in two steps:

– Context Selection: it performs supervised feature selection in order to select
an informative set of attributes with respect to target attribute Y . The cor-
relation/association between two attributes X and Y is measured through the
Symmetric Uncertainty (Yu and Liu 2003), an association based measure inspired
by information theory and defined as follows:

SU (X ,Y ) = 2 · I (X ,Y )

H(X) + H(Y )

where I (X ,Y ) is the Mutual Information between X and Y and H(X), H(Y )

are the entropies. The Symmetric Uncertainty between two categorical attributes
of a dataset is computed starting from their contingency table. Ienco et al.
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(2012) propose two methods to select a good context for Y : the first, called
DI LC AM , selects all the attributes X with SU (X ,Y ) greater than the mean
value 1

m−1

∑
X∈F\Y SU (X ,Y ); the second, called DI LC ARR , selects only those

attributes that are relevant for Y but not redundant. In order to obtain this result, it
employs a feature selection algorithm that requires the computation of SU (Xi , X j )

for each pair of attributes Xi , X j ∈ F .
– Distance Computation: let y1, . . . yn be the values of attribute Y . For each pair

yi , y j with i, j = 1, . . . , n, the distance between yi and y j is computed as:

d(yi , y j ) =
√√√√

∑
X∈context(Y )

∑|X |
k=1(P(yi |xk) − P(y j |xk))2∑

X∈context(Y ) |X | (1)

where context(Y ) is the set of the attributes selected in the previous step, |X | is the
number of values attribute X can assume, and P(yi |xk) is the conditional proba-
bility that Y takes value yi given that X has value xk . The conditional probabilities
P(yi |xk) are estimated from the data: the contingency table between attributes X
and Y is constructed and this contingency table can be interpreted as the empirical
joint distribution of the two variables.

The distance measure computed by DILCA is a metric, since it is an application of
the Euclidean distance. Furthermore, 0 ≤ d(yi , y j ) ≤ 1 for each pair yi , y j .

To the best of our knowledge, no differentially private methods for categorical
distance learning from data have been proposed so far. However, there are recent
solutions to the problem of standard distance computation in a differentially private
fashion. Stanojevic et al. (2017), for instance, propose a way to estimate the cardi-
nality of the intersection and the union of two sets, when the sets are represented
by two bit vectors previously obfuscated with the randomized response mechanism.
This technique can be used to estimate the pairwise Jaccard similarity matrix between
the objects of an obfuscated dataset with binary attributes. Similarly, Aumüller et al.
(2020) present a method to privately release two sets, in a way that preserves the
Jaccard similarity between them. It consists in the private publication of a vector rep-
resentation of each set, obtained through the application of a fixed number ofMinHash
functions. Xu et al. (2017), instead, present an algorithm for the differentially private
release of high-dimensional data, designed to preserve pairwise L2-distances between
records. Although all these techniques can be used to estimate the pairwise similarity
between binary tuples (as done by Gao et al. (2020) in the context of recommender
systems), these methods are substantially different from the one we propose in this
paper. They can be used to compute similarities/distances among records of a secret
dataset, while, in this paper, we propose a family of algorithms that privately learn
distances among values of a categorial attribute from a secret dataset. The repeated
application of our technique on all the categorical attributes describing the data leads
to the learning of a metric on the data space. In other words, differential privacy in our
work is used to disclose something about the space, without revealing the presence
of a particular record in the secret training set, while, in the other methods, it is used
to disclose something about the secret data, but the results cannot be generalized to
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learn the distance between two generic object from the same data space. Finally, all
other methods accounts for value matches and mismatches in the same way, which is
exactly what we want to exceed by computing a more expressive metric showing its
effectiveness with multivariate categorical attributes as well.

3 DP-DILCA

In this section, we introduce our family of methods whose final goal is to inject some
form of randomness in DILCA in order to make the resulting distances among the
values of the target attribute Y differentially private. All along this section, we will
consider the following illustrative running example in order to show how the proposed
methods work.

Example 2 (running example) Let us consider a set of five categorical attributes
describing some people living in some territory: ‘city’, ‘has_car’,‘sex’, ‘income_level’
and ‘wealth_level’. Both the last two attributes can take three ordinal values (0,1 and
2), and they are strongly correlated. There is a trusted curator that owns different snap-
shots of the data and wants to publish the distance matrix M among the cities, without
releasing the original datasets. Suppose now that the curator owns two secret adjacent
snapshots D and D′ (according to Definition 1). Figure 1(a) and 1(b) show the contin-
gency tables between the target attribute ‘city’ and all the other attributes, as well as
the matrices of the distances among the values of attribute ‘city’ computed by DILCA
on datasets D and D′ respectively. Although the distance matrices of the values of
attribute ‘city’ do not dramatically change when computed starting from dataset D or
D′, the difference is enough to allow a malicious adversary to understand whether the
secret dataset is D or D′ and thus whether the atypical record of a person living in city
A and having ‘income_level’ = 2 is present or less in the data. The problem, in terms
of privacy, is that the algorithm used to compute the distances is deterministic, so an
adversary undecided on which is the true dataset between D and D′ is able to identify
the correct dataset by simply running the algorithm on both the datasets. Suppose
now that the curator uses a differentially private algorithm to compute the distances
among the cities, adopting as training set dataset D: even if the results obtained are
(hopefully) similar to the actual distance matrix in Figure 1(a), the adversary cannot
say whether the fact that A and B are equally far from C depends on the fact that the
dataset is D or on the noise added by the algorithm.

3.1 Differentially private distance computation

A naive way to modify DILCA and make it private is to act on the contingency tables
computation stage of the algorithm (see Section 2.2), by investigating a way to create
all the needed contingency tables privately. Since all the computations following this
step only look at the contingency tables (and do not access the original data matrix
anymore), the post-processing theorem (reported in Section 2.1) guarantees that, once
the contingency tables are computed in a differentially private way, the final result will
be differentially private as well.
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Fig. 1 Data used in Example 2. Datasets D (a) and D′ (b) are two adjacent snapshots owned by a trusted
curator. We report the contingency tables between attribute ‘city’ and all other attributes computed from
datasets D and D′, together with the matrix of the distances among the values of ‘city’. The red ovals
indicate the values that change because of the substitution of one record from D to D′

Algorithm 1: BaselineDP − DI LC A(D,Y ,method, ε)

Input: The original dataset D with attributes F = {X1, ...., Xm }, the target attribute Y ∈ F , the
privacy budget ε

Result: The distance matrix distMatri x(Y )

1 ε ← ε

(m2)
;

2 for X , X ′ ∈ {X1, . . . , Xm } do
3 compute ContT able(X , X ′);
4 ContT able(X , X ′) ← ContT able(X , X ′) + Lap(0, 2/ε)|X |×|X ′|;
5 end
6 Compute Context(Y ) using the selected method ;
7 Compute distMatri x(Y ) using equation (1);

Algorithm 1 gives a sketch of this first implementation of DP-DILCA. The only
variation from the original algorithm is that the contingency tables are computed using
the Laplace Mechanism, at steps 3-4.

Theorem 3 Given ε > 0, Algorithm 1 satisfies ε-differential privacy.

Proof The algorithm computes the contingency tables between each pair of attributes,
including the target attribute Y . The total number of pairs of m objects is

(m
2

)
, thus the

privacy budget spent for each table should be ε′ = ε

(m2)
. Consider now the function that
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Algorithm 2: DP − DI LC A(D,Y ,method, ε, h)

Input: The original dataset D with attributes F = {X1, ...., Xm }, the target attribute Y ∈ F , the
context selection method, the privacy budget ε, the split parameter h ∈ (0, 1)

Result: The distance matrix distMatri x(Y )

1 compute context(Y ) with the selected method and privacy budget ε · h;
2 for Xi ∈ context(Y ) do
3 compute ContT able(Y , Xi );

4 ContT able(Y , Xi ) ← ContT able(Y , Xi ) + Lap
(
0, 2·|context(Y )|

ε·(1−h)

)|Y |×|Xi |
;

5 end
6 Compute distMatri x(Y ) using DILCA;

computes the contingency table between two attributes X and Y . Let ti j be the i j-th
entry of the contingency table, corresponding to the number of records in the original
dataset having X = xi and Y = y j . If we change one record of the dataset, having
X = xi and Y = y j , with a new record having X = xh and Y = yk , only two entries of
the contingency table will change: ti j decreases of one unit, while thk increases of one
unit. Thus the global sensitivity of the function that computes the contingency table
is 2. We can apply the Laplace mechanism by adding random noise extracted from
a Laplace distribution with parameters (0, 2

ε′ ) to each cell of the actual contingency
matrix between X and Y , and the obtained contingency table will be ε′-differentially
private. �

Although the naive method illustrated in Algorithm 1 respects differential privacy,
it may be inaccurate, because it requires the computation of an high number of contin-
gency tables (

(m
2

)
, wherem is the number of attributes in the dataset) and, consequently,

the injection of a great amount of distortion. This is particularly true for datasets with
a large number of attributesm. In Section 4, we will use this first method as a baseline.

An alternative option is to distort only the contingency tables between target
attribute Y and the attributes X �= Y in the context of Y . In fact, in the computa-
tion of the distance matrix among the values of Y only those contingency tables are
used. If the context of Y contains only few attributes with respect to the total number
of remaining m − 1 attributes, the amount of noise introduced in the computation
will be significantly less. However, the selection of a good context for Y is a sensitive
function, because it looks at the original dataset to decide which attributes are more
relevant for Y . Hence, it should be performed in a differentially private way and a
fraction h ∈ (0, 1) of the privacy budget should be devoted to it. The sketch of this
new procedure is given in Algorithm 2, while private context computation is discussed
in Section 3.2.

Theorem 4 Given ε > 0 and h ∈ (0, 1), if context(Y ) is computed in a differentially
private way, then Algorithm 2 preserves ε-differential privacy.

Proof By hypothesis, the computation of context(Y ) preserves (ε · h)-differential
privacy. In step 4 of the algorithm we apply the Laplace Mechanism to the compu-
tation of the contingency tables, with parameter of the Laplace distribution equal to
2·|context(Y )|

ε·(h−1) . As noticed before, the global sensitivity of the function that computes
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the contingency matrix between two variables is 2. Thus the Laplace mechanism
preserves ε·(1−h)

|context(Y )| -differential privacy. The computation is repeated |context(Y )|
times. Finally, the procedure that computes the distance matrix does not access the
original dataset anymore, so, according to Theorem 2, it does not require further
privacy budget. The overall algorithm is then ε · h + |context(Y )| · ε·(1−h)

|context(Y )| = ε-
differentially private. �

To clarify the difference between the two methods proposed in Algorithm 1 and
Algorithm 2, let us refer to Example 2. There are five attributes in dataset D (Fig-
ure 1(a)), then Baseline DP-DILCA needs to compute

(5
2

) = 10 distorted contingency
matrices, using a privacy budget ε

10 for each one. Instead, DP-DILCA devotes h · ε

privacy budget to the computation of the context and then (1−h)·ε
k privacy budget for

the computation of each contingency table, where k is the number of attributes in the
context of the target attribute. By looking at the contingency tables between the target
attribute ‘city’ and all the other attributes in Figure 1(a), we can see that attributes ‘sex’
and ‘has_car’ are not useful to discriminate between the different values of attribute
‘city’, while attributes ‘income_level’ and ‘wealth_level’ are more informative. How-
ever, the co-distributions of these two attributes w.r.t. ‘city’ are very similar and we
can conclude that the presence of both the attributes in the context of ‘city’ would
be redundant: a suitable context for attribute ‘city’ could be {‘income_level’} (this is
exactly the context identified by DI LC ARR). To quantify the difference between the
privacy budget used by Baseline DP-DILCA and DP-DILCA, let us set the overall
privacy budget equal to 1 and the parameter h equal to 0.3. The privacy budget spent
by the two algorithms to the computation of each contingency table involved in the
final computation of the distances is 0.1 and 0.7 respectively.

3.2 Differentially private context selection

The context selection procedure used by DILCA is an application of a filter method
for supervised feature selection. Indeed, some work has been done on differentially
private feature selection. For instance, Yang and Li (2014) and Li et al. (2016) present
two alternative differentially private implementations of a feature selection method
that preserves nearest-neighbor classification capability. They differ for the step of the
algorithm where they apply the randomized mechanism: Yang and Li (2014) adopt
output perturbation, while Li et al. (2016) perturb the objective function. However,
both these methods are designed for continuous data. Anandan and Clifton (2018)
study the sensitivity of several association measures used for feature selection (such
as Chi-Squared Statistic, Bray-Curtis dissimilarity, Information Gain) and integrate
the noised version of these measures in two differentially private classifiers.

In this section, we propose three different methods to perform differentially private
context selection. The first method is a differentially private version of DI LC AM ,
obtained through the multiple application of the Laplace mechanism; the second and
third ones use the exponential mechanism to extract an highly informative subset of
attributes with respect to the target attribute Y . The last two methods differ in the
definition of optimal context they consider.
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3.2.1 Differentially private DILCAM

In its original formulation, DILCA uses the Symmetric Uncertainty SU (X ,Y ) as a
measure of the association of two attributes X and Y in order to decide whether X
should be in the context of Y or not. It would be convenient to compute SU (X ,Y )

privately, for instance with the Laplace mechanism. The main building block for the
application of such a mechanism would be the estimation of an upper bound of the
global sensitivity of SU (X ,Y ): unfortunately, it is not easy to analytically compute
the variation of SU when changing a record in the original dataset. However, using a
well known property of the Mutual Information (Cover and Thomas 2001), it can be
noticed that

SU (X ,Y ) = 2 · I (X ,Y )

H(X) + H(Y )
= 2 · H(X) + H(Y ) − H(X ,Y )

H(X) + H(Y )

and, thanks to Theorem 1, a distorted version S̃U (X ,Y ) of the desired quantity can
be obtained as the composition of distorted entropies, computed through the Laplace
mechanism:

S̃U (X ,Y ) = 2 · H̃(X) + H̃(Y ) − H̃(X ,Y )

H̃(X) + H̃(Y )
,

where H̃(·) = H(·)+ Lap
(
0, GS(H)

ε

)
. The following theorem gives an upper bound

of the global sensitivity of the entropy GS(H).

Theorem 5 (Sensitivity of entropy) Let D be a datasetwith N records and a categorical
attribute having values {x1, . . . , xk}. Let ni be the number of records of D having value
xi and let X be a random variable with probability distribution p(X = xi ) = ni

N . The

global sensitivity of H(X) is lower than 1
N

(
1

ln(2) + log(N )
)
.

Proof Let us expand the formula of entropy H(X):

H(X) = −
k∑

i=1

p(xi )log(p(xi )) = −
k∑

i=1

ni
N
log

(ni
N

)

= − 1

N

k∑
i=1

ni (log(ni ) − log(N )) = − 1

N

k∑
i=1

ni · log(ni ) + log(N )

Suppose we change a record of D having value xa with another having value xb. Only
two counts will change: the number of records with value xa will become na − 1
and, similarly, the number of records with value xb will become nb + 1. All the other
counts ni will remain untouched. Let X ′ be the random variable associated to the new
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probability distribution. Thus we have:

|H(X) − H(X ′)|
= 1

N
|−nalog(na) − nblog(nb) + (na − 1)log(na − 1) + (nb + 1)log(nb + 1)|

= 1

N

∣∣∣∣(na − 1)log

(
na

na − 1

)
+ (nb + 1)log

(
nb + 1

nb

)

−log(na − 1) + log(nb + 1)|
≤ 1

N

∣∣∣∣(na − 1)log

(
(na − 1) + 1

na − 1

)
− (nb + 1)log

(
nb + 1

nb

)∣∣∣∣

+ 1

N
|log(na − 1) − log(nb + 1)|

We recall that all the logarithms log() are in base 2 and that, for a > 0,

∣∣∣∣a · log
(
a + 1

a

)∣∣∣∣ ≤ 1

ln(2)
. (2)

Moreover, na − 1 and nb + 1 are both between 0 and N , then

|H(X) − H(X ′)| ≤ 1

N

(
1

ln(2)
+ log(N )

)
.

�
Once we are able to compute SU (Y , X) for each attribute, we can apply the same

selection method of DI LC AM using the distorted values of the Symmetric Uncer-
tainties instead of the actual ones. Algorithm 3 summarizes the related procedure: it
computes the distorted values of SU (Y , Xi ) and then selects, in the context of Y , all
those attributes that have Symmetric Uncertainty with Y greater than the mean value
M = 1

m−1

∑
Xi �=Y (SU (Y , Xi )). The algorithm needs the computation of m − 1 dif-

ferent values of Symmetric Uncertainty. Furthermore, each SU (Y , X) is computed as
the composition of three entropy functions, H(X), H(Y ) and H(X ,Y ). Thus, the total
number of entropies to be computed for the context selection is 2 · m − 1 (m − 1 dif-
ferent H(X),m−1 different H(X ,Y ) and one H(Y )): since at steps 7-8 each entropy
is obtained through the Laplace mechanism with privacy budget ε

(2·m−1) , Algorithm 3
preserves ε-differential privacy.

We conclude this section by showing how the context selection strategy just
presented works on the toy dataset D introduced in Example 2. The value of the
SymmetricUncertainty between the target attribute ‘city’ and the other attributes ‘sex’,
‘has_car’,‘income_level’ and ‘wealth_level’ are, respectively, 0.001, 0.035, 0.217 and
0.204. Since the last two attributes have Symmetric Uncertainty greater than the mean
value 0.11, they are both selected in the context of ‘city’ by algorithm DI LC AM

(note that, differently from DI LC ARR , DI LC AM is not able to discard the redun-
dant attribute ‘wealth_level’). When, instead of DI LC AM , its differentially private
variant DP-MeanSU is applied, a certain amount of noise is added to the computation
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Algorithm 3: DP − MeanSU (D,Y , ε)

Input: The original dataset D with N records and attributes F = {X1, ...., Xm }, the target attribute
Y ∈ F , the privacy budget ε

Result: The set context(Y )

1 gs ← 1
N

(
1

ln(2) + log(N )
)
;

2 εH ← ε
2·m−1 ;

3 Compute H(Y );

4 H(Y ) ← H(Y ) + Lap
(
0, gs

εH

)
;

5 for X ∈ {X1, . . . , Xm }, X �= Y : do
6 Compute H(X) and H(X , Y );

7 H(X) ← H(X) + Lap
(
0, gs

εH

)
;

8 H(X , Y ) ← H(X , Y ) + Lap
(
0, gs

εH

)
;

9 SU (Y , X) ← 2 H(X)+HX(Y )−H(X ,Y )
H(X)+H(Y )

;

10 end

11 M ← 1
m−1

∑
Xi �=Y (SU (Y , Xi ));

12 context(Y ) ← {Xi |SU (Y , Xi ) ≥ M}

of the Symmetric Uncertainties: for instance, we could obtain 0.12, 0.0, 0.26 and 0.35
. Although the values of SU are rather different from the correct values, again the only
two attributes having Symmetric Uncertainty greater then the mean value are the last
two, so in this example the DP-MeanSU selects the same context of DI LC AM . The
more the values of Symmetric Uncertainties are far from one another, the higher the
probability that DP-MeanSU extracts the correct context.

3.2.2 Differentially private Maximum Relevance

The main drawback of the selection method illustrated in Algorithm 3 is the waste-
ful use of the privacy budget when the Symmetrical Uncertainty should be evaluated
separately for each attribute Xi . The exponential mechanism offers a better approach:
rather than evaluating each attribute separately, we can evaluate all the attributes simul-
taneously in one query whose outcome is the attribute Xi that maximizes some utility
function. If this utility function measures the relevance of Xi for target attribute Y , the
exponential mechanism will return (with high probability) one attribute that is very
relevant for Y . Repeating the procedure k times, we will obtain a set of k attributes
that, with high probability, are the k most relevant ones for target attribute Y : for this
reason, following Peng et al. (2005), we refer to this method as MaxRelevance.

If we want to remain stick to DILCA’s strategy, the utility function used to measure
the relevance of attribute X for target attribute Y should be the Symmetric Uncertainty.
Unfortunately, as pointed out before, we are not able to compute the sensitivity of SU
and so we cannot apply the exponential mechanism to this utility function. Thus, we
propose a differentially private selection method that measures the connection of two
attributes by looking at the (distorted) Mutual Information between them and then
extracts the k most relevant attributes. Mutual Information is a widely used measure
of association in the supervised feature selection problem (see, for instance, Peng et al.
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(2005). As already pointed out, it can be computed as I (X ,Y ) = H(X) + H(Y ) −
H(X ,Y ). Thus, finding the X which maximizes I (X ,Y ) is equivalent to finding the
X which maximizes

I ′(X ,Y ) = H(X) − H(X ,Y ). (3)

Theorem 6 (Sensitivity of I ′(X ,Y )) Given a dataset D with N records and two
attributes X and Y , an upper bound of the sensitivity of I ′(X ,Y ) is

2

N

(
1

ln(2)
+ log(N )

)
.

Proof We know from Theorem 5 that the sensitivity of function H(·) is 1
N(

1
ln(2) + log(N )

)
. Let X ′ and Y ′ be the variables obtained by changing one record of

the original dataset D. Then

|I ′(X ,Y ) − I ′(X ′,Y ′)| = |H(X) − H(X ,Y ) − H(X ′) + H(X ′,Y ′)|
≤ |H(X) − H(X ′)| + |H(X ,Y ) − H(X ′,Y ′)| ≤ 2

N

(
1

ln(2)
+ log(N )

)
.

�
Algorithm 4 describes the differentially private implementation of MaxRelevance

for context selection. It requires the specification, as input parameter, of the desired
number k of attributes in the context of the target attribute. When setting the value of
parameter k, one must consider that lower values of k are preferable, from a differen-
tially private point of view. In step 5 of Algorithm 4, the exponential mechanism is
applied k times, in order to extract the top k attributes: each application of the expo-
nential mechanism requires part of the overall privacy budget; thus, the smaller k is,
the higher the accuracy of the selected context. Furthermore, Algorithm 2 computes
and perturbs k contingency tables: again, lower valus of k mean less noise injected in
the computation of the final distance matrix.

Consider, once again, the situation described in Example 2. The correct values
of I ′(X ,Y ) for dataset D, where Y is the target attribute ‘city’ and X are attributes
‘sex’, ‘has_car’,‘income_level’ and ‘wealth_level’, once at time, are -1.58, -1.49,
-0.93 and -0.96 respectively. According to MaxRelevance, the context of ‘city’ is
{‘income_level’} when k = 1 and {‘income_level’, ‘wealth_level’} when k = 2,
because only the k attributes with highest I ′(X ,Y ) are selected. Instead, according
to DP-MaxRelevance, the k attributes to be inserted in the context are selected with
probability proportional to ε·I ′(X ,Y )

2·GS(I ′) . For instance, when ε = 1, the probability of
selecting attributes ‘sex’, ‘has_car’, ‘income_level’ and ‘wealth_level’ are 0.08, 0.1,
0.43 and 0.39 respectively. Thus, when k = 1, we will obtain a context containing
‘income_level’ or ‘wealth_level’ with high probability. Attributes ‘sex’ or ‘has_car’,
instead, are not associated with ‘city’ at all: hence, they have a very low probability
to be extracted.
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Algorithm 4: DP − MaxRelevance(D,Y , ε, k)
Input: The original dataset D with N records and attributes F = {X1, ...., Xm }, the target attribute

Y ∈ F , the privacy budget ε, the number k of attributes in the context
Result: The set context(Y )

1 gs ← 2
N

(
1

ln(2) + log(N )
)
;

2 F ← {X1, . . . , Xm } \ {Y };
3 context(Y ) ← ∅;
4 for t = 1 to k do

5 Select an object X ∈ F with probability proportional to exp
(

ε·MI (Y ,X)
2·k·gs

)
;

6 context(Y ) ← context(Y ) ∪ {X};
7 F ← F \ {X};
8 end

3.2.3 Differentially private MaximumDependency

Both previous selection context methods insert the most relevant attributes into the
context of the target attribute Y by evaluating the association of each attribute Xi with
the target attribute Y individually. However, they may select two or more attributes
giving the “same information” aboutY . This happens, for instance,when two attributes
Xi and X j in context(Y ) are highly correlated, thus they give the same description of
Y . On the other hand, an attribute X that is less associated individually with Y and for
this reason is not included in context(Y ), could add a piece of information about Y
that is not captured by any attribute Xi in the context of Y . In this sense, a preferable
context selection method is one that looks for the set of attributes that globally has the
maximal association with target attribute Y . We can do this by choosing the subset
S ⊂ {X1, . . . , Xm} \ {Y } of cardinality k that maximizes the mutual information
between Y and the set S. Let us assume, for simplicity, that S = {X1, . . . , Xk}, the
mutual information between Y and S can be written as

I (Y , S) = H(Y ) + H(X1, . . . , Xk) − H(Y , X1, . . . , Xk). (4)

Then, maximizing I (Y , S) is equivalent to maximizing

I ′(Y , S) = H(X1, . . . , Xk) − H(Y , X1, . . . , Xk). (5)

Peng et al. (2005) note that this feature selection scheme, called MaxDependency,
is hard to implement, unless for low values of k, because of two issues in the high
dimensional space: 1) the number of samples is often insufficient and 2) the slow
computational speed. In facts, the number of joint states of k categorical variables
increases very quickly with k and gets comparable to the number of records N . When
this happens, the joint probabilities of this attributes cannot be estimated correctly
from the data. However, the MaxDependency scheme can be very useful to select a
small number of attributes when N is high. This is exactly the scenario in which we are
working: as said before, we want to keep the number of attributes in context(Y ) low;
furthermore, differentially private algorithms usually work better when the number of
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Algorithm 5: DP − MaxDependency(D,Y , ε, k)
Input: The original dataset D with N records and attributes F = {X1, ...., Xm }, the target attribute

Y ∈ F , the privacy budget ε, the number k of attributes in the context
Result: The set context(Y )

1 gs ← 2
N

(
1

ln(2) + log(N )
)
;

2 F ← {S ⊂ {X1, . . . , Xm } \ {Y }s.t .|S| = k};
3 Select a subset S ∈ F with probability proportional to exp

(
ε·I (Y ,S)
2·gs

)
;

4 context(Y ) ← S

samples N in a dataset is large as masking the presence of a particular record is easier
when there are a lot of other variegated samples (and the significance of the statistical
analysis performed is higher).

A differentially private context selection method based on the Maximum Depen-
dency criterion has another advantage: we can apply the exponential mechanism to
the function that, among all possible subsets of {X1, . . . , Xm} of cardinality k, gives
as outcome the subset that maximizes Equation 5. In this way, we are applying the
exponential mechanism only once (instead of k times as in Algorithm 4) and we can
use all the privacy budget for this unique application.

The differentially privateMaxDependency context selectionmethod is illustrated in
Algorithm5. It consists in the application of the exponentialmechanism to the function
that, among all subset S of cardinality k, extracts the one that maximizes I ′(Y , S). The
global sensitivity of the utility function I ′(Y , S) is given by the following theorem.

Theorem 7 (Sensitivity of I ′(Y , S)) Given a dataset D with N records, a categorical
attribute Y and a set of categorical attributes S, an upper bound of the sensitivity of
I ′(Y , S) is

2

N

(
1

ln(2)
+ log(N )

)
.

The proof is analogous to that of Theorem 6.
Let us refer to Example 2 for the last time. Let suppose that we want to use the

selection strategy just described to select the context of attribute ‘city’, with k = 2.
There are six possible contexts: {‘sex’, ‘income_level’}, {‘sex’, ‘wealth_level’},
{‘sex’,’has_car’}, {‘income_level’, ‘wealth_level’}, {‘income_level’, ‘has_car’} and
{‘wealth_level’, ‘has_car’}. The context that maximizes the value of the objective
function I ′ is {‘income_level’, ‘has_car’}: differently from the previous selection
strategies, MaxDependency does not select the two attributes that, individually, are
more associatedwith the target attribute but prefers a set of attributes that are not redun-
dant. The private algorithm computes then the probabilities associated to the possible
contexts, which are, respectively, 2×10−11, 4×10−14, 2×10−45, 5×10−12, 0.89 and
0.11. It means that with probability 0.89 the algorithm will return the correct context
{‘income_level’, ‘has_car’}, while with probability that is about 1 it will return one of
the two similar contexts {‘income_level’, ‘has_car’} or {‘wealth_level’, ‘has_car’}.
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Table 1 Dataset characteristics

Dataset # Instances # Attributes # Values # Classes

Dermatology 366 34 131 6

Soybean 683 35 100 19

Cmc 1473 9 32 3

Mushroom 8124 22 117 2

NLTCS 21574 16 32 -

IPUMS-BR 37334 13 84 -

IPUMS-ME 42301 13 85 -

Adult 48842 14 120 2

4 Experiments

In this section, we describe the experiments conducted to evaluate the performance
of our differentially private distance learning approach. For this evaluation, we use
eight real-world datasets. Five (dermatology, soybean, mushroom, adult and cmc) are
well known benchmark datasets available at the UCI Machine Learning Repository3.
NLTCS4 contains records of individuals participating in the National Long Term Care
Survey. IPUMS-BR and IPUMS-ME5 contain census records collected, respectively,
from Brazil and Mexico in 2000. The characteristics of the datasets are summarized
in Table 1. Some datasets contain numerical attributes: we discretize these attributes
into five bins using k-means discretization.

4.1 Assessment of context selection

In the first experiment, we run all the variants of DP-DILCA on the real-world
datasets in order to assess the quality of the context they select. For each dataset,
we consider one attribute at a time as target attribute and we compute its differentially
private context for increasing levels of privacy budget ε. Then we compare the context
selected by DP-DILCA with the context obtained with the corresponding non-private
method: Baseline-DP-DILCA (Algorithm 1), where the context selection strategy
used is the same of DI LC ARR (see Section refsubsec:DILCA), is compared with
that of DI LC ARR , DP-MeanSU (Algorithm 3) with DI LC AM , DP-MaxRelevance
(Algorithm 4) with MaxRelevance and DP-MaxDependency (Algorithm 5) with
MaxDependency. MaxRelevance andMaxDependency require the specification of the
number k of desired attributes in the context as input parameter. In all the experiments
we set k = 3.

To evaluate the similarity between the private and non-private context for each target
attribute, we use three popular measures in Information Retrieval: recall, precision and
F-score. Called C and CDP respectively the context selected by a non-private algo-

3 https://archive.ics.uci.edu/
4 http://lib.stat.cmu.edu/
5 https://international.ipums.org/
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rithm and the context selected by the correspondent differentially private algorithm,
the recall is computed as recall(C,CDP ) = |C ∩ CDP |/|C |, while the precision
is precision(C,CDP ) = |C ∩ CDP |/|CDP |. The F-score is the harmonic mean of
precision and recall:

F(C,CDP ) = 2 · precision(C,CDP ) ∗ recall(C,CDP )

precision(C,CDP ) + recall(C,CDP )
.

For each ε, we repeat the experiments 30 times and we compute the mean value
of all scores. In the experiments, we expect to see results that are at least equal to
those we would obtain for random context selection. The expected value of the F-
score when the context is selected uniformly at random depends on the number m of
attributes in the dataset and on the number of possible contexts (for DP-MaxRelevance
and DP-MaxDependency only the contexts containing k = 3 attributes are possible
outcomes, while DP-MeanSU could select a context of any size). Thus, a comparison
of the mean F-scores among different datasets and different context selection methods
would not be fair. For this reason, similarly as done by Hubert and Arabie (1985), we
adjust themean F-score by computing mean(F)−E

1−E , where E is the expected value of the
random selection context and is different for any dataset and context selection method.
Figure 2 shows the results of our comparison: for each ε we report the average value
of the normalized F-score over all the attributes of each dataset. In all the datasets,
the results achieved by DP-MeanSU, DP-MaxRelevance and DP-MaxDependency
increase with respect to ε and, especially for high levels of ε, they outperform the
results of the baseline method. This is in line with what we expected, because the
amount of noise introduced with the baseline method is much higher than the amount
of noise introducedwith the other three approaches. The shape of the curve and the level
of accuracy reached by each context selection approach heavily depend on the data:
one can notice that the best scores are reached in the datasets with more records. This
is not surprising: the effort needed to mask the presence of a particular record is higher
when the original dataset contains only few records. More formally, the amount of
noise introduced in the context selection is proportional to the sensitivity of the entropy
1
N

(
1

ln(2) + log(N )
)
: this quantity decreases as the dataset size N increases, thus it is

reasonable to expect higher accuracy level for bigger datasets, at the same level of ε.
In general, DP-MaxRelevance and DP-MaxDependency show better results than DP-
MeanSU. In the smallest datasets (dermatology and soybean), the context selection
procedure is more unstable. In particular, for DP-MeanSU no relevant growth in the
value of the F-score wrt ε can be appreciated and the results are similar to those one
would obtain for random context selection. In Appendix A.1, we also investigate the
behavior of the context selection approach in controlled scenarios with synthetic data.

4.2 Assessment of the distancematrices

In this section we repeat the same experiments on the real-world data presented in
Section 4.1, but we focus on the final output of DP-DILCA: the distances between the
values of the target attribute. As before, for each dataset we consider one attribute at a
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(a) dermatology (b) soybean (c) mushroom (d) adult

(e) cmc (f) NLTCS (g) IPUMS-BR (h) IPUMS-ME

Fig. 2 Average adjusted F-score of the differentially private context

time as target and we compute the differentially private distance matrix associated to
its values, for increasing levels of privacy budget ε. Then we compare the distances
obtained with DP-DILCA with those obtained with the corresponding non-private
method. Again, we set the parameter k equal to 3. In this experiment we need to set
another parameter: the portion h of privacy budget we want to allocate to the context
computation. We set h = 0.3: in this way we are giving more importance to the final
step (the distance computation step) then to the context selection phase.

We quantify the linear correlation between the private distance matrix M ′, with
shapen×n, and its non-private counterpartM through the samplePearson’s correlation
coefficient6, defined as

ρ(M, M ′) =
∑n

i=1
∑n

j=i+1(Mi j − M̄) − (M ′
i j − M̄ ′)√∑n

i=1
∑n

j=i+1(Mi j − M̄)2
√∑n

i=1
∑n

j=i+1(M
′
i j − M̄ ′)2

where M̄ and M̄ ′ are the mean values of matrices M and M ′ respectively. The ρ

coefficient takes values between -1 (perfect negative correlation) and 1 (perfect positive
correlation). If the two matrices are not correlated we will have ρ ∼= 0.

For each ε,we repeat the experiments 30 times andwecompute themeanvalue of the
sample Pearson correlation coefficient. Figure 3 shows the results of our computations:
for each ε we report the average value of the measure over all the attributes of each
dataset.Notice that the Pearson coefficient is always 1when the target attribute has only
two values. Considering these attributes in the computation would distort the resulting
average Pearson coefficient, particularly favoring those datasets with many binary
attributes. For this reason we exclude from the computation of the average Pearson
coefficient the binary attributes. For the same reason, for NLTCS (Figure 3(f)), which
consists of binary attributes only, the Person’s correlation is always maximum.

The results show that there is positive correlation between private and non-private
distances. The Pearson coefficient increases as ε grows. In line with what has been

6 In Appendix A.3 we also compute the difference in terms of L1 distance.
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(a) dermatology (b) soybean (c) mushroom (d) adult

(e) cmc (f) NLTCS (g) IPUMS-BR (h) IPUMS-ME

Fig. 3 Average Pearson correlation between the differentially private distance matrices and the correspon-
dent non private ones

said previously, the datasets with the highest values of Pearson coefficient are those
with more records. Surprisingly, soybean and dermatology obtain good results too. A
possible explanation of this behavior is connected to the high inter-correlation among
the attributes of these two datasets: thus, even if the context selection phase fails
in identifying the most relevant attributes, the final distance computation is not that
affected, as the selected context is still relevant.

4.3 Statistical validation of the results

In order to have a statistical validation of the results, we conduct three different
types of tests. All the details about the tests and the complete results are reported
in Appendix A.4.

1. In the previous sections we have used DP-DILCA to compute the context and
the distance matrix for each target attribute of each dataset, with different levels
of privacy budget ε and with three different variants of the algorithm, for a total
of 4410 experiments. Each experiment has been repeated 30 times. For each set
of experiments, we want to understand whether the distortion introduced by the
private algorithm is too high, making the results statistically similar to those we
would obtain with an algorithm that randomly selects the output (context or dis-
tance matrix). Thus, we compare each one of the 4410 sets of results with those
obtained selecting the contexts and the distance matrices uniformly at random,
and perform a Mann-Whitney U test to test the null hypothesis that the two sets
of results belong to the same distribution. The results of the tests lead to slightly
different conclusions for the F-score and the Pearson coefficient. As regards the
former, we observe that, for low values of ε and for some target attributes, we
cannot reject the null hypothesis. This is particularly true in the smallest datasets
and for variant DP-MeanSU of the algorithm. In these cases, then, the context
selection performed by the private algorithm is not significantly better than the
random context selection. As ε increases, the number of experiments for which
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(a) dermatology (b) soybean (c) mushroom (d) adult

Fig. 4 ARI of the clustering results

the null hypothesis can be rejected grows; for ε ≥ 1.5 almost all the experiments
show contexts that are statistically better than the random selected ones. As regards
the Pearson coefficient, instead, for each one of the 4410 sets of results we can
always reject the null hypothesis: for each level of privacy budget and regardless
of the shape of the dataset, all the versions of our algorithm find distance matrices
that are significantly more correlated to the correct distance matrices computed by
non-private DILCA than if we would have randomly generated them. Thus, we
can exclude that the high levels of Pearson coefficient are reached by chance.

2. Figures 2 and 3 show an increasing trend of the results as ε increases, for both
the F-score of the context and the Pearson coefficient of the distance matrices. We
use a Page’s trend test (Page 1963) at confidence level α = 0.01 to test the null
hypothesis thatm0.1 = m0.2 = · · · = m2 = m2.5 against the alternative hypothesis
that m0.1 ≤ m0.2 ≤ · · · ≤ m2 ≤ m2.5, with at least one strict inequality, where
mε is the mean of the considered measure (F-score or Pearson coefficient) on
the experiments with privacy budget ε. We conduct the test for each variant of
the algorithm separately. We can reject the null hypothesis for all the variants of
the algorithm and for both the measures (the maximum p-value in the six tests is
1.21× 10−71). Thus, we conclude that the quality of the outcomes of DP-DILCA
significantly grows as the privacy budget ε increases.

3. Finally, we conduct a Friedman statistical test followed by a Nemenyi post-hoc
test (Demsar 2006) in order to asses whether the differences among the three
variants of DP-DILCA are statistically significant. For this test, we are interested
in comparing the “quality” of the three variants on the final output of the algorithm,
the distance matrix, thus we test the null hypothesis that the differences among the
Pearson coefficients associated to the matrices computed by the three variants are
not statistically significant. At confidence level α = 0.01, the null hypothesis of
the Friedman test can be easily rejected (p-value: 2.5 × 10−43); we then proceed
with the Nemenyi post-hoc test. The results show that the difference between DP-
MaxRelevance andDP-MeanSU is higher than the critical difference, and the same
applies to the difference between DP-MaxDependency and DP-MeanSU (the p-
values are, respectively, 1.16× 10−36 and 2.85× 10−36). The difference between
DP-MaxRelevance and DP-MaxDependency, instead, is not significant. We can
conclude that DP-MaxRelevance and DP-MaxDependency are statistically better
than DP-MeanSU.
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4.4 Experiments on clustering and classification

In this section, we assess the effectiveness and utility of the distances computed by
our differentially private algorithms. To this purpose, we embed DP-DILCA into
two distance-based learning algorithms: the Ward’s hierarchical clustering algorithm
and the kNN classifier. Both the algorithms take as input the matrix of the pair-
wise distances between the data objects. DP-DILCA’s output is the distance between
values of a categorical attribute; if it is applied to all attributes in F , then the dis-
tance between any pair of objects oi , o j , both described by F can be computed as

obj Dist(oi , o j ) =
√∑

X∈F distMatri xX [oi .X , o j .X ]2, where distMatri xX is the
distance matrix returned by DP-DILCA for attribute X and oi .X and o j .X are the
values of attribute X on objects oi and o j (Ienco et al. 2012). We will refer to this
metric as obj DistDPSU , obj DistDPMR , obj DistDPMD , depending on the variant
of DP-DILCA (DP-meanSU, DP-MaxRelevance, DP-MaxDependency respectively)
used to compute the distances among the categorical values of each attribute. Sim-
ilarly, we will call obj DistDI LC A the metric obtained by the non-private DILCA
algorithm. Given a dataset D with m categorical attributes, the algorithm that returns
one of the perturbed version of the metric is ε-differentially private if, for each X ∈ F ,
distMatri xX is computed with privacy budget ε/m. We assess the accuracy of this
metric in Appendix A.5.

We run the experiment about clustering as follows: for each real-world dataset,
we compute the object distance matrix using the different private and non private
metrics, then we run Ward’s hierarchical clustering with these matrices as input.
Since the hierarchical algorithm returns a dendrogram which, at each level, contains
a different number of clusters, we consider the level corresponding to the number
of clusters equal to the number of classes. We call the overall clustering models
ClustDPSU , ClustDPMR , ClustDPMD and ClustDI LC A, depending on the distance
metric adopted. We evaluate the quality of the results through the adjusted rand index
(ARI) computed w.r.t. the actual classes (Hubert and Arabie 1985). For this reason
we do not run this experiment on datasets IPUMS-BR, IPUMS-ME and NLTCS, for
whom the classes are not given. We also exclude from the experiment dataset cmc,
because the given classes do not match at all the results obtained through the clustering
algorithm in the non-private setting (ARI is around 0.01, as for the expected index
computed for a random clustering).

Figure 4 shows the mean ARI results over 30 experiments. The value of ε on the
x axis of the plot is the overall privacy budget used for the learning of the metric,
while the privacy budget spent for computing the distances among values of a single
attribute is ε

m . For all the datasets, the ARI values of the clustering models with private
distance computation grow with respect to the privacy budget, but the growth is more
pronounced in the two largest datasets, adult and mushroom. Here, for high values of
ε, they get results close to those of the clustering with non-private distances. The three
private distance computation methods have similar performances in terms of ARI in
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(a) dermatology (b) soybean (c) mushroom (d) adult

Fig. 5 Accuracy of the results of the kNN classification with k = 5

dermatology, soybean and mushroom, while in adult ClustDPMR and ClustDPMD

outperform ClustDPSU
7.

As last experiment, we run the kNN classification algorithm, with k = 5. We
perform a 4-fold cross-validation: one fold is retained as test set, then the metrics
obj DistDPSU , obj DistDPMR , obj DistDPMD and obj DistDI LC A are learned on
the remaining 3 folds and the classification model is trained on the same set. We call
the overall models kN NDPSU , kN NDPMR , kN NDPMD and kN NDI LC A, depending
on the distance learning algorithm used. For each dataset, we apply the four kNN
models 30 times and compute the mean accuracy of the classification on the the test
set. The process is repeated four times and the results are further averaged on the four
test sets.

In Figure 5 we report the mean accuracy of all the models for increasing levels of
privacy budget ε. The results of kN NDPSU , kN NDPMR and kN NDPMD are always
very close to those of kN NDI LC A, even for very low levels of ε. On dataset mushroom,
the results of the private and non-private models are perfect; on dataset soybean and
adult, kN NDPSU , kN NDPMR and kN NDPMD even outperform their non-private
competitor. The variation of the privacy budget ε seems to have no impact on the
accuracy of the model, except for the largest dataset, adult, for which a slight increase
of the curves w.r.t. ε can be appreciated. In conclusion, we can say that the noise
introduced in the distance computation phase does not affect the classification results
too much: this is due to the fact that the distances among objects obtained with DP-
DILCAare very similar to those obtainedwith non-privateDILCA(seeAppendixA.5).

5 Conclusion

We have introduced a new family of differentially private algorithms for the data-
driven computation of meaningful and expressive distances between any two values
of a categorical attribute.Our approach is built upon an effective context-based distance
learning framework whose output, however, may reveal private information if applied
to a secret dataset. For this reason, we have proposed several randomized procedures,
based on the Laplace and exponential mechanisms, that satisfy ε-differential privacy
and return accurate distance measures even with relatively small privacy budget con-
sumption. Additionally, the metric learnt by our approach can be used profitably in

7 In Appendix A.6 we show that using DPDILCAwith a differentially private k-means clustering algorithm
outperforms the same algorithm combined with the Euclidean distance.
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distance-based machine learning algorithms, such as hierarchical clustering and kNN
classification.

The possible limitations of some of our algorithms concern the choice of a
correct context size and the applicability in “hard” scenarios (e.g., small and/or high-
dimensional datasets). As regards the first point, note that it is not possible to test
different values of the context size parameter k, since this would waste a large part
of the privacy budget. As future work, we will investigate a method to identify an
optimal value of k. Moreover, when k is high, DP-MaxDependency may require too
much computational time with very high-dimensional datasets, since it computes the
probability associated to any possible context for each attribute of the dataset. We
plan to address this issue by investigating more intelligent ways to explore the context
search space. As for the second point, the results has shown that our method achieves
the best performances on sufficiently large datasets, and that the quality of the results
deteriorates when the number of attributes increases. However, the experiments show
that the algorithm is able to find accurate distances in datasets with up to 35 attributes.

As further future work, we will optimize our metric for improving its computation
with ordinal attributes, as well as in datasets where numerical and categorical variables
coexist.Moreover, wewill also leverage semantic relationships among categorical val-
ues to estimate better and more explainable distances. Finally, we will design specific
unsupervised and (semi)supervisedmachine learning algorithms adopting our distance
learning framework and satisfying differential privacy.
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Appendix A Additional experiments and results

A.1 Context selection in synthetic datasets

Here we present another set of experiments with the goal of showing which context
selection approach works better and in which cases. To do this, we test our algorithms
on synthetic datasets, in order to have some controlled scenarios. Each dataset is a
10000 × 11 boolean matrix, the first column of each being considered as the target
attribute. We consider four types of matrices:

– Synth-A: the target values contains 5000 ones and 5000 zeros. Three columns
are generated starting from the target attribute and changing the values of some
randomly selected entries (swapping 1 with 0 and vice versa). The amount of
noise introduced by this swapping procedure is controlled by a parameter n, which
represents the portion of entries that are swapped. These are considered as context
attributes. The remaining seven columns are created uniformly at random.

– Synth-B: the procedure we use to generate thismatrix is the same used for Synth-A,
but the target attribute is unbalanced, as it contains 2000 ones and 8000 zeros.

– Synth-C: with the sameprocedure used for Synth-A andSynth-B,we generate three
columns with a fixed level of noise n (the context attributes). Then we generate
other two columns with a higher level of noise (n = 0.35). These columns can be
interpreted as redundant w.r.t. the first three columns. The final six columns are
created uniformly at random.

– Synth-D: here we create a perfect 10000×5 block matrix with five blocks of ones.
Then we add a certain amount of noise with the swapping procedure described
above. We will consider the first column of the matrix as the target attribute, while
the other four columns form its context. The remaining six columns are created
uniformly at random.

For each type,we create three differentmatrices, with level of noise n ∈ {0.1, 0.2, 0.3},
for a total of twelve synthetic datasets. Themain characteristics of the synthetic datasets
are summarized in Table 2. We run the three variants of DP-DILCA on each synthetic
dataset 100 times andwe count the number of times the correct context is selected. The
number k of desired attributes in the context, when required, is set equal to the number
of attributes in the correct context. The results of the experiments are reported in Figure
6. The less challenging scenarios are Synth-A and Synth-B: here, when the level of
noise is 0.1, the algorithm that works better is DP-MaxRelevance, which for ε > 0.3
stably identifies the correct context. To get the same stability the other methods need
higher levels of privacy budget (ε = 0.75 for DP-MaxDependency and ε = 2 for DP-
MeanSU). As the noise increases, the results of all the methods degrade; the algorithm
showing less sensitivity to noise is DP-MaxDependency. The most sensitive, instead,
is DP-MeanSU, that with noise n = 0.3 never identifies the perfect context. To be fair,
we have to consider that DP-MeanSU is disadvantaged compared to other methods
because it does not know in advance the number of elements in the context (it generally
puts also irrelevant elements in it). The results obtained on dataset Synth-A and Synth-
B are very similar, sowe can conclude that the oddity in the representation of the values
of the target attribute does not affect very much the quality of the results. Comparable
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Table 2 Synthetic dataset characteristics

Dataset portion of ones in Y |context(Y)| # weakly correlated attributes

Synth-A 0.5 3 0

Synth-B 0.2 3 0

Synth-C 0.2 4 0

Synth-D 0.3 2 2

(a) Synth-A, noise 0.1 (b) Synth-B, noise 0.1 (c) Synth-C, noise 0.1 (d) Synth-D, noise 0.1

(e) Synth-A, noise 0.2 (f) Synth-B, noise 0.2 (g) Synth-C, noise 0.2 (h) Synth-D, noise 0.2

(i) Synth-A, noise 0.3 (j) Synth-B, noise 0.3 (k) Synth-C, noise 0.3 (l) Synth-D, noise 0.3

Fig. 6 Pecentage of runs in which DP-DILCA selects the correct context on synthetic datasets

results are achieved also in Synth-C, except for noise equal to 0.3 (Fig 6(k)) where the
results are worst for each variant of DP-DILCA. In this case, it must be considered
that the columns in the context are generated with noise n = 0.3, while other columns
outside the context are generated with a very similar level of noise, n = 0.35. In other
words, there is only a subtle distinction between the attributes that should be selected
and the attributes that should be discarded. Despite this, DP-MaxDependency is able
to identify the correct context about half of the times, for sufficiently high levels of
ε. The most challenging scenario is Synth-D: here DP-MaxDependency outperforms
the other algorithms for all levels of noise. This is not a surprise: the attributes in
the correct context of Synth-D give a good description of the target attribute when
considered all together, while the single contribution in terms of Mutual Information
of each attribute is not very high. Thus, in this scenario a context selection method as
DP-MaxDependency, which considers the global association of a set of attribute with
the target attribute, is preferable.
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(a) ε = 0.2 (b) ε = 1

Fig. 7 Average Pearson coefficient between distance matrices computed by DP-DILCA and DILCA, for
increasing values of k of elements in context, and two values of privacy budget ε

A.2 Sensitivity analysis of parameter k

In this section we assess the impact of the choice of parameter k on the results of
algorithms DP-MaxRelevance and DP-MaxDependency. According to our theoretical
analysis, the amount of injected noise depends on the number of contingency tables that
the algorithm has to compute: the amount of noise injected by the Laplace mechanism
to each cell of the contingency matrices between the target attribute and the attributes
in its context is inversely proportional to the privacy budget and the privacy budget
spent for each contingency matrix is ε

k , where k is the number of attributes in the
context. Consequently, one may think that the best value for k should always be the
lowest one (k = 1). However, the quality of the final distances depends not only
on the the amount of noise added in the computation of the contingency tables, but
also on the choice of a good context: it is true that if we have to compute only one
contingency table we will end in a final distance matrix that should be more similar to
the one computed without noise injection. But, if a unique attribute is not able to fully
capture the differences among the values of the target attribute, the final distances will
be worst than those we could obtain by increasing the number of attributes allowed
in the context. Furthermore, setting a “wrong” k can affect also the stability of the
differentially private context selection phase. In our experiments, the average number
of elements selected in the contexts by non-private DI LC AM , considering as target
each attribute of each dataset, is three and for this reason we set k = 3. This turns out
to be a good choice. Figure 7 shows the average Pearson correlation index between
the private and non-private distance matrices on all our experiments, for two different
values of ε: the best results are those obtained setting k = 3. It is worth noting,
however, that the overall variation of the Person’s coefficient (in particular, for DP-
MaxRelevance) is not that wide.
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(a) dermatology (b) soybean (c) mushroom (d) adult

(e) cmc (f) NLTCS (g) IPUMS-BR (h) IPUMS-ME

Fig. 8 Average distance in l1 norm between the DP distance matrix and the correspondent non private
distance matrix

A.3 More on the assessment of the distancematrices

We assess the similarity between the private and non-private distance matrix of each
target attribute through two different measures: the L1 distance and the Pearson’s
correlation coefficient. The L1 distance quantifies how far the distances computed in
a differentially private way are from the non-private distances; given two matrices M
and M ′ with the same shape n × m, it is defined as

dL1(M, M ′) =
n∑

i=1

m∑
j=1

|Mi j − M ′
i j |.

The magnitude of dL1(M, M ′) depends on the size of matrix M . In order to com-
pare the results of DP-DILCA obtained for different target values (with different
shapes, though) we normalize the L1-distance over the shape of the distance matrix:
for instance, if the target attribute has t different values, we divide the L1 distance by
t2. For each ε, we repeat the experiments 30 times and we compute the mean value of
both the normalized L1 distance (Fig. 8) and the sample Pearson correlation coefficient
(Fig. 3).

Figure 8 shows the results of our computations: for each ε we reported the average
value of the measure over all the attributes of each dataset. The results show that the
distancebetweenprivate andnon-private distancematrices decreases as ε grows. In line
withwhat has been said previously, the datasetswith the lowest values of normalizedL1
distance are those with more records. Surprisingly, soybean and dermatology obtain
good results too. A possible explanation of this behavior is connected to the high
inter-correlation among the attributes of these two datasets, as already observed in
Section 4.1. Thus, even if the context selection phase fails in identifying the most
relevant attributes, the final distance computation is not that affected, as the selected
context is still relevant.
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A.4 More on the statistical validation of the results

We conduct three series of statistical tests to validate the results of the experiments
described in Section 4.

A.4.1 Statistical validation of the contexts

To better understand the validity of the results, for each value of ε and each target
attribute, we compare the mean F-score obtained with each variant of DP-DILCAwith
the mean F-score we would have obtained if the context selection had been performed
uniformly at random. In more detail, we compare the results of DP-MaxRelevance
and DP-MaxDependency with those obtained considering all the contexts with three
elements equally probable. The results of DP-MeanSU, instead, are compared with
those obtained by randomly selecting a context among all the possible contexts (with
all possible sizes). For each set of results, we conduct a Mann-Whitney U test to
verify the null hypothesis that the two sets of results, the first from DP-DILCA and the
second from random context selection, belong to the same distribution. In this way,
we evaluate whether the private algorithms introduce too much noise (an amount of
noise such that the results become similar to those one would obtain by chance) or
not. We opt for a non-parametric test because the distribution of the F-score does not
follow a normal distribution, neither when the context is randomly selected nor when
it is selected by DP-DILCA.

We have a total of 4410 set of experiments, so we conduct 4410 tests. To cope
with the problem of multiple comparisons, we use the Benjamini-Hochberg procedure
(Benjamini and Hochberg 1995) to control the False Discovery Rate at level α = 0.01.

In all the largest datasets, the results of the tests are similar: for the vast majority of
the target attributes, the null hypothesis can be rejected at any level of privacy budget
ε. There are only few attributes for which the test is not passed when the value of ε is
very small. For higher values of ε, all the experiments become significant. It is worth
noticing that these “problematic” attributes are those that are weakly correlated with
all the other attributes in the same dataset. In these cases, the non-private version of
DILCAdecideswhether to include an attribute in the context or not based on a variation
of few thousandths or less in the association measure that captures the correlations
between attributes (MI or SU, depending on the strategy). We obtain different results
for the smallest datasets (dermatology and soybean): here, for about half of the target
attributes, the test is not passed independently of the value of ε, when the algorithm
used is DP-MeanSU. Differently, for DP-MaxRelevance and DP-MaxDependency,
the number of target attributes for which the results are significant increases w.r.t.
ε, and almost all the results become significant when ε > 1.5. Figure 9 shows the
percentage of attributes in each dataset for which the three algorithms have F-score
that are significantly better than those obtained with random context selection, at
different levels of privacy budget. Finally, Table 3 reports the maximum p-values of
the tests, grouped by dataset and ε.
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(a) dermatology (b) soybean (c) mushroom (d) adult

(e) cmc (f) NLTCS (g) IPUMS-BR (h) IPUMS-ME

Fig. 9 Number of target attributes for which the context selection performed by DP-DILCA is significantly
better than the random context selection, for different level of ε

Table 3 Maximum p-values of the Mann Whitney U tests for the F-score, for each dataset and for different
amounts of privacy budget ε. The p-values above the acceptable significance level are in bold

Privacy Budget

Dataset 0.1 0.5 1.0 1.5 2.0 2.5

dermatology 4.8 × 10−1 4.9 × 10−1 4.7 × 10−1 4.6 × 10−1 4.7 × 10−1 4.7 × 10−1

soybean 4.7 × 10−1 4.8 × 10−1 4.7 × 10−1 4.6 × 10−1 4.0 × 10−1 4.1 × 10−1

cmc 9.5 × 10−2 5.7 × 10−3 1.5 × 10−3 3.4 × 10−8 3.2 × 10−7 3.1 × 10−7

mushroom 3.1 × 10−2 4.6 × 10−3 8.5 × 10−9 1.3 × 10−6 5.0 × 10−11 4.3 × 10−12

NLTCS 9.1 × 10−2 4.1 × 10−7 9.9 × 10−10 5.1 × 10−11 4.2 × 10−11 3.6 × 10−11

IPUMS_BR 4.1 × 10−1 9.7 × 10−2 4.7 × 10−3 9.0 × 10−4 2.7 × 10−4 3.7 × 10−4

IPUMS_ME 3.0 × 10−1 3.3 × 10−3 6.0 × 10−8 1.3 × 10−8 5.5 × 10−9 9.1 × 10−10

adult 2.4 × 10−2 1.1 × 10−3 4.4 × 10−7 1.2 × 10−8 4.9 × 10−10 8.2 × 10−11

A.4.2 Statistical validation of the distance matrices

We repeat the same experiment also for assessing the statistical validity of the Pearson
coefficient scores of the experiments in Section 4.2. Thus, for each dataset, target
attribute, ε and variant of the algorithm, we compare the set of 30 Pearson coefficients
obtained by DP-DILCA with those obtained randomly selecting the distance matrix
among all the possible distance matrices with the same shape. We conduct a Mann-
Whitney U test to reject the null hypothesis that the two sets of results, the first
from DP-DILCA and the second from random distance computation, belong to the
same distribution. Again, we use the Benjamini-Hochberg procedure (Benjamini and
Hochberg 1995) to control the False Discovery Rate at level α = 0.01. In all cases,
we can always reject the null hypothesis. We conclude that all the variants of DP-
DILCAcompute distancematrices that are significantly correlatedwith the non-private
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Table 4 Maximum p-values of the Mann Whitney U tests for the Pearson coefficient, for each dataset and
for different amounts of privacy budget ε

Privacy Budget

Dataset 0.1 0.5 1.0 1.5 2.0 2.5

dermatology 7.1 × 10−3 1.8 × 10−3 7.7 × 10−4 4.5 × 10−4 5.6 × 10−5 1.8 × 10−5

soybean 4.5 × 10−3 3.9 × 10−4 6.1 × 10−4 2.1 × 10−4 5.4 × 10−5 5.0 × 10−5

cmc 3.1 × 10−3 2.7 × 10−3 2.2 × 10−4 2.0 × 10−4 1.9 × 10−4 2.7 × 10−5

mushroom 2.6 × 10−7 1.2 × 10−7 1.0 × 10−7 3.7 × 10−8 3.2 × 10−8 3.2 × 10−8

IPUMS_BR 2.0 × 10−7 3.2 × 10−8 3.2 × 10−8 3.2 × 10−8 3.2 × 10−8 3.2 × 10−8

IPUMS_ME 4.7 × 10−7 1.3 × 10−7 4.2 × 10−8 3.2 × 10−8 4.2 × 10−8 3.2 × 10−8

adult 3.8 × 10−7 3.2 × 10−8 3.2 × 10−8 3.2 × 10−8 3.2 × 10−8 3.2 × 10−8

matrices computed by DILCA. Table 4 reports the maximum p-value of the tests,
grouped by dataset and ε.

A.4.3 Growth of the results w.r.t. the privacy budget

Figures 2 and 3 show an increasing trend of the results w.r.t the privacy budget ε, for
both the F-score of the context and the Pearson coefficient of the distance matrices.
We use a Page’s trend test (Page 1963) at confidence level α = 0.01 to test the null
hypothesis

H0 : m0.1 = m0.2 = m0.3 = m0.4 = m0.5 = m0.75 = m1 = m1.5 = m2 = m2.5

against the alternative hypothesis

HA : m0.1 ≤ m0.2 ≤ m0.3 ≤ m0.4 ≤ m0.5 ≤ m0.75 ≤ m1 ≤ m1.5 ≤ m2 ≤ m2.5

with at least one strict inequality, where mε is the mean of the considered measure (F-
score or Pearson coefficient) among the experimentswith privacy budget ε.We conduct
the test for each variant of the algorithm separately. The values of the statistics, the
critical values and the p-values associated to each statistic are reported in Table 5. We
can reject the null hypothesis for all the variants of the algorithm and for bothmeasures.
Thus, we conclude that both the F-score and the Pearson coefficient significantly grow
with the privacy budget ε.

A.4.4 Comparison of the variants of DP-DILCA

Finally, we conduct a Friedman statistical test followed by a Nemenyi post-hoc test
(Demsar 2006) to asses whether the differences among the three variants of DP-
DILCA are statistically significant, at confidence level α = 0.01. The value of the test
statistic is Q = 210 and it is higher than the critical value CV = 9.21, with a p-value
of 2.5 × 10−43, thus the null hypothesis of the Friedman test can be rejected for the
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Table 5 The values of the statistics of the Page’s trend test, for each variant of DP-DILCA, and their
correspondent p-values. The critical value for the test statistic, at significance level α = 0.01 is 5.412

F-score Pearson

Test Statistic p-value Test Statistic p-value

DP-MeanSU 327.70 1.52 × 10−73 351.41 1.04 × 10−78

DP-MaxRelevance 369.49 1.21 × 10−82 318.98 1.21 × 10−71

DP-MaxDependency 487.15 2.97 × 10−108 344.85 2.81 × 10−77

Pearson coefficient values;we thenproceedwith theNemenyi post-hoc test. The results
show that the difference between DP-MaxRelevance and DP-MeanSU is D1 = 0.6
and is greater than the critical difference CD = 0.1490, and the same applies to the
difference between DP-MaxDependency and DP-MeanSU that is D2 = 0.59 (the p-
values associated to the test statistics D1 and D2 are, respectively, 1.16 × 10−36 and
2.85× 10−36). The difference between DP-MaxRelevance and DP-MaxDependency,
instead, is D3 = 0.003, lower than the critical difference and not significant (p-
value: 0.53). We can conclude that DP-MaxRelevance and DP-MaxDependency are
statistically better than DP-MeanSU.

A.5 Assessment of the object distancematrices

We recall that obj DistDPSU (or obj DistDPMR or obj DistDPMD) is a distancemetric
defined as follows: for each pair of objects oi , o j described by the set of categorical
attributes F ,

obj DistDPSU (oi , o j ) =
√∑

X∈F
distMatri xX [oi .X , o j .X ]2

where distMatri xX is the matrix containing the distances among values of attribute
X obtained through the application of DP-MeanSU (DP-MaxRelevance or DP-
MaxDependency respectively).

Given a dataset x with m categorical attributes, the algorithm that returns one of
obj DistDPSU , obj DistDPMR , obj DistDPMD is ε-differentially private if, for each
X ∈ F , distMatri xX is computed with privacy budget ε/m.

In this section we assess the quality of the distance metrics as follows: we learn
the three metrics obj DistDPSU , obj DistDPMR and obj DistDPMD and also the
non-private distance function obj DistDI LC A on the real-world data used for all the
experiments, for increasing values of ε. Then we apply the learned functions on the
same datasets, obtaining the pairwise distance matrix between the objects. The results
are reported in Figure 10 and Figure 11. The value of ε on the x axis of the plot is
the overall privacy budget used for the learning of the metric, while the privacy bud-
get spent for computing the distances among values of a single attribute is ε

m . Even
for very low values of privacy budget, the distance matrices obtained with the three
variants of DP-DILCA are all very close to the non-private objects distance matrices,
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(a) dermatology (b) soybean (c) mushroom (d) adult

(e) cmc (f) NLTCS (g) IPUMS-BR (h) IPUMS-ME

Fig. 10 Average Pearson correlation coefficient between the DP object distance matrix and the correspon-
dent non private object distance matrix

(a) dermatology (b) soybean (c) mushroom (d) adult

(e) cmc (f) NLTCS (g) IPUMS-BR (h) IPUMS-ME

Fig. 11 Average distance in l1 norm between the DP object distance matrix and the correspondent non
private object distance matrix

especially in the bigger datasets. Finally, in these experiments it clearly emerges that
algorithms DP-MaxRelevance and DP-MaxDependency outperform DP-MeanSU in
all the datasets.

A.6 Differentially private k-means clustering

In this section we give a practical and fully private application of DP-DILCA. Suppose
one wants to apply a differentially private version of k-means clustering algorithm (we
will call it DP-Kmeans) to a secret dataset with categorical attributes. DP-KMeans8

(Su et al. 2017), as well as non-private k-means, only applies to numerical datasets. An
easy way to apply DP-KMeans to a categorical dataset is to transform it in a numerical
dataset by encoding each categorical attribute X in a bit vector of length |X |, where
8 We use the implementation provided in https://github.com/IBM/differential-privacy-library
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(a) dermatology (b) soybean (c) mushroom (d) adult

Fig. 12 ARI of the results of DP-Kmeans

each entry represents a possible value for attribute X (this transformation is known
as One-Hot encoding). We call the overall algorithm DP-KMeans-OH. The Euclidean
distance applied to such vectors is not able to distinguish between different values of
the same attributes and it treats matches and mismatches all with the same weight. A
more sophisticated way to project the categorical dataset in an Euclidean space is to
exploit the distances among values computed by DP-DILCA: we can represent each
value of each categorical attribute X as a point in a R

d , where d ≤ |X |, following
the method proposed by Crippen and Havel (1978). The pairwise Euclidean distances
between the objects of the transformed dataset coincides with the pairwise distances
of obj DistDPMD over the original dataset (for this experiment, we use only DP-
MaxDependency, since, according to the results reported in the previous sections, it
is the variant of DP-DILCA that works better). We call the overall algorithm DP-
KMeans-DPMD.

In the experiment, we keep the privacy budget spent by DP-Kmeans fixed to
εKMeans = 2, while we compute obj DistDPMD with different levels of privacy bud-
get εDPMD between 0.1 and 2.5. The overall privacy budget of DP-KMeans-DPMD
is ε = εKMeans + εDPMD . We compare the results of DP-KMeans-DPMD with those
of DP-KMeans-OH, where the privacy budget ε is entirely devoted to the clustering
phase. We also apply DP-KMeans to the distances learned by non-private DILCA:
we call this algorithm DP-KMeans-DILCA. Note that DP-KMeans-DILCA does not
respect εKMeans-differential privacy even if the clustering is done in a differentially
private manner, with εKMeans = 2, because the preprocessing phase does not guaran-
tee differential privacy. In Figure 12 we report the results in terms of average ARI over
100 experiments. The value of ε on the x-axis refers to the privacy budget devoted to
the distance learning: the overall privacy budget of the clustering algorithms is ε + 2.
Algorithm DP-KMeans-DPMD outperforms DP-KMeans-OH in almost all cases.

A.7 Execution time analysis

In this section, we analyze the execution time of the three variants of DP-DILCA.
The three methods differ on the way in which they compute the context of the target
attribute:DP-MeanSUcomputes 2m−1entropies,DP-MaxRelevance2m−2 entropies
and DP-MaxDependency 2 · (m−1

k

)
entropies, where m is the number of attributes and

k is the number of attributes in the context. Thus, we expect DP-MaxDependency to
be by far the slowest method, especially when the number of attributes m is large.
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Table 6 Execution time in seconds of different methods for different datasets

Dataset DP-MeanSU DP-MaxRelevance DP-MaxDependency

cmc 0.01 0.01 0.58

IPUMS_BR 0.07 0.05 7.80

IPUMS_ME 0.08 0.06 8.61

adult 0.11 0.08 13.42

NLTCS 0.05 0.04 6.19

mushroom 0.07 0.03 12.46

dermatology 0.11 0.03 41.82

soybean 0.10 0.03 44.37

In Table 6, we report the execution time of the three variants of DP-DILCA on the
real word datsets, expressed in seconds. For each dataset, we consider every attribute
as target, one at time, and compute the distances among its values. The context size
parameter k is set equal to 3. The results are in line with our expectations: the fastest
method isDP-MaxRelevance. DP-MeanSUhas comparable performances; the slowest
one is DP-MaxDependency and the difference between this method and the others is
particularly pronounced in datasets soybean and dermatology, which have highest
number of attributes.

A.8 Qualitative evaluation of the results

Here, we provide some insights about the quality of the context selected and the
distances computed by DP-DILCA. To this purpose, we choose two different target
attributes from dataset “adult” and analyze their contexts and distances.

Let us consider as target the attribute ‘age’. Table 7 shows the contexts selected by
the non-private context selection methods. DI LC AM and MaxRelevance select the
same context: the three attributes more associated with ‘age’ are ‘marital-status’ (mar-
ried, unmarried, divorced, widowed...), ‘relationship’ (wife, husband, unmarried...)
and ‘hours-per-week’ (the number of hours the person works per week). Intuitively,
all these attributes are individually related with the target attribute ‘age’, but marital-
status and relationship bring the same pieces of information: the presence of both the
attributes in the context seems to be redundant. Indeed,MaxDependency,which selects
the set of attributes that are globally most related to the target, selects another context,
choosing attributes that describe different aspects related to attribute ‘age’ (‘marital-
status’, ‘education’ and ‘occupation’). The fact that DI LC AM and MaxRelevance
select the same context means not only that they agree on which values are maximally
related to ‘age’, but also that the other attributes are weakly correlated with the target
(the association between ‘age’ and any other attribute, quantified by the Symmetric
Uncertainty, is less then the average).

Consider now the same context selection strategies but in their private versions,
with a medium level of privacy budget ε = 0.5:
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Table 7 Contexts selected by non-private algorithms for attribute ‘age’

Context selection method Attributes in context

DI LC AM ‘marital-status’ , ‘relationship’, ‘hours-per-week’

MaxRelevance ‘marital-status’ , ‘relationship’, ‘hours-per-week’

MaxDependency ‘marital-status’ , ‘education’, ‘occupation’

Table 8 Contexts selected by non-private algorithms for attribute ‘race’

Context selection method Attributes in context

DILCA_M ‘native-country’

MaxRelevance ‘native-country’, ‘marital-status’ , ‘relationship’

MaxDependency ‘native-country’, ‘relationship’, ‘occupation’

– DP-MeanSU tends to select the same context of its non-private counterpart, but
sometimes it adds some extra-attribute: for instance, a frequently selected context
is {‘marital-status’ , ‘relationship’, ‘hours-per-week’, ‘education’} or {‘marital-
status’ , ‘relationship’, ‘hours-per-week’, ‘occupation’}. It is worth noting that, in
our experiments, for this level of ε, we have never observed that attributes clearly
non-correlated with ‘age’, such as ‘sex’ or ‘native-country’, have been selected.

– DP-MaxRelevance and DP-MaxDependency always identify the same context of
their non-private counterparts.

As another example, consider now target attribute ‘race’. There are no attributes that
are clearly correlated with this target. However, the only attribute in the dataset that
has some connection with ‘race’ is ‘native-country’. Indeed, this is the only attribute
selected by DI LC AM in the context of ‘race’, as shown in Table 8. The other two
methods, MaxRelevance and MaxDependency, are forced by design to select other
two attributes in the context and choose attributes that, intuitively, should not be
related to the race. Notice that, again, MaxRelevance selects two attributes that are
highly inter-related (‘marital-status’ and ‘relationship’): since these two attributes are
similarly distributed, also their co-distributions with the target attribute ‘race’ are
similar; consequently, when one attribute is selected in the context also the other one
is selected. This does not happen for MaxDependency, that is explicitly designed to
avoid redundancy.

When we move to the private versions of the algorithms,

– DP-MeanSU selects contexts with many attributes (four, on average). The context
always contains ‘native-country’, but the other attributes seem to be randomly
chosen. For instance, selected contexts are {‘native-country , ‘working-class’,
‘sex’} and {‘native-country , ‘working-class’, ‘education’, ‘marital-status’, ‘rela-
tionship’}.

– Usually, DP-MaxRelevance selects the same context of its non-private version.
However, sometimes, one between ‘marital-status’ and ‘relationship’ is substituted
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by another attribute (for instance, {‘native-country’, ‘hours-per-week’ , ‘relation-
ship’} is a relatively frequent context).

– DP-MaxDependencyhas only twodifferent outcomes: the correct context {‘native-
country’, ‘relationship’, ‘occupation’}, with higher frequency, or {‘native-
country’, ‘relationship’, ‘education’}. This suggests that DP-MaxDependency is
more stable than the other two methods.

We now analyze the distance matrix computed by DP-DILCA, in comparison with
non-private DILCA. To do this, we consider the distances among the values of attribute
‘age’. This attribute has 5 different values (intervals of age) and we choose it because it
is easy to interpret the results, since the attribute is ordinal. The distances computed by
DI LC AM are coherentwith themeaning of the values: in particular, given three values
a < b < c, the distance d computed by DI LC AM is such that d(a, b) < d(a, c).
This is not a trivial property and suggests that, in this case, the algorithm has been
able to capture the correct relationships among the data. In order to compare the
distances obtained by DI LC AM with those of DP-MeanSU, for each method we
rank the distances in decreasing order and we check whether the rankings are the
same: in most repetitions of the experiment, the ranking remains the same. However,
sometimes two consecutive distances are swapped, but we register a maximum of
two swaps from the original non-private ranking. Similar results are obtained with the
other two methods, DP-MaxRelevance and DP-MaxDependency.
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