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1 Introduction and summary of results

Black holes in gauged supergravity theories provide an important testground to address

fundamental questions of gravity, both at the classical and quantum level. In particular,

one may be interested in uniqueness — or no hair theorems, the final state of black hole

evolution, or the problem of black hole microstates. In gauged supergravity, the solutions

often (but not always; this depends essentially on whether the scalar potential has critical

points) have AdS asymptotics, and one can then try to study these issues guided by the

AdS/CFT correspondence. A nice example for this is the recent microscopic entropy cal-

culation [1–4] for the black hole solutions to N = 2, D = 4 Fayet-Iliopoulos (FI)-gauged

supergravity constructed in [5]. These preserve two real supercharges, and are dual to a

topologically twisted ABJM theory, whose partition function can be computed exactly us-

ing supersymmetric localization techniques. This partition function can also be interpreted
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as the Witten index of the superconformal quantum mechanics resulting from dimension-

ally reducing the ABJM theory on a Riemann surface. The results of [1–4] represent the

first exact black hole microstate counting that uses AdS/CFT and that does not involve an

AdS3 factor1 with a corresponding two-dimensional CFT, whose asymptotic level density

is evaluated with the Cardy formula. Subsequently, this matching was extended to many

other examples and in various directions, see e.g. [7–13] and references therein.

On the other hand, black hole solutions to gauged supergravity are also relevant for a

number of recent developments in high energy — and in condensed matter physics, since

they provide the dual description of the quark-gluon plasma [14] as well as of certain con-

densed matter systems at finite temperature (cf. [15] for a review) and quantum phase

transitions [16]. Of particular importance in this context are models that contain Einstein

gravity coupled to U(1) gauge fields and neutral scalars, which have been instrumental to

study transitions from Fermi-liquid to non-Fermi-liquid behaviour, cf. [17, 18] and refer-

ences therein. Notice that the necessity of a bulk U(1) gauge field arises, because a basic

ingredient of realistic condensed matter systems is the presence of a finite density of charge

carriers. Such models are provided by matter-coupled gauged supergravity. Especially we

shall be interested in the N = 2 U(1) FI-gauged theory in four dimensions, which contains

indeed neutral scalars as well as abelian gauge fields.

There are thus a number of reasons to extend the spectrum of known black hole solu-

tions to gauged supergravity. Since there exists by now a rather large amount of literature

on this subject, in the following we will give an overview on existing solutions, which may

be useful for the reader in its own right. In order to avoid escalation we shall thereby

restrict our attention to the N = 2, D = 4 U(1) FI-gauged theory only. To the best of

our knowledge, the first paper on this subject was [19], where nonextremal black holes in

the stu model were constructed. These carry four charges, which are either all electric or

magnetic. Ref. [20] derives electrically charged 1/2 BPS solutions for arbitrary prepoten-

tial, which unfortunately are naked singularities as soon as the gauge coupling constant is

nonvanishing. In [5] (using the classification scheme of [21]), the first examples of genuine

supersymmetric black holes in AdS4 with nonconstant scalar fields were presented for the

t3 and the stu model. Typically these are magnetically charged and represent also the

prime instance of static BPS black holes in AdS4 with spherical symmetry. [22, 23] elab-

orate further on the solutions of [5], while [24–27] and [28–31] generalize them to other

prepotentials (with dyonic gaugings) and finite temperature respectively. Rotation was

added in [32] (BPS case, −iX0X1-model, only magnetic charges), [33, 34] (same model,

but nonextremal and dyonic) and very recently in [35] (BPS, cubic prepotential and dy-

onic gauging). NUT-charged supersymmetric black holes were constructed in [36] for the

−iX0X1-model and in [37] for a cubic prepotential with dyonic gauging. It is worth noting

that there exists also a strange class of black holes whose horizon is noncompact but nev-

ertheless has finite area [34, 38]. These may provide an interesting testground to address

fundamental questions related to black hole physics or holography.

Many further hitherto unknown solutions might exist, but are very probably difficult to

construct by trying to solve the coupled Einstein-Maxwell-scalar equations. However, the

1Or geometries related to AdS3, like those appearing in the Kerr/CFT correspondence [6].
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supersymmetric subclass of them (if it exists) satisfies first order equations, which should

facilitate their discovery and explicit construction.

In this paper we shall consider the CP
n

— and the t3 model, characterized by a

quadratic and cubic prepotential respectively. We start in section 2 with a brief review of

N = 2,D = 4 FI-gauged supergravity as well as a summary of some results of [21, 39], where

the one quarter and one half supersymmetric backgrounds of the theory were classified. In

section 3 we apply the recipe of [21] to construct rotating extremal BPS black holes in the

CP
n
model, which preserve two real supercharges. It is shown that the latter are doubled

for the near-horizon geometry. Moreover, we also obtain BPS black holes with NUT charge

in the same model. The following section is dedicated to the prepotential F = −(X1)3/X0,

for which we present first a supersymmetric near-horizon solution, which is subsequently

extended to a full black hole geometry. Finally, 5 contains a generalization of the solutions

in section 3 to the nonextremal case, which turns out to be characterized by a Carter-

Plebański-type metric, and has n + 3 independent parameters, corresponding to mass,

angular momentum as well as n+1 magnetic charges. We also discuss the thermodynamics

of these solutions, obtain a Christodoulou-Ruffini mass formula, and shew that they obey a

first law of thermodynamics and that the product of horizon areas depends on the angular

momentum and the magnetic charges only.

We believe that at least some of the black holes constructed in this paper may become

instrumental for future microscopic entropy computations involving a supersymmetric in-

dex, along the lines of [1–4].

An appendix contains the equations of motion of the theory under consideration.

2 N = 2, D = 4 FI-gauged supergravity

2.1 The theory and BPS equations

We considerN = 2, D = 4 gauged supergravity coupled to n abelian vector multiplets [40].2

Apart from the vierbein eaµ, the bosonic field content includes the vectors AI
µ enumerated

by I = 0, . . . , n, and the complex scalars zα where α = 1, . . . , n. These scalars parametrize

a special Kähler manifold, i.e., an n-dimensional Hodge-Kähler manifold that is the base

of a symplectic bundle, with the covariantly holomorphic sections

V =

(

XI

FI

)

, DᾱV = ∂ᾱV − 1

2
(∂ᾱK)V = 0 , (2.1)

where K is the Kähler potential and D denotes the Kähler-covariant derivative. V obeys

the symplectic constraint

〈V , V̄〉 = XI F̄I − FIX̄
I = i . (2.2)

To solve this condition, one defines

V = eK(z,z̄)/2v(z) , (2.3)

2Throughout this paper, we use the notations and conventions of [41].
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where v(z) is a holomorphic symplectic vector,

v(z) =

(

ZI(z)
∂

∂ZI F (Z)

)

. (2.4)

F is a homogeneous function of degree two, called the prepotential, whose existence is

assumed to obtain the last expression. The Kähler potential is then

e−K(z,z̄) = −i〈v, v̄〉 . (2.5)

The matrix NIJ determining the coupling between the scalars zα and the vectors AI
µ is

defined by the relations

FI = NIJX
J , DᾱF̄I = NIJDᾱX̄

J . (2.6)

The bosonic action reads

e−1Lbos =
1

2
R+

1

4
(ImN )IJF

I
µνF

Jµν − 1

8
(ReN )IJ e

−1ǫµνρσF I
µνF

J
ρσ

−gαβ̄∂µz
α∂µz̄β̄ − V , (2.7)

with the scalar potential

V = −2g2ξIξJ [(ImN )−1|IJ + 8X̄IXJ ] , (2.8)

that results from U(1) Fayet-Iliopoulos gauging. Here, g denotes the gauge coupling and

the ξI are FI constants. In what follows, we define gI ≡ gξI .

The most general timelike supersymmetric background of the theory described above

was constructed in [21], and is given by

ds2 = −4|b|2(dt+ σ)2 + |b|−2(dz2 + e2Φdwdw̄) , (2.9)

where the complex function b(z, w, w̄), the real function Φ(z, w, w̄) and the one-form σ =

σwdw + σw̄dw̄, together with the symplectic section 2.13 are determined by the equations

∂zΦ = 2igI

(

X̄I

b
− XI

b̄

)

, (2.10)

4∂∂̄

(

XI

b̄
− X̄I

b

)

+ ∂z

[

e2Φ∂z

(

XI

b̄
− X̄I

b

)]

(2.11)

− 2igJ∂z

{

e2Φ
[

|b|−2(ImN )−1|IJ + 2

(

XI

b̄
+

X̄I

b

)(

XJ

b̄
+

X̄J

b

)]}

= 0 ,

4∂∂̄

(

FI

b̄
− F̄I

b

)

+ ∂z

[

e2Φ∂z

(

FI

b̄
− F̄I

b

)]

− 2igJ∂z

{

e2Φ
[

|b|−2ReNIL(ImN )−1|JL + 2

(

FI

b̄
+

F̄I

b

)(

XJ

b̄
+

X̄J

b

)]}

− 8igIe
2Φ

[

〈I , ∂zI〉 −
gJ
|b|2

(

XJ

b̄
+

X̄J

b

)]

= 0 , (2.12)

3Note that also σ and V are independent of t.
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2∂∂̄Φ = e2Φ

[

igI∂z

(

XI

b̄
− X̄I

b

)

+
2

|b|2 gIgJ(ImN )−1|IJ + 4

(

gIX
I

b̄
+

gIX̄
I

b

)2
]

, (2.13)

dσ + 2 ⋆(3)〈I , dI〉 − i

|b|2 gI
(

X̄I

b
+

XI

b̄

)

e2Φdw ∧ dw̄ = 0 . (2.14)

Here ⋆(3) is the Hodge star on the three-dimensional base with metric4

ds23 = dz2 + e2Φdwdw̄ , (2.15)

and we defined ∂ = ∂w, ∂̄ = ∂w̄, as well as

I = Im
(

V/b̄
)

, R = Re
(

V/b̄
)

. (2.16)

Note that the eqs. (2.10)–(2.13) can be written compactly in the symplectically covari-

ant form

∂zΦ = 4〈I,G〉 , (2.17)

∆I + 2e−2Φ∂z
{

e2Φ [〈R, I〉ΩMG − 4R〈R,G〉]
}

− 4G [〈I, ∂zI〉+ 4〈R, I〉〈R,G〉] = 0 ,

(2.18)

∆Φ = −8〈R, I〉
[

GtMG + 8|L|2
]

= 4〈R, I〉V , (2.19)

where G = (gI , gI)
t represents the symplectic vector of gauge couplings,5 L = 〈V ,G〉, ∆

denotes the covariant Laplacian associated to the base space metric (2.15), and V in (2.19)

is the scalar potential (2.8). Moreover,

Ω =

(

0 1

−1 0

)

, M =

(

ImN +ReN (ImN )−1ReN −ReN (ImN )−1

−(ImN )−1ReN (ImN )−1

)

. (2.20)

Finally, (2.14) can be rewritten as

dσ + ⋆h

(

dΣ−A+
1

2
νΣ

)

= 0 , (2.21)

where the function Σ and the one-form ν are respectively given by

Σ =
i

2
ln

b̄

b
, ν =

8

Σ
〈G,R〉dz , (2.22)

A is the gauge field of the Kähler U(1),

Aµ = − i

2
(∂αK∂µz

α − ∂ᾱK∂µz̄
ᾱ) , (2.23)

and ⋆h denotes the Hodge star on the Weyl-rescaled base space metric

hijdx
idxj =

1

|b|4 (dz
2 + e2Φdwdw̄) . (2.24)

4Whereas in the ungauged case, this base space is flat and thus has trivial holonomy, here we have U(1)

holonomy with torsion [21].
5In the case considered here with electric gaugings only, one has gI = 0.
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(2.21) is the generalized monopole equation [42], or more precisely a Kähler-covariant

generalization thereof, due to the presence of the one-form A. In order to cast (2.14) into

the form (2.21), one has to use the special Kähler identities

〈DαV ,V〉 = 〈DαV , V̄〉 = 0 . (2.25)

Note that (2.21) is invariant under Weyl rescaling, accompanied by a gauge transforma-

tion of ν,

hmndx
mdxn 7→ e2ψhmndx

mdxn , Σ 7→ e−ψΣ , ν 7→ ν + 2dψ , A 7→ e−ψA . (2.26)

It would be very interesting to better understand the deeper origin of the conformal in-

variance of (2.21) in the present context.

The integrability condition for (2.21) reads

Di[h
ij
√
h(Dj −Aj)Σ] = 0 , (2.27)

with the Weyl-covariant derivative

Di = ∂i −
m

2
νi , (2.28)

where m denotes the Weyl weight of the corresponding field.6 It is straightforward to show

that (2.27) is equivalent to

〈I,∆I〉+ 4e−2Φ∂z
(

e2Φ〈I,R〉〈G,R〉
)

= 0 , (2.29)

which follows from (2.18) by taking the symplectic product with I. To shew this, one has

to use

1

2
(M+ iΩ) = ΩV̄VΩ+ ΩDαVgαβ̄Dβ̄V̄Ω, (2.30)

〈DαV ,DβV〉 = 0 , 〈DαV ,Dβ̄V̄〉 = −igαβ̄ , (2.31)

as well as (2.17) and (2.25).

Given b, Φ, σ and V , the fluxes read

F I = 2(dt+ σ) ∧ d
[

bXI + b̄X̄I
]

+ |b|−2dz ∧ dw̄
[

X̄I(∂̄b̄+ iAw̄ b̄) + (DαX
I)b∂̄zα−

XI(∂̄b− iAw̄b)− (DᾱX̄
I)b̄∂̄z̄ᾱ

]

− |b|−2dz ∧ dw
[

X̄I(∂b̄+ iAw b̄)+

(DαX
I)b∂zα −XI(∂b− iAwb)− (DᾱX̄

I)b̄∂z̄ᾱ
]

−
1

2
|b|−2e2Φdw ∧ dw̄

[

X̄I(∂z b̄+ iAz b̄) + (DαX
I)b∂zz

α −XI(∂zb− iAzb)−

(DᾱX̄
I)b̄∂z z̄

ᾱ − 2igJ(ImN )−1|IJ
]

. (2.32)

6A field Γ with Weyl weight m transforms as Γ 7→ emψΓ under a Weyl rescaling.

– 6 –



J
H
E
P
0
3
(
2
0
1
9
)
1
5
1

2.2 1/2 BPS near-horizon geometries

An interesting class of half-supersymmetric backgrounds was obtained in [39]. It includes

the near-horizon geometry of extremal rotating black holes. The metric and the fluxes read

respectively

ds2 = 4e−ξ

(

−r2dt2 +
dr2

r2

)

+ 4(e−ξ −Keξ)(dφ+ rdt)2 +
4e−2ξdξ2

Y 2(e−ξ −Keξ)
, (2.33)

F I = 16i
√
K

(

X̄XI

1− iY
− XX̄I

1 + iY

)

dt ∧ dr (2.34)

+
8
√
K

Y

[

2X̄XI

1− iY
+

2XX̄I

1 + iY
+ (ImN )−1|IJ gJ

]

(dφ+ rdt) ∧ dξ ,

where X ≡ gIX
I , K > 0 is a real integration constant, and Y is defined by

Y 2 = 64e−ξ|X|2 − 1 . (2.35)

The moduli fields zα depend on the horizon coordinate ξ only, and obey the flow equation7

dzα

dξ
=

i

2X̄Y
(1− iY )gαβ̄Dβ̄X̄ . (2.36)

(2.33) is of the form (3.3) of [43], and describes the near-horizon geometry of extremal

rotating black holes,8 with isometry group SL(2,R)×U(1). From (2.36) it is clear that the

scalar fields have a nontrivial dependence on the horizon coordinate ξ unless gIDαX
I = 0.

As was shown in [39], the solution with constant scalars is the near-horizon limit of the

supersymmetric rotating hyperbolic black holes in minimal gauged supergravity [45].

Using Y in place of ξ as a new variable, (2.36) becomes

dzα

dY
=

Xgαβ̄Dβ̄X̄

(Y − i)
[

−X̄X +DγXgγδ̄Dδ̄X̄
] . (2.37)

This can also be rewritten in a Kähler-covariant form, as a differential equation for the

symplectic section V ,

DY V =
XDαVgαβ̄Dβ̄X̄

(Y − i)
[

−X̄X +DγXgγδ̄Dδ̄X̄
] , (2.38)

where

DY ≡ d

dY
+ iAY (2.39)

denotes the Kähler-covariant derivative.

7Note that this is not a radial flow, but a flow along the horizon.
8Metrics of the type (2.33) were discussed for the first time in [44] in the context of the extremal Kerr

throat geometry.

– 7 –



J
H
E
P
0
3
(
2
0
1
9
)
1
5
1

2.3 The CCCP
n

model

We shall now give an explicit example of a near-horizon geometry with varying scalars,

taking the CP
n
= SU(1, n)/(SU(n)×U(1)) model, defined by the quadratic prepotential

F =
i

4
XIηIJX

J , ηIJ ≡ diag(−1, 1, . . . , 1) . (2.40)

This yields

FI =
∂F

∂XI
=

i

2
ηIJX

J . (2.41)

If we choose homogeneous coordinates by Z0 = 1, Zα = zα, the holomorphic symplectic

section and the Kähler potential read respectively

v =

(

1, zα,− i

2
,
i

2
zα

)t

, e−K = 1−
n
∑

α=1

|zα|2 , (2.42)

which implies that the complex scalars are constrained to the region 0 ≤ ∑

α |zα|2 < 1.

The special Kähler metric and its inverse are given by

gαβ̄ = eKδαβ + e2Kz̄ᾱzβ , gαβ̄ = e−K(δαβ − zαz̄β̄) , (2.43)

while the period matrix is

NIJ = − i

2
ηIJ + i

ZIZJ

ZKZK
, ImNIJ = −1

2
ηIJ +

1

2

(

ZIZJ

ZKZK
+ c.c.

)

, (2.44)

(ImN )−1|IJ = 2

[

−ηIJ +

(

ZI Z̄J

ZKZ̄K
+ c.c.

)]

, (2.45)

where we defined ZI ≡ ηIJZ
J . The scalar potential (2.8) reads

V = 4g2 − 8
|g0 +

∑

α gαz
α|2

1−∑

β |zβ|2
, (2.46)

with g2 ≡ ηIJgIgJ from now on. V has an extremum at zα = −gα/g0, where V = 12g2.

For zα = −gα/g0 to lie in the allowed region, the vector of gauge couplings gI must be

timelike, i.e., g2 < 0. The extremum corresponds then to a supersymmetric AdS vacuum.

In addition, it is easy to see that the potential has flat directions given by g0+
∑

α gαz
α = 0,

where V = 4g2. For n = 1, the flat directions degenerate to the point z1 = −g0/g1, which

lies in the allowed region for g2 > 0. In this case one has thus a critical point corresponding

to a supersymmetry-breaking de Sitter vacuum. If there is more than one vector multiplet,

the situation is of course more complicated.

2.4 The t3 model

Cubic models are of special interest. In the ungauged theory, these can be embedded in

higher dimensional supergravity theories describing the low energy limit of some string

theory. This appealing property is also displayed after gauging the theory at least for

– 8 –
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some of the cubic models. This is the case for the FI-gauged stu model, which contains

n = 3 vector multiplets, and represents the best known example. It can be obtained as a

consistent truncation of eleven-dimensional supergravity compactified on S7 [46]. Moreover,

if the three vector multiplets are identified, one gets the so-called t3 model, which we will

consider in this work. The bosonic content of the theory contains the metric gµν , two gauge

fields AI
µ and one complex scalar τ . The theory is defined by the prepotential

F = −(X1)
3

X0
. (2.47)

In this case we have

FI = X0
(

τ3,−3τ2
)

, (2.48)

where we use homogeneous coordinates in the scalar manifold, with τ ≡ X1/X0. The

Kähler potential and scalar metric are then

e−K = 8 (Imτ)3 , gτ τ̄ =
3

4(Imτ)2
, (2.49)

which implies Imτ > 0. The scalar potential is then

V = − 4g21
3(Imτ)

, (2.50)

which has no critical point, so the theory does not admit AdS4 vacua with constant moduli.

Still, we will be able to construct a nontrivial family of black hole solutions, which of course

do not asymptote to AdS4.

3 Supersymmetric rotating black holes in the CCCP
n

model

In this section we obtain a generalization of the asymptotically AdS black holes found

in [32, 36] to include an arbitrary number of vector multiplets n. To do so, we shall

use some ansätze which are inspired by those articles. We begin constructing in detail a

rotating black hole specified in terms of n+ 2 parameters — see (3.20), (3.23) and (3.25).

Moreover, in section 3.4 we present a solution with NUT charge.

3.1 Solving the BPS equations

A natural generalization of the successful ansatz used in [32] for the CP
1
model is given by

X̄I

b
=

f I(z) + ηI(w, w̄)

γ(z)
, e2Φ = h(z)ℓ(w, w̄) , (3.1)

where f I(z) is a purely imaginary function, while γ(z), ηI(w, w̄), h(z) and ℓ(w, w̄) are

real. With these assumptions, the BPS equations, although remaining nonlinear, become

separable and can be solved. The first of them, (2.10), boils down to

∂zlnh = −8gIImf I

γ
. (3.2)
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One can see that the symplectic constraint (2.2) implies that XIηIJX̄
J = −1, which in

turn gives

|b|−2 =
1

γ2
ηIJ

(

f IfJ − ηIηJ
)

. (3.3)

Using these expressions, equation (2.13) reduces to

∂∂̄ ln ℓ

ℓ
= h

[

−1

4
∂2
z lnh+

4

γ2
gIgJ

(

ηIJηLK(ηLηK − fLfK) + 2(f IfJ + ηIηJ)
)

]

. (3.4)

Now we observe that if we take h/γ2 = const. ≡ c1 > 0, this differential equation is

separable, and one can define a constant c2 such that

−h

4
∂2
z lnh+

4h

γ2
gIgJ

(

−ηIJηLKfLfK + 2f IfJ
)

= c1c2 , (3.5)

∂∂̄ ln ℓ

ℓ
− 4c1g

2ηKηK − 8c1η
2 = c1c2 , (3.6)

where η ≡ gIη
I and capital indices are lowered with ηIJ . Equations (3.2) and (3.5) can be

solved by using the polynomial ansatz

γ = c+ az2 , h = c1(c+ az2)2 , f I = i(αIz + βI) , (3.7)

for some real constants a, c, αI , βI , which are constrained by

gIα
I = −a

2
, gIβ

I = 0 , αIηIJβ
J = 0 , −ac+ 4g2β2 = c2 , a2 = 4g2α2 , (3.8)

where α2 ≡ ηIJα
IαJ and β2 ≡ ηIJβ

IβJ .

The Bianchi identities (2.11) are then easily solved, and lead to

αI = −2ηIJgJα
2

a
. (3.9)

Observe that the set of constraints obtained so far completely fixes αI and c2 in terms of

a, c and βα, while c1 remains free. As we will see, some of these degrees of freedom can be

eliminated by a coordinate transformation.

After some computation, Maxwell’s equations (2.12) reduce to

∂∂̄ηI − 4ℓc1ηgI

(

ηKηK + β2 − α2c

a

)

= 0 . (3.10)

Together with (3.6), they define a system of n+1 second order, nonlinear differential equa-

tions, and looking for the general solution might seem a hopeless endeavour. Remarkably,

the system can be solved using the ansatz of the type considered in [32],

ℓ =
1 + δ

cosh4(kx̃)
, ηI = η̂Itanh(kx̃) , δ = Acosh4(kx̃) ,

dx

dx̃
=

cosh2(kx̃)

1 + δ
, (3.11)

where A, k, η̂I are some constants and x ≡ (w + w̄)/2. Defining η̂ ≡ gI η̂
I , equation (3.6)

becomes

k2 + c1c2 + sinh2(kx̃)
(

−2k2 + c1c2 + 4c1g
2η̂K η̂K + 8c1η̂

2
)

= 0 , (3.12)
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which is solved provided

k2 = −c1c2 , 3k2 = 4c1g
2η̂K η̂K + 8c1η̂

2 . (3.13)

On the other hand, Maxwell’s equations (3.10) simplify to

k2η̂I + sinh2(kx̃)4c1η̂gI

(

η̂K η̂K + β2 − α2c

a

)

+ 4c1η̂gI

(

β2 − α2c

a

)

= 0 , (3.14)

which are satisfied if

η̂K η̂K + β2 − α2c

a
= 0 , k2η̂I + 4c1η̂gI

(

β2 − α2c

a

)

= 0 . (3.15)

In summary, we can combine (3.8), (3.13) and (3.15) to find

k2 = 4c1η̂
2 , g2η̂I = η̂gI . (3.16)

This implies that the only independent parameter in (3.11) is A.

Finally, to completely specify the solution we have to integrate (2.14). To this end

we use (x̃, y, z) as coordinates, where y = (w − w̄)/2i. The relevant Hodge duals on the

metric (2.15) are

⋆(3)dx̃ =
1 + δ

cosh2(kx̃)
dy ∧ dz , ⋆(3)dz =

e2Φcosh2(kx̃)

1 + δ
dx̃ ∧ dy ,

and thus (2.14) takes the form

∂x̃σydx̃∧dy−∂zσydy∧dz−
k

γ2
(

αI η̂Iz
) 1+δ

cosh4(kx̃)
dy∧dz−2η̂α2c1

a

tanh(kx̃)

cosh2(kx̃)
dx̃∧dy

+4c1η̂
(

α2z2+β2+η̂K η̂Ktanh2(kx̃)
) tanh(kx̃)

γcosh2(kx̃)
dx̃∧dy = 0 ,

(3.17)

which can be easily integrated to give

σy =
η̂

4g2k

[

ac1

cosh2(kx̃)
− k2

γ

(

A+
1

cosh4(kx̃)

)]

. (3.18)

3.2 The fields

The metric (2.9) of the solution obtained here can be simplified by the coordinate trans-

formation
(

t

y

)

7→
√

E

−2A

(

0 −aAEL3

8η̂

− 1
kL

EL
2k

)(

t

y

)

, p = Btanh(kx̃) , q = Dz , (3.19)

where B =
√

E
−8g2

, D =
√

a2c1E
−8g2k2

and E is a positive constant, so A must be negative. In

these coordinates the metric takes the Carter-Plebański [47, 48] form

ds2 =
p2 + q2 −∆2

P
dp2 +

P

p2 + q2 −∆2

(

dt+ (q2 −∆2)dy
)2

+

+
p2 + q2 −∆2

Q
dq2 − Q

p2 + q2 −∆2

(

dt− p2dy
)2

,

(3.20)
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where

P = (1 +A)
E2L2

4
− Ep2 +

p4

L2
, Q =

1

L2

(

q2 +
EL2

2
−∆2

)2

, (3.21)

and L2 and ∆2 are two positive constants defined by

∆2 =
Eβ2

8η̂2
, L2 = − 1

4g2
. (3.22)

The scalar fields zα read

zα = −gα
g0

p2 + q2 + i∆1p−∆1q

p2 + q21
− i∆1

βα

β0

p− iq1
p2 + q21

,

or equivalently, in a neater fashion

zα =
1

p+ iq1

(

−gα
g0

(p+ iq)− i∆1
βα

β0

)

, (3.23)

with

q1 = q −∆1 , ∆1 =
β0

g0

√

−g2

β2
∆ . (3.24)

If ∆1 = 0 (or equivalently ∆ = 0), the scalars are constant and they assume the value

−gα/g0 for which the potential (2.46) is extremized.

To complete the solution we need an expression for the gauge potentials, which are

found by integrating (2.32). This leads to

AI = 2ηIJgJEL
2
√
−A

p

p2 + q2 −∆2

(

dt+ (q2 −∆2)dy
)

. (3.25)

The solution is thus specified by n + 2 free real parameters, and therefore represents a

generalization of the black holes with n = 1 constructed in [32]. The parameters can be

taken to be A, E, ∆ and βα/β0, subject to the constraint gIβ
I = 0, cf. (3.8).

A particular, interesting choice is given by

√
−A =

L2 + j2

L2 − j2
, E =

j2

L2
− 1 . (3.26)

Then, after the change of coordinates

p = j cosh θ , y = − φ

jΞ
, t =

T − jφ

Ξ
, Ξ ≡ 1 +

j2

L2
, (3.27)

and defining the functions

ρ2 = q2 + j2 cosh2 θ, ∆q =
1

L2

(

q2 +
j2 − L2

2
−∆2

)2

, ∆θ = 1 +
j2

L2
cosh2 θ, (3.28)
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the metric (3.20), the scalars (3.23) and the gauge potentials (3.25) become respectively

ds2 =
ρ2 −∆2

∆q
dq2 +

ρ2 −∆2

∆θ
dθ2 +

∆θ sinh
2θ

(ρ2 −∆2)Ξ2

(

jdT − (q2 + j2 −∆2)dφ
)2

− ∆q

(ρ2 −∆2)Ξ2

(

dT + j sinh2θdφ
)2

, (3.29)

zα =
1

j2 cosh2 θ + q21

[

−i∆1

(

gα
g0

(j cosh θ + iq) +
βα

β0
(j cosh θ − iq)

)

−gα
g0

ρ2 +
βα

β0
∆2

1

]

, (3.30)

AI = 2ηIJgJL
2 cosh θ

ρ2 −∆2

(

jdT −
(

q2 + j2 −∆2
)

dφ
)

. (3.31)

The metric depends only on the two constants ∆ and j, that can be interpreted respectively

as scalar hair and rotation parameters. Note that for j = 0 the scalars are real, whereas

in the rotating case there is a nontrivial axion.

3.3 Near-horizon limit

The metric (3.29) has an event horizon at ∆q = 0, i.e., for q = qh with

q2h = ∆2 +
1

2

(

L2 − j2
)

. (3.32)

To obtain the near-horizon geometry, we set

q = qh + ǫq0z , T =
t̂q0
ǫ

, φ = φ̂+Ω
t̂q0
ǫ

, (3.33)

and then zoom in by taking the limit ǫ → 0. The parameter Ω = j/(q2h+j2−∆2) represents

the angular velocity of the horizon, while q0 ≡ L2Ξ
2
√
2qh

. In this limit the metric boils down to

ds2 =
ρ2h −∆2

4q2hz
2

L2dz2 +
ρ2h −∆2

∆θ
dθ2 +

L4∆θ sinh
2θ

4(ρ2h −∆2)

(

dφ̂+
j

qh
zdt̂

)2

− ρ2h −∆2

4q2h
L2z2dt̂2,

(3.34)

where ρ2h ≡ q2h + j2 cosh2θ.

The final coordinate transformation

e−ξ = L2 q
2
h + j2 cosh2θ −∆2

16q2h
, x =

qh
j
φ̂ , (3.35)

casts the metric into the form (2.33), namely

ds2 = 4e−ξ

(

−z2dt̂2 +
dz2

z2

)

+ 4
(

e−ξ −Keξ
)

(

dx+ zdt̂
)2

+
4e−2ξdξ2

Y 2(e−ξ −Keξ)
, (3.36)

where K ≡ L8Ξ2/1024q4h.
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There is thus a supersymmetry enhancement for the near-horizon geometry, which

preserves half of the 8 supercharges of the theory. Exploiting this fact, there is an alter-

native way to arrive at this solution that goes as follows. In the CP
n
model, the flow

equation (2.37) becomes

dzα

dY
=

(gα + zαg0)(g0 +
∑

β gβz
β)

g2(Y − i)
, (3.37)

which is solved by

zα =
µαg0 − gα(Y − i)

g0(Y − i− µ0)
. (3.38)

Here, µI = (µ0, µα) ∈ C
n+1 is a constant vector orthogonal to the gauge coupling,

µIη
IJgJ = 0. One can now compute |X|2 as a function of Y , with the result

|X|2 = − g4(Y 2 + 1)

g2(Y 2 + 1) + g20µ · µ̄ , where µ · µ̄ = µIη
IJ µ̄J . (3.39)

Plugging this into (2.35) gives then ξ(Y ), and the metric (2.33) becomes

ds2 =
−g2(Y 2 + 1)− g20µ · µ̄

16g4

(

−r2dt2 +
dr2

r2

)

+
P (Y )(dφ+ rdt)2

16g4[−g2(Y 2 + 1)− g20µ · µ̄]

+
[−g2(Y 2 + 1)− g20µ · µ̄]dY 2

4P (Y )
, (3.40)

where we defined the quartic polynomial

P (Y ) = [g2(Y 2 + 1) + g20µ · µ̄]2 −K(64g4)2 . (3.41)

Using Y = −j cosh θ/qh, one finds that the modulus of the parameters µI is related to

∆ by

µ · µ̄ =
∆2

4L2g20q
2
h

.

The expression for the vector µI can be found requiring that the scalar fields (3.30) coincide

in the near-horizon limit with the expression (3.38), yielding

µ0 = −i
∆1

qh
, µα = i

∆1β
α

qhβ0
. (3.42)

Since the static supersymmetric black holes in the CP
n
model constructed in [5] have nec-

essarily hyperbolic horizons, one may ask whether spherical rotating horizons are possible.

As was discussed in detail in [49], this question is intimately related to the behaviour of

P (Y ). Namely, for spherical horizons to be feasible P (Y ) must have four distinct roots,

and then Y is restricted to the region between the two central roots where P (Y ) is positive.

The latter condition, together with −g2(Y 2 +1)− g20µ · µ̄ > 0, is necessary in order for the

metric to have the correct signature.9 Imposing P (Y ) = 0 yields

− g2(Y 2 + 1)− g20µ · µ̄ = 64g4
√
K . (3.43)

9Note that there is a curvature singularity for −g2(Y 2 + 1)− g20µ · µ̄ = 0.
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There are thus only two roots ±Y0 (with Y0 > 0), and spherical horizons are therefore

excluded in the rotating solution as well. One can show that, in the static limit, the

near-horizon geometry of the black holes constructed in [5] is recovered.

3.4 NUT-charged black holes

In this section we construct supersymmetric NUT-charged black holes. To do so it is

sufficient to mimic what was done in [36], where the theory with only one vector multiplet

was considered. Since the BPS equations can be solved following the same steps of that

paper, we will just briefly summarize the process here and refer to [36] for further details.

We assume that both the scalars and the function b depend on the coordinate z only, and

use the ansatz
XI

b̄
=

αIz + βI

z2 + iDz + C
, Φ = ψ(z) + γ(w, w̄) , (3.44)

where αI , βI , C are complex constants and D is a real constant. The dependence of the

solution on the coordinates w, w̄ is obtained from (2.13), which reduces to

− 4∂∂̄γ = κe2γ , (3.45)

where κ is a constant whose value will be fixed later. This is the Liouville equation for the

metric e2γdwdw̄, which consequently has constant curvature κ. We will take as a particular

solution

e2γ =
(

1 +
κ

4
ww̄

)−2
. (3.46)

From (2.10) one gets

ψ(z) = Imα
(

ln[z4 + z2(2ReC +D2) + 2DzImC + |C|2]
)

, (3.47)

provided the following constraints are satisfied

Imβ = DReα , −2[Im(ᾱC) +DReβ] = Imα(2ReC +D2) , −2Im(β̄C) = DImαImC ,

(3.48)

where α ≡ gIα
I and β ≡ gIβ

I .

The expressions displayed so far coincide with those found for the case with one vector

multiplet; the explicit form of the prepotential has not been used to solve (2.10) and (2.13).

In order to solve the remaining BPS equations we choose Imα = 1/2, since in this way

they assume a polynomial form. Then the Bianchi identities fix αI and κ to

αI =
i

2g2
ηIJgJ , κ = 2ReC − 8g2βK β̄K . (3.49)

On the other hand, Maxwell’s equations are automatically satisfied provided these relations

hold. Finally, integration of (2.14) gives

σ = i
D

32g2
w̄dw − wdw̄

1 + κ
4ww̄

, (3.50)

from which it is evident that the parameter D is related to the NUT charge of the solution.
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The warp factor of the metric is in this case

|b|−2 = − z2 + 4g2βK β̄K
4g2|z2 + iDz + C|2 , (3.51)

where we recall that in this model g2 < 0. The solution will have an event horizon at

z = zh if b(zh) vanishes, which happens for

z2h = −ReC , Dzh = −ImC . (3.52)

This is possible if (ImC)2 = −D2ReC and ReC < 0. There is a curvature singularity at

z2 + 4g2βK β̄K = 0, which is hidden behind the horizon if

ReC < 4g2βK β̄K . (3.53)

Then, from (3.49) we see that κ < 0 and therefore the horizon is always hyperbolic.

The solution is in principle specified by 2n + 2 real parameters, which can be taken

as βI , D and ReC with the constraint β = −D/4, which follows from (3.48). If (3.53)

holds, the metric describes a regular black hole. Notice that we can use the scaling sym-

metry (t, z, w, C,D, βI , κ) 7→ (t/λ, λz, w/λ, λ2C, λD, λβI , λ2κ) to set κ = −1 without loss

of generality, which reduces the number of independent parameters to 2n+ 1.

The fluxes can be computed by plugging the results found so far into (2.32). A long

but straightforward calculation yields

F I = 4(dt+ σ) ∧ dz
1

(z2 + 4g2βK β̄K)2

[

4g2
(

2ImCImβI − ReβI
)

z

− 2ηIJgJDz(1 + 2ReC) +
(

−1− 2ReC + 2z2
) (

2g2DImβI + ηIJgJ ImC
)

]

− 1

2
e2γdw ∧ dw̄

i

4g2(z2 + 4g2βK β̄K)

[

ηIJgJ
(

−1− 2(ReC + z2)
)

+ 4DηIJgJz (Dz + ImC) + 8g2D
(

ReβIz2 +DImβIz +Re(C̄βI)
)

]

.

(3.54)

The magnetic and electric charges of the solution are given by

P I =
1

4π

∫

Σ∞

F I , QI =
1

4π

∫

Σ∞

GI , (3.55)

where Σ∞ denotes a surface of constant t and z for z → ∞, and GI is obtained from the

action as GI = δS/δF I . This leads to

P I

V
=

1− 2D2

8πg2
ηIJgJ − DReβI

2π
,

QI

V
= −gIImC

8πg2
+

ηIJ ImβJD

4π
, (3.56)

where V is defined by

V =
i

2

∫

e2γdw ∧ dw̄ . (3.57)

Finally, the scalars read

zα =
2g2βα + igαz

2g2β0 − ig0z
. (3.58)
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4 Supersymmetric rotating black holes in the t3 model

4.1 A near-horizon solution

Before starting, we notice that when looking for solutions of the CP
n
model, it proved

useful to work with a factorized ansatz for the real and imaginary components of X̄I/b. If

a similar decomposition is performed in the case at hand, the equations of motion do not

factorize unless we assume that the real or imaginary part of X̄0/b vanishes. We will only

explore here the latter possibility, as in the former we just found trivial solutions. Since in

homogeneous coordinates X0 is purely real, one can see that this is equivalent to setting

b̄ = b. We will thus use the ansatz

X̄0

b
=

η0(w, w̄)

γ(z)
,

X̄1

b
=

f1(z) + η1(w, w̄)

γ(z)
, e2Φ = h(z)ℓ(w, w̄) (4.1)

in the system of BPS equations (2.10)–(2.14). From (2.10) and (2.13) we get

∂z lnh = 8i
g1f

1

γ
,

∂∂̄ ln ℓ

ℓ
= −1

4
∂2
zh− 32

3

h

γ2
(g1f

1)2 . (4.2)

Using the first equation, we find that the second is separable and boils down to

∂∂̄ ln ℓ

ℓ
=

C1

4
, ∂2

zh− 2

3

(∂zh)
2

h
= −C1 , (4.3)

for some constant C1. (4.3) determines the dependence on w, w̄ and z of the three-

dimensional base space. For C1 6= 0,10 the solution for h reads11

h(z) =
3

2
C1

(

z +
c

a

)2
, (4.4)

which implies
f1

γ
= − i

4g1
(

z + c
a

) . (4.5)

The first of (4.3) is just Liouville’s equation, and thus the explicit form of l(w, w̄) depends

on the choice of a meromorphic function. In order to make further progress, from now on

we shall consider a particular case that has been proven successful for our purpose, i.e.,

l(w, w̄) =
2

C1 sinh
2
(

w+w̄
2

) . (4.6)

Then the Bianchi identities (2.11) are automatically solved, so that Maxwell’s equa-

tions (2.12) represent the last obstacle. Setting, like in the CP
n
case, h(z)/γ(z)2 to a

constant, the latter assume a simple form. The value of this constant is totally arbitrary,

10The case C1 = 0 belongs to a qualitatively different family of solutions to (4.3), which however does

not seem to be well-suited for solving the remaining differential equations of the system.
11a and c are integration constants. Although h and f1/γ depend only on the ratio c/a, we prefer to

keep them both, for reasons that become clear further below.
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but with a redefinition of a, and thus of c in order to keep c/a unchanged, we can always

bring it to 3C1

2a2
, in which case the Maxwell equations become

∂∂̄

[

1

η02
− 48

g21
a2

R2

]

= 0 , 2∂∂̄R− R

sinh2
(

w+w̄
2

) = 0 , (4.7)

where

R(w, w̄) ≡ gIη
I

g1η0
. (4.8)

The second equation of (4.7) can be readily solved,

R(x) = Ξ1 cothx+ Ξ2 [x cothx− 1] , (4.9)

where Ξ1,2 are integration constants and x ≡ (w + w̄)/2. The first of (4.7) implies

1

η02
= 48

g21
a2

R2 +ReF (w) , (4.10)

for some arbitrary function F (w) that in a first step we will simply set to 0.

The equation (2.14) for the shift vector σ boils down to

∂zσw = − 3i∂R

4g21
(

z + c
a

)2 , ∂zσw̄ =
3i∂̄R

4g21
(

z + c
a

)2 , ∂σw̄ − ∂̄σw = − 3i∂∂̄R

2g21
(

z + c
a

) ,

which is solved by

σ =
3i

4g21
(

z + c
a

)(∂Rdw − ∂̄Rdw̄) . (4.11)

Defining y ≡ (w − w̄)/(2i), the metric (2.9) becomes

ds2 = − 8g21√
3R

[

(

z +
c

a

)

dt− 3

4g21
∂xRdy

]2

+

√
3R

2g21

[

dz2
(

z + c
a

)2 +
3(dx2 + dy2)

sinh2x

]

, (4.12)

while the scalar field is given by

τ = −g0
g1

+R(x) + i
√
3R(x) = −g0

g1
+ 2eiπ/3R(x) . (4.13)

For Ξ2 = 0 one can readily identify this solution as belonging to the class of half-supersym-

metric near-horizon backgrounds presented in section 2.2. Performing the change of coor-

dinates

e−ξ =
√
K cothx , r = z +

c

a
, φ = −

√
3y , T =

t

2
√
K

, (4.14)

where
√
K =

√
3Ξ1

8g2
1

, the metric is brought to the form (2.33) with Y 2 = 1/3, namely

ds2 = 4e−ξ

(

−r2dT 2 +
dr2

r2

)

+ 4(e−ξ −Keξ)(dφ+ rdT )2 +
12e−2ξdξ2

e−ξ −Keξ
. (4.15)

In the same way, one can check that the scalar (4.13) satisfies the flow equation (2.36).
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4.2 Black hole extension

We will now construct a black hole whose near-horizon geometry is given by the solution

found in the previous subsection. This is achieved with a slight generalization of the

ansatz (4.1). We maintain the factorization form of e2Φ and Im(X̄I/b), but leave Re(X̄I/b)

as arbitrary functions of the three spatial coordinates.

The first steps of subsection 4.1 that determine the functions h(z), l(w, w̄) and

Im(X̄I/b) remain identical. The difference appears in the first of Maxwell’s equations,

which now read

− r2

sinh2
(

w+w̄
2

)∂2
r

[

1

r2Re2
(

X̄0/b
)

]

− 4

3
∂∂̄

[

1

r2Re2
(

X̄0/b
)

]

+ 64g21∂∂̄
(

R2
)

= 0 , (4.16)

2∂∂̄R− R

sinh2
(

w+w̄
2

) = 0 , (4.17)

where r = z + c/a. A simple solution to (4.16) is

Re
(

X̄0/b
)

=
1

4
√
3g1r

√

αr + β +R(w, w̄)2
, (4.18)

while (4.17) is solved by (4.9). Here, α and β denote integration constants. Then, the

scalar, metric and gauge potentials read respectively

τ = −g0
g1

+R+ i
√
3
√

αr + β +R2 , (4.19)

ds2 = − 8g21√
3
√

αr + β +R2

[

r dt+
3

4g21
∂xRdy

]2

+

+

√
3

2g21

√

αr + β +R2

[

dr2

r2
+

3(dx2 + dy2)

sinh2x

]

,

(4.20)

A0 = − 2g1
3(αr + β +R2)

(

rdt+
3

4g21
∂xRdy

)

,

A1 = − 2g1
3(αr + β +R2)

(

R− g0
g1

)(

rdt+
3

4g21
∂xRdy

)

− cothx

2g1
dy .

(4.21)

Now the scalar depends on the radial coordinate as well, and we recover the near-horizon

geometry discussed above by rescaling r 7→ ǫr, t 7→ t/ǫ and taking the limit ǫ → 0.

As we already mentioned, the asymptotic limit of this solution cannot be AdS4 since

the scalar potential has no critical points. For large values of r, the metric behaves as

ds2 = dρ2 +
3

16
ρ2

[

− g81
108α2

ρ4 dt2 +
8g21Ξ1

3α
sinh2θ dtdy + sinh2θ dy2 + dθ2

]

, (4.22)

where we defined ρ and θ by r ≡ g4
1
ρ4

192α , cothx ≡ cosh θ, and chose Ξ2 = 0.
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5 Nonextremal rotating black holes in the CCCP
n

model

In this section we shall construct a nonextremal deformation of the one quarter BPS so-

lution presented in section 3. To this end we shall take a Carter-Plebański-type ansatz

for the metric similar to (3.20), where Q(q) and P (p) are quartic polynomials in q and p

respectively,

ds2 = − Q

W

(

dt− p2dy
)2

+
P

W

(

dt+ (q2 −∆2)dy
)2

+W

(

dq2

Q
+

dp2

P

)

, (5.1)

Q =

4
∑

n=0

anq
n , P =

4
∑

n=0

bnp
n , W = p2 + q2 −∆2 , (5.2)

where an, bn and ∆ are real constants. The ansatz for the scalars and the gauge potentials

is inspired by (3.23) and (3.25),

zα =
1

p+ i(q − ∆̃)

(

−gα
g0

(p+ iq) + icα
)

, (5.3)

AI = PI p

W

[

dt+ (q2 −∆2)dy
]

, (5.4)

with PI real constants related to the magnetic charges, ∆̃ real and cα complex constants.

Plugging these expressions into the equations of motion (A.1)–(A.3) gives a set of con-

straints for the constants. It then turns out that at a certain point one has to choose

whether ∆ vanishes or not. In what follows we shall assume ∆ 6= 0, while the case ∆ = 0

is postponed to section 5.3.

For PI not proportional to the coupling constants gI one class of solutions is obtained

by taking

a0 = b0 + b2∆
2 − 4g2∆4 − (gIP

I)2

2g2
+

P2

4
, a1 =

(gIP
I)
√

(gIPI)2 − g2P2

2g2∆
,

a2 = −b2 + 8g2∆2 , a3 = 0 , a4 = b4 = −4g2 , b1 = b3 = 0 ,

∆̃ = ∆
(gIP

I)g0 + g2P0

g0
√

(gIPI)2 − g2P2
, cα = ∆

(gIP
I)gα − g2Pα

g0
√

(gIPI)2 − g2P2
.

(5.5)

Here we defined P2 ≡ ηIJP
IPJ . Fixing the Fayet-Iliopoulos constants gI the solution

depends on n+4 parameters b0, b2, ∆ and P I . However, our ansatz is left invariant under

the scale transformation

p → λp , q → λq , t → t/λ , y → y/λ3 ,

∆ → λ∆ , an → λ4−nan , bn → λ4−nbn ,
(5.6)

which reduces the number of independent parameters to n+ 3.

With a few lines of computation it is possible to show that this solution contains the

one presented in [34] for the prepotential F = −iX̃0X̃1 (a tilde is introduced in order to

distuinguish between the two solutions). In order to do so, we must consider the case of just
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one vector multiplet (n = 1) and perform a symplectic rotation. In particular, introducing

the symplectic vectors

G =

(

0

gI

)

, Q =

(

PI

0

)

, (5.7)

and the symplectic matrix

T =













1 1

1 −1
0

0
1
2

1
2

1
2 −1

2













, (5.8)

the solution for the rotated F = −iX̃0X̃1 prepotential can be obtained from the same

metric and gauge fields in (5.1) and (5.4), but with the charges and gauge couplings replaced

by their rotated counterparts according to Q = T Q̃ and G = T G̃. On the other hand, the

scalar field is

τ̃ =
X̃0

X̃1
=

1− z1

1 + z1
, (5.9)

where X̃I belongs to the new symplectic section Ṽ = T−1V .
In the supersymmetric, extremal limit we recover the solution presented in section 3.

To this end, the charge parameters need to be chosen proportional to the gauge couplings,

PI = λ ηIJgJ , with λ ∈ R, hence the relations presented above simplify to

a0 = b0 + b2∆
2 − 4g2∆4 − λ2g2

4
, a1 = 0 , a2 = −b2 + 8g2∆2 ,

a3 = 0 , a4 = b4 = −4g2 , b1 = b3 = 0 ,

(5.10)

while on the other hand we are no more able to derive an explicit expression for cα, but

we can only assert that they must satisfy the conditions

− g0 + cαgα = 0 , cαcα = cαc̄α = ∆̃2 − ∆2 g2

g20
, (5.11)

where summation over α is understood. Then, we see that the BPS solution (3.20), (3.23)

and (3.25) is recovered for

L2 = − 1

4g2
, b0 = (1 +A)

E2L2

4
, b2 = −E , λ = 2EL2

√
−A , (5.12)

and by identifying ∆̃ = ∆1 and cα = −∆1β
α/β0.

5.1 Properties of the compact horizon case

Since P is an even polynomial we may assume it has two distinct pairs of roots ±pa and

±pb, where 0 < pa < pb. We then consider solutions with p in the range |p| ≤ pa by setting

p = pa cos θ, where 0 ≤ θ ≤ π, to obtain black holes with a compact horizon. We now use
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the scaling symmetry (5.6) to set pb = L without loss of generality, where L−2 = −4g2.

Defining the rotation parameter j by p2a = j2, this means

b0 = j2 , b2 = −1− j2

L2
. (5.13)

Then, after the coordinate transformation,

t 7→ t+
jφ

Ξ
, y 7→ φ

jΞ
, (5.14)

with Ξ = 1− j2

L2 , the metric (5.1) becomes

ds2 = − Q

W

(

dt+
j sin2θ

Ξ
dφ

)2

+
∆θ sin

2θ

W

(

jdt+
q2 −∆2 + j2

Ξ
dφ

)2

+

+W

(

dq2

Q
+

dθ2

∆θ

)

,

(5.15)

where

W = q2 −∆2 + j2 cos2θ , ∆θ = 1− j2

L2
cos2θ .

We notice that for zero rotation parameter, j = 0, (5.15) boils down to the static nonex-

tremal black holes with running scalar constructed in [28], after the n = 1 truncation and

the symplectic rotation (5.8) are performed.

(5.15) has an event horizon at q = qh, where qh is the largest root of Q. The Bekenstein-

Hawking entropy of the black hole is given by

S =
π

ΞG

(

q2h −∆2 + j2
)

, (5.16)

where G denotes Newton’s constant. In order to compute the temperature and angular

velocity it is convenient to write the metric in the ADM form

ds2 = −N2dt2 + σ(dφ− ωdt)2 +W

(

dq2

Q
+

dθ2

∆θ

)

, (5.17)

with

N2 =
Q∆θW

Σ2
, σ =

Σ2 sin2θ

WΞ2
, ω =

jΞ

Σ2
[Q−∆θ(q

2 −∆2 + j2)] ,

where

Σ2 = ∆θ(q
2 −∆2 + j2)2 −Qj2 sin2θ .

The angular velocity at the horizon and at infinity are thus

ωh = − jΞ

q2h −∆2 + j2
, ω∞ =

j

L2
. (5.18)

The angular momentum may be computed as a Komar integral, which leads to

J =
a1j

2Ξ2G
. (5.19)
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To get the mass of the solution we use the Ashtekar-Magnon-Das (AMD) formalism [50, 51],

applied to the conformally rescaled metric ḡµν = (L/q)2gµν . This gives

M = − a1
2Ξ2G

. (5.20)

Notice that the ‘ground state’ a1 = 0 represents a naked singularity. This can be seen as

follows. The curvature singularity atW = 0,12 is shielded by a horizon if q2h−∆2+j2 cos2θ >

0, and thus q2h > ∆2, which is equivalent to

a22 −
4a0
L2

>

(

1 +
j2

L2

)2

,

where we used the expression for qh. This relation is easily shown to be violated for a1 = 0

by using (5.5).

The magnetic charges pI are given by

pI =
1

4π

∮

S2∞

F I = −PI

Ξ
. (5.21)

The product of the horizon areas reads

4
∏

Λ=1

AΛ =
(4π)4

Ξ4

4
∏

Λ=1

(q2|hΛ −∆2 + j2) = (4π)4L4

[

(p2)2

16
+ 4G2J2

]

, (5.22)

where p2 ≡ ηIJp
IpJ . In the second step we followed what has been done in [34] and the

procedure explained in [29]. The charge-dependent term on the r.h.s. of (5.22) is directly

related to the prepotential; a fact that was first noticed in [29] for static black holes.

Now that we have computed the physical quantities of our solution, we see that one

may choose the n+3 free parameters as PI ,∆, j, or alternatively pI ,M, J . Our black holes

are therefore labeled by the values of n + 1 independent magnetic charges, the mass and

the angular momentum.

5.2 Thermodynamics and extremality

Imposing regularity of the Wick-rotated metric it is straightforward to compute the Hawk-

ing temperature, with the result

T =
Q′

h

4π(q2h −∆2 + j2)
, (5.23)

where Q′
h denotes the derivative of Q evaluated at the horizon.

Using the extensive quantities S, M , J and pI computed above, it is possible to obtain

the Christodoulou-Ruffini-type mass formula

M2 =
S

4πG
+

πJ2

SG
+

π

4SG3

(p2)2

16
+

(

L2

G2
+

S

πG

)(

(gIp
I)2 +

p2

8L2

)

+

+
J2

L2
+

S2

2π2L2
+

S3G

4π3L4
.

(5.24)

12Note also that for W < 0, the real part of the scalar field becomes negative, so that ghost modes appear.
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Since S, J and pI form a complete set of extensive parameters, (5.24) gives the thermody-

namic fundamental relation M = M(S, J, pI). The intensive quantities conjugate to S, J

and pI are the temperature

T =
∂M

∂S

∣

∣

∣

∣

J,pI
=

1

8πGM

[

1− 4π2J2

S2
− π2

S2G2

(p2)2

16
+ 4

(

(gIp
I)2 +

p2

8L2

)

+

+
4SG

πL2
+

3S2G2

π2L4

]

,

(5.25)

the angular velocity

Ω =
∂M

∂J

∣

∣

∣

∣

S,pI
=

πJ

MGS

[

1 +
SG

πL2

]

, (5.26)

and the magnetic potentials

ΦI =
∂M

∂pI

∣

∣

∣

∣

S,J,pK 6=I

=
1

MG

[

π

4SG2

p2

16
ηIKpK+

+

(

L2

G
+

S

π

)(

(gKpK)gI +
1

16L2
ηIKpK

)]

.

(5.27)

These quantities satisfy the first law of thermodynamics

dM = T dS +Ω dJ +ΦI dp
I . (5.28)

It is straightforward to verify that expression (5.25) for the temperature agrees with (5.23),

while from (5.26) we observe that

Ω = ωh − ω∞ , (5.29)

with ωh and ω∞ given by (5.18). Thus, what enters the first law is the difference between

the angular velocities at the horizon and at infinity.

Extremal black holes have vanishing Hawking temperature (5.23), which happens when

qh is at least a double root of Q. The structure function Q can then be written as

Q = (q − qh)
2

[

q2

L2
+

2qh
L2

q + a2 +
3q2h
L2

]

,

so we must have

a0 = a2q
2
h +

3q4h
L2

, a1 = −2a2qh −
4q3h
L2

. (5.30)

It is straightforward to check that these relations are satisfied in the supersymmetric limit

P I = ληIJgJ previously described. On the other hand, it may happen that the free

parameters are chosen such that (5.5) is compatible with (5.30), even if the charges are

not proportional to the gauge couplings. In that case we would obtain an extremal, non-

supersymmetric black hole.

To obtain the near-horizon geometry of the extremal black holes, we define new (di-

mensionless) coordinates z, t̂, φ̂ by

q = qh + ǫq0z , t =
q0
Ξǫ

t̂ , φ = φ̂+
ωhq0
Ξǫ

t̂ , (5.31)
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with

q20 ≡ Ξ(q2h −∆2 + j2)

C
, C =

6q2h
L2

+ a2 ,

and take ǫ → 0 keeping z, t̂, φ̂ fixed. This leads to

ds2 =
q2h −∆2 + j2 cos2θ

C

(

−z2dt̂2 +
dz2

z2
+ C

dθ2

∆θ

)

+

+
∆θ(q

2
h −∆2 + j2)2 sin2θ

Ξ2(q2h −∆2 + j2 cos2θ)

(

dφ̂+
2qhωh

C
z dt̂

)2

,

(5.32)

where the constant C is explicitly given by

C =

[

(L2 −∆2)2

L4
+

(j2 −∆2)2

L4
+ 14

(L2 −∆2)(j2 −∆2)

L4
+ 24(gIP

I)2 +
3P2

L2

]1/2

.

Note that in the extremal limit it is manifest that the entropy is a function of the charges

J and pI by solving (5.25) (for T = 0) in terms of S.

5.3 Case ∆ = 0

Solving the equations of motion with the Carter-Plebański-like ansatz (5.1) and the as-

sumption ∆ = 0 leads to the relations

a0 = b0−
P2

4
, a2 = −b2 , a3 = 0 , a4 = b4 = −4g2 ,

b1 = b3 = 0 , ∆̃ =
(gIP

I)g0+g2P0

2g0g2a1
gIP

I , cα =
(gIP

I)gα−g2Pα

2g0g2a1
gIP

I .

(5.33)

Notice that in this case a1 is not fixed by any condition, and remains thus a free parameter.

Moreover the equations of motion yield an additional condition on the charges,

(gIP
I)2 = g2P2 . (5.34)

This implies that the charges are proportional to the gauge couplings.13 Nevertheless,

notice that the solution is only supersymmetric if the free parameter a1 is set to zero and

the relations (5.12) hold. If a1 6= 0, the solution generalizes the Kerr-Newman-AdS black

hole with n magnetic charges and constant scalars. In order to shew this, one has to take

b0 and b2 in the form (5.13) and identify a1 = −2m, where m and j are the mass and

angular momentum of the Kerr-Newman-AdS solution.

The mass, angular momentum and magnetic charges may be computed as in the case

∆ 6= 0, which leads to the same expressions. The Christodoulou-Ruffini formula (5.24) is

still valid, but with a simplification due to (5.34),

M2 =
S

4πG
+

πJ2

SG
+

π

4SG3

(p2)2

16
−
(

L2

G2
+

S

πG

)

p2

8L2
+

J2

L2
+

S2

2π2L2
+

S3G

4π3L4
. (5.35)

This relation reduces correctly to equation (43) of [52] in the KNAdS case if we iden-

tify p2 = −4Q2.

13To see this, choose in (n + 1)-dimensional Minkowski space with metric ηIJ a basis in which the only

nonvanishing component of gI is g0 (note that gI is timelike). Then (5.34) boils down to P
α = 0.
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A Equations of motion

The equations of motion following from (2.7) are given by

Rµν = −(ImN )IJF
I
µλF

J λ
ν +

1

4
gµν(ImN )IJF

I
ρσF

Jρσ + 2gαβ̄∂(µz
α∂ν)z̄

β̄ + gµνV , (A.1)

∇µ

[

(ImN )IJF
Jµν − 1

2
(ReN )IJ e

−1ǫµνρσF J
ρσ

]

= 0 , (A.2)

1

4

δ(ImN )IJ
δzα

F I
µνF

Jµν − 1

8

δ(ReN )IJ
δzα

e−1ǫµνρσF I
µνF

J
ρσ +

δgαβ̄
δz̄γ̄

∂λz̄
γ̄∂λz̄β̄

+ gαβ̄∇λ∇λz̄β̄ − δV

δzα
= 0 ,

(A.3)

which hold for any prepotential F .
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[48] J.F. Plebañski, A class of solutions of Einstein-Maxwell equations,

Annals Phys. 90 (1975) 196 [INSPIRE].

[49] D. Klemm and A. Maiorana, Fluid dynamics on ultrastatic spacetimes and dual black holes,

JHEP 07 (2014) 122 [arXiv:1404.0176] [INSPIRE].

[50] A. Ashtekar and A. Magnon, Asymptotically anti-de Sitter space-times,

Class. Quant. Grav. 1 (1984) L39 [INSPIRE].

[51] A. Ashtekar and S. Das, Asymptotically Anti-de Sitter space-times: Conserved quantities,

Class. Quant. Grav. 17 (2000) L17 [hep-th/9911230] [INSPIRE].

[52] M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black

holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022]

[INSPIRE].

– 29 –

https://doi.org/10.1016/0003-4916(75)90145-1
https://inspirehep.net/search?p=find+J+%22AnnalsPhys.,90,196%22
https://doi.org/10.1007/JHEP07(2014)122
https://arxiv.org/abs/1404.0176
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.0176
https://doi.org/10.1088/0264-9381/1/4/002
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,1,L39%22
https://doi.org/10.1088/0264-9381/17/2/101
https://arxiv.org/abs/hep-th/9911230
https://inspirehep.net/search?p=find+EPRINT+hep-th/9911230
https://doi.org/10.1088/0264-9381/17/2/310
https://arxiv.org/abs/hep-th/9908022
https://inspirehep.net/search?p=find+EPRINT+hep-th/9908022

	Introduction and summary of results
	N=2, D=4 FI-gauged supergravity
	The theory and BPS equations
	1/2 BPS near-horizon geometries
	The bar(CP)**n model
	The t**3 model

	Supersymmetric rotating black holes in the bar(CP)**n model
	Solving the BPS equations
	The fields
	Near-horizon limit
	NUT-charged black holes

	Supersymmetric rotating black holes in the t**3 model
	A near-horizon solution
	Black hole extension

	Nonextremal rotating black holes in the bar(CP)**n model
	Properties of the compact horizon case
	Thermodynamics and extremality
	Case Delta= 0

	Equations of motion

