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FICSR: Feedback-based InConSstency Resolution for
Query Processing on Misaligned Data Sources

ABSTRACT

An important challenge when integrating knowledge is that knowl-
edge from different sources may often be conflicting. In this paper

. ' of a particular data entity or its relationships with other entities.
we present a novel feedback-based appro&dtC(S R?) to incon- P Y P

ist luti hen int ting dat We highliaht For example when a scientist is trying to work under multiple, con-
sistency resolution when Integrating data sources. We highlig flicting assumptions or hypotheses, disagreements in the integrated
that conflict-resolution methods, which aim to achieve integration knowledge or interpretations are unavoidable. For example, Fig-

"’.‘”d cle_anlng before the query processing, can be .COStly and_, Many,re 1 shows two alternative mammal taxonomies that are available
times, ineffective. Instead, we propose a ranked interpretation of

. . to a scientist, each representing a different view of how the catego-
the data which enables users to observe and resolve conflicts b P g 9

y . -
considering the context provided by the queries. We show both fization should be performed.
theoretically and experimentally that (a) system feedback regard-1.1 Misalignments and Conflicts

ing the conflicts in the most likely candidate results can inform the In this paper, wedevelop a novel methodology for dealing with

user regarding data and relationship-constraints critical to a given imperfectly aligned data and algorithms to assist users to pose

ggeerzpe;gse(g)tgSis]foffrs‘iﬁ:cs';rs?grir?;ng%trg?n;aﬂI;‘;?,S'néirrg;?;alt('r?gvgﬁmquestions and explore alternative answers when the alignment of

d licable within th text of ) T data is not perfect and contains conflicts
edge as applicable within nefo‘jS” ext of a given query. 10 SUP- A major challenge when dealing with conflicts is that, in many

port such bi-directionaldata ~——" user) feedback, we develop  cases, resolution is an ill-defined problem: there may be muiti-
data structures and novel algorithms to enable efficient off-line con- ple ways to resolve conflicts and the appropriate conflict resolution
flict/agreement analysis of the data as well as on-line query pro- strategy may be user-, and query context-dependent. In many cases

cessing, candidate result enumeration, and validity analysis. (such as the scientist working under potentially conflicting inter-
pretations as in Figure?), overly-eager conflict resolution may be
1. INTRODUCTION detrimental to the effective use of the available knowledge. Thus,

we argue that since conflicts between sources may highlight differ-
ent interpretations of the base facts, it may be important to keep

matching, which takes two data or schemas as input and produceélhe original yiﬁwg qffthe data, eveE though there kr‘night pekcon-
a mapping (or alignment) between elements, has been investigatec{ icts. Especially, in information mashup scenaries v ere quick

in scientific, business, and web data integration [35] contexts. For INtégration is more desirable than complete and clean integration,
example, [29] uses structures (schema graphs) for matching. [10]str|vmg forfl_J” conflict-resolution may be_cour!t_er-productlve. I_:ur-
explores matching within the context of hierarchical data and meta- thermore, given the many alternatives, identification of consistent
data with fuzzy, many-to-many mappings. Clio [28], LSD [11] models or result enumeration may become extremely expensive.
SKAT [30], Cupid [25], and DIKE [33] are other matching sys- In t_his paper, instead of trying to achieve fuIIy-_consistent in-_
tems. In particular, [21] proposes a language that allows users to€9ration, we aim to use query instances to provide contexts in

specify alternative semantics for mapping tables between sourcesVhich conflicts are resolved. Like us, Piazza [17] and HepToX [6]

and show that a constraint-based treatment of mappings leads tOalso recognize t_hat it is _unreallstlc to expect an independent _data
source entering information exchange to agree to a global mediated

efficient mechanisms for inferring new mappings. [5] proposes to ; X .
use DTDs and source-to-target dependencies (STDs) to eliminateScnema or to perform heavyweight operations to map its schema to
every other schema in the group. Piazza presents a mediation lan-

inconsistent data translation from one schema to another. ” ]
In many cases, however, the alignment across the available datfuage for mapping both the domain and document structures and

sources is not perfect. Two sources may not agree on the existencd®CUSES oreertain answershat hold for every consistent instance,
while we consider conflicts explicitly and only aim to resolve them

1Pronounced as “fixer”. within the context of a given query. HepToX, on the other hand,
focuses on automated mapping rule generation, without explicitly
considering conflictsfFRoM SeLcuk: other work...widom]

Query processing on data from different sources includateh-
ing/alignmentand integration tasks. The problem of automated

1.2 Alternative Interpretations of Data with Conflicts

Permission to make digital or hard copies of all or part of this work for As exemplified above [?], traditionally, a consistent interpreta-
personal or classroom use is granted without fee provided that copies are tion (or mode) of the integrated data is defined as a maximal, self-
not made or distributed for profit or commercial advantage and that copies consistent subset of the data

bear this notice and the full citation on thefirst page. To copy otherwise, to '
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. DEFINITION 1.1 (MODEL-BASED INTERPRETATION). A

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00. model (or model-based interpretatipof a given knowledge base
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Figure 1: Two different IS-A hierarchies (taxonomies) avail-
able to a scientist represent different views on what the correct
mammal categorization should be
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D is a subseD’ of the knowledge baséX C D) such that there
exist no other consistent seX’, whereD’ ¢ D" C D.

base by selecting a consistent model could lead to loss information. 4 Q%e:vgéézn
Furthermore, in many cases, the user may not have enough infor-
mation (domain knowledge) to select an appropriate model among
all the alternatives implied bp. Figure 2: Overview of the relevance feedback process com-
In this paper, instead of characterizing the user’s interpretation as Monly used in information retrieval when the available data has
a maximally consistent portion of the available information that she alternative (user- and query-dependent) interpretations
commits as being certain, we argue that a more flexible definition of
interpretationwhich captures the likelihood that a given asserted and focus to a suitable feature set through a query-driven, transpar-

e ’,// o
. . . . -
Thus, any restoration of consistency in the integrated knowledge \
Ser relevance
feedback

statement about the data can be considered as holdimay be ent, and iterative process. In particular, (1) given a query, using the
more suitable in these scenarios. available index structures, the system (2) identifies an initial set of
candidate results. Since the number of candidates can be large, the
DEFINITION 1.2 (RANKED INTERPRETATION). Let D be system presents a small number of samples to the user. (3) This
the data andS be a set of statements (i.e., propositions) on the initial sample and (4) user's relevance/irrelevance inputs are used
data. Then, a total ranking of statementsSns a ranked interpre- for (5) learning user’s interests (in terms of relevant features) and
tation of the dataD. this information is used for (6) updating the user query or the re-

trieval/ranking scheme. Steps 2-5 are then repeated until user is
Note that the model-based interpretation of the data is a specialsatisfied with the ranked result samples returned by the system.
case of ranked interpretation, where the rank of all certainly (based e propose to benefit from a similar feedback-based approach
on the model) true statements is better than that of the rank of all in the context of query processing in the presence of alternative
certainly false statements. interpretations. The system will rely on tbejective-to-subjective
Data alignment is a subjective process in that the mappings cap-implication (—) to inform the user about the more likely (i.e., high-
ture the user’s interpretation of the data sources and applicationest source agreement) interpretations for the given data. Then, the
requirements. These aspects are capturesubjectiveranked in- subjective-to-objectivienplication (—) will be leveraged to inform
terpretations (i.ep,v, implicitly capturing the uset/’s domain the system about the user’s own interpretation.
knowledge or preferences), as opposedlfectiveinterpretations
(i.e., <p, measuring the degree of agreement of the different data DESIDERATUM2 (CONTEXT-INFORMED INTERPRETATION).
sources about a given statement). Since the feedback process can be computationally costly and
since the user may have neither the need or nor sufficient domain
.DES'DERATUMl (OBJECT'VE'SQBJECT'VECORRESPONDENCE‘knowIedge to interpret the entire data, instead of considering
Itis preferred that, for allSy, Sz € S, it holds that all possible statements, it is preferable to focus on only those
(S1 <p,u S2) «—— (S1<pSa). statements relevant within the context specified by a user query.

Query processing over data with conflicts require the gap be- )
tween objective and subjective interpretations of the data with con- 1.4 Proposed Approach: Feedback-driven Query Pro-

flicts to be bridged. cessing and Conflict Resolution in the Presence of
Imperfectly Aligned Data
1.3 The Use of Feedback in Information Retrieval In this paper, we develop data structures ( and algorithms to en-

In this paper, we first note that, in the area of information re- able feedback-based conflict resolution during query processing on
trieval (IR [?]), researchers face a similar challenge of objective- imperfectly aligned and integrated data. Figure 3 illustrates the
subjective gap: when processing an information retrieval query,  overall process.

e which features of the data are relevant (and how much so) for
the user’s query may not be known in advance, and

e the number of candidate matches in the database can be po- First, an initial alignment between the input data is obtained
tentially very large. through semi-automated techniques, such3s The result of the

alignment is a set of mapping rules, such as those described in [?].
In the IR context, these challenges are dealt effectively through rel- These rules along with the integrated data are then represented in
evance feedback cycles (Figure 2). The relevance feedback procesthe form of a set otonstraints In this paper, we classify the con-
enables the information retrieval system to learn the user’s interestsstraints into two major classes: (@)Jationship constraintgescribe

1.4.1 Alignment Conflicts and Objective Agreement
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Figure 3: Overview of the query-driven feedback-based conflict
resolution process to deal with imperfectly aligned data

how the individual data objects/entities relate to each other, while
(b) integrity constraintsddescribe the general rules these data enti-
ties have to obey.

Unless the constraints are conflict free, there will be multiple
solutionmodels Consequently,the ratio of the models (i.e., alter-
native interpretations) of the data where a particular data fragment
is consistent with the réstan be used as a measureagfreement
of the data sources on this data fragment. Therefore, informing the
user regarding the objective ranking involves identifying and enu-
merating results with high agreements.

1.4.2 Query Processing and Relevance Feedback-based
Conflict Resolution

The agreement-based ranking task can be computationally com-
plex if the system would need to enumerate all alternative models
(in Section 5.1, we show that the problem is NP-complete even
in highly specialized cases). Therefore, a particular challenge in
query processing in the presence of conflicts is to postpone the
computation of complete solution models until absolutely neces-
sary. In order to deal with the cost of the agreement value com-
putation in the presence of conflicts, we divide the task into three
stages:

Off-line Analysis: We first represent the relationship constraints
in the form a constraint graph which enables off-liwen-
flict/agreemenainalysis as well as ranked candidate result enumer-
ation. In order to compute the agreement values efficiently, we fur-
ther partition the data graph into small-sized constraimteseach
consisting of an mutually-dependent set of relationship constraints.
The agreement values are then computed for each zone separatel
and combined efficiently for paths that span multiple zones during

query processing.

Candidate Enumeration and Ranking: Given a query, the system
first identifies and ranks an initial subset of matches, using these
zonalagreement values. Once presented with a ranked set of the
results, the user can pick and choose between available results.

Integrity Constraints and Feedback: The remaining complex in-
tegrity constraints (such as “no-cycles are allowed in data”) are
used for verifying thevalidity of the ranked interpretation obtained
through zonal agreement values. In particular, through the analysis
of integrity constraints within the context provided by the candi-
date result sets as well as user feedback, candidate results as well as
integrity constraints themselves are assignalitity values Once

these validity values computed are propagated back to the objective
agreement values (completing the feedback cycle), the user can be
provided with a new subset cdinkedresults.

1.5 Contributions of the Paper

The proposed system brings together various innovative tech-
niques to deal with the computational complexity and the ill-
defined nature of the conflict resolution problem:

e First of all, we propose a novel, feedback-driven approach
to query processing in the presence of conflicts. The feed-
back process relies on a novel ranked interpretation of the
data. The objective-subjective correspondence of the ranked
interpretation enables the user to explore the available data
within the context of a query and be informed regarding data
and relationship-constraints critical to a given query before
providing feedback.

We provide data structures and algorithms that enable effi-
cient off-line analysis of the data for agreement analysis and
online query processing, candidate result enumeration, and
result pruning and compatibility analysis. We represent data
in the form of relationship and integrity constraints (Sec-
tions 2 through 4):

— the relationship constraints lend themselves to efficient
partitioning into independentconstraint sets (called
zones, Section 4.1). The small sizes of the zones en-
able efficient off-line agreement (Section 5) and their
independent nature enables efficient on-line composi-
tion (Section 6).

the top% nature of the on-line candidate result enu-
meration process lets the user focus on high-agreement
parts of the data, up on demand (also in Section 6).

the cost of thantegrity analysis and feedback stage is
kept low through the small size of candidates that need
to be verified as well as the use of the query-context that
sets the scope of the compatibility checks (Section 7).

[FROM MLS: ..incremental update]

2. DATA REPRESENTATION

Since our goal is to maximize the applicability of the algorithms
to diverse application domains, we keep assumptions from the data
low and simply take that the datd), can be represented in the
form of an entity-relationship graphG( and associated integrity
constraints [C).
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Figure 4: Basic data graph example Figure 5: Example mappings of two IS-A hierarchies (a) node-
to-node, (b) node-to-tree, and (c) either-or mapping
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2.1 Data Relationship Graphs
A basic data (relationship) graph captures the set of rules structure of a given data can only be captured using additional in-
that describe the objects/entities in a data source and their inter-tegrity constraints/C, associated with the data. This treatment is
relationships. analogous to thdatavs. integrity constraintgdifferentiation com-
mon in database management systems, and motivated in a similar
DEFINITION 2.1 (Basic DATA GRAPH). A basic data fashion for preserving query processing efficiency [?].
graph,G(V, E) is a node and edge labeled directed graph, where

e each nodey € V, corresponds to an entity (or data object) 3. ALIGNMENT AND CONFLICT EXAMPLES

and In this section, we highlight the need for extending the basic
e eachedge; € E, corresponds to a relationship betweentwo graph-based data representation presented above to allow for con-
entities and labeled with a relationship name. flicts when working with imperfectly aligned data.

In the literature, there is a multitude of data and/or schema
matching algorithms. In this paper, we refrain ourselves from as-
suming any particular matching or alignment strategy. However,
for the sake of example, we consider a mapping scenario, where
two concept hierarchies (consisting of concepts and IS-A relation-
ships, withN-1 arities, among them) are being integrated.

Each relationship name has a corresponding arity constrait
(one-to-one),1-N (one-to-many),N-1 (many-to-one), orM-N
(many-to-many). o

In a sense, each node in the grassertghe existence of a dis-
tinct object and each directed edge is a constraint whgserts
the existence of a relationship, (such as IS-A, PART-OF, WORKS-  ExampLE 3.1 (NoDE ToONODE MAPPING). Let us assume
AT) between two objects. For example, the IS-A relationships be- that two nodes:; ; and n.,; from different IS-A hierarchies are
tween objects and theirimmediate ancestors in a taxonomy are con4dentified as representing the same concept. Naturally, once these
strained to b&\-1 (leading to tree-structured class hierarchies [?]). two hierarchies are integrated, these two nodes must be represented

Figure?? presents an example basic data graph. as a single nodey’. In other wordsy’ needs to preserve all the re-
A data pathis, then, a sequence of relationship edges on this |ationships that; ; andn. ; have in their respective hierarchies.
graph describing how two entities are related. For example, all the children of these two nodes need to become
the children of the combined node. However, preserving the origi-
DEFINITION 2.2 (DATA PATH). A data path, dp, on the nal information after integration (while maintaining the appropri-
data graph, G(V,E), is a sequence of edgesdp = ate arity constraints) is not always as easy. To see this, consider
(e1,€2,. .., €lengtn(ap)), Where Figure 5(a), wherex andb are two nodes that are mapped to each

other. In this example, (since more than one immediate ancestor

Viclen dest(e;) = source(ei+1), and ) X . -
<length(dp) (e:) (ei+1) is not allowed in the integrated IS-A hierarchy) unlesandd are

where source(dp) = source(er) and dest(dp) = also identified as representing the same concept during mapping,
dest(eength(apy) are both data nodes (corresponding to dis- the integrated hierarchy will contain an inconsistency. In particu-
tinct objects/entities). lar, in a consistent world, only one of the alternative nodes, d,

can be an immediate ancestor (parent) of the combined node.
The set of data paths on the example data graph in Figure 4 includes

o 1554 p PARTSOF onde 7552 ¢ 7552 . Since they describe _ EXAMPLE 3.2 _ (MAPPING OFGROUPS OFNODES)..

the relationships between entities, in this paper, we take data pathd9uré 5(b) provides an example where a node in one IS-A
as the basistatements of interesThus, in query processing, we ~ hierarchy is mapped to an entire subtree in the second IS-A
mainly focus on queries about data paths between given two enti- hiérarchy. - Consequently, the first node, and the root of the

ties. In fact, such data path based treatment of queries is commorSUPtree, e, create a combined node in the integrated graph.

in richly structured data, such as OO [?] and XML [?]. Furthermore, after the integration, the child afin the first I1S-A
' hierarchy must become a child of one of the four nodes in the
2.2 Integrity Constraints subtree corresponding t@ in the second IS-A hierarchy. Thus, in

The data graph described above captures the data objects andeSulting graph i~ b~ a~ ¢, g ~» a ~ d, are independently
their stated relationships (subject to the associated arity con-acceptable paths. On the other hand, these paths cannot be
straints), while it cannot capture more general integrity constraints 2ccepted together.
to be enforced at the source or in the integrated domain. For exam-

ple, requirements about tteeyclic nature or the tree-hierarchical EXAMPLE 3.3 (BTHER-OR MAPPINGS). In many integra-

tion scenarios, the user may want to descwiitber-ortype of map-

2Note that in the rest of the paper, we simply omit the relationship Pings which (positively or negatively) relate the choices for differ-
names whenever they are not relevant to the discussion. ent alternatives. Figure 5(c) provides an example of this type of
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Figure 6: Example data graph segments with (a) choice, (b)

positive coordination, (c) negative coordination, and(d) hybrid

requirements DEFINITION 4.1 (ZONE). A zone (denoting a set of lo-

cally inter-dependent constraints) is a directed acyclic graph

mapping: in this example, two nodes are mapped with the con- L(Sre, Snk, LV, LE), where

straint that, the children of the two nodes are not compatible. Un- e the sources §rc) and sinks §nk) are all data nodes (ob-
like the previous examples, this creates a graph where only one of jects, entities),
the nodes can belong to a path. e none of the (internal) verticed{/) is a data node,

The basic data graph construct described in the previous section ¢ LE are directed edges which connect sources, sinks, and in-
does not have appropriate constructs for capturing alternative in- ternal nodes to each other. There are four types of edges in
terpretations and coordination requirements that arise in such mis- LE:

alignment cases. In the next section, we describe how the need for
making choices among alternative interpretations can be captured
by suitably extending the constraint graph model.

exclusive edges (marked witf),

positive coordination edges (marked with +),
— negative coordination edges (marked withand
— regular edges (unmarked).

4. DATA REPRESENTATION EXTENDED WITH ALTER-
NATIVES AND COORDINATION SPECIFICATIONS e for any given pair of nodesy;, v; € SrcUSnkU LV, there

As illustrated by the alignment examples in the previous section, exists an undirecteflath @; ~unair v;) in L that does not
representing data with conflicts require constructs whgertthe pass through any sources or sinks (i.e., data nodes).
need for making choices among the various alternatives. Thus, i
this section, we first extend the data graph with such constructs:

e Figure 6(a) presents a data graph with choice semantics. This
graph contains a special edge leavingvhich can belong to
only one path in the data; thus, in this example, either path
¢~ a Or ¢ ~ b can be interpreted by the user to be true in e Srci = {a,d},
the data, but not both. e Snky = {b,c}, and

e In a data graph with coordination, on the other hand, the al- o LE: = {le1, lea, les, lea, les)
ternatives associated with one or more edges can be further e e s
coordinated. In other words, coordination statemest®rt  This zone effectively describes a numberohbicesthat the data
the need for making the same (or different) choices on in- zjlows: the pathsg ~» ¢ andd ~» ¢, cannot be in the same data

volved edges. Figure 6(b) presents a positive coordination qye to the negative coordination ed@s,, while d ~» candd ~ b
(where, ifa ~ cis interpreted to hold, thetl\~+ ¢ must also are incompatible due to edge.

hold), while
e Figure 6(c) presents a negative coordination requirement DEFINITION 4.2 (CHOICES OF AZONE). Given a  zone
(where,a ~» c andb ~» ¢ can not simultaneously hold). g,.. snk LV, LE), with k sources and sinks, each path,
ch = i ~ j, from thei*® source toj*" sink is said to be an
availablechoicefor L.

: Figure 7(a) depicts an example zoia, In this examplesource
nodes(lightly shaded) andsinks (darkly shaded) are connected
through various choice and coordination edges. More specifically,
Ly(Src1, Snk1, LV1, LE7) is such that

e Of course, the various choice and coordination constraints
can be combined to obtain more complex scenarios. Fig-
ure 6(d) provides an example with hybrid choice and coor-
dination requirements. This graph asserts that, in the given
data,a andd have the same successor, and the shared suc-
cessor is one of the d, ande data nodes. 4.2 Zone-Graphs

In the above examplehs = a ~ ¢, che = d ~ ¢, andchs =
d ~ b are three inter-dependent choices (Figure 7(b)).

In the above graphs, the various edges collectively enforce a set  Since we aim to use zones as the building blocks of the data
of mutually-dependent relationship constraints. We build the ex- with conflicts, we consider data graphs that can be partitioned into
tended data graph on such blocks Zone} of inter-dependent re- zones Such graphs are referred to as zone-graphs:

lationship constraints.

4.1 Zones of Relationship Contraints in a Data Graph DEFINITION 4.3 (ZONE-GRAPH). A zone-graph,Gi(V, ),

o ) ) consists of a set;, of zones, where
We refer to the building blocks of data graphs with choice and
coordination requirements asnes Intuitively eachzonedescribes e V= UL,;ez(STCi U Snk; U LV;), and
a set of inter-dependent choices in the data. o E=UL . LE:



Figure 8: The data path from node a to node c is passing
through two zones; i.e., it can be split into two zone-segments.

ofoo

We denote this data path asi ~ b~ ¢

Different zones are allowed to share (and connect through) source
and sink data nodes; i.evV,.L;, L; € L, Src; N Src; D 0, Src; N
Snk; 2 0, Snk; N Src; 2 0, and Snk; N Snk; D 0. On the
other hand, the internal, non-data vertices of the zones or their
edges can not be shared; i.8.L;,L; € £, LV; N LV; = ( and
LE; N LEj = 0.

Each zone[L; € L, of a zone graph has an associated relation-
ship label,rel(L;), such as IS-A, WORKS-AT, or LIVES-AT.

Intuitively, each zone describes the alternative choices and co-
ordination requirements for a mutually-related set of relationship

@ (b) (©

Figure 9: Zone-graphs obtained through the mapping exam-
ples in Section 3, Figure 5

4.4 Zonal-Graph Examples

In this subsection, we reconsider to the mapping examples (Ex-
amples 3.1 through 3.3) in Section 3 to show how zonal represen-
tation can capture conflicts that arise during data mapping process.

ExAMPLE 4.2 (NoDE TONODE MAPPING). Example 3.1
(Figure 5(a)), illustrated a case where only one of the data

edges (with the same label). The various zones of the graph arenodes,c or d, can be a valid immediate ancestor (parent) of
separated from each other by their shared data nodes. Converselya combined node, due to thé-1 arity constraint of IS-A hi-

we can also state that the individual zones of a zone-graph are con-erarchies.

nected to each other through their shared data nodes.

THEOREM 4.1. Given data-graphG(V, E), its zones can be
computed and enumerated efficiently(QE) time.

PROOF Due to the undirected connectivity requirement in Def-
inition 4.1, the process of identifying zones can be don@{i)
time, using a connected-components type of an algorithm and treat-
ing data nodes asoundarieof zones. []

Note that in a basic data graph without conflicts (e.g., Figure 4),
each edge between two data nodes is a zone with a single source,
single destination, and a single regular edge.

4.3 Data Paths on a Zone-Graph

Data paths on a zone-graph are defined similarly to the data pa’[hsI

on a basic data graph (i.e., Definition 2.2). In this more general
case, on the other hand, a data path can pass through one or mor
zones. Thus, we can segment a given data plattinto a sequence

of zone-segments. Intuitively, each zone-segment corresponds to
possible relationship between two data nodes (subject to the con-
straints of the corresponding zone).

DEFINITION 4.4 (ZONE-SEGMENTS OF ADATA PATH). A
data pathdp = (e1, €2, ..., €jength(dp)), CAN be segmented into a
sequence of zone-segments

dp = (Is1,1s2,...,1s1),

where eachis; = source(ls;) ~ dest(ls;) is a data path from a
source to a sink within the corresponding zone.

Each zone-segment on a data path correspondschmige made
within the corresponding zone; therefore, in the rest of the paper
we will use the termgone-segmerdndchoiceinterchangeably.

ExAMPLE 4.1. Figure 8 depicts a data patly, ~ b ~ ¢, from
data nodea to data nodec through data nodé. In this example,
this data path passes through two zonks énd L») and, hence, it
consists of two zone-segments (or choices).

This situation can be captured using the proposed
zone-graph as shown in Figure 9(a): children efand b can

use the combined node as their parents and the combined
node can have eithet or d as its immediate ancestor, but not
both. On the resulting zone-graph, some sets of paths, such as
{e~b~df ~ b~ dg~ a~ de~ a~ d}are
consistent, while others, such § ~ b ~ ¢,g ~ b ~ d} or

{e~ b~ ¢,g ~ a~ d}, are inconsistent.

ExXAmMPLE 4.3 (MAPPING OFGROUPS OFNODES).
Example 3.2 (Figure 5(b)) provided a case where, after the
ﬁuegration, a number of paths (including ~ b ~ a ~ ¢,
g ~ a ~ d) are independently valid, but mutually incompatible
paths. Figure 9(b) illustrates how these requirement are captured
in a zone-graph using exclusive edges.

ExAMPLE 4.4 (BETHER-OR MAPPINGS). Example 3.3
gure 5(c)) provided an example of an integration scenario,

(i

dmhere the user provided explicgither-ormappings which (pos-

itively or negatively) relate the choices for different alternatives.
Figure 9(c) shows how this captured using zones and coordination
edges. In this example, while bath~ a ~ candg ~ b ~ d

are independently valid paths, they cannot be valid together due to
coordination requirements.

Finally, let us reconsider our motivating example of a scientist
working under alternative hypothesis (described by two different
taxonomies in Figure 1) in the Introduction of this paper. In these
two coding systems, although some of the concepts have the same
name, they may not be the same in terms of the corresponding se-
mantics.

EXAMPLE 4.5 (TAXONOMY INTEGRATION). Let us recon-
sider the two taxonomies in Figure 1 and let us assume a mapping
scenario where the term 'Large Mammal’ in the coding system 2
is different from the 'Large Mammal’ in the coding system 1 and
actually corresponds to both 'Medium Mammal’ and 'Large Mam-
mal’:



Waster Coding
System

Small Mammal

[&rge Mamha\(ﬂ)

Figure 11: 3-SAT to zone reduction for the statementstm =
(aVbV-=c)A(—aVbVc)

Figure 10: A zone graph integrating the two IS-A hiearchies in

Figure 1 the agreementalues measure how much different models of the

data agree on stated relationships, with the default assumption that
sources agree unless they explicitly conflict on data or integrity
constraints. In this section, we focus on the off-line analysis of
the zone graph for the computation of suefireemenvalues on

the choices corresponding to the individual zones.

e The concepts 'Cottontail’ and 'Jackrabbit’ co-exist in the
coding system 1, but not in the coding system 2. This means
that their acceptance in a given interpretation should be co-
ordinated: they both should be accepted in the merged ontol-
ogy (just as they do in the coding system 1) or rejected (just 5.1 Models of a Zone and Agreement Values of the Cor-
as they do in the coding system 2). We use a positive coordi- responding Choices

nation edge (+) to describe this coordination constraint. We define the models of an individual zone in a way parallel to

e The concept 'Artiodactyl’ might belong to the large 'Large the definition of models of the data with conflicts (Definition 1.1).
Mammal’ class as defined in the coding system 1 or as de-

fined in the coding system 2. We use an exclusive edge to _DEF'N'T'ON 5.1 (ALTERNATIVE M.ODELS OF AZONE)'.
describe the underlying choice. Given a zoneL(Src, Snk, LV, LE), with k sources and sinks,

a set,C, of choices ofl. is said to be a model if all the choices in
e 'Large Mammal’ in the coding system 2 and 'Medium Mam- C are pairwise consistent with the constraints associated with the
mal’ in the coding system 1 are not compatible, since they edges ofL and there is no other consistent €&t > C of choices
correspond to different criteria. That means that either of L (i.e.,C is set-maximal ir.).
of them can be used in the consistent interpretation of the
merged ontology, but not both. We use a negative coordina- ~ Given these models, the zonal agreement of a chuligectively
tion edge (-) to describe this requirement. measures the degree of agreement among alternative models of the

zone on this given choice.
Figure 10 presents a data graph describing the combined coding

systems. DEFINITION 5.2 (ZONAL AGREEMENT ON ACHOICE).
) ) Given a zoneL(Src, Snk, LV, LE), with k sources and sinks,
4.5 Zonal-Graphs and Integrity Constraints the zonal alignment agreement value associated with a choice

As described in Section 2.2, zonal-graphs cannot capture all rel- ch = i ~ j is defined in terms of the possible alternativedels
evant constraints describing the data and their alignments. For ex-in which the choice path¢h, is valid versus the total number
ample, multi-zonal statements, such dsete exists no path with  modelsof the zonel:

a cyclé or “there exists no path from to b”, require constraints
beyond what can be expressed within the data graph and used for # models of L in which ch is a valid path  nm(ch, L)
generating candidate paths in the previous steps. Such constraints9” (ch) = “models of L = nm(L)
which require path- or multi-path level evidence to verify or re-
ject, are kept outside of the scope of the zone-graph specifically to ExampLE 5.1. Consider again the zone-graph in Figure 7. In
ensure the efficacy of the agreement computation and agreementthis graph, there are three possible source/sink pairs, i.e., choices
based ranking processes. They are instead treatietegsity con- ch1 = a~» ¢, che = d~» ¢, andchs = d ~ b. Aong theseg ~»
straintsat a post-processing step, along with the user’s feedback. c andd ~ ¢ are incompatibled ~» ¢ andd ~» b are incompatible,
We will revisit theintegrity constraintsand their use in candidate  while a ~ ¢ andd ~» b are compatible with each other. Thus,
result pruning and relevance feedback in Section 7. the two alternative models of this zone dre ~» ¢,d ~ b} and
{d ~ ¢} Another way to look at this is as follows: the choice
5. OFF-LINE ANALYSIS OF ZONAL AGREEMENTS OF d ~ cis valid in only half of all the possible alternative models.
Similarly, the choicess ~ ¢ andd ~» b are both valid in only
DATA SOURCES half of all the alternative models. Thus, in this example, we can

As discussed in Section 1.2, in the presence of conflicts in the conclude thatigr(a ~ ¢) = agr(d ~ ¢) = agr(d ~ b) = 1/2.
data, the proposed approach uses a feedback-driven mechanism to
deal with alternative interpretations. In particular, the system re- ) ]
lies on theobjective-to-subjectivamplication (sub «— obj) of the 5.2 Off-line Agreement Analysis of a Zone
Desideratum 1 to inform the user about the more likely (i.e., high-  Figure 12 presents the outline of an algorithm which computes
est source agreement) interpretations for the given data. Intuitively, the zonal agreement value of a given choicelin [OMITTED




Algorithm agr(L, c) ) Thus, zone partitioning significantly reduces the cost of this off-line
Given a zoneL(Src, Snk, LV, LE) and a choiceh of L do processO(( x 2%) < O(2CX“), which would have been the cost
1. LetC be a constraint which enforces that is in the model of agreement computation without zone partitionifgRom SEL-

CUK: incremental updates??]Note also that the zone-graph anal-
ysis is an off-line pre-processing process which is performed on
3. nmy = countModels(L, 0) /* all modelg/ the integrated data graph once, at the bootstrap phase. This off-line
nature of this process ensures that the interactive relevance feed-
back process is not affected from the cost of the static agreement

2. nmy = countModels(L, C) [* ch is in the model

4. retun(;7L) [* return theagr value of the choice*/

. . ) ) ) analysis.
Figure 12: Algorithm for computing the intra-zonal alignment

agreement value associated with a given choice
9 9 6. QUERY PROCESSING AND RANKED CANDIDATE
ENUMERATION

Since the goal is to help the user identify the best matches to
her query based on the available data, at the first stage of the query
processing and conflict resolution, the user is provided with a set
of high-agreement candidate matches. These candidates help the

THEOREM5.1 (PER-CHOICE COMPLEXITY). Given a zone user not only in observing the best matches to her query based on
graph, L, and a choicech, the problem of counting the number  the current state of integration and conflict resolution, but also in
of models in whickeh occurs (i.e., computingm/(ch, L)) is NP- seeing the critical conflicts that affect these most-agreed upon (i.e.,
Complete. objectively most likely) results to the query. This, we refer to as
the objective-to-subjectivésub «— obj) flow of feedback which

PROOFSKETCH 5.1. The proof of NP-completeness of the jnforms the user about the more likely (i.e., highest source agree-
problem of counting the number of models in whi¢hoccurs is ment) interpretations for the given data (Secti®.

through a reduction from the well-known NP-complete 3-SAT prob-  pefinition ?? of ranked interpretation calls for a se&, of state-

lem, which asks the satisfiability of a boolean expression written ments to be ranked. Although this set of statement can include any

in conjunctive normal form with 3 variables per clause. While, general statement about the data, since they describe the relation-

the complete reductive proof is outside of the scope of this paper, ships between entities, in this paper, we tdkta pathsas the basic

we provide a sk(_atch the idea through an example. Consider the giatements of interesThus, given a sourcey,., and destination,

boolean expression nast, Nodes, the data paths from,.. to n4s, are ranked and a
stm=(aVbV-c)A(-aVbVe). small (< k) subset of candidate data paths fram.. to n4s: are

) ) ) o ~ chosen to be presented to the user based on the agreement values
The reduction step converts this statement (in polynomial time) into (Figure 3 in the Introduction section).

the zone L., shown in Figure 11. Given this graph, we repose

ExamPLE ] Since the definition of the zonal agreement relies on a
model-based interpretation of the zone itself, the computation com-
plexity of this task reflects the cost of computing models of data
with conflicts.

the satisfiability problem as follows: 6.1 Computation of the Agreements on Data Paths
satisfiable(stm) (nm(D ~> R, Lam) > 1). Since, per Definition 4.4, each zone-segment of a path corre-
sponds to a possible interpretation of an alignment constraint, given
Due to the set-maximality requirement, the models which contain g data pathdp = (Is1,lsa,...,ls;), its overall (multi-zonal)

the choice pathD ~» R will be exactly those models which also  agreement valuean be defined in terms of the agreements of the

use edgeg; andt»; i.e., satisfying both terms of the conjunctive  alignment choices involved in it. In particular, since

statementstm. Thusstm is satisfied iff there is at least one model . . . .
e the agreement value ofchoicein a given zone is the ratio

Of Latm, Where the pattD ~» R is used. . of the number of models of the zone in which the choice is
COROLLARY 5.1 (COMPLEXITY OF ALGORITHM agr() ). valid to the number of all possible models of the zone, and
Given a zone withy edges, the complexity of the zonal agreement since
evaluation Algorithm in Figure 12 i©(2*). e each zonal alignment choice is independent from the choices
. . of the other zones (modulo the integrity constraints that will
PROOFSKETCH 5.2. The proof of this corollary is based on the be enforced at a later stage, in Section 7)

fact that the depth of the recursion is at most the number of edges
in the given zone. Since, the zonal value agreement computation iswe can treat the agreement ratios as independent selection proba-
NP-complete per Theorem 5.1, we do not expect to find a polyno- bilities and, thus, define the agreement value of a data path as the
mial solution for this task. a multiplication of the agreements of all the involved zonal choices
o (Figure 13).
Nevertheless it is important to note that, although by Corol-
lary 5.1 the cost of the agreement analysis is exponential inthe size  perniTION 6.1 (AGREEMENT OF ADATA PATH). Given a

of the zones, the initial zone-partitioning of the data graph to ob- gata pathp = (e1, ea, ..., €length(p) ), @nd its zone-segment rep-
tain small zone%and‘modular (per—zone) nature of the agreement- regentationp = (Is1,ls2,. .., ls;), we define thegreement value
analysis prevents this step from becoming costly. of p as

COROLLARY 5.2 (COMPLEXITY OF ZONE-GRAPH ANALYSIS).
The complexity of the zonal agreement evaluation for a complete
data graphG, with ¢ zones, where the largest zone hasdges is

O(¢ x 2"). In Section 7, we will relax the independence assumption and con-

3Norma||y, each zone represent a single or closely related few rela- sider the affects of multi-zonal integrity constraints that tie choices
tions, while the data graph can be composed of many relationships.in a given zone to the choices in the other zones.

agr(p) = H agr(ls;).

0<i<l—1
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Figure 13: A path which passes through four zones involves
four independently made alignment choices along the way.
Thus, the ratio of the models of the data where this path is valid
can be computed by multiplying the intra-zonal agreements of

the individual choices

Algorithm K — HighAgreementPaths(G, nsyc, Nast, k)
Given a zone-grapli(V, E), a source nodey s,.., and a destination node,; s+, and a
positive integetk, do

1. LetV' =0andE’ =0 [* Construct a dual grapti
2. LetL be the set of all zones @,
3. forallL; € £do

(@ V' =V’'USrc; USnk;;

(b) forallch = src(ch) ~ dest(ch), wherech is a choice path irL;;

i. Let e., be a new edge with lengthlength(ecn) =
—log(agr(ch));
i. E :E'U{ech,}

4. resultPaths = YenK ShortestPath(V', E’,length, ngrc, nast, k);

5. returnresult Paths; [* Returnk-shortest paths of the dul

Figure 14: Algorithm for ****

6.2 Agreement-Ranked Enumeration of Candidate

Paths

To provide the user with the most likely paths based on the avail-
able zonal conflict/agreement analysis, the system needs to identify
the highest-agreement data paths. We formally pose this task in the

form of ak highest-agreement data paths problem

DEFINITION 6.2 (k HIGHESTAGREEMENT DATA PATHS).
Given a zone-graplt:(V, E), a source nodep,,., and a destina-
tion node,nqs:, identify thek highest-agreememtata paths from
the source nodey ..., to the destination nodeygs:.

Figure 14 presents an algorithm to solve thhigh-agreement
data paths problem by translating it into thahortest simple paths

a classical problem in graph theory. Due to its application in vari-
ous application domains, such as transportation or networking, this

each zone are replaced with explicit edges between the correspond-
ing source/sink pairs. Thus, it is trivial to show that there is a one-
to-one mapping between any data path@{i, E') and a path on
G'(V' E".

In Step 3(b)i of the algorithm, given a choiek in G, the length
of the corresponding edge @' is set to

length(ecn) = —log(agr(ch)),

which is always a positive number. Thus, theshortest path algo-
rithm ran onG’ (Step 4) will returnk simple paths, such that the
term

Z —log(agr(ch)) = log

chEpath

1
H agr(ch)

chepath

is minimized. Since thé&g function is monotonic, this corresponds
to the minimization of the term| or, equivalently,
the maximization of the term

H agr(ch).

chepath

1
chepath W

By Definition 6.1, this term is equal to the agreement of the data
path on the original zone grapgh. Hence, these enumerated paths
are also the& highest-agreememata paths iz. [

THEOREM6.2 (COMPLEXITY). The worst case execution
time of thek highest-agreemeidata paths algorithm in Figure 14
is O(kn(m? 4 nlogn)).

PrROOF Given a dual graph’, with n’ nodes andn’ edges,
Yen's algorithm would identify theék-shortest simple paths G’
with the worst case time @ (kn'(m’ + n'logn’)) [?].

Given a graph(Z, with n nodes andn edges, the algorithm in
Figure 14 creates a dual gragh,, with at most»’ = n nodes and
m’ = m? edges. The worst case occurs when a zon@ imith «
edges leads t@(u?) individual choices, each with a corresponding
edge, inG’.

In the first phase of the algorithm (Steps 1 through 3), the dual
graph creation cost®(m?) time. In the second phase (Step 4),
given the dual graphi’, with m’ = O(m?) andn’ = n nodes,
Yen’s algorithm cost® (kn(m? + nlogn)) time. Thus, the worst
case execution time of the algorithm in Figure 140i§kn(m? +
nlogn)). [J

The k highest-agreement paths that are generated at this step
are thek best matches to the user's query based on the zone-
graph. However, as described in Section 4.5, the integrity con-
straints which require path- or multi-path level evidence to verify
or reject candidates are kept outside of the scope of the zone-graph

problem has been studied extensively and a number of algorithmsandn thus, necessitate further post-processing.

have been developed [?]. Among these, Yen's algorithm [?] is well-

known due to its general and optimal nature [?]. This algorithm 7. CONFLICTS WITH MULTI-ZONAL INTEGRITY CON-

uses a tree-based data structur§RROM SELCUK complete]
Various other algorithms [?] build on this approach, yet their im-
provements are limited to specific application domgr®M SEL-
CUK: we need to say a little bit more about the newer algo-
rithms and their complexities]. In the algorithm presented in Fig-
ure 14, we use Yen'’s-shortest simple paths algorithm for enumer-
ating k highest-agreememtata paths.

THEOREMG6.1 (CORRECTNESS. The k-highest agreement
algorithm presented in Figure 14 is correct.

PrRoOOF Given agraplG(V, E), the algorithm presented in Fig-
ure 14 constructs a dual grapf, (V', E’), where the choices in

STRAINTS AND RELEVANCE FEEDBACK

Given thek highest-agreement paths based on the zone-graph
(which are created based on the assumption that the zonal choices
are independent from each other), multi-zonal integrity constraints
need to be considered to verify thalidity of the ranking generated
in the earlier stage.

ExAMPLE 7.1 (AcycLICITY CONSTRAINT). Consider an
integrity constraint which asserts that the data is acyclic. Such a
constraint can be commonly found in concept (IS-A) hierarchies.

Note that, although they can be independergtiynple (i.e.
acyclic), two paths in a given candidate set may imply a cycle in



the data when considered together. This means that (a) either the AxioM 2 (INTEGRITY CONSTRAINTS AND VALIDITY ). If
zonal-constraints that were used in the production of these paths a given set of paths and constraints are in conflict, then it can not
or (b) the integrity constraint asserting the acyclicity of the data be true that all paths and all the constraints are valid: i.e., it holds
were overly trusted. Thus, the knowledge of this conflict needs tothatVp cpcrce

be reflected back to thealidity of the involved constraints and if
necessary on the involved candidate paths.

conflictg(P',C") — ( \/ —walid(c)) \ ( v —walid(p))
When it is found that highest-agreement paths are conflicting cec’ pinP/
with the integrity constraints, this may result in (a) updates on the
agreement values computed in the earlier processing stages or (b
adjustment of the validity of the integrity constraints themselves.

The user feedback, i.esubjective-to-objective information flow
(sub — obj), is used to decide the appropriate adjustment. 7.3 User Feedback and Subjective Ranked Interpreta-

tion
. . . . Although the axioms above provide a framework in which the
Since data paths are weighted witgreementalues, quantify- validity of the candidate paths as well as zonal and integrity con-

ing their likelihood based on the zone-graph, the conflicts between . b d. thev d d bi Iv- in oth
available candidate paths and the integrity constraints must also re-Stralnts can be assessed, they ° npt © SO Uhambiguousy, In other

o > . - . words, these axioms can be satisfied in multiple ways. Thus, the
flect thelikelihood of their inconsistencies. This leads to the con-

cent ofdearee of conflichetween a set of paths and constraints user feedback is necessary to inform the system to decide on the ap-
P 9 P ' propriate adjustment (i.esubjective-to-objective information flow,

DEFINITION 7.1  (DEGREE OFCONFLICT). Given a set of  sub — obj).

n addition, the validity predicate satisfiesalid(—-u) =
valid(u), valid(u V v) = valid(u) V valid(v), andvalid(u A
v) = wvalid(u) A valid(v).

7.1 Degree of Conflict with Integrity Constraints

pathsP (on a data-graphG) and constraints”, the degree of con- Given the initial set of candidates, their agreement values, and
flict betweenP and C' (denoted ason fo (P, C)) is defined as their degrees of conflicts with the integrity constraints, the user can
. . ) provide validity feedback in the form of preferred validity rank-
conflicta(P,C) =1 — nm(P collectively satisfy C in G) ings. Examples includeyalid(p;) > wvalid(p;), valid(c;) >
nm(G) valid(c;), andvalid(p;) > wvalid(c;). These describe users’
As an example, let us consider the acyclicity constraititete ranked _interpretation of the statements regarding the paths and the
constraints.

exists no path with a cycleand computation of the degrees of

acyclicity conflicts. 7.4 Relationship between Validity and Agreement

EXAMPLE 7.2 (DEGREE OFACYCLICITY CONFLICTS). Both agreement and validity values assess the rank the likelihood
Given two paths,, = ni1 ~ ... ~ mny; and of a given statementAgreementiescribes the objective ranked in-
P, = nay ~ ... ~ noy, we can define the acyclicity, terpretation, based on the zonal graph, whilethkdity includes
noCyc(P1, P»), as follows: integrity constraints as well as user feedback to reflect the sub-

jective ranking. Thus, the subjective to objective correspondence
(Desideratum *) implies that validity values should be related to
the objective agreement values computed in the previous steps, un-

’I’LOC’yC(Pl7 PQ) = Vi,j (Elpath(nlﬂi, n27j) —>/3path(n2,j, nl,i)) N
(Fpath(nz,;,n1.:) — Apath(ni,i, n2;))

Then, we can define an acyclicity violation as less there are multi-zonal conflicts or user intervention.

{P1, P2} — = noCyc(P1, Ps). DESIDERATUM 3. Vp € P, it should be that
Thus, given thegreemenvalues (i.e., likelihood of existence) for . log(agr(p))

valid(p) ~ 1 — —————1
all relevant paths among the nodesrfand P, the degree of con- log(agrmin)
flict (Definition7.1) can be computed probabilistically. Note that d
such agreement values can indeed be computed in advance (off-
line) using an all-pairs shortest path algorithm (such as Floyd- Vet somatenoice(y valid(z¢) ~ 1 — log(agr(zc)
Warshall’'s [?]) in O(V?). Given these off-line computed values, ' log(agrmin)
the computation of the degree conflict between two pathand Here, agrmin > 0 is the smallest agreement value computed for
P, can be done iD (length(P1) x length(F)). the paths and the zonal choices input to the integrity constraint
The concepts ohtegrity constraintanddegrees of conflicts- analysis and user feedback phase.

troduced above together with the conceptsafies choices and For the smallest agreement value in the inplit- ;oggagrmm;

. . . . ' log(agrmin
zonal agree_mentmtroduced in Sectio?? enable us to artlculate is equal to0; for any choice or path with agreement vallg
the basic axioms that these need to obey to be acceptiel log(1) . N . .

1 — footagr 18 also equal td. Thus, intuitively, this desider-
7.2 Axioms of Validity atum implies that validity should always be betwekand1 and

The following axioms characterize the dependencies between Should increase monotonically with the agreement valye, The
zonal-choices of the candidate paths and the conflicts implied by desideratum uses as opposed te-, because agreement values are
the set of integrity constraints: computed without considering multi-zonal constraints and conflicts

with such complex constraints and user feedback may affect the va-
AXIOM 1 (ZONAL CONFLICTS AND VALIDITY ). If two lidity. Baring such conflicts and user intervention, validity should
valid paths are conflicting within a given zone, then both corre- irror agreement values
sponding zonal choices cannot be simultaneouslid: i.e., it Furthermore, the desired relationship between the agreement and
holds thatv,, ,,er i ; -
validity values necessitates a correspondence between the validity
valid(p1)Avalid(pz2) Acon flictg ({p1,p2}, 2) — —walid(zc1)V—walid(zcz2)of a path and the validity of the choices involved in it.



PROPOSITION7.1 (ZONAL CHOICES AND PATH VALIDITIES).
A path’svalidity is related to the validity of its zonal choices; in
particular, it holds thatv,e p

zcE€zonechoice(p)

valid(p) = 1+ (valid(zc) — 1).

PROOFSKETCH 7.1. The use o} to relate validity of a path
to the validity of the corresponding zonal choices is similarly mo-
tivated to the use of in the computation ok highest agreement
paths in Sectior??. In particular, Desideratum 3 and the fact that

agr(p) = I, cczonatchoices(p) @97 (2¢) together imply that

>

zc€zonalchoices(p)

log(agr(zc))

1 _ log(agr(p))
log(agrmin)

=1—
log(agrmin)

Thus,valid(p), i.e., the right hand side of the equation, should be

T s (),

i.e., the left hand side of the equation). This term can be rewritten
asl+ ) (valid(zc) — 1). O

_ log(agr(zc))

1
+ log(agrmin)

>

zc€zonalchoices(p)

zc€zonechoice(p)

7.5 Measuring Validity and Updating Zonal Agreements

After this update, the system is ready re-compute Aheighest
agreement paths for the next cycle.

7'6fabTém b?e%é’r’?%? l{ %Tégeséu %H etTQ'mes for a constraint solver
(LINGO on a 2GHz Pentium4 with 1GB main memory) under dif-
ferent scenarios and using different optimization strategies. In par-
ticular, the table lists results by LINGO's global solver (Glb.) as
well as by itsmultistart(MS) solver, which selects a subset of can-
didate starting points for local optimizations.

The first thing to note is that the local optima found by the mul-
tistart solver are very close to the optimal score obtained by the
global solver. In fact multistart with few initial starting points is
in many cases as good as multistart ran with a larger number of
initial starting pointé. Thus, less than optimal, but fast, multistart
solver can be used effectively when the optimal trust values are too
expensive.

The second thing to notice is that, for all the experimented sce-
narios the execution time of the multistart solver is less than 20
seconds. In particular, the multistart solver with two initial points
returns results in less than 3 seconds. The global solver (Glb.) on
the other hand works very fast (under 4 seconds) for scenarios with
small number of conflicts. But, as the number of conflicts in the
assertions increases, the global solver becomes too slow for inter-
active use. Therefore, for such cas@JESTrelies on the multi-
start solver which approximates the objective value well. Note also
that, interestingly, when the number of conflicts in the results are

Measuring validity based on the above axioms require a compat- also large, the global solver works faster than the case with only

ibility and conflict analysis scheme. Maximal clique-based model
enumeration (used in most truth maintenance work [27] for com-
patibility and conflict analysis), could be extremely costly. even
within the limited context of candidate results and the relevant in-

tegrity constraints. Furthermore, the conflict and agreement values

assertion conflicts. This points to the fact that conflicts in results
indeed inform the solver.

8. RELATED WORK

associated with the paths and constraints are non-boolean. Thus, In this section, we review the related work on different aspects
for measuring validity based on the above axioms, we can not rely related to possibly conflicting data integration.

on boolean or set-based schemes. Instead, we use the conflict and In the area ofcollaborative data sharingthe systenOrches-
agreement values by translating the axioms and user-feedback intdra [41,42] focuses on managing disagreement (at both schema and

a fuzzy constraint program.

A fuzzy set,F', with domainD is defined [39] using a member-
ship function,F' : D — [0, 1]. A fuzzy predicate then corresponds
to a fuzzy set; instead of returnirtgue(1) or false(0)values for

instance levels) among different (relational) collaborating mem-
bers, and addresses the problem of propagating updates possibly
occurring at any information source. No global consistency re-
qguirement is imposed in the collaborative system. Acceptance of

propositional functions, fuzzy predicates return the corresponding tuples from other sources is seen as an option, and no participant

membership values. The meaning of the constraint program de-

pends on the fuzzy semantics chosen for the logical operators
andV. It is well established that the only fuzzy semantics which

is required to update its data instance to agree with the other par-
ticipants. Similarly, updates are propagated, through a series of
acceptance ruleonly to those participants who trust their sources

preserves logical equivalence of statements (involving conjunction and/or their values.

and disjunction) and is also monotonic is then semantics, where
aNb = min(a,b),aVb = maz(a,b),and-a = 1—a. Therefore,
we use fuzzymin semantics to translate the validity axioms into a
constraint program as shown in Figure 15.

Given this constraint program, we search for a solution with
maximal integrity constraint validity and better achievement of
Desideratum 3i.e., themaximization function for solving the con-
straints in Figure 15 is

log(agr(zc))
lOg(angLin)

Z valid(ic) — Z

iceIC zc€ZC

valid(zc) — (1

In TRIO[43], the existence of alternative database instances is
captured through the notion of uncertainty associated to the avail-
able data. An uncertain database represents multiple possible in-
stances, each representing a possible state for the dat&lvaka-
bility values are attached to the data stored in uncertain databases,
and lineage captures data items’ derivation (and it can be used
for understanding and resolving uncertainty). Similarly to our ap-
proach, the probability associated to attribute values in uncertain
databases can be interpreted as a way of capturing the likelihood
for the data values, in the alternative (possibly mutually inconsis-
tent) scenarios, and we can deeageas correlating uncertainty
in query results with the uncertainty in the input data, thus pro-

Once the validity values are computed, the final step in the rele- viding the "context of validity” for the derived data. As a major
vance feedback process is the update of the zonal agreement valuegiference with our approach, ifiRIO the probabilities associated
of the choices based on the validity assessments obtained in thisto data items are taken as known at the storage time (derivation time

step: i.e, using the computed validities and Desideratum 3, we can

compute new agreemeent valuegy..,, as follows:

log(agrnew(zc)) = (1 — valid(zc)) x (log(agrmin))-

“Due to the randomness of the initial points, multistart with a larger
number of starting points can sometimes return a lower objective
value.



Given paths P, zones,Z, zonal choicesZ C, and integrity constraintd,C,

VYee ZCUIC 0 < walid(c) < 1;
Vp e P 0 < walid(p) < 1;
Vp EP valid(p) =1+ chezonalchoices(p) (valid(zc) - )

1
<1 — min{valid(zc1),valid(zc2)}
C'}, maz{1l — valid(p)|p € P'}}

Vpi,p2 € P,z € Z
VP’ C P,C’ C IC

min{valid(p1), valid(p2), conflict({p1,p2}, z)
conflict(P’,C") < maz{maz{1l — valid(c)|c €

Figure 15: Fuzzy constraint program capturing the validity axioms

Scenario Time to Compute (seconds) Percentage of Glb.’s Objective Value
IRI T |E| T|AT| T |A7| | Conflicts in | Conflicts in || MS2 | MS4 [ MS8 | MS16 Glb. MS2 MS4 MS8 MS16
pairs of Rs pairs of As
[10] 2 50 2 2% [ 2% [ 13 2.6 4.4 115 | 08 [ 976% [ 99.3% [ 99.7% | 100.0% |
[10 ] 2 [ 100 [ 2 ] 2% | 2% [ 23] 50 [ 104 ] 13.0 | 21 ][ 99.5% [ 99.5% | 100.0% | 100.0% |

20 4 100 4 2% 2% 1.4 4.3 9.5 15.8 3.2 97.9% | 98.9% | 99.5% 99.2%

20 4 100 4 10% 2% 1.4 142 | 16.4 | 16.8 9.8* 95.4% | 95.1% | 96.0% 94.0%

20 4 100 4 2% 10% 1.9 17.7 | 177 | 17.6 | >10mins || 98.5% | 98.1% | 98.4% 98.6%

20 4 100 4 10% 10% 1.6 16.1 | 156 | 16.1 161.2°" 99.1% | 99.1% | 98.8% 99.1%
[0 ] 5 ] 250 ] 5 2% | 2% [ 23 [ 158 ] 152 ] 154 [ >10mins [[ 99.4% [ 99.4% [ 99.1% | 99.4% |
| 50 5 250 5 10% 10% 56 [ 361 | 36.1 [ 354 | 5184  [[ 99.9% | 99.9% | 99.9% | 99.8% |

* For this configuration, LINGO global solver took more than 10minutes in 40% of the runs. The reported average execution time for Glb. are of the remaining runs.

** For this configuration, LINGO.gIobaI splver took more th::ln .10mi.nutes in 20% of the runs. The reported. average executipn time for G[b. are of the remaining runs.
Table 1: Trust value computation using LINGO optimization software. For each scenario, the table lists the objective scores for the

B??J&R}EH%Q%L-},Né%‘a'%ﬂw'H8‘?\&5}%}%{8&('\@&%"1’3&8}3&812.“%‘}’8%% %Ii\tl%%qﬁ?él%%lflﬁﬁtﬁWmaintenance systeniEMSs) [12],

over, in the derivation process, lineage guarantees that a coherenthat record and maintain the justifications for the possible context
derivation flow is maintained, and there is no way for the user to (belief sety under consideration. Dependency networks allow the
specifically choose to trust and combine results that are not coher-detections of the possible reasons for conflicts, and in the presence
ent with the original lineage derivation policy, i.e., the constraints of a conflict a knowledge base revision process starts, restoring con-
dictated by the derivation strategy cannot be overruled by users’ sistency. Unlike the related work in this area, we choose to tolerate
data interpretations. conflicting information in the knowledge base, and we propose ef-
From a more theoretical (i.e, system independent) perspective,ficient ranking algorithms to enable the user to explore and revise
[?, 44, 45] investigate on formal characterizations of the notion of the knowledge within the context of a given query.
consistent data in a possibly inconsistent database. They introduce To enable this, we propose an assertion (constraint)-based model
a number of alternative repair semantics, wherepair of a (rela- of knowledge, (
tional) database instance is another database instance over the same
database whictaximally closdo the given one (different seman- g coONCLUSION
tics correspond to different definition of the closeness metric), and In thi ted i tive techni to deal with th
they discuss on the complexity of consistent query answering in in- n this paper, we presented innovative techiniques to gealwith the
S . computational complexity and the ill-defined nature of the conflict
tegrated databases. Similarl] addresses modeling and query . .
resolution problem. In particular, we presented a novel, feedback-

answering complexity issues in data integration systems, with a driven approach to query processing in the presence of conflicts.

global architecture providing a reconciled, integrated, virtual view The novel feedback process relies on a ranked interpretation of the
over the real data sources. Also in these cases, integrity constraints P p

are taken as valid, and the focus is on the problem of returning an- data, as opposed to more traditional model-based interpretations.

swers to the queries while guaranteeing consistency with respect toThe objective-to-subjeciive correspandence of the ranked interpre-

the given constraints. In our case, we give the user the option of tations enables the user_to explore the a\(allable data W|th|n_the con-
; o e . . : text of a query and be informed regarding data and relationship-
assessing her belief in the validity of the integration constraints, as constraints critical to a given auery before providing feedback. In
wellas on the integrated data sources. a similar fashion, the su%'ectivqe-tor}/ob'ectivepcorres gondence o'f the
In their work on nondeterministic choices in logic programming ! ) ) P

languages, Zaniolo [40] and his colleagues suggest that in logic ranked interpretations inform the system regarding user’s prefer-

database languages, one may often wish to express the fact thaf"c€s and domain knowledge within the context of a query. We

only one of several possible ways of satisfying an atom is nonde- provided data structures and algorithms that enable an efficient and
terministically selected. They then use this to define a choice se- effective implementation of the proposed feedback cycle.

mantics for logic programs with negation. In contrast, in our work
we are not dealing with logic programming languages, and we use
choice feedbackmechanisms to assigrustvalues to underlying
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