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Simple Summary: Co-mutations may affect EGFR-TKIs efficacy in advanced EGFR mutated NSCLC
and could be associated with worse prognosis. Using a clinical next-generation sequencing (NGS)
panel we retrospectively assessed the impact of co-alterations in 106 consecutive patients treated
with front-line EGFR-TKIs. Clinical and molecular data were retrieved. According to our data,
co-mutations do not seem to have any predictive nor prognostic role. Co-mutations are associated
with younger age at diagnosis and lymph nodes metastases at baseline. No association with PD-
L1 expression level was observed.

Abstract: Background: Tyrosine kinase inhibitors (TKIs) show variable efficacy in epidermal growth
factor receptor mutation-positive (EGFR+) NSCLC patients, even in patients harbouring the same
mutation. Co-alterations may predict different outcomes to TKIs. Methods: We retrospectively
analysed all consecutive EGFR+ advanced NSCLC treated with first-line TKIs at our Institutions.
NGS with a 22 genes clinical panel was performed on diagnostic specimens. PD-L1 expression
was also evaluated. Results: Of the 106 analysed specimens, 59 showed concomitant pathogenic
mutations. No differences in OS (mOS 22.8 vs. 29.5 months; p = 0.088), PFS (mPFS 10.9 vs. 11.2 months;
p = 0.415) and ORR (55.9% vs. 68.1%; p = 0.202) were observed comparing patients without and with
co-alterations. Subgroup analysis by EGFR mutation type and TKIs generation (1st/2nd vs. 3rd)
did not show any difference too. No correlations of PD-L1 expression levels by co-mutational status
were found. Significant associations with presence of co-alterations and younger age (p = 0.018) and
baseline lymph nodes metastases (p = 0.032) were observed. Patients without concomitant alterations
had a significant higher risk of bone progression (26.5% vs. 3.3%, p = 0.011). Conclusions: Pathogenic
co-alterations does not seem to predict survival nor efficacy of EGFR TKIs in previously untreated
advanced NSCLC.

Keywords: epidermal growth factor receptor (EGFR); non-small-cell lung cancer (NSCLC); tyrosine
kinase inhibitors (TKIs); co-mutations; next-generation sequencing (NGS)
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1. Introduction

Non-small-cell lung cancer (NSCLC) is the first cause of cancer-related death world-
wide [1]. Epidermal growth factor receptor (EGFR) activating mutations identify a sub-
group of patients deriving survival benefit from tyrosine kinase inhibitors (TKIs) [2].
Therefore, clinical guidelines suggest testing all advanced non-squamous NSCLC, as well
as selected squamous cell lung cancer patients, for EGFR mutations along with other
oncogenic alterations in order to provide a targeted treatment. However, clinical activity
and efficacy of TKIs greatly vary between apparently similar patients, underlining a wide
heterogeneity even in molecularly selected groups. Next-generation sequencing (NGS)
technologies could evaluate multiple genes in parallel, enabling a deeper analysis of tu-
mour genetics. Previous retrospective studies report conflicting results on the possible role
of co-alterations in EGFR-mutation-positive (EGFR+) NSCLC (Table S1). However, these
studies were extremely heterogenous in regard to ethnicity, type of treatment, sequencing
technology. We retrospectively reviewed clinical and molecular data of EGFR+ patients
treated at two Institutions to explore the role, if any, of pathogenic concomitant alterations
as well as programmed death ligand-1 (PD-L1) expression.

2. Materials and Methods
2.1. Patient Demographics and Outcome Measurements

Patients with advanced NSCLC with activating EGFR mutations treated with TKIs at
the Thoracic Oncology Unit of the AOU San Luigi Gonzaga (Orbassano) and, in case of first-
line osimertinib, also at the Oncological Unit of the Mauriziano Umberto I Hospital (Turin)
were included. EGFR mutations (exons 18–21) were detected by NGS (next generation-
sequencing). Progression-free survival (PFS) was defined as the time interval from the
start of EGFR TKIs treatment and disease progression or death. Overall survival (OS) was
defined as the time from the start of cancer treatment and the patient’s death. Performance
status (PS) was assessed according to the Eastern Cooperative Oncology Group (ECOG)
score. The definition of treatment response and disease progression was determined by the
investigators using the response evaluation criteria in solid tumours (RECIST) version 1.1.
The date of the last follow-up corresponded to 30 January 2021. Demographic data, data
on smoking history, PS and clinical outcomes were collected from medical records. The
database used for the study included the following variables:

• Patient characteristics: age, sex, smoking habit
• Disease characteristics: date of first diagnosis, method and site of diagnosis, histology,

staging (TNM VIII edition), date of diagnosis of metastatic disease, number and sites
of metastases;

• Molecular characteristics: EGFR mutation type (exon 19 deletion, exon 21 L858R
mutation, non-T790M exon 20 mutations, exon 20 T790M mutation, others), diagnostic
technique, PD-L1 expression level, presence/absence of co-mutations;

• Clinical course: starting date of first-line treatment, PS, best response, suspension of
therapy and motivation, progression of the disease with relative sites, local treatments
(radiotherapy, surgery or other), site and result of biopsy at the time of progres-
sion (liquid and /or tissue). Similar data were collected for second and third lines
of therapy;

• Survival outcome: date of the last follow-up, status of patients (dead or alive).

Patients treated with drugs other than single-agent first-line EGFR TKI, such as
combination therapies in clinical trials, as well as patients with resistant mutations such as
EGFR exon 20 insertions were excluded.

2.2. NGS Sequencing

NGS sequencing was performed using the Ion Torrent platform (ThermoFisher Scien-
tific) with Oncomine solid tumour DNA and RNA kit assays allowing both the analysis
of coding sequence variants of 22 genes (including EGFR, ALK, ERBB2, ERBB4, FGFR1,
FGFR2, FGFR3, MET, DDR2, KRAS, PIK3CA, BRAF, AKT1, PTEN, NRAS, NTRK, MAP2K1,
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STK11, NOTCH1, CTNNB1, SMAD4, FBXW7, TP53) and the identification of 4 gene rear-
rangements (i.e., ALK, RET, ROS1, NTRK1). After sample adequacy assessment, tumour
DNA or RNA was extracted by automated purification kits. The amplicon libraries were
prepared with Ion AmpliSeq Library Kit (Thermo Fisher, Waltham, MA, USA). After PCR
amplification and barcodes ligation, the amplicon libraries were equalized and pooled in
an equal molar ratio. Emulsion PCR and template preparation were performed using Ion
OneTouch Template Kit and Ion OneTouch system (Thermo Fisher) and sequenced. Data
analysis was conducted automatically by Ion Reporter Software. Post-sequencing bioin-
formatics analysis matched the complementary strands of each barcoded DNA fragment
to remove false-positive results. The variant allele fraction (VAF) was computed as the
number of mutated DNA molecules divided by the total number (mutated plus wild type)
of DNA fragments at that allele; variants have been called if the variant frequency was
≥5%. Only pathogenic or likely pathogenic variants were included in analyses based on
the current literature.

2.3. Immunohistochemical Scoring for PD-L1

Immunohistochemical (IHC) detection of tumour PD-L1 expression was performed
using the PD-L1 Clone 22C3 kit (pharmDx, Agilent Technologies, Santa Clara, CA, USA)
and the Dako Omnis platform (Agilent Technologies, Carpinteria, CA, USA). The percent-
age of tumour cells with PD-L1 expression (positive membrane staining) was obtained
by counting at least 100 viable cells, and this was the so-called TPS. The evaluation of
PD-L1 expression followed the specific requests of the treating clinician in terms of selection
of the tested cohort and timing (diagnostic biopsy or rebiopsy).

2.4. Definitions

Based on recent literature, patients were defined as having co-mutations if they
harboured mutations of pathogenic or unknown significance according to the COSMIC
database and the FATHMM-MKL algorithm (available at https://cancer.sanger.ac.uk/
cosmic, accessed on 15 April 2021). Therefore, patients with co-occurring benign mutations
were considered without co-mutations. An exploratory analysis considering all patients
with co-alterations (pathogenic or not) was also performed.

2.5. Statistical Analysis

Descriptive analyses such as medians, intervals, frequencies, percentages were used
to describe the baseline characteristics of the patients. The χ2 test was used to analyse the
differences between clinical and genetic parameters of patients. The survival curves were
estimated using the Kaplan–Meyer method and the log-rank test was used to determine
the differences in the survival curves between the groups. A p <0.05, with 2-sided testing,
was defined as statistically significant. Cox proportional hazard regression models were
used to evaluate the association between co-mutations (present/absent) and PFS and OS,
obtaining hazard ratios and 95% confidence intervals (CI). The analyses were carried out
with SPSS Software (IBM corporation, Armonk, NY, USA).

3. Results
3.1. Patients’ and Tumour Characteristics

A total of 147 patients with advanced EGFR positive NSCLC treated with first-line
EGFR TKIs between January 2015 and January 2020 were identified. A total of 14 patients
were not eligible due to lack of diagnostic tissue for analysis, presence of exon 20 resistant
mutations, or treatment other than single-agent first-line EGFR TKIs. Therefore, 133 patients
treated with first-line single-agent EGFR TKI were included, 106 of them with complete
molecular information (Figure S1). Clinical characteristics are reported in Table 1.

https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/cosmic
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Table 1. Patient characteristics. ECOG: Eastern Cooperative Oncology Group; EGFR: Epidermal Growth Factor Receptor;
Ex: exon; CNS: Central Nervous System.

Variable Total (%) (n = 106)

Patients without
Concomitant

Pathogenic Mutations
(%) (n = 59)

Patients with
Concomitant

Pathogenic Mutations
(%) (n = 47)

Chi Square

Gender
Male

Female
37 (34.9%)
69 (65.1%)

19 (32.2%)
40 (67.8%)

18 (38.3%)
29 (61.7%) p = 0.513

Age (median, range) 69.8 (32.0–90.7) 72.5 (34.6–90.7) 66.6 (32.0–85.5)
Age

Younger than 70 years
70 years or older

54 (50.9%)
52 (49.1%)

24 (40.7%)
35 (59.3%)

30 (63.8%)
17 (36.2%) p = 0.018

ECOG Performance Status
PS 0
PS 1
PS 2
PS 3

48 (45.3%)
50 (47.2%)

7 (6.6%)
1 (0.9%)

25 (42.4%)
27 (45.8%)
6 (10.2%)
1 (1.7%)

23 (48.9%)
23 (48.9%)
1 (2.1%)

0

p = 0.300

Smoking status
Never

Former/current
61 (57.5%)
45 (42.5%)

35 (59.3%)
24 (40.7%)

26 (55.3%)
21 (44.7%) p = 0.679

Stage at diagnosis
Stage I
Stage II
Stage III
Stage IV

1 (0.9%)
6 (5.7%)
5 (4.9%)

94 (88.7%)

0
3 (5.1%)
2 (3.4%)

54 (91.5%)

1 (2.1%)
3 (6.4%)
3 (6.4%)

40 (85.1%)

p = 0.583

Histology
Adenocarcinoma

Non-adenocarcinoma
105 (99.1%)

1 (0.9%)
58 (98.3%)
1 (1.7%)

47 (100.0%)
0 p = 0.370

EGFR mutation
Ex19 del

Ex21 L858R
Rare or double

66 (62.3%)
33 (31.1%)
7 (6.6%)

33 (55.9%)
23 (39.0%)
3 (5.1%)

33 (70.2%)
10 (21.3%)
4 (8.5%)

p = 0.138

Treatment
Gefitinib/Erlotinib/Afatinib

Osimertinib
65 (61.3%)
41 (38.7%)

34 (57.6%)
25 (42.4%)

31 (66.0%)
16 (34.0%) p = 0.382

Number of metastatic sites
0 sites
1 site
2 sites
3 sites

More than 3 sites

1 (0.9%)
35 (33.0%)
29 (27.4%)
22 (20.7%)
19 (18.0%)

0
20 (33.9%)
13 (22.0%)
14 (23.7%)
12 (20.3%)

1 (2.1%)
15 (31.9%)
16 (34.0%)
8 (17.0%)
7 (14.9%)

p = 0.637

Metastatic sites at diagnosis
Lung

Pleural
CNS
Liver
Bone

Adrenal
Nodes

32 (30.2%)
47 (44.3%)
35 (33.0%)
18 (17.0%)
51 (48.1%)
14 (13.2%)
53 (50%)

19 (32.2%)
33 (55.9%)
20 (33.9%)
12 (20.3%)
29 (49.2%)
7 (11.9%)

24 (40.7%)

13 (27.7%)
14 (29.8%)
15 (31.9%)
6 (12.8%)
22 (46.8%)
7 (14.9%)

29 (61.7%)

p = 0.613
p = 0.007
p = 0.829
p = 0.302
p = 0.810
p = 0.647
p = 0.032

The majority of patients were women (69/106; 65.1%) and never smokers (61/106;
57.5%). The median age was 69.8 years (range 32–90.7). All but one patient had adenocar-
cinoma histology. Most patients had stage IV disease at diagnosis (94/106, 88.7%) with
one (35, 33.0%), two (29, 27.4%) or more (41, 38.7%) metastatic sites. Lymph nodes, bone
and pleura were the most frequent metastatic sites at diagnosis (50%, 48.1% and 44.3%,
respectively). ECOG PS at diagnosis was 0 in 48 patients (45.3%) and 1 in 50 (47.2%).
Most patients were diagnosed with an EGFR exon 19 deletion (66, 62.3%) or L858R exon
21-point mutation (33, 31.1%), while others had uncommon or double mutations (see
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Supplementary Material). A total of 65 patients (61.3%) were treated with upfront first
generation (gefitinib or erlotinib) or second-generation (afatinib) TKIs, while 41 (38.7%)
received first-line osimertinib. Using diagnostic specimen, 57 patients (53.8%) showed
co-occurring genetic alterations. The most common co-mutated genes were: TP53 (n: 36,
34.0%), CTNNB1 (n: 8, 7.5%), PIK3CA (n:6, 5.7%), while the others included NRAS, MET,
PTEN, AKT, SMAD4, RET, DDR2, FGFR3 (Figure 1). Double co-mutations occurred in
4 cases. According to the COSMIC database, 28 pathogenic TP53 mutations were found,
while the others were benign or of neutral/unknown significance. Therefore, as for survival
analysis, patients with concomitant mutations were defined by the presence of pathogenic
mutations only. Using such a definition, 47 patients were considered co-mutation positive
and 59 co-mutation negatives.

Figure 1. Baseline co-mutations.

A greater proportion of patients with EGFR exon 19 deletion harboured concomitant
mutations (n:33; 70.2%) as compared with those with EGFR exon 21 L858R mutation
(n:10; 21.3%), although the difference was not statistically significant (p = 0.138) (Table 1,
Table S2). No associations were found between the presence of concomitant mutations
and gender or smoking habits. However, patients with concomitant mutations were
younger than those without concomitant mutations (p = 0.018) (Table 1). The presence
of concomitant mutations was associated with the presence of lymph node metastases at
baseline (p = 0.032), while patients without concomitant mutations were more likely to
present with pleural metastases (p = 0.007) (Table 1).

3.2. Treatment Outcomes in the Considered Cohort

At a median follow-up of 27.9 months, the median PFS and OS were 11.2 (95% CI
9.2–13.1) and 26.5 (95% CI: 21.1–31.8) months in the cohort with complete molecular data,
respectively (Figure 2). PFS and OS were also analysed by EGFR mutation type in the entire
cohort (n:133) (Figure 3). Median PFS was 11.2, 12.1 and 11.6 months for ex19 deletion,
ex21 L858R and other mutations, respectively. Median OS was 30.8, 29.0 and 31.6 months
for ex19 deletion, ex21 L858R and other mutations, respectively.

The overall response rate was 68.1% in the entire cohort, 61.8% in patients treated with
1st or 2nd generation TKIs, and 70.3% in those treated with osimertinib. By analysing the
type of treatment, mPFS was 10.3, 11.9 and 11.6 months in patients with exon 19 deletion,
exon 21 L858R mutation, and other EGFR mutations treated with old-generation TKIs,
respectively. The mPFS of patients treated with first-line osimertinib was 16.8 months and
not reached in those with exon 19 deletions and L858R mutation, respectively. In the entire
cohort (n = 133, including those without information on comutations), no significant differ-
ences were observed when comparing patients treated with first- and second-generation
TKIs with those treated with upfront osimertinib (mPFS 10.6 vs. 16.8 months; HR 0.61, 95%
CI 0.35–1.06; p = 0.081). In the subgroup of 106 patients with information on co-mutations,
PFS was significantly longer with osimertinib (mPFS 16.8 vs. 9.8 months, HR 0.56, 95% CI
0.32–0.98, p = 0.04).
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Figure 2. Progression-free survival (A) and overall survival (B) in patients with known co-mutational status.

Figure 3. Cont.
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Figure 3. Progression-free survival (A) and overall survival (B) by EGFR mutation type in the
entire cohort.

We performed univariate analysis to assess PFS and OS according to the following
variables: age, ECOG PS, TKI generation, number of metastatic sites, and type of metastatic
site (Tables 2 and 3). A longer PFS was associated with third generation TKI, while shorter
PFS was associated with central nervous system (CNS), bone and liver metastases. At
the multivariate analysis, a significant association was maintained for TKI generation
(p = 0.043) and presence of CNS metastases (p = 0.013).

Considering OS, univariate analysis showed an association between shorted OS and
CNS, bone and liver metastases. At the multivariate analysis, CNS metastases were
associated with shorter OS (p = 0.011).

Table 2. Univariate and multivariate analysis for progression-free survival. Bold indicates statistically significant findings
(p < 0.05).

Progression-Free Survival

Variable Univariate Analysis
Hazard Ratio (95%CI), p-Value

Multivariate Analysis
Hazard Ratio (95%CI), p-Value

Pathogenic comutations (yes vs. no) 0.82 (0.52–1.31), p = 0.415

Age (older than 70 vs. younger) 0.84 (0.53–1.33), p = 0.451

ECOG performance status (>=1 vs. 0) 1.36 (0.85–2.18), p = 0.196

TKI generation (osimertinib vs. other) 0.56 (0.32–0.98), p = 0.04 0.55 (0.31–0.98), p = 0.043

Number of metastatic sites (>1 vs. 1) 1.50 (0.92–2.46), p = 0.106

Lung (yes vs. no) 0.91 (0.53–1.57), p = 0.735

Pleura (yes vs. no) 0.69 (0.43–1.10), p = 0.116

CNS (yes vs. no) 2.43 (1.49–3.96), p < 0.001 2.14 (1.17–3.89), p = 0.013

Liver (yes vs. no) 1.92 (1.02–3.61), p = 0.044

Bone (yes vs. no) 1.62 (1.02–2.57), p = 0.042
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Table 3. Univariate and multivariate analysis for overall survival. Bold indicates statistically significant findings (p < 0.05)

Overall Survival

Variables Univariate Analysis
Hazard Ratio (95%CI), p-Value

Multivariate Analysis
Hazard Ratio (95%CI), p-Value

Pathogenic comutations (yes vs. no) 0.61 (0.35–1.08), p = 0.088

Age (older than 70 vs. younger) 1.25 (0.71–2.18), p = 0.439

ECOG performance status (>=1 vs. 0) 1.72 (0.97–3.04), p = 0.062

TKI generation (osimertinib vs. other) 0.86 (0.40–1.86), p = 0.698

Number of metastatic sites (>1 vs. 1) 1.58 (0.85–2.95), p = 0.150

Lung (yes vs. no) 1.01 (0.52–1.93), p = 0.989

Pleura (yes vs. no) 0.79 (0.45–1.40), p = 0.421

CNS (yes vs. no) 2.08 (1.20–3.62), p = 0.009 2.62 (1.25–5.46), p = 0.011

Liver (yes vs. no) 2.17 (1.10–4.29), p = 0.025

Bone (yes vs. no) 1.98 (1.12–3.48), p = 0.018

3.3. Association between Concomitant Alterations and Treatment Outcomes

No association was found between survival and co-mutational status. The median PFS
was 11.2 months in patients with concomitant alterations versus 10.9 months in patients
without [Hazard Ratio (HR) 0.82 (95% CI 0.52–1.31) p = 0.415] (Figure 4A). OS survival was
not statistically different according to the presence or absence of concomitant alterations
[median OS 29.5 versus 22.8 months, respectively, HR 0.61 (95% CI 0.35–1.08) p = 0.088]
(Figure 4B). Objective response rate (ORR) was similar between patients with or without
co-occurring mutations (68.1% vs. 55.9%, p = 0.202).

No differences in terms of OS or PFS were found even when analysing by treatment
(1st and 2nd generation TKIs or 3rd generation TKI). Indeed, median PFS was 9.9 versus
9.8 months in patients with or without co-alterations treated with old generation TKIs,
respectively [HR 0.77 (95% CI 0.45–1.30) p = 0.319]. While mPFS was 16.8 versus 17.5 months
in those treated with osimertinib [HR 1.01 (95% CI 0.37–2.73) p = 0.985] (Figures S2 and S3),
even when analysing by treatment type.

We also performed an exploratory analysis considering all co-mutations (thus in-
cluding also benign, neutral mutations and those of uncertain significance). Differences
remained not statistically significant: median PFS was 10.9 months in patients without
co-mutations versus 11.2 in patients with all types of mutation [HR 0.88 (95%CI 0.56–1.40)
p = 0.597]. mOS was 20.8 versus 28.7 months, respectively [HR 0.69 (95%CI 0.40–1.21)
p = 0.199] (Figure S4).

Figure 4. Cont.
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Figure 4. Progression-free survival (A) and overall survival (B) according to co-mutational status.

3.4. Association between Concomitant Alterations and Second-Line Treatment Outcomes

A total of 64 patients experienced progression in the whole cohort. The most frequent
sites of progression were lung (n:31, 48.4%), central nervous system (n:24, 37.5%) and pleura
(n:15, 23.4%). Patients without co-mutations showed a significantly higher incidence of
bone metastases at progression as compared to patients with co-occurring alterations (26.5%
vs. 3.3%; p = 0.011) (Table S3). Complete molecular information, including T790M status,
was obtained either by liquid or tissue biopsy in 43 patients treated with old-generation
TKIs at the time of progression. T790M resistance mutation rate was similar between
patients with or without baseline co-occurring mutations (52.6% vs. 70.8%; p = 0.220).
NGS was conducted both at baseline and at the time of progression in 30 patients. No
differences in molecular profile were detected in 23 (76.7%). The discordant co-mutational
status included loss of TP53, CTNBB1 or PIK3CA mutations and acquisition of CTNBB1,
DDR2, SMAD4 or TP53 mutations. A total of 27 patients received second-line osimertinib
at progression, and 10 had co-occurring mutations at baseline.

3.5. PD-L1 Expression and Outcomes

PD-L1 expression level was available in 77 patients in the whole cohort, 51 of whom
(66.2%) were negative. Among PD-L1 positive cases, 20 (26%) showed a TPS between 1%
and 49%, and 6 (7.8%) equal or higher than 50%. An exploratory analysis on the association
between PD-L1 expression and the presence/absence of co-mutations (n:73) showed a
comparable distribution of PD-L1 expression in the two groups (Tables S4 and S5). There
was no significant difference in ORR between patients with different PD-L1 expression
levels (PD-L1 negative vs. PD-L1 positive: 62.7% vs. 65.4%, p = 0.820; PD-L1 negative vs PD-
L1 1–49% vs. PD-L1 > 50%:62.7% vs. 65% vs. 66.7%; p = 0.972). Median PFS was 12.0 months
versus 9.6 months in patients with PD-L1 of 0% and PD-L1 expression ≥1%, respectively
(Figure 5A). No differences in median OS were observed in the PD-L1 negative and PD-
L1 positive patients (mOS 27.5 and 24.4 months, respectively) (Figure 5B). By analysing the
association between PD-L1 expression and the presence/absence of co-mutations, median
PFS in PD-L1 negative patients was 11.2 months in patients with concomitant mutations
versus 13.9 in patients without [HR 1.17 (95% CI 0.54–2.25) p = 0.694] (Figure S5). In the
PD-L1 positive cohort (TPS ≥ 1%), the median PFS was 6.6 versus 17.5 months in those with
and without co-mutations, respectively [HR 1.73 (95% CI 0.59–5.07) p = 0.318] (Figure S5).
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Figure 5. Progression-free survival (A) and overall survival (B) according to PD-L1 expression.
PD-L1: programmed death-ligand 1.

4. Discussion

This retrospective study analysed data from all patients with advanced NSCLC and
EGFR activating mutation treated with single-agent TKI in the first-line setting in the last
5 years at our Institutions, along with all consecutive patients treated with first-line os-
imertinib at Mauriziano Hospital. Patient characteristics, tumour histopathologic features,
mutation types, PFS and OS are consistent with those reported in the literature. Most
patients were women (65.1%) and never smokers (57.5%), and 93.4% of them had common
EGFR mutations. As per other studies [3–15], we found that 53.8% of patients harbour
concomitant alterations, even if some of them are of unknown significance or benign. There-
fore, we decided to define as co-mutation positive patients with concomitant pathogenic
mutations only. Interestingly, a significant correlation was found between the presence of
concomitant molecular alterations and age since co-mutations occur more frequently in
younger patients (<70 years old) (p = 0.018). This previously unreported correlation may be
the epiphenomenon of the higher vulnerability of some patients to carcinogens, although
we have no proof of this hypothesis. The most common co-mutated gene in our cohort was
TP53 (n:36, 63.2%), although only 28 were pathogenic according to the COSMIC database.
Other frequent mutated genes were CTNNB1 (6.87%), PIK3CA (4.9%), and others, including
NRAS, MET, PTEN, AKT, SMAD4, RET, DDR2, FGFR3 (9.8%). Our results suggest that
genomic profile may not influence treatment efficacy and clinical outcomes of patients with
advanced EGFR mutated NSCLC. The presence of concomitant alterations studied by our
NGS panel was not associated with significantly different outcomes following treatment
with first, second or third generation EGFR TKIs. To date, the predictive value, if any, of
concomitant mutations for targeted therapy in advanced NSCLC is still a matter of study.
As previously discussed, while some studies suggest that co-mutations could define a
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cohort with a lower probability of response to EGFR TKIs, others do not (see Table S1). Such
studies are all retrospective series, with an extreme intra- and inter-study heterogeneity
when dealing with ethnicity, type of EGFR mutations, treatment, and, more importantly,
diagnostic techniques. Indeed, gene panels, as well as assay, vary between studies, and
in some of them, different patients were tested with different techniques. Moreover, the
definition of co-mutations or co-alterations is different among studies. The present study
analysed only patients treated with single-agent TKI, carrying TKI-sensitive mutations and
tested with the same technology and gene panel, thus limiting intra-study heterogeneity.
However, the low number of patients included limited the statistical power of our analysis.

Different from most of the other studies reporting a higher prevalence of concomi-
tant mutations in patients with exon 21 mutation, in our analysis, half of patients with
exon 19 deletions had co-mutations as compared to 30.3% of those with exon 21 L858R
mutation. Consistent with literature data [16], the most common co-mutated gene was
TP53 (63.2%) also in this cohort. Considering pathogenic mutations only, patients with
co-mutations represent 44.3% of those analysed. An exploratory analysis including also
benign mutations and those with unknown/neutral significance did not show any dif-
ferences in ORR, PFS and OS between patients with and without other mutations. Other
clinical studies have identified TP53 co-alterations as a negative prognostic marker in
EGFR mutated NSCLC and a consistent predictor of worse clinical outcomes with EGFR
TKI therapy [3–5,7,9,10,12,15]. Other results revealed that concomitant concurrence of
TP53 mutation at baseline is significantly associated with shorter OS in patients treated
with 1st generation TKIs but not in those treated with 2st/3nd generation ones. In addition,
in the prospective randomized RELAY study, baseline TP53 mutations were associated
with shorter PFS and a trend of greater efficacy of the experimental treatment (erlotinib
plus ramucirumab) was observed [17]. Moreover, patients with baseline TP53 mutations
had a higher likelihood of developing T790M exon 20 mutations upon progression to both
treatments. However, other studies did not show any correlation between TP53 mutations
and survival [6,8,13]. To our knowledge, very limited data exist on co-mutational profile
and treatment outcomes with osimertinib, both in first or second line [14,18]. The present
study shows that the benefit derived from front-line osimeritinib seems independent from
the co-mutation profile. Moreover, co-mutations do not seem to predict the occurrence of
T790M resistance mutations upon treatment with old-generation TKIs neither. Acquired
T790M mutation was observed in 70.8% of patients without co-mutations and 52.6% of
those with co-alterations (p = 0.220). Overall, NGS on tissue specimens was conducted
both at baseline and at disease progression, without showing different molecular profiles
in most cases (76.7%). This may underscore the limitations of our NGS panel to detect
some relevant resistance mechanisms to TKIs. Indeed, we were not able to evaluate gene
amplifications that have been already shown to have a potential prognostic and predictive
role [19,20]. Interestingly, patients without concomitant alterations seem to progress more
frequently to bones as compared to those with concomitant mutations (26.5% vs. 3.3%,
p = 0.011). To further explore our cohort, we analysed PD-L1 expression levels. Several
studies on the predictive role of PD-L1 expression and TKIs efficacy in EGFR-mutated
NSCLC have shown conflicting results [21–24]. However, none have evaluated PD-L1 ex-
pression in relation to co-mutational profile. Our cohort showed a comparable distribution
of the PD-L1 expression in the two groups. No significant differences were observed in
terms of ORR, PFS and OS between patients with different PD-L1 expression levels. When
dealing with PD-L1 expression and co-mutational status, neither ORR nor PFS changed
according to the presence or absence of co-alterations, suggesting that PD L1 cannot be
considered a predictive biomarker in this context. The main strengths of our study are the
longitudinal availability of real-world clinical data, the standardised molecular profiling
that was performed in the same institution using the same technology, as well as the
presence of a cohort of patients treated with the first-line osimertinib. However, several
limitations must be acknowledged. The retrospective design and the relatively small sam-
ple sizes of each cohort could have affected subgroup analyses. Furthermore, the small
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NGS panel may have missed some important molecular alterations. Moreover, tumour
genetic heterogeneity is not appropriately caught by single tissue biopsy analysis [25].
Therefore, these findings require further validation within prospective studies conducted
in larger cohorts.

5. Conclusions

This study did not demonstrate any predictive or prognostic role of co-mutation in
EGFR-positive advanced NSCLC patients treated with first-line TKIs. Although, from a
clinical point of view, an intra-driver diversity exists, how to identify factors explaining this
phenomenon is still an open challenge. Wider diagnostic tools, both on tissue specimens
and liquid biopsies, may guide treatment selection in the next-future, helping the clinician
to deliver more intensive treatment strategies to high-risk patients, sparing useless toxicities
in others. The development of such risk-adapted treatment algorithms requires further
translational studies, especially because genomic data without clinical annotations may
not bring any benefit to the patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13102425/s1, Figure S1: Study consort diagram, Figure S2: Progression-free survival
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TKI, Figure S4: Survival according to co-mutational status, considering all co-mutations, Figure S5:
Progression-free survival in PD-L1 positive and negative patients by co-mutational status. PD-L1:
Programmed death-ligand 1, Table S1: Studies evaluating in advanced EGFR+ NSCLC, Table S2:
Co-mutational status by EGFR mutation type, Table S3: Site of progression according to co-mutational
status, Table S4: Distribution of PD-L1 expression in patients with and without concomitant mutations.
PD-L1: Programmed death-ligand 1, Table S5: Distribution of PD-L1 expression levels in patients
with and without co-mutations. PD-L1: Programmed death-ligand 1.
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