



UNIVERSITÀ DEGLI STUDI DI TORINO

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

# Seep deposits from northern Istria, Croatia: a first glimpse into the Eocene seep fauna of the Tethys region

 This is a pre print version of the following article:

 Original Citation:

 Availability:

 This version is available http://hdl.handle.net/2318/150774

 since 2015-09-16T08:48:51Z

 Published version:

 DOI:10.1017/S0016756814000466

 Terms of use:

 Open Access

 Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright

(Article begins on next page)

protection by the applicable law.





UNIVERSITÀ DEGLI STUDI DI TORINO

## AperTO - Archivio Istituzionale Open Access dell'Università di Torino

## Seep deposits from northern Istria, Croatia: a first glimpse into the Eocene seep fauna of the Tethys region

| This is the author's manuscript                                                                                                                                                                                                              |                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Original Citation:                                                                                                                                                                                                                           |                                                                                                                                |
|                                                                                                                                                                                                                                              |                                                                                                                                |
|                                                                                                                                                                                                                                              |                                                                                                                                |
|                                                                                                                                                                                                                                              |                                                                                                                                |
| Availability:                                                                                                                                                                                                                                |                                                                                                                                |
| This version is available http://hdl.handle.net/2318/150774                                                                                                                                                                                  | since 2015-09-16T08:48:51Z                                                                                                     |
|                                                                                                                                                                                                                                              |                                                                                                                                |
|                                                                                                                                                                                                                                              |                                                                                                                                |
| Published version:                                                                                                                                                                                                                           |                                                                                                                                |
| DOI:10.1017/S0016756814000466                                                                                                                                                                                                                |                                                                                                                                |
| Terms of use:                                                                                                                                                                                                                                |                                                                                                                                |
| Open Access                                                                                                                                                                                                                                  |                                                                                                                                |
| Anyone can freely access the full text of works made available as "Open Acce<br>Creative Commons license can be used according to the terms and condition                                                                                    | ess". Works made available under a                                                                                             |
| requires consent of the right holder (author or publisher) if not exempted from                                                                                                                                                              | copyright protection by the applicable law.                                                                                    |
|                                                                                                                                                                                                                                              |                                                                                                                                |
| Anyone can freely access the full text of works made available as "Open Acce<br>Creative Commons license can be used according to the terms and condition<br>requires consent of the right holder (author or publisher) if not exempted from | ess". Works made available under a<br>s of said license. Use of all other works<br>copyright protection by the applicable law. |

(Article begins on next page)

#### **Proof For Review**

| 2        |    |                                                                                                              |
|----------|----|--------------------------------------------------------------------------------------------------------------|
| 3        | 1  | Seep deposits from northern Istria, Croatia: a first glimpse into the Eocene seep                            |
| 4<br>5   |    |                                                                                                              |
| 6        | 2  | fauna of the Tethys region                                                                                   |
| 7        |    |                                                                                                              |
| 8        | 3  |                                                                                                              |
| 9        |    |                                                                                                              |
| 10       | 4  | M. NATALICCHIO*, J. PECKMANN‡§, D. BIRGEL‡ & S. KIEL¶                                                        |
| 11       |    |                                                                                                              |
| 12       | 5  |                                                                                                              |
| 13       |    |                                                                                                              |
| 14       | 6  | *Department of Earth Sciences, University of Torino, 10125 Torino, Italy                                     |
| 15       |    |                                                                                                              |
| 17       | 7  | Department of Geodynamics and Sedimentology, Center for Earth Sciences, University of                        |
| 18       |    |                                                                                                              |
| 19       | 8  | Vienna, 1090 Vienna, Austria                                                                                 |
| 20       |    |                                                                                                              |
| 21       | 9  | Geobiology Group and Courant Centre Geobiology, Geoscience Centre, University of                             |
| 22       |    |                                                                                                              |
| 23       | 10 | Göttingen, 37077 Göttingen, Germany                                                                          |
| 24       |    |                                                                                                              |
| 20<br>26 | 11 |                                                                                                              |
| 20<br>27 |    |                                                                                                              |
| 28       | 12 | § Author for correspondence: joern.peckmann@univie.ac.at                                                     |
| 29       |    |                                                                                                              |
| 30       | 13 |                                                                                                              |
| 31       |    |                                                                                                              |
| 32       | 14 | Keywords: seep fauna, methane-derived carbonates, stable isotopes, biomarkers, Eocene,                       |
| 33       |    |                                                                                                              |
| 34       | 15 | Istria                                                                                                       |
| 36       |    |                                                                                                              |
| 37       | 16 |                                                                                                              |
| 38       |    |                                                                                                              |
| 39       | 17 | Abstract – Three isolated limestone deposits and their fauna are described from a middle                     |
| 40       |    |                                                                                                              |
| 41       | 18 | Eocene Flysch succession in northwestern Istria, Croatia. The limestones are identified as                   |
| 42       |    |                                                                                                              |
| 43       | 19 | ancient methane-seep deposits based on fabrics and characteristic mineral phases, $\delta^{13}C_{carbonate}$ |
| 44<br>45 |    |                                                                                                              |
| 46       | 20 | values as low as -42.2‰, and <sup>13</sup> C-depleted lipid biomarkers indicative for methane-oxidising      |
| 47       |    |                                                                                                              |
| 48       | 21 | archaea. The faint bedding of the largest seep deposit, the great dominance of authigenic                    |
| 49       |    |                                                                                                              |
| 50       | 22 | micrite over early diagenetic fibrous cement, as well as biomarker patterns indicate that                    |
| 51       |    |                                                                                                              |
| 52       | 23 | seepage was diffusive rather than advective. Apart from methanotrophic archaea, aerobic                      |
| 53<br>54 |    |                                                                                                              |
| 55       | 24 | methanotrophic bacteria were present at the Eocene seeps as revealed by <sup>13</sup> C-depleted             |
| 56       |    |                                                                                                              |
| 57       | 25 | lanostanes and hopanoids. The observed corrosion surfaces in the limestones probably reflect                 |
| 58       |    |                                                                                                              |
| 59       |    |                                                                                                              |

carbonate dissolution caused by aerobic methanotrophy. The macrofauna consists mainly of chemosymbiotic bivalves such as solemyids (Acharax), thyasirids (Thyasira), and lucinids (Amanocina). The middle Eocene marks the rise of the modern seep fauna, but so far the fossil record of seeps of this age is restricted to the North Pacific region. The taxa found at Buje originated during the Cretaceous, whereas taxa typical of the modern seep fauna such as bathymodiolin mussels and vesicomyid clams are absent. Although this is only a first palaeontological glimpse into the biogeography during the rise of the modern seep fauna, it agrees with biogeographic investigations based on the modern vent fauna indicating that the dominant taxa of the modern seep fauna first appeared in the Pacific Ocean.

#### **1. Introduction**

Authigenic carbonate rocks forming where methane or oil effuse from the sediments into the bottom waters act as an archive of life in chemosynthesis-based ecosystems at marine seeps (Peckmann & Thiel, 2004; Campbell 2006). The key biogeochemical process at seeps is the anaerobic oxidation of methane (Boetius et al. 2000). It results in carbonate precipitation forming seep limestones even way below the carbonate compensation depth (e.g. Ritger et al. 1997; Greinert, Bohrmann & Elvert, 2002) and the production of hydrogen sulphide that sustains benthic sulphide-oxidizing bacteria and thiotrophic bacteria in the tissues of chemosymbiotic metazoans (Sibuet & Olu, 1998). A growing number of Phanerozoic seep deposits has been described to date (Campbell, 2006; Teichert & van de Schootbrugge, 2013, and references therein). Their fossil inventory revealed a successive colonisation of seep environments by different groups of metazoans in the course of Earth history, commonly followed by the sooner or later disappearance of these groups of highly specialized taxa. Methane-seep faunas were first discovered in the early 1980s in the Gulf of Mexico and are now recognized at most continental margins (Paull et al. 1984; Baker et al. 2010). Their highly specialized taxa are closely related to those at deep-sea hydrothermal vents and many

# Page 3 of 38

1 2

## **Proof For Review**

| 3          |
|------------|
| 4          |
| 5          |
| 6          |
| 7          |
| 8          |
| 0          |
| 9<br>10    |
| 10         |
| 11         |
| 12         |
| 13         |
| 14         |
| 15         |
| 16         |
| 17         |
| 18         |
| 19         |
| 20         |
| 21         |
| 22         |
| 23         |
| 24         |
| 25         |
| 20         |
| 20         |
| 21         |
| 28         |
| 29         |
| 30         |
| 31         |
| 32         |
| 33         |
| 34         |
| 35         |
| 36         |
| 37         |
| 38         |
| 39         |
| 40         |
| <u>4</u> 1 |
| 41         |
| 42<br>12   |
| 43         |
| 44         |
| 40         |
| 46         |
| 4/         |
| 48         |
| 49         |
| 50         |
| 51         |
| 52         |
| 53         |
| 54         |
| 55         |
| 56         |
| 57         |
| 58         |
| 50         |
| 59         |
| 00         |

| 52             | rely on chemotrophic symbionts for nutrition (Paull et al. 1985). Although the rise of the                                                                                                                                                                                            |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 53             | modern, mollusc-dominated vent and seep fauna began during the Cretaceous age, the main                                                                                                                                                                                               |
| 54             | players at present-day vents and seeps appeared in the early Cenozoic (Campbell & Bottjer,                                                                                                                                                                                            |
| 55             | 1995; Kiel, 2010; Kiel & Little, 2006; Vrijenhoek, 2013). Biogeographically, however, the                                                                                                                                                                                             |
| 56             | Cenozoic fossil record of methane seeps is highly skewed toward the active continental                                                                                                                                                                                                |
| 57             | margins of the Pacific Ocean where uplift of deep-water sediments is frequent (Goedert &                                                                                                                                                                                              |
| 58             | Squires, 1990; Majima, Nobuhara & Kitazaki 2005; Campbell et al. 2008). In contrast, fossil                                                                                                                                                                                           |
| 59             | occurrences in the Atlantic realm are restricted to the Caribbean region (Gill et al. 2005; Kiel                                                                                                                                                                                      |
| 60             | & Peckmann, 2007) and the Mediterranean basin (Taviani, 1994).                                                                                                                                                                                                                        |
| 61             | Here we evaluate the fauna of middle Eocene seep deposits from the northern                                                                                                                                                                                                           |
| 62             | Mediterranean basin (Istria, Croatia; Venturini et al. 1998) in the light of the early evolution                                                                                                                                                                                      |
| 63             | of the modern vent and seep fauna, establish the biogeochemical processes that lead to the                                                                                                                                                                                            |
| 64             | formation of the seep deposits, describe processes that imprinted their lithology, and                                                                                                                                                                                                |
| 65             | reconstruct the composition of fluids and the mode of seepage.                                                                                                                                                                                                                        |
| 66             |                                                                                                                                                                                                                                                                                       |
| 67             | 2. Geological setting and material                                                                                                                                                                                                                                                    |
| 68             | The Istria peninsula, shared by Croatia, Slovenia, and Italy, is bordered to the northeastern                                                                                                                                                                                         |
| 69             | Adriatic Sea. During the Eocene, Istria was a part of the Dinaric foreland zone that                                                                                                                                                                                                  |
| 70             | experienced a strong subsidence in response to the formation of an orogenic wedge (e.g.                                                                                                                                                                                               |
| 71             | Živkovic & Babić, 2003). The study area (Fig. 1a, b), located in the Croatian part of                                                                                                                                                                                                 |
| 72             | northwestern Istria, is characterised by a regional WNW-ESE-oriented anticlinal structure,                                                                                                                                                                                            |
|                |                                                                                                                                                                                                                                                                                       |
| 73             | commonly referred to as the Buje anticline or Buje Karst, whose origin is related to the                                                                                                                                                                                              |
| 73<br>74       | commonly referred to as the Buje anticline or Buje Karst, whose origin is related to the formation of the Dinarides (Matičec, 1994). At the southern margin of the Buje anticline the                                                                                                 |
| 73<br>74<br>75 | commonly referred to as the Buje anticline or Buje Karst, whose origin is related to the<br>formation of the Dinarides (Matičec, 1994). At the southern margin of the Buje anticline the<br>foreland sequence is composed by more than 150 m of Lutetian lacustrine to shallow-marine |

for for a miniferal limestones (Drobne & Pavlovec, 1991) and by at least 350 m of Lutetian to

77 Priabonian turbidite deposits (referred to as Flysch Units; Marinčić *et al.* 1996; Pavšič &

| 2        |
|----------|
| 3        |
| 4        |
| 5        |
| 6        |
| 7        |
| 2<br>2   |
| 0        |
| 9        |
| 10       |
| 11       |
| 12       |
| 13       |
| 14       |
| 15       |
| 16       |
| 10       |
| 17       |
| 18       |
| 19       |
| 20       |
| 21       |
| 22       |
| 23       |
| 20       |
| 24       |
| 25       |
| 26       |
| 27       |
| 28       |
| 29       |
| 30       |
| 31       |
| 22       |
| 32       |
| 33       |
| 34       |
| 35       |
| 36       |
| 37       |
| 38       |
| 30       |
| 10       |
| 40       |
| 41       |
| 42       |
| 43       |
| 44       |
| 45       |
| 46       |
| 47       |
| 48       |
| 40       |
| 49<br>50 |
| 50       |
| 51       |
| 52       |
| 53       |
| 54       |
| 55       |
| 56       |
| 57       |
| 57       |
| 20       |
| 59       |
| 60       |

1

| 78  | Peckmann, 1996; Živkovic & Babić, 2003) that transgressively overlie an Aptian to                |
|-----|--------------------------------------------------------------------------------------------------|
| 79  | Cenomanian sequence of shallow marine carbonates (Venturini et al. 1998). The Flysch             |
| 80  | deposits, in which the studied limestones are enclosed, consist of interbedded siliciclastic     |
| 81  | sandstones and marlstones as well as rare carbonate megabeds with basal breccias,                |
| 82  | representing calciturbidites (Venturini et al. 1998). The occurrence of turbidites indicates     |
| 83  | deposition by gravity flows in a deep-sea environment. The majority of the fine-grained          |
| 84  | marlstones, on the other hand, represents hemipelagic background sedimentation in a basinal      |
| 85  | setting (Pavšič & Peckmann, 1996). The occurrence of ichnogenera including Paleodictyon,         |
| 86  | as well as foraminifers and ostracods suggests deposition between 700 and 1200 m water           |
| 87  | depth (Gohrbandt et al. 1960; Pavšič & Peckmann, 1996).                                          |
| 88  | The exotic blocks of limestone occurring in the vicinity of the town of Buje (Fig. 1b;           |
| 89  | 45°24'31''N, 13°40'01''E) have first been described by Venturini et al. (1998). The deposits     |
| 90  | studied here correspond to the "nearby Buje petrol station" section of Venturini et al. (1998;   |
| 91  | their Figures 4 and 5). In the captions of their Figures 10, 11, 13, and 14 as well as Table 1   |
| 92  | Venturini et al. (1998) refer to this locality as "Buje". The other two outcrops described by    |
| 93  | Venturini et al. (1998) were no longer accessible during field work in 2011. In the "nearby      |
| 94  | Buje petrol station" outcrop three limestone bodies are exposed in a road section in the eastern |
| 95  | outskirts of Buje (Fig. 2, 3). These deposits are enclosed in a sequence of fine-grained marls   |
| 96  | intercalated with few decimetre-thick sandstone beds. The lowermost deposit (Buje 1) is          |
| 97  | about 4 m thick and laterally extends for approximately 20 metres in outcrop, the Buje 2 and 3   |
| 98  | deposits are approximately 5 m and 2 m in width and 2 m and 1 m in height, respectively.         |
| 99  |                                                                                                  |
| 100 | 3. Methods                                                                                       |
| 101 | Sampling of the carbonate deposits (Buje 1, 2, and 3) has been carried out in spring 2011.       |

- 102 Selected samples were prepared for palaeontologic, petrographic, and geochemical
- 103 investigations. All fossil specimens are deposited in the Geowissenschaftliches Museum,

Page 5 of 38

#### **Proof For Review**

Georg-August-University Göttingen, Germany (GZG). Thin sections (15 x 10 cm and 10 x 7.5 cm) were studied with transmitted light and cathodoluminescence microscopy using a CITL 8200MK3, operating at about 17 kV and 400 mA. Thin sections were further analysed for their UV-fluorescence on a Nikon microscope with a UV-2A filter block, using ultraviolet light (illumination source 450-490 nm). Scanning electron microscopy and qualitative element recognition were performed with a Cambridge Instruments Stereoscan 360 scanning electron microscope equipped with an energy-dispersive Link System Oxford Instruments microprobe. For stable isotope analyses mineral phases were drilled from the surface of slabs with a hand-held micro drill. Measurements of carbon and oxygen isotopes were performed with a Finnigan MAT 251 mass spectrometer using the "Kiel" carbonate device type "Bremen" against natural carbon dioxide from Burgbohl (Rheinland, Germany). A Solnhofen limestone was used as standard, which was calibrated against the international standard NBS 19. Values are reported in the  $\delta$ -notation relative to Vienna Pee Dee Belemnite (VPDB) standard. Long time standard deviation (1 $\sigma$ ) for this measurement was 0.05% for  $\delta^{13}$ C and 0.07% for  $\delta^{18}$ O values. Lipid biomarkers were extracted from two carbonate blocks (Buje 1 and 2 deposits). yielding almost identical patterns. Samples were prepared and decalcified as described in Birgel et al. (2006a). After saponification with 6% KOH in methanol, the samples were extracted with a microwave extraction system (CEM Discovery) at 80°C and up to 250 W with dichloromethane/methanol (3:1) three times. The resulting extracts were separated into four fractions by column chromatography (500 mg DSC-NH<sub>2</sub> cartridges, Supelco) as described in Birgel et al. (2008). Carboxylic acids were measured as their methyl ester (ME) derivatives. All fractions were measured using an Agilent 7890 A GC system coupled to an Agilent 5975 C inert MSD spectrometer. The GC-MS system was equipped with a 30 m HP-5 MS UI fused silica capillary column (0.25 mm i.d., 0.25 µm film thickness). The carrier gas 

129 was He. The gas chromatography (GC) temperature program used for both fractions was as

| 3      |  |
|--------|--|
| 1      |  |
| 4<br>~ |  |
| 5      |  |
| 6      |  |
| 7      |  |
| 8      |  |
| 9      |  |
| 10     |  |
| 14     |  |
| 10     |  |
| 12     |  |
| 13     |  |
| 14     |  |
| 15     |  |
| 16     |  |
| 17     |  |
| 18     |  |
| 10     |  |
| 19     |  |
| 20     |  |
| 21     |  |
| 22     |  |
| 23     |  |
| 24     |  |
| 25     |  |
| 26     |  |
| 20     |  |
| 21     |  |
| 28     |  |
| 29     |  |
| 30     |  |
| 31     |  |
| 32     |  |
| 33     |  |
| 34     |  |
| 25     |  |
| 22     |  |
| 30     |  |
| 37     |  |
| 38     |  |
| 39     |  |
| 40     |  |
| 41     |  |
| 42     |  |
| 43     |  |
| 11     |  |
| 44     |  |
| 40     |  |
| 46     |  |
| 47     |  |
| 48     |  |
| 49     |  |
| 50     |  |
| 51     |  |
| 52     |  |
| 52     |  |
| 53     |  |
| 54     |  |
| 55     |  |
| 56     |  |
| 57     |  |
| 58     |  |
| 59     |  |

1 2

| 130 | follows: 60 °C (1 min); from 60 to 150°C at 10°C/min then to 320°C at 4°/min; 25 min                         |
|-----|--------------------------------------------------------------------------------------------------------------|
| 131 | isothermal. Identification of compounds was based on GC retention times and comparison                       |
| 132 | with published mass spectra. No separation of crocetane and phytane was achieved with the                    |
| 133 | used column. The relative abundance of these compounds was assessed by the different                         |
| 134 | fragmentation patterns, especially by the change of relative abundances of the masses 169                    |
| 135 | (characteristic for crocetane) and 183 (characteristic for phytane) within the mixed                         |
| 136 | crocetane/phytane peak. Compound-specific carbon isotope analyses were carried out with a                    |
| 137 | Thermo Fisher Trace GC Ultra connected via a thermo Fisher GC Isolink interface to a                         |
| 138 | Thermo Fisher Delta V Advantage spectrometer. GC conditions were identical to those                          |
| 139 | described above. Carbon isotopes are expressed as $\delta^{13}$ C values relative to the VPDB standard.      |
| 140 | The carbon isotope measurements were corrected for the addition of ME-derivatives. Several                   |
| 141 | pulses of carbon dioxide with known $\delta^{13}$ C values at the beginning and the end of the runs          |
| 142 | were used for calibration. Instrument precision was checked using a mixture of $n$ -alkanes (C <sub>14</sub> |
| 143 | to $C_{40}$ ) with known isotopic composition. The analytical standard deviation was <0.7‰.                  |
| 144 |                                                                                                              |

145 **4. Results** 

146 **4.a. Fauna** 

Microfossils are abundant in the studied carbonate rocks, for the most part being represented 147 by benthic (Bolivina sp., Stilostomella spp., Uvigerina spp., and Heterolepa spp.) and planktic 148 (Turborotalia sp., Acarinina sp. and Hantkenina sp.) foraminifera. The occurrence of 149 150 Hantkenina sp. agrees with an Upper Lutetian-Bartonian age (cf. Pavšič & Peckmann, 1996). Macrofossils were found only sporadically in the Buje 1 deposit and were almost absent 151 in the Buje 2 and Buje 3 deposits. Most common is a lucinid bivalve that includes also the 152 153 largest shell, followed by a thyasirid, and a solemyid bivalve. In addition to these bivalves, a 154 few callianassid claws and other crustacean fragments were found. The bivalves include: (1) two specimens of a solemyid, the larger one 32 mm long and 10 mm high with the anterior 155

#### **Proof For Review**

| 3  |
|----|
| 4  |
| 5  |
| 6  |
| 7  |
| 0  |
| 8  |
| 9  |
| 10 |
| 11 |
| 12 |
| 13 |
| 14 |
| 15 |
| 16 |
| 17 |
| 10 |
| 18 |
| 19 |
| 20 |
| 21 |
| 22 |
| 23 |
| 24 |
| 25 |
| 20 |
| 20 |
| 21 |
| 28 |
| 29 |
| 30 |
| 31 |
| 32 |
| 33 |
| 34 |
| 35 |
| 20 |
| 30 |
| 37 |
| 38 |
| 39 |
| 40 |
| 41 |
| 42 |
| 43 |
| 44 |
| 45 |
| 40 |
| 40 |
| 41 |
| 48 |
| 49 |
| 50 |
| 51 |
| 52 |
| 53 |
| 54 |
| 55 |
| 55 |
| 00 |
| 5/ |
| 58 |
| 59 |
| 60 |

| 156 | end missing. It shows an elongate S-shaped band extending from the posteroventral corner of    |
|-----|------------------------------------------------------------------------------------------------|
| 157 | the anterior adductor muscle scar to the dorsal shell margin, had an external ligament, and is |
| 158 | therefore referred to as Acharax (Fig. 4a-c). (2) Two specimens of a Nucula; the larger one is |
| 159 | 20 mm long and 15 mm high, and although the taxodont hinge is missing in these specimens,      |
| 160 | they have the general shape of a Nucula and show the radial striation and crenulate ventral    |
| 161 | margin common to this genus (Fig. 4d). (3) Four specimens belong to Thyasira due to their      |
| 162 | general shape and strong posterior sulcus (Fig. 4e); the largest is 40 mm long. The            |
| 163 | "undetermined Veneroida (?Kelliidae)" figured by Venturini et al. (1998, p. 225, Fig. 11) may  |
| 164 | also belong to this Thyasira species. (4) Seven specimens and fragments of an oval lucinid     |
| 165 | bivalve with an edentulous, narrow hinge without triangular excavation below the umbo, and     |
| 166 | a maximum length of 52 mm (Fig. 4f-j) belong to the genus Amanocina. The lucinid is most       |
| 167 | likely the same species as the "?Lucina" figured by Venturini et al. (1998, p. 225, Fig. 10).  |
|     |                                                                                                |

168

## 169 **4.b.** Petrography and stable isotopes

The lithology of the three Buje carbonate deposits (Buje 1 to 3) is quite similar. The 170 limestones consist of fossiliferous and bioturbated mudstone and wackestone (Fig. 5). The 171 matrix is made up of dark brown micrite, revealing a bright autofluorescence (Fig. 6a, b). 172 Terrigenous particles are angular, including abundant quartz and rare feldspar grains as well 173 as lithic clasts. Apart from detrital grains, the micritic matrix contains abundant biogenic 174 175 detritus, mostly tests of foraminifera (Fig. 6c). Some mm to cm wide, irregular cavities occur; 176 the cavities are interpreted to result from bioturbation, representing successively filled 177 burrows. Some cavities show geopetal infill (Fig. 6d). The cavities are filled by sediment and authigenic phases including peloids, homogenous micrite, laminated micrite, a phase referred 178 179 to as cauliflower micrite, and different generations of carbonate cements (Fig. 6d-f). Peloidal fabrics are particular abundant (Fig. 6e). They consist of ovoidal peloids, showing an intense 180 fluorescence, surrounded by a non-fluorescent calcite microspar. On the basis of shape and 181

| 2              |     |         |
|----------------|-----|---------|
| 2<br>3<br>4    | 182 | C       |
| 5              | 183 | la      |
| 7<br>8         | 184 | b       |
| 9<br>10        | 185 |         |
| 11<br>12       | 186 | c       |
| 13<br>14       | 187 | a       |
| 15<br>16<br>17 | 188 | p       |
| 18<br>19       | 189 | te      |
| 20<br>21       | 190 | c       |
| 22<br>23       | 191 | SI      |
| 24<br>25<br>26 | 192 | 0       |
| 20<br>27<br>28 | 193 | C       |
| 29<br>30       | 194 | c       |
| 31<br>32       | 195 |         |
| 33<br>34       | 196 | SI      |
| 35<br>36<br>37 | 197 | b       |
| 38<br>39       | 198 | a       |
| 40<br>41       | 199 | c]      |
| 42<br>43       | 200 |         |
| 44<br>45       | 201 | st      |
| 46<br>47<br>48 | 202 | W       |
| 49<br>50       | 203 | to      |
| 51<br>52       | 204 | d       |
| 53<br>54       | 205 | re      |
| 55<br>56       | 205 | ۲۱<br>ډ |
| 57<br>58       | 206 | 0<br>5  |
| 59<br>60       | 207 | В       |

1

182 composition, peloids are interpreted to represent faecal pellets. Banding in the authigenic,

laminated micrites is sub-parallel to cavity walls (Fig. 6e). In places the laminated micrite isbroken to pieces, forming fragments surrounded by calcite cement.

The cauliflower micrite is an obviously authigenic variety of micrite found in some of the cavities. It is represented by aggregates of mottled, microcrystalline calcite (Fig. 7a, b). Its aggregates exhibit a domal, grooved shape, resembling cauliflower. Micron-sized irregular pores, filled by calcite microspar, are present within these domes, generating a sponge-like texture (Fig. 7c). The fluorescent cauliflower micrite (Fig. 7d) is commonly covered by a circumgranular calcite cement (Fig. 7b, c). Remaining porosity in the cavities was subsequently filled by two main generations of cement, (1) banded and botryoidal aggregates of fibrous aragonite cement, mostly recrystallized to calcite, and (2) a drusy mosaic of equant calcite cement (Fig. 6c-f). Carbonate cements are overall not abundant, being restricted to the cavities believed to result from bioturbation.

The micritic matrix of the Buje deposits records episodes of carbonate corrosion. The
surfaces of the affected aggregates of micrite are highly irregular, and commonly covered by a
black rim of an opaque mineral up to a few tens of µm in thickness (Fig. 8a, b). Backscatter
and EDS observations revealed that these rims consist of scattered bright grains (Fig. 8c)
characterized by high contents of iron and manganese.

The volumetrically dominant micrite of the Buje carbonates has been analysed for its stable carbon and oxygen isotope composition; the amount of banded and botryoidal cement was not sufficient to allow for isotope analysis. The  $\delta^{13}$ C values of micrite range from -42.2 to -22.7‰, the corresponding  $\delta^{18}$ O values range from -3.9 to 0.0‰ (Fig. 9). The Buje 1 deposit revealed the most negative  $\delta^{13}$ C and  $\delta^{18}$ O values, as low as -42.2 and -3.9‰, respectively, with most  $\delta^{13}$ C values falling between -35.2 and -30.2‰. Buje 2 and Buje 3 deposits show overall similar isotope values with less <sup>13</sup>C and <sup>18</sup>O depletion compared to the Buje 1 deposit.

#### **Proof For Review**

| 208 |                                                                                                                      |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 209 | 4.c. Biomarkers                                                                                                      |
| 210 | Hydrocarbons, carboxylic acids, and alcohols were analysed. However, lipid biomarkers in                             |
| 211 | the alcohol fraction are only poorly preserved, and are thus not useful for the interpretation of                    |
| 212 | the depositional environment. The major group of compounds in the hydrocarbon fraction are                           |
| 213 | isoprenoid hydrocarbons (Fig. 10a). Among them are the head-to-tail linked isoprenoid                                |
| 214 | phytane (approximately 60% of the combined peak) and the tail-to-tail linked isoprenoid                              |
| 215 | crocetane (approximately 40%); their combined peak is the highest peak in this fraction. The                         |
| 216 | next abundant isoprenoids are the tail-to-tail linked isoprenoid pentamethylicosane (PMI) and                        |
| 217 | the head-to-head linked isoprenoid biphytane (bp-0). Other, minor constituents are                                   |
| 218 | monocyclic biphytane (bp-1) with one cyclopentane ring and the tail-to-tail linked isoprenoid                        |
| 219 | squalane, as well as the head-to-tail linked isoprenoid pristane. Other than isoprenoids, few                        |
| 220 | straight-chain <i>n</i> -alkanes are present. Their overall distribution is patchy with the exception of             |
| 221 | n-C <sub>23</sub> , resembling the inventory of modern and ancient, non-oil stained seep carbonates and              |
| 222 | sediments (e.g. Thiel et al. 2001; Peckmann et al. 2007; Chevalier et al. 2013). Apart from                          |
| 223 | aliphatic lipid biomarkers, few cyclic compounds, mainly steranes and one hopanoid were                              |
| 224 | found. Among steroids, most abundant are C28 and C29 steranes. Other detected steroids are                           |
| 225 | lanostanes, which have been described in some seep carbonates (Birgel & Peckmann, 2008).                             |
| 226 | The most abundant cyclic terpenoid found is the hopanoid hop-17(21)-ene.                                             |
| 227 | The isoprenoids have the most negative $\delta^{13}$ C values with $-111\%$ and $-109\%$ for PMI                     |
| 228 | and bp-0, respectively. The head-to-tail linked isoprenoid pristane $(-60\%)$ and the <i>n</i> -alkane               |
| 229 | n-C <sub>23</sub> (-66‰) revealed intermediate values (Fig. 9), whereas other short-chain $n$ -alkanes are           |
| 230 | significantly less <sup>13</sup> C-depleted (-34‰). The $\delta^{13}$ C values of steranes fall in the same range as |
| 231 | short-chain and long-chain <i>n</i> -alkanes. Lanostanes are more $^{13}$ C-depleted with an average                 |
| 232 | value of $-47\%$ . Hop-17(21)-ene is more <sup>13</sup> C-depleted (-64‰) than the lanostanes.                       |
|     |                                                                                                                      |



| 233 | The carboxylic acid fraction is predominated by <i>n</i> -fatty acids ranging from $C_{14}$ to $C_{28}$                               |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|
| 234 | (Fig. 10b). The fatty acids are characterized by an overall even-over-odd predominance.                                               |
| 235 | Highest contents were found for short-chain $n$ -C <sub>16</sub> fatty acid. Other abundant compounds are                             |
| 236 | n-C <sub>16</sub> and C <sub>18</sub> fatty acids with one double bond. Apart from $n$ -fatty acids, terminally-branched              |
| 237 | fatty acids are abundant, especially those comprising 15 carbons. Other compounds in the                                              |
| 238 | carboxylic acid fraction are phytanoic acid and PMI acid. Phytanoic acid co-elutes with a                                             |
| 239 | $C_{18:1}$ fatty acid. Only one hopanoic acid, $17\beta(H)$ , $21\beta(H)$ -bishomohopanoic acid, was                                 |
| 240 | identified.                                                                                                                           |
| 241 | The strongest <sup>13</sup> C depletions in the carboxylic acids were found for the isoprenoid PMI                                    |
| 242 | acid (-107‰). Although combined with the isotopic signature of the co-eluting $n$ -C <sub>18:1</sub> fatty                            |
| 243 | acid, phytanoic acid is still considerably $^{13}$ C-depleted (-75‰). Other compounds with                                            |
| 244 | significant depletion in <sup>13</sup> C are the terminally-branched <i>iso-</i> and <i>anteiso-</i> C <sub>15</sub> fatty acids with |
| 245 | $\delta^{13}$ C values of -68‰ and -82‰, respectively, as well as $17\beta(H)$ , $21\beta(H)$ -bishomohopanoic                        |
| 246 | acid ( $-70\%$ ). Short-chain <i>n</i> -fatty acids yielded values of around $-50\%$ , whereas the long-                              |
| 247 | chain fatty acids revealed higher values (average -31%).                                                                              |
| 248 |                                                                                                                                       |
| 249 | 5. Discussion                                                                                                                         |
| 250 | 5.a. Biogeographic and evolutionary aspects                                                                                           |
| 251 | Methane seepage and associated faunal communities in the Mediterranean realm are known                                                |
| 252 | from the late Mesozoic when large lucinid bivalves and rhynchonellide brachiopods inhabited                                           |
| 253 | cold seeps along the northern shore of the Tethys Ocean (Gaillard, Rio & Rolin, 1992;                                                 |
| 254 | Campbell & Bottjer, 1995; Peckmann et al. 1999; Kiel, 2013) and from the Miocene onward,                                              |
| 255 | largely along the Apennine chain in Italy (Ricci Lucchi & Vai, 1994; Taviani, 2011). These                                            |
| 256 | Neogene seep deposits are generally referred to as 'Calcari a Lucina' (Clari et al. 1988;                                             |
| 257 | Taviani, 1994). Among them, the Miocene deposits contain essentially a modern seep fauna                                              |

#### **Proof For Review**

consisting of large bathymodiolin, vesicomyid, and lucinid bivalves, while the few Pliocene
examples appear to have a reduced character of the modern Mediterranean Sea seep fauna
(Table 1; Taviani, 2014). Many of the taxa that inhabit vents and seeps today originated in the
early Cenozoic (Kiel & Little, 2006; Amano & Kiel, 2007; Kiel & Amano, 2013; Vrijenhoek,
2013). The middle Eocene Buje deposits can thus provide insights into the early evolution of
the seep fauna and its biogeography.

The only seep deposits coeval with the Buje seeps are those of the middle Eocene Humptulips Formation in western Washington State, USA, and thus from the Pacific realm (Goedert & Squires, 1990). They share the common solemyids, the large thyasirids, and the edentulous lucinids, although the latter are represented by different genera in the two regions (cf. Goedert & Squires, 1990; Saul, Squires & Goedert, 1996; Kiel, 2013). The Humptulips seep deposits differ, however, by the presence of large, high spired gastropods (Goedert & Kaler, 1996; Kiel, 2008) and vesicomyid bivalves (Squires & Goedert, 1991; Amano & Kiel, 2007), which appear to be absent from the Buje deposits. The Humptulips limestones also include the earliest bathymodiolin mussels discovered so far (Kiel & Amano, 2013). From one of the seep deposits at Buje, Venturini et al. (1998) reported several specimens of the mytilid 'Modiolus' that could potentially represent an as-yet unidentified bathymodiolin mussel; unfortunately that particular deposit was no longer accessible during our field work and the identity of this mussel remains elusive. The fauna of the Buje seep deposits is only a first glimpse into the Eocene seep fauna of the central Tethys Ocean and is unlikely to represent the full diversity of the regional pool of seep-inhabiting taxa. However, if taken at face value, the absence of the main modern taxa (bathymodiolins and vesicomyids) from Buje at a time when these taxa were present at Pacific seeps is in agreement with molecular phylogenetic analyses (Lorion et al. 2013; Roterman et al. 2013; Stiller et al. 2013) and quantitative biogeographic analyses (Bachraty et al. 2009; Moalic et al. 2012), which indicate a Pacific origin of the modern vent and seep fauna. 

| 2  |
|----|
| 3  |
| 1  |
| 4  |
| 5  |
| 6  |
| 7  |
| 8  |
| 0  |
| 9  |
| 10 |
| 11 |
| 12 |
| 12 |
| 13 |
| 14 |
| 15 |
| 16 |
| 17 |
| 10 |
| 10 |
| 19 |
| 20 |
| 21 |
| 22 |
| 22 |
| 23 |
| 24 |
| 25 |
| 26 |
| 20 |
| 27 |
| 28 |
| 29 |
| 30 |
| 24 |
| 31 |
| 32 |
| 33 |
| 34 |
| 25 |
| 30 |
| 36 |
| 37 |
| 38 |
| 30 |
| 40 |
| 40 |
| 41 |
| 42 |
| 43 |
| 11 |
| 44 |
| 45 |
| 46 |
| 47 |
| 48 |
| 40 |
| 49 |
| 50 |
| 51 |
| 52 |
| 52 |
| 55 |
| 54 |
| 55 |
| 56 |
| 57 |
| 57 |
| 58 |
| 59 |
| 60 |

| 284 | Compared to the 'Calcari a Lucina' seep deposits in the Italian Miocene (Fig.1a; Clari et                   |
|-----|-------------------------------------------------------------------------------------------------------------|
| 285 | al. 1994; Taviani, 1994) and the modern Mediterranean seep fauna (Olu-Le Roy et al. 2004;                   |
| 286 | Ritt et al. 2010; Taviani et al. 2013), the middle Eocene seep fauna at Buje shows clear                    |
| 287 | differences (Table 1). Solemyids are rare in the Neogene to modern seeps in the                             |
| 288 | Mediterranean Sea (Taviani et al. 2011; Rodrigues, Duperron & Gaudron 2011) in contrast to                  |
| 289 | Buje, where they are common. Also the large <i>Thyasira</i> is a distinctive feature of the Buje            |
| 290 | seeps, while thyasirids are absent from the 'Calcari a Lucina' deposits (Taviani, 2011; S. Kiel,            |
| 291 | own observation), and in the modern Mediterranean seep fauna they are represented only by a                 |
| 292 | small (~10 mm) species (Olu-Le Roy et al. 2004). The lucinids at the Miocene to modern                      |
| 293 | Mediterranean seeps clearly belong to different genera than the lucinid at Buje (Olu-Le Roy et              |
| 294 | al. 2004; Taviani, 2011; Kiel & Taviani, unpub. data), which belongs to the widespread Early                |
| 295 | Cretaceous to Oligocene genus Amanocina.                                                                    |
| 296 |                                                                                                             |
| 297 | 5.b. Microbial activity steering carbonate formation and destruction                                        |
| 298 | The Buje carbonate deposits show several petrographical and geochemical lines of evidence                   |
| 299 | that agree with a microbial origin sustained by hydrocarbon seepage. Not only the negative                  |
| 300 | $\delta^{13}$ C values as low as -42 ‰ agree with methane seeping (cf. Paull <i>et al.</i> 1992; Peckmann & |
| 301 | Thiel, 2004), but also microfabrics, such as peloidal and clotted micrite, laminated micrite,               |
| 302 | and banded and botryoidal cement filling cavities are typical of seep carbonates (e.g.                      |
| 303 | Peckmann & Thiel, 2004). Finally, lipid biomarkers characteristic for methane seepage are                   |
| 304 | found in the Buje deposits, confirming their microbial origin resulting from methane                        |
| 305 | oxidation. Among the observed compounds, the most <sup>13</sup> C-depleted acyclic isoprenoids such as      |
| 306 | mixed phytane/crocetane (-98‰), PMI (-111‰), and acyclic biphytane (-109‰) are                              |
| 307 | molecular fossils of methanotrophic archaea (e.g. Elvert, Suess & Whiticar, 1999; Peckmann                  |
| 308 | & Thiel, 2004; Birgel et al. 2006a; Peckmann, Birgel & Kiel, 2009). These biomarkers are                    |
|     |                                                                                                             |

#### **Proof For Review**

| 310 | fatty acids (Elvert et al. 2003; Birgel et al. 2006b). As commonly observed in seep deposits,                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 311 | the lipids of the sulphate-reducing bacteria involved in anaerobic oxidation of methane are                                                                                                                                                                                                                                                                                                                                                                                                    |
| 312 | less <sup>13</sup> C-depleted ( $-82$ ‰ for <i>anteiso</i> -C <sub>15</sub> FA) than the lipids of methanotrophic archaea (e.g.                                                                                                                                                                                                                                                                                                                                                                |
| 313 | Peckmann & Thiel, 2004).                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 314 | At first glance, the petrographical characteristics and stable isotope and lipid biomarker                                                                                                                                                                                                                                                                                                                                                                                                     |
| 315 | patterns of the Buje deposits are not much different from other ancient Mediterranean seep                                                                                                                                                                                                                                                                                                                                                                                                     |
| 316 | deposits (e.g. Peckmann et al. 2004; Clari et al. 2009; Natalicchio et al. 2013). However, the                                                                                                                                                                                                                                                                                                                                                                                                 |
| 317 | Buje seep deposits show some peculiarities, as for example the occurrence of cauliflower                                                                                                                                                                                                                                                                                                                                                                                                       |
| 318 | micrite. These dome-shaped precipitates are made up of fluorescent clotted micrite and                                                                                                                                                                                                                                                                                                                                                                                                         |
| 319 | formed <i>in-situ</i> within cavities, properties that typify the products of organomineralisation (cf.                                                                                                                                                                                                                                                                                                                                                                                        |
| 320 | Reitner et al. 1995; Dupraz et al. 2009). Two possible modes of formation are envisaged, (1)                                                                                                                                                                                                                                                                                                                                                                                                   |
| 321 | mineralised microbial mats or (2) sponges. (1) Mineralized biofilms have already been                                                                                                                                                                                                                                                                                                                                                                                                          |
| 322 | documented in Eocene seep deposits from western Washington State (Peckmann et al. 2003)                                                                                                                                                                                                                                                                                                                                                                                                        |
| 323 | and in Miocene seep deposits from the Italian Apennine (Peckmann et al. 1999). The                                                                                                                                                                                                                                                                                                                                                                                                             |
| 324 | cauliflower shape, representing a domal, accretionary mode of growth on a mm to cm scale in                                                                                                                                                                                                                                                                                                                                                                                                    |
| 325 | a cryptic environment is different from previous reports of much thinner mineralised biofilms                                                                                                                                                                                                                                                                                                                                                                                                  |
| 326 | within cracks of preexisting seep carbonate. Based on the larger size of the Buje cauliflower                                                                                                                                                                                                                                                                                                                                                                                                  |
| 327 | micrite and its domal growth habit along with its intense autofluorescence it seems feasible                                                                                                                                                                                                                                                                                                                                                                                                   |
| 328 | that this micrite resulted from the mineralisation of microbial mats that performed anaerobic                                                                                                                                                                                                                                                                                                                                                                                                  |
| 329 | oxidation of methane. The validity of this scenario is enforced by the presence of subsurface                                                                                                                                                                                                                                                                                                                                                                                                  |
| 330 | microbial mats of anaerobic oxidation of methane-performing prokaryotes at active seeps in                                                                                                                                                                                                                                                                                                                                                                                                     |
| 331 | the Black Sea (Treude et al. 2005). (2) Alternatively, the domal growth, clotted microfabric,                                                                                                                                                                                                                                                                                                                                                                                                  |
| 332 | and reticulate porosity of the cauliflower micrite resembles the outcome of sponge taphonomy                                                                                                                                                                                                                                                                                                                                                                                                   |
| 333 | (e.g. Delecat et al. 2001). Because no spicules have been observed, it is unlikely that                                                                                                                                                                                                                                                                                                                                                                                                        |
| 334 | cauliflower micrite represents fossils of spicular sponges. Even in case of siliceous spicules,                                                                                                                                                                                                                                                                                                                                                                                                |
| 335 | the spicules would have been probably preserved in the authigenic seep carbonate. Where                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | <ul> <li>310</li> <li>311</li> <li>312</li> <li>313</li> <li>314</li> <li>315</li> <li>316</li> <li>317</li> <li>318</li> <li>319</li> <li>320</li> <li>321</li> <li>322</li> <li>323</li> <li>324</li> <li>325</li> <li>326</li> <li>327</li> <li>328</li> <li>327</li> <li>328</li> <li>327</li> <li>328</li> <li>327</li> <li>328</li> <li>327</li> <li>328</li> <li>327</li> <li>328</li> <li>321</li> <li>321</li> <li>322</li> <li>331</li> <li>332</li> <li>334</li> <li>335</li> </ul> |

| 1                    |     |                                                                                                              |
|----------------------|-----|--------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4          | 336 | sponges have been reported in ancient seep deposits, their overall preservation including                    |
| 5                    | 337 | spicules was good in case of Mesozoic examples (Peckmann et al. 1999) and excellent in case                  |
| 7<br>8               | 338 | of Cenozoic examples (Goedert & Squires, 1990; Rigby & Goedert, 1996). If the sponge                         |
| 9<br>10              | 339 | interpretation is correct, the sponges were probably non-spicular, belonging to a group                      |
| 11<br>12             | 340 | informally referred to as keratose demosponges (J. Reitner, pers. comm.). Despite of lacking                 |
| 13<br>14<br>15       | 341 | spicules, the taphonomy of keratose sponges results in micritic carbonate fabrics that can still             |
| 16<br>17             | 342 | be recognized in Phanerozoic rocks (Luo & Reitner, 2014). Seep-dwelling sponges have been                    |
| 18<br>19             | 343 | reported from a number of modern sites (Olu-Le Roy et al. 2004, and references therein).                     |
| 20<br>21             | 344 | Some demosponges have even been shown to contain endosymbiotic methanotrophic bacteria                       |
| 22<br>23             | 345 | (Vacelet et al. 1996; Olu-Le Roy et al. 2004; Baco et al. 2010).                                             |
| 24<br>25<br>26       | 346 | The abundant irregular corrosion surfaces partially covered by iron and manganese                            |
| 20<br>27<br>28       | 347 | precipitates indicate dissolution of carbonate. Such dissolution features coupled with iron and              |
| 29<br>30             | 348 | manganese enrichment have commonly been interpreted as the product of microbially-driven                     |
| 31<br>32             | 349 | corrosion, as for example reported for reef carbonates (Reitner et al. 2000; Tribollet et al.                |
| 33<br>34             | 350 | 2011). Analogous features have also been observed in ancient (Campbell et al. 2002;                          |
| 35<br>36<br>37       | 351 | Peckmann et al. 2003; Birgel et al. 2006b) and modern (Matsumoto, 1990; Himmler et al.                       |
| 38<br>39             | 352 | 2011) seep carbonates and were interpreted as biologically-induced corrosion features as well.               |
| 40<br>41             | 353 | Matsumoto (1990) was the first to suggest that carbonate corrosion at seeps is driven by                     |
| 42<br>43             | 354 | bacterial aerobic methane oxidation and sulphide oxidation. Both processes have the potential                |
| 44<br>45             | 355 | to lower the pH and may thus promote carbonate dissolution (Himmler et al. 2011; Tribollet                   |
| 46<br>47<br>48       | 356 | et al. 2011). Molecular fossils of sulphide-oxidizing bacteria cannot be easily identified in                |
| 49<br>50             | 357 | ancient rocks, since these lipids are of low specificity and prone to degradation (cf. Arning et             |
| 51<br>52             | 358 | al. 2008). In contrast, the former presence of aerobic methanotrophs at seeps can be                         |
| 53<br>54             | 359 | constrained by lipid biomarkers including lanostanes and some hopanoids (Peckmann et al.                     |
| 55<br>56             | 360 | 1999; 2004; Birgel & Peckmann, 2008; Sandy <i>et al.</i> 2012). The low $\delta^{13}$ C values of lanostanes |
| 57<br>58<br>59<br>60 | 361 | and hopanoids in the Buje limestones agree with aerobic methanotrophs as source organisms,<br>14             |

#### **Proof For Review**

although other sources cannot be excluded in case of the <sup>13</sup>C-depleted hopanoids (cf.
Blumenberg *et al.* 2006; Eickhoff *et al.* 2013). The potential of aerobic methanotrophs to
cause carbonate dissolution has recently been proven in laboratory experiments (Krause *et al.*2014). Based on the confirmation that this mechanism is indeed capable of inducing carbonate
dissolution and the detection of molecular fossils of aerobic methanotrophs, carbonate
corrosion archived in the Buje seep limestones is best explained by aerobic methanotrophy.

## 369 5.c. Constraints on fluid flow

The occurrence of both anaerobic oxidation of methane – as revealed by  $^{13}$ C-depleted biomarkers and <sup>13</sup>C-depleted authigenic carbonates – and aerobic oxidation of methane – as revealed by <sup>13</sup>C-depleted biomarkers and carbonate corrosion – indicates discontinuous oxygenation conditions in the subsurface close to the seafloor at the Buje seep sites. The precipitation of the <sup>13</sup>C-depleted micrite driven by anaerobic oxidation of methane occurred in anoxic environments within the pore space of the detrital background sediment, leading to the occlusion of the sedimentary matrix. After the pore space was successively filled by micrite, carbonate precipitation was largely restricted to some cavities resulting from preceding bioturbation, and allowing for the formation of fibrous, banded and botryoidal aragonite cement and clotted micrite. Based on the evidence for carbonate corrosion and the preservation of diagnostic biomarkers, at least some of the aerobic methanotrophic bacteria most probably lived in oxic sediments, rendering unlikely that these biomarkers were exclusively sourced from bacteria dwelling in the water column above the seeps. A set of observations indicates that the mode of seepage was diffusive rather than advective. The Buje seep limestones largely consist of authigenic micrite cementing background sediments. Such a pattern with the dominance of micrite over early diagenetic aragonite cements is typical for diffusive seepage (e.g. Peckmann, Birgel & Kiel, 2009; Haas 

et al. 2010). Similarly, the faint stratification apparent in the Buje 1 deposit is an additional

| 2        |  |
|----------|--|
| 3        |  |
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| 8        |  |
| à        |  |
| 10       |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 20       |  |
| 20       |  |
| 31       |  |
| 27       |  |
| ა∠<br>ეე |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 47       |  |
| 48       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 57       |  |
| 52<br>52 |  |
| 53       |  |
| 54<br>57 |  |
| 55       |  |
| 56       |  |
| 57       |  |
| 58       |  |
| 59       |  |
| 60       |  |

1

| 388 | argument in favour of this interpretation. Similarly, the circumstance that biphytane occurs in               |
|-----|---------------------------------------------------------------------------------------------------------------|
| 389 | much higher contents than crocetane agrees with the dominance of archaea of the so-called                     |
| 390 | ANME-1 group (Blumenberg et al. 2004; Niemann & Elvert, 2008; Rossell et al. 2011),                           |
| 391 | another observation in favour of diffusive seepage (Nauhaus et al. 2005; Peckmann, Birgel &                   |
| 392 | Kiel, 2009). ANME-1 archaea, like ANME-2 archaea, are commonly associated with                                |
| 393 | sulphate-reducing bacteria of the Desulfosarcina/Desulfococcus branch of the                                  |
| 394 | Deltaproteobacteria (Knittel & Boetius, 2009). The bacterial partners of the ANME-1 archaea                   |
| 395 | can be discerned from those of ANME-2 archaea by a much higher proportion of <i>ai</i> -C <sub>15</sub> fatty |
| 396 | acid (Blumenberg et al. 2004; Niemann & Elvert, 2008), a compound that is particularly                        |
| 397 | abundant in the Buje limestones (see Fig. 10b). All these observations argue in favour of                     |
| 398 | diffusive seepage. It should, however, be kept in mind that other factors than just seepage                   |
| 399 | activity can influence the distribution of ANME-1 versus ANME-2 archaea and the                               |
| 400 | abundance of aerobic methanotrophs as well. An obvious factor for example is temperature,                     |
| 401 | whereby higher temperatures are known for favour ANME-1 over ANME-2 archaea                                   |
| 402 | (Nauhaus <i>et al.</i> 2005).                                                                                 |
| 403 | It is interesting to note that some Cretaceous seep deposits for which diffusive seepage                      |
| 404 | has been envisaged contain biomarkers of aerobic methanotrophs as well (Peckmann, Birgel                      |
| 405 | & Kiel, 2009; Sandy et al. 2012), although the majority of seep deposits lacks these                          |
| 406 | compounds (e.g. Peckmann & Thiel, 2004). Because the sulphate-methane transition zone                         |
| 407 | (SMTZ) tends to be situated deeper within the sediments at sites of diffusive seepage than at                 |
| 408 | sites of advective seepage (e.g. Sahling et al. 2002; Luff & Wallmann, 2003), we suggest that                 |
| 409 | the preservation of lipids of aerobic methanotrophs is favoured in limestones forming at seeps                |
| 410 | typified by diffusive seepage – this is not meant to say that aerobic methanotrophs are                       |
| 411 | necessarily more abundant at diffusive seeps. With aerobic methanotrophy being able to                        |
| 412 | extend to greater sediment depth at diffusive seeps, the likelihood probably increases that the               |
| 413 | lipids of aerobic methanotrophs become engulfed in authigenic seep carbonates at a later stage                |

#### **Proof For Review**

upon dilatation of the zone of anaerobic oxidation of methane. If seepage continues for extended periods of time – as envisaged for the thick Buje 1 deposit – the prolonged formation of methane-derived carbonates, thus, assures the preservation of process markers of those biogeochemical processes that occurred in close proximity of the strata affected by anaerobic oxidation of methane. This effect will be intensified upon variations of seepage intensity that allow for vertical displacement of the SMTZ (cf. Feng, Chen & Peckmann, 2009). An upward movement of the SMTZ caused by an increase of seepage intensity and accompanied by a shift of carbonate formation to shallower depth will particularly favour the preservation of the lipids of aerobic methanotrophs.

#### 424 6. Conclusions

The fossil record and molecular age estimates indicate that the dominant taxa of the modern vent and seep fauna appeared during the Eocene. The fossil record of seep communities of this age, however, is highly skewed toward the Pacific region and thus macrofauna of the Buje seep deposits provides a first glimpse into the seep fauna of the Tethyan region. The absence of the main modern taxa (bathymodiolin mussels and vesicomvid clams) from the Buje seeps agrees with other lines of evidence suggesting that the modern vent and seep fauna originated in the Pacific Ocean. The Buje seep fauna also indicates a dynamic evolution of seep faunas in the Tethyan/Mediterranean basin: it resembles Cretaceous to early Palaeogene seep faunas from other parts of the world, whereas the late Miocene 'Calcari a Lucina' fauna in Italy resembles other Miocene to modern seep faunas worldwide, and the Pliocene seep faunas from northern Italy have the somewhat restricted character of Mediterranean seep fauna today that probably resulted from the extinction of the more 'oceanic' Miocene seep faunas during the Messinian salinity crisis.

The Buje seep deposits formed as a consequence of anaerobic oxidation of methane as
revealed by the presence of <sup>13</sup>C-depleted biomarkers of methanotrophic archaea and

| 0          |  |
|------------|--|
| Z          |  |
| 3          |  |
| 4          |  |
| 4          |  |
| 5          |  |
| e e        |  |
| ю          |  |
| 7          |  |
| 0          |  |
| 8          |  |
| 9          |  |
| 40         |  |
| 10         |  |
| 11         |  |
| 11         |  |
| 12         |  |
| 13         |  |
| 10         |  |
| 14         |  |
| 15         |  |
| 10         |  |
| 16         |  |
| 17         |  |
| 11         |  |
| 18         |  |
| 19         |  |
| 10         |  |
| 20         |  |
| 21         |  |
| <u> </u>   |  |
| 22         |  |
| 22         |  |
| 23         |  |
| 24         |  |
| 25         |  |
| 25         |  |
| 26         |  |
| 27         |  |
| 21         |  |
| 28         |  |
| 20         |  |
| 29         |  |
| 30         |  |
| 04         |  |
| 31         |  |
| 32         |  |
| 02         |  |
| 33         |  |
| 34         |  |
| 07         |  |
| 35         |  |
| 36         |  |
| 50         |  |
| 37         |  |
| 20         |  |
| 50         |  |
| 39         |  |
| 40         |  |
| 40         |  |
| 41         |  |
| 12         |  |
| 42         |  |
| 43         |  |
| <u>1</u> 1 |  |
|            |  |
| 45         |  |
| 10         |  |
| 40         |  |
| 47         |  |
| 10         |  |
| 40         |  |
| 49         |  |
| E0         |  |
| 50         |  |
| 51         |  |
| 50         |  |
| 52         |  |
| 53         |  |
| с.<br>Г 4  |  |
| 54         |  |
| 55         |  |
| 50         |  |
| 56         |  |
| 57         |  |
| 51         |  |
| = -        |  |
| 58         |  |
| 58<br>59   |  |
| 58<br>59   |  |

| 440               | associated sulphate-reducing bacteria. Apart from these anaerobic prokaryotes, aerobic                                                                                                                                                                              |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 441               | methanotrophic bacteria lived at the middle Eocene seeps. Their metabolism apparently led to                                                                                                                                                                        |
| 442               | a local decrease of pore water pH values, which resulted in the dissolution of carbonate                                                                                                                                                                            |
| 443               | minerals. The large size of the Buje 1 deposit suggests that seepage activity was long-lasting.                                                                                                                                                                     |
| 444               | (1) Its faint stratification, (2) the dominance of authigenic micrite over early diagenetic                                                                                                                                                                         |
| 445               | fibrous cement, (3) biomarker patterns of the prokaryotes performing anaerobic oxidation of                                                                                                                                                                         |
| 446               | methane, and (4) possibly the preservation of the lipids of aerobic methanotrophs indicate that                                                                                                                                                                     |
| 447               | seepage activity was mostly diffusive rather than advective.                                                                                                                                                                                                        |
| 448               |                                                                                                                                                                                                                                                                     |
| 449               | Acknowledgements. We thank Leopold Slawek (Vienna, Austria) for thin section                                                                                                                                                                                        |
| 450               | preparation, Gerhard Hundertmark (Göttingen, Germany) for photography, Monika Segl                                                                                                                                                                                  |
| 451               | (Bremen, Germany) for carbon and oxygen isotope analysis of carbonate samples, Birgit Wild                                                                                                                                                                          |
| 452               | and Andreas Richter (both Vienna, Austria) for help with compound-specific carbon isotope                                                                                                                                                                           |
| 453               | measurements, Joachim Reitner (Göttingen, Germany) for comments on keratose sponges,                                                                                                                                                                                |
| 454               | and two anonymous referees for comments that helped improving the manuscript. Financial                                                                                                                                                                             |
| 455               | support was provided by the Deutsche Forschungsgemeinschaft through grant Ki802/6-1 to                                                                                                                                                                              |
| 456               | SK.                                                                                                                                                                                                                                                                 |
| 457               |                                                                                                                                                                                                                                                                     |
| 458               | References                                                                                                                                                                                                                                                          |
| 459<br>460<br>461 | <ul> <li>ARNING, E.T., BIRGEL, D., SCHULZ-VOGT, H.N., HOLMKVIST, L., JØRGENSEN, B.B., LARSSON,</li> <li>A. &amp; PECKMANN, J. 2008. Lipid biomarker patterns of phosphogenic sediments from upwelling regions. <i>Geomicrobiology Journal</i> 25, 69–82.</li> </ul> |
| 462<br>463        | AMANO, K. & KIEL, S. 2007. Fossil vesicomyid bivalves from the North Pacific region. <i>The Veliger</i> <b>49</b> , 270–293.                                                                                                                                        |
| 464<br>465<br>466 | BACHRATY, C., LEGENDRE, P. & DESBRUYÈRES, D. 2009. Biogeographic relationships among<br>deep-sea hydrothermal vent faunas at global scale. <i>Deep-Sea Research I</i> 56, 1371–<br>1378.                                                                            |
| 467<br>468<br>469 | BACO, A.R., ROWDEN, A.A., LEVIN, L.A., SMITH, C.R. & BOWDEN, D.A. 2010. Initial<br>characterization of cold seep faunal communities on the New Zealand Hikurangi<br>margin. <i>Marine Geology</i> 272, 251–259.                                                     |
| 470<br>471        | BAKER, M.Č., RAMIREZ-LLODRA, E., TYLER, P.A., GERMAN, C.R., BOETIUS, A., CORDES, E.E.,<br>DUBILIER, N., FISHER, C.R., LEVIN, L.A., METAXAS, A., ROWDEN, A.A., SANTOS, R.S.,                                                                                         |

| 1         |     |                                                                                                   |
|-----------|-----|---------------------------------------------------------------------------------------------------|
| 2         | 470 | SHAW TM VANDARD CL. VOIDIG CM & WADAY & 2010 Discoursely                                          |
| 3         | 472 | SHANK, I.M., VAN DOVER, C.L., YOUNG, C.M. & WAREN, A. 2010. Biogeography,                         |
| 4         | 4/3 | ecology, and vulnerability of chemosynthetic ecosystems in the deep sea. In: A.                   |
| 6         | 474 | Wiley Dischwall an 161, 192                                                                       |
| 7         | 475 | Wiley-Blackwell, pp. 101–182.                                                                     |
| 8         | 476 | BARBIERI, K. & CAVALAZZI, B. 2005. Microbial labrics from Neogene cold seep carbonates,           |
| 9         | 477 | Normern Apennine, Italy. Palaeogeography, Palaeoclimalology, Palaeoecology 221,                   |
| 10        | 478 | 143-133.<br>DIRCH D & DECKALANDI I 2009 Acrobic methomotromby at ancient maxime methoms scenes a  |
| 11        | 479 | BIRGEL, D. & PECKMANN, J. 2008. Aerobic methanotrophy at ancient marine methane seeps. a          |
| 12        | 480 | Synthesis. Organic Geochemistry 39, 1039–1007.                                                    |
| 13        | 481 | BIRGEL, D., PECKMANN, J., KLAUIZSCH, S., THIEL, V. & KEIINER, J. 2006. Anaerobic and              |
| 14<br>15  | 482 | LISA Commission for methane at Late Cretaceous seeps in the western Interior Seaway,              |
| 16        | 483 | USA. Geomicrobiology Journal 23, 565–577.                                                         |
| 17        | 484 | BIRGEL, D., THIEL, V., HINRICHS, KU., ELVERT, M., CAMPBELL, K.A., KEITNER, J., FARMER,            |
| 18        | 485 | J.D. & PECKMANN, J. 2006a. Lipid biomarker patterns of methane-seep microbialities                |
| 19        | 486 | from the Mesozoic convergent margin of California. Organic Geochemistry 37, 1289–                 |
| 20        | 487 |                                                                                                   |
| 21        | 488 | BIRGEL, D., ELVERT, M., HAN, X. & PECKMANN, J. 2008. C-depleted biphytanic diacids as             |
| 22        | 489 | tracers of past anaerobic oxidation of methane. Organic Geochemistry 39, 152–156.                 |
| 23        | 490 | BLUMENBERG, M., SEIFERT, R., REITNER, J., PAPE, T. & MICHAELIS, W. 2004. Membrane lipid           |
| 24        | 491 | patterns typify distinct anaerobic methanotrophic consortia. Proceedings of the National          |
| 20        | 492 | Academy of Sciences of the United States of America 101, 1111–11116.                              |
| 20        | 493 | BLUMENBERG, M., KRÜGER, M., NAUHAUS, K., TALBOT, H.M., OPPERMANN, B.I., SEIFERT, R.,              |
| 28        | 494 | PAPE, T. & MICHAELIS, W. 2006. Biosynthesis of hopanoids by sulphate-reducing                     |
| 29        | 495 | bacteria (genus Desulfovibrio). Environmental Microbiology 8, 1220–1227.                          |
| 30        | 496 | BOETIUS, A., RAVENSCHLAG, K., SCHUBERT, C.J., RICKERT, D., WIDDEL, F., GIESEKE, A.,               |
| 31        | 497 | AMANN, R., JØRGENSEN, B.B., WITTE, U. & PFANNKUCHE, O. 2000. A marine microbial                   |
| 32        | 498 | consortium apparently mediating anaerobic oxidation of methane. <i>Nature</i> 407, 623–626.       |
| 33        | 499 | CAMPBELL, K.A. 2006. Hydrocarbon seep and hydrothermal vent paleonvironments and                  |
| 34        | 500 | paleontology: Past developments and future research directions. Palaeogeography,                  |
| 30        | 501 | Palaeoclimatology, Palaeoecology 232, 362–407.                                                    |
| 37        | 502 | CAMPBELL, K.A. & BOTTJER, D.J., 1995. Peregrinella: an Early Cretaceous cold-seep-                |
| 38        | 503 | restricted brachiopod. Paleobiology 24, 461–478.                                                  |
| 39        | 504 | CAMPBELL, K.A., FARMER, J.D. & DES MARAIS, D. 2002. Ancient hydrocarbon seeps from the            |
| 40        | 505 | Mesozoic convergent margin of California: carbonate geochemistry, fluids and                      |
| 41        | 506 | palaeoenvironments. Geofluids 2, 63–94.                                                           |
| 42        | 507 | CAMPBELL, K.A., FRANCIS, D.A., COLLINS, M., GREGORY, M.R., NELSON, C.S., GREINERT, J.             |
| 43        | 508 | & AHARON, P. 2008. Hydrocarbon seep-carbonates of a Miocene forearc (East Coast                   |
| 44        | 509 | Basin), North Island, New Zealand. Sedimentary Geology 204, 83–105.                               |
| 45<br>46  | 510 | CHEVALIER, N., BOULOUBASSI, I., BIRGEL, D., TAPHANEL, HM. & LOPEZ-GARCIA, P. 2013.                |
| 40<br>//7 | 511 | Micorbial methane turnover at Marmara Sea cold seeps: a combined 16S rRNA and                     |
| 48        | 512 | lipid biomarker investigation. <i>Geobiology</i> 11, 55–71.                                       |
| 49        | 513 | CLARI, P.A., GAGLIARDI, C., GOVERNA, M.E., RICCI, B. & ZUPPI, G.M. 1988. I Calcari di             |
| 50        | 514 | Marmorito: una testimonianza di processi diagenetici in presenza di metano. Bollettino            |
| 51        | 515 | del Museo Regionale di Scienze Naturali di Torino 5, 197–216.                                     |
| 52        | 516 | CLARI, P., FORNARA, L., RICCI, B. & ZUPPI, G.M. 1994. Methane-derived carbonates and              |
| 53        | 517 | chemosymbiotic communities of Piedmont (Miocene, northern Italy): An update. Geo-                 |
| 54<br>55  | 518 | Marine Letters 14, 201–209.                                                                       |
| 55<br>56  | 519 | CLARI, P., PIERRE, F. DELA, MARTIRE, L. & CAVAGNA, S. 2009. The Cenozoic CH <sub>4</sub> -derived |
| 57        | 520 | carbonates of Monferrato (NW Italy): A solid evidence of fluid circulation in the                 |
| 58        | 521 | sedimentary column. <i>Marine Geology</i> <b>265</b> , 167–184.                                   |
| 59        |     |                                                                                                   |
| 60        |     | 19                                                                                                |

| 2        |     |                                                                                                 |
|----------|-----|-------------------------------------------------------------------------------------------------|
| 3        | 522 | CONTI, S. & FONTANA, D. 1999. Miocene chemoherms of the northern Apennines, Italy.              |
| 4        | 523 | <i>Geology</i> <b>27</b> , 927–930.                                                             |
| 5        | 524 | CONTI, S. & FONTANA, D. 2005. Anatomy of seep-carbonates: Ancient examples from the             |
| 6        | 525 | Miocene of the northern Apennines (Italy). Palaeogeography, Palaeoclimatology,                  |
| 7        | 526 | Palaeoecology <b>227</b> , 156–175.                                                             |
| 8        | 527 | DELA PIERRE E MARTIRE L. NATALICCHIO M. CLARI P & PETREA C. 2010 Authigenic                     |
| 9        | 528 | carbonates in Unner Miocene sediments of the Tertiary Piedmont Basin (NW Italy):                |
| 10       | 520 | Vostigos of an angient gas hydrote stability zone? Coological Society of America                |
| 11       | 529 | Dullatin 122, 004, 1010                                                                         |
| 12       | 530 | Builelin 122, 994-1010.                                                                         |
| 13       | 531 | DELECAT, S., PECKMANN, J. & REITNER, J. 2001. Non-rigid cryptic sponges in oyster patch         |
| 14       | 532 | reets (Lower Kimmeridgian, Langenberg/Oker, Germany). Facies 45, 231–254.                       |
| 15       | 533 | DROBNE, K. & PAVLOVEC, R. 1991. Paleocene and Eocene beds in Slovenia and Istria.               |
| 16       | 534 | Introduction to the Paleogene SW Slovenia and Istria. Field and guidebook IGCP                  |
| 17       | 535 | Project 286 "Early Paleogene Benthos", Second Meeting, pp 7–17.                                 |
| 18       | 536 | DUPRAZ, C., REID, R.P., BRAISSANT, O., DECHO, A.W., NORMAN, R.S. & VISSER, P.T. 2009.           |
| 19       | 537 | Processes of carbonate precipitation in modern microbial mats. <i>Earth-Science Reviews</i>     |
| 20       | 538 | 96 141-162                                                                                      |
| 21       | 539 | EICKHOFF M BIRGEL D TALBOT HM PECKMANN I & KAPPLER A 2013                                       |
| 22       | 540 | Bacteriohopanoid inventory of <i>Geobacter sulfurreducens</i> and <i>Geobacter</i>              |
| 23       | 540 | matallizeducens. Organic Geochemistry 58, 107, 114                                              |
| 25       | 541 | ELVEDT M. SUESS E & WULTICAP M I 1000 Anagraphic methons evidetion associated with              |
| 26       | 542 | ELVERT, M., SUESS, E. & WHITICAR, M.J. 1999. Anaerobic methane oxidation associated with        |
| 27       | 543 | marine gas hydrates: superlight C-isotopes from saturated and unsaturated $C_{20}$ and $C_{25}$ |
| 28       | 544 | irregular isoprenoids. Naturwissenschaften 86, 295–300.                                         |
| 29       | 545 | ELVERT, M., BOETIUS, A., KNITTEL, K. & JØRGENSEN, B.B. 2003. Characterization of specific       |
| 30       | 546 | membrane fatty acids as chemotaxonomic markers for sulphate-reducing bacteria                   |
| 31       | 547 | involved in anaerobic oxidation of methane. Geomicrobiology Journal 20, 403–419.                |
| 32       | 548 | FENG, D., CHEN, D. & PECKMANN, J. 2009. Rare earth elements in seep carbonates as tracers       |
| 33       | 549 | of variable redox conditions at ancient hydrocarbon seeps. Terra Nova 21, 49–56.                |
| 34       | 550 | GAILLARD, C., RIO, M. & ROLIN, Y. 1992. Fossil chemosynthetic communities related to vents      |
| 35       | 551 | or seeps in sedimentary basins: the pseudobioherms of southeastern France compared to           |
| 36       | 552 | other world examples Palaios 7 451–465                                                          |
| 37       | 553 | GILL FL HARDING LC LITTLE CTS & TODD LA 2005 Palaeogene and Neogene cold                        |
| 38       | 550 | seen communities in Barbados. Trinidad and Venezuela: An overview                               |
| 39       | 554 | Palaoogoography, Palaoolimatology, Palaoogoology 227, 101, 200                                  |
| 40       | 555 | COEDERT II. & Source D. L. 1000. Essents door as communities in localized limestores.           |
| 41       | 556 | GOEDERT, J.L. & SQUIRES, K.L. 1990. Eocene deep-sea communities in localized innestones         |
| 42       | 557 | formed by subduction-related methane seeps, southwestern Washington. Geology 18,                |
| 43       | 558 | 1182–1185.                                                                                      |
| 44       | 559 | GOEDERT, J.L. & KALER, K.L. 1996. A new species of <i>Abyssochrysos</i> (Gastropoda:            |
| 45       | 560 | Loxonematoidea) from a Middle Eocene cold-seep carbonate in the Humptulips                      |
| 46       | 561 | Formation, western Washington. The Veliger <b>39</b> , 65–70.                                   |
| 47       | 562 | GOHRBANDT, K., KOLLMANN, K., KÜPPER, H., PAPP, A., PREY, S., WIESENEDER, H. &                   |
| 40       | 563 | WOLETZ, G. 1960. Beobachtungen im Flysch von Triest. Verhandlungen der                          |
| 49<br>50 | 564 | Geologischen Bundesanstalt <b>1960</b> , 162–196.                                               |
| 51       | 565 | GREINERT, J., BOHRMANN, G. & ELVERT, M. 2002. Stromatolithic fabric of authigenic               |
| 52       | 566 | carbonate crusts; result of anaerobic methane oxidation at cold seeps in 4.850 m water          |
| 53       | 567 | depth International Journal of Earth Sciences 91 698–711                                        |
| 54       | 568 | HAAS A PECKMANN I ELVERT M SAHLING H & ROHRMANN G 2010 Patterns of                              |
| 55       | 560 | carbonate authioenesis at the Kouilou nockmarks on the Congo deen see for Marine                |
| 56       | 509 | Gaology <b>269</b> , 120, 126                                                                   |
| 57       | 570 | Use $U_{0}$ Up $U_{0}$ , $129-130$ .                                                            |
| 58       | 5/1 | nimmlek, 1., BRINKMANN, F., BUHRMANN, G. & PECKMANN, J. 2011. Corrosion patterns of             |
| 59       | 572 | seep-carbonates from the eastern Mediterranean Sea. Terra Nova 23, 206–212.                     |
| 60       |     | 20                                                                                              |

# **Proof For Review**

| 2        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3        | 573 | IADANZA, A., SAMPALMIERI, G., CIPOLLARI, P., MOLA, M. & COSENTINO, D. 2013. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4        | 574 | "Brecciated Limestones" of Maiella, Italy: Rheological implications of hydrocarbon-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5        | 575 | charged fluid migration in the Messinian Mediterranean Basin. Palaeogeography,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6        | 576 | Palaeoclimatology, Palaeoecology <b>390</b> , 130–147.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7        | 577 | KIEL, S. 2008. An unusual new gastropod genus from an Eocene hydrocarbon seep in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8        | 578 | Washington State, USA. Journal of Paleontology 82, 188-191.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9        | 579 | KIEL, S. 2010. The fossil record of vent and seep mollusks. In <i>The Vent and Seep Biota</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10       | 580 | Topics in Geobiology (Ed S.Kiel), pp. 255–278. Heidelberg: Springer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12       | 581 | KIEL, S., 2013. Lucinid bivalves from ancient methane seeps. Journal of Molluscan Studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12       | 582 | <b>79</b> . 346–363.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14       | 583 | KIEL S. & LITTLE, C.T.S., 2006. Cold seep mollusks are older than the general marine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 15       | 584 | mollusk fauna Science <b>313</b> 1429–1431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 16       | 585 | KIEL S & PECKMANN I 2007 Chemosymbiotic bivalves and stable carbon isotones indicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 17       | 586 | hydrocarbon seenage at four unusual Cenozoic fossil localities. <i>Lethaia</i> <b>40</b> 345–357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 18       | 587 | KIEL S & AMANO K 2013. The earliest bathymodiolin mussels: Evaluation of Eocene and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 19       | 500 | Oligocene tava from deen sea methane seen denosits in western Washington State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20       | 200 | USA Lowrad of Paleontology 97, 580, 602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 21       | 569 | USA. Journal of Faleoniology <b>6</b> 7, 369-002.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 22       | 590 | KNITTEL, K. & BOETIUS, A. 2009. Anaetobic Oxidation of methane. Flogress with an unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 23       | 591 | Process. Annual Review of Microbiology 63, 511-554.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 24<br>25 | 592 | KRAUSE, S., ALOISI, G., ENGEL, A., LIEBETRAU, V. & TREUDE, T. 2014. Ennanced calculation of the state of the |
| 20       | 593 | dissolution in the presence of the aerobic methanotroph <i>Methylosinus trichosporium</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20       | 594 | Geomicrobiology Journal 31, 325–337.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 28       | 595 | LORION, J., KIEL, S., FAURE, B.M., MASARU, K., HO, S. Y.W., MARSHALL, B.A., ISUCHIDA, S.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 29       | 596 | MIYAZAKI, JI. & FUJIWARA, Y. 2013. Adaptive radiation of chemosymbiotic deep-sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 30       | 597 | mussels. Proceedings of the Royal Society B 280, 20131243.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 31       | 598 | LUCENTE, C.C. & TAVIANI, M. 2005. Chemosynthetic communities as fingerprints of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 32       | 599 | submarine sliding-linked hydrocarbon seepage, Miocene deep-sea strata of the Tuscan-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 33       | 600 | Romagna Apennines, Italy. Palaeogeography, Palaeoclimatology, Palaeoecology 227,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 34       | 601 | 176–190.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 35       | 602 | LUFF, R. & WALLMANN, K. 2003. Fluid flow, methane fluxes, carbonate precipitation and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 36       | 603 | biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 37       | 604 | Margin: Numerical modeling and mass balances. <i>Geochimica et Cosmochimica Acta</i> 67,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 38       | 605 | 3403–3421.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 39<br>40 | 606 | LUO, C. & REITNER, J. 2014. First report of fossil "keratose" demosponges in Phanerozoic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 40       | 607 | carbonates: preservation and 3-D reconstruction. <i>Naturwissenschaften</i> <b>101</b> , 467–477.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 42       | 608 | MAJIMA, R., NOBUHARA, T. & KITAZAKI, T., 2005. Review of fossil chemosynthetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 43       | 609 | assemblages in Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 227, 86-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 44       | 610 | 123.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 45       | 611 | MARINČIĆ, S., ŠPARICA, M., TUNIS, G., UCHMAN, A. 1996. The Eocene flysch deposits of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 46       | 612 | Istrian Peninsula in Croatia and Slovenia: regional, stratigraphic, sedimentological and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 47       | 613 | ichnological analyses Annales 9 139–156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 48       | 614 | MARTIRE L. NATALICCHIO M. PETREA C.C. CAVAGNA S. CLARI P. & PIERRE F. 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 49       | 615 | Petrographic evidence of the past occurrence of gas hydrates in the Tertiary Piedmont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 50       | 616 | Basin (NW Italy) Geo-Marine Letters <b>30</b> 461–476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 51       | 617 | MATIČEC D 1994 Neotectonic deformations in Western Istria Croatia Geologia Croatica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 52<br>53 | 618 | <b>1</b> 7 199_204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 54       | 610 | MATSUMOTO R 1990 Vugay carbonate crust formed by bydrocarbon seenage on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 55       | 620 | continental shelf of Baffin Island northeast Canada <i>Canadamical Journal</i> <b>24</b> , 142, 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 56       | 620 | MOALIC V DESDRIVÈRES D DUARTE C M DOZENTELD À E DAGURATY C & ADVIND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 57       | 622 | HAOND S 2012 Biogeography revisited with network theory: Detracing the history of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 58       | 022 | HAUND, S. 2012. Diogeography revisited with network theory. Ketracing the history of hydrothermal want communities. Sustaination Dialogy (1, 107, 127)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 59       | 623 | nyuroinermai vent communities. Systematic Biology 61, 12/–13/.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60       |     | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| 2        |     |                                                                                           |
|----------|-----|-------------------------------------------------------------------------------------------|
| 3        | 624 | NATALICCHIO, M., BIRGEL, D., DELA PIERRE, F., MARTIRE, L., CLARI, P., SPÖTL, C. &         |
| 4        | 625 | PECKMANN, J. 2012. Polyphasic carbonate precipitation in the shallow subsurface:          |
| 5        | 626 | Insights from microbially-formed authigenic carbonate beds in upper Miocene               |
| 6        | 627 | sediments of the Tertiary Piedmont Basin (NW Italy). Palaeogeography,                     |
| 7        | 628 | Palaeoclimatology, Palaeoecology <b>329-330</b> , 158–172.                                |
| 8        | 629 | NATALICCHIO, M., DELA PIERRE, F., CLARI, P., BIRGEL, D., CAVAGNA, S., MARTIRE, L. &       |
| 9        | 630 | PECKMANN I 2013 Hydrocarbon seepage during the Messinian salinity crisis in the           |
| 10       | 631 | Tertiary Piedmont Basin (NW Italy) <i>Palaeogeography Palaeoclimatology</i>               |
| 11       | 632 | Palaenecology <b>390</b> 68–80                                                            |
| 12       | 622 | NALILIAUS K TREUDE T ROFTLUS A & KRÜCER M 2005 Environmental regulation of the            |
| 13       | 624 | anagraphic evidation of mathema: a comparison of ANME 1 and ANME 2 communities            |
| 14       | 054 | Eminormontal Microbiology 7, 08, 106                                                      |
| 16       | 635 | Environmenial Microbiology 1, 98–106.                                                     |
| 17       | 636 | NIEMANN, H. & ELVERI, M. 2008. Diagnostic lipid biomarker and stable carbon isotope       |
| 18       | 637 | signatures of microbial communities mediating the anaerobic oxidation of methane with     |
| 19       | 638 | sulphate. Organic Geochemistry <b>38</b> , 1668–1677.                                     |
| 20       | 639 | OLU-LE ROY, K., SIBUET, M., FIALA-MÉDONI, A., GOFAS, S., SALAS, C., MARIOTTI, A.,         |
| 21       | 640 | FOUCHER, JP. & WOODSIDE, J. 2004. Cold seep communities in the deep eastern               |
| 22       | 641 | Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes.      |
| 23       | 642 | Deep-Sea Research I <b>51</b> , 1915–1936.                                                |
| 24       | 643 | PAVŠIČ, J. & PECKMANN J. 1996. Stratigraphy and sedimentology of the Piran Flysch Area    |
| 25       | 644 | (Slovenia). Annales 9, 123–138.                                                           |
| 26       | 645 | PAULL, C.K., HECKER, B., COMMEAU, R., FREEMAN-LYNDE, R,P., NEUMANN, C., GOLUBIC, S.,      |
| 27       | 646 | HOOK, J.E., SIKES, E. & CURRAY, J. 1984. Biological communities at the Florida            |
| 28       | 647 | Escarpment resemble hydrothermal vent taxa. Science 226, 965–967.                         |
| 29       | 648 | PAUL C.K. JULL A LT. TOOLIN L.L & LINICK T. 1985 Stable isotone evidence for              |
| 30       | 649 | chemosynthesis in an abyssal seen community <i>Nature</i> <b>317</b> 709–711              |
| 31       | 650 | PAUL CK CHANTON I P NEUMANN A C COSTON I A MARTENS CS & SHOWERS W                         |
| 3∠<br>22 | 651 | 1902 Indicators of methane-derived carbonates and chemosynthetic organic carbon           |
| 34       | 652 | denosits: examples from the Florida Escarpment <i>Palajos</i> 7, 361, 375                 |
| 35       | 652 | DECRMANN L & THEL V 2004 Carbon evaling at ancient methane, seens <i>Chemical</i>         |
| 36       | 055 | Coology 205 442 467                                                                       |
| 37       | 054 | DECKMANN I DIRCEL D & VIEL S 2000 Melacular fassile reveal fluid composition and          |
| 38       | 055 | PECKMANN, J., DIRGEL, D. & KIEL, S. 2009. Molecular lossins reveal huid composition and   |
| 39       | 656 | now intensity at a Cretaceous seep. Geology 37, 847–850.                                  |
| 40       | 657 | PECKMANN, J., IHIEL, V., MICHAELIS, W., CLARI, P., GAILLARD, C., MARTIRE, L. & REITNER,   |
| 41       | 658 | J. 1999. Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and            |
| 42       | 659 | Marmorito (Miocene; northern Italy): microbially induced authigenic carbonates.           |
| 43       | 660 | International Journal of Earth Sciences 88, 60–75.                                        |
| 44       | 661 | PECKMANN, J., GOEDERT, J.L., HEINRICHS, T., HOEFS, J. & REITNER, J. 2003. The Late Eocene |
| 45       | 662 | 'Whiskey Creek' methane-seep deposit (Western Washington State). Facies 48, 223-          |
| 46       | 663 | 239.                                                                                      |
| 47       | 664 | PECKMANN, J., THIEL, V., REITNER, J., TAVIANI, M., AHARON, P. & MICHAELIS, W. 2004. A     |
| 48       | 665 | microbial mat of a large sulfur bacterium preserved in a Miocene methane-seep             |
| 49<br>50 | 666 | limestone. Geomicrobiology Journal 21, 247–255.                                           |
| 51       | 667 | PECKMANN, J., SENOWBARI-DARYAN, B., BIRGEL, D. & GOEDERT, J.L. 2007. The crustacean       |
| 52       | 668 | ichnofossil Palaxius associated with callianassid body fossils in an Eocene methane-      |
| 53       | 669 | seep limestone, Humptulips Formation, Olympic Peninsula, Washington, Lethaia 40           |
| 54       | 670 | 273–280.                                                                                  |
| 55       | 671 | REITNER J GAUTRET P MARIN F & NEUWEILER F 1995 Automicrites in modern marine              |
| 56       | 672 | microhialite Formation model via organic matrices (Lizard Island Great Barrier Paef       |
| 57       | 672 | Australia) Bulletin de l'Institut Océanographique (Monaco) Numéro Snécial 14, 237         |
| 58       | 674 | 264                                                                                       |
| 59       | 074 | <i>2</i> 0 <sup>-</sup> <b>1</b> .                                                        |
| 60       |     | 22                                                                                        |

| 1        |            |                                                                                                |
|----------|------------|------------------------------------------------------------------------------------------------|
| 2        | C75        | DETATED I THEFT V ZANKA II MICHAELIG W WÖUDHEIDE C & CALTDET D 2000                            |
| 3        | 675        | KEITNER, J., THIEL, V., ZANKL, H., MICHAELIS, W., WOHRHEIDE, G. & GAUTREI P. 2000.             |
| 4<br>5   | 677        | (eds R E Riding & S M Awramik) pp 149–160 Berlin Heidelberg: Springer Verlag                   |
| 6        | 679        | RICCL LICCHI F & VAL G B 1004 A stratigraphic and tectonofacies framework of the               |
| 7        | 670        | "calcari a Lucina" in the Apannine Chain Italy Gao Marina Lattars 14, 210, 218                 |
| 8        | 680        | RIGRY IK & GOEDERT II 1996 Fossil sponges from a localized cold-seen limestone in              |
| 9        | 691        | Oligocene rocks of the Olympic peninsula. Washington, <i>Journal of Palgontology</i> <b>70</b> |
| 10       | 683        | ong ong                                                                                        |
| 11       | 602        | PUTCER S CARSON R & SUESS E 1007 Methane derived authigenic carbonates formed by               |
| 12       | 601        | subduction induced nore water expulsion along the Oregon/Washington margin                     |
| 13       | 695        | Geological Society of America Bulletin <b>08</b> , 147, 156                                    |
| 15       | 686        | BITT B SADDAZINI I CADDAIS I C NOËL D GALITHED O DIEDDE C HENDY D &                            |
| 16       | 697        | Desponsible D 2010 First insights into the structure and environmental setting of              |
| 17       | 600        | cold seen communities in the Marmara See. Deen See Research 157, 1120, 1136                    |
| 18       | 600        | PODDICUES C.E. DUDEDDON S. & GAUDDON S.M. 2011 First documented record of a living             |
| 19       | 600        | solemvid bivelve in a pockmark of the Nile Deep see Ean (eastern Mediterranean See)            |
| 20       | 090<br>CO1 | Marina Diadiversity Basarda 4: a10                                                             |
| 21       | 691        | Maine Diouiveisity Records, 4. e10.                                                            |
| 22       | 692        | ROSSELL, P.E., ELVERI, M., KAMETTE, A., DOETIUS, A. & HINRICHS, KU. 2011. Factors              |
| 23       | 693        | controlling the distribution of anaerobic methanotrophic communities in marine                 |
| 24<br>25 | 694        | environments: Evidence from infact polar memorane lipids. <i>Geochimica et</i>                 |
| 20       | 695        | Cosmochimica Acta 15, 164–184.                                                                 |
| 20       | 696        | KOTERMAN, C.N., COPLEY, J.I., LINSE, K., IYLER, P.A. & ROGERS, A.D. 2013. The                  |
| 28       | 697        | biogeography of the yeti crabs (Kiwaidae) with notes on the phylogeny of the                   |
| 29       | 698        | Chirostyloidea (Decapoda: Anomura). Proceedings of the Royal Society B 280,                    |
| 30       | 699        | 20130718.                                                                                      |
| 31       | 700        | SAHLING, H., RICKERT, D., LEE, R.W., LINKE, P. & SUESS, E. 2002. Macrofaunal community         |
| 32       | 701        | structure and sulfide flux at gas hydrate deposits from Cascadia convergent margin, NE         |
| 33       | 702        | Pacific. Marine Ecology Progress Series 231, 121–138.                                          |
| 34       | 703        | SANDY, M.R., LAZÅR, I., PECKMANN, J., BIRGEL, D., STOICA, M. & ROBAN, R.D. 2012.               |
| 35       | 704        | Methane-seep brachiopod fauna within turbidites of the Sinaia Formation, Eastern               |
| 30<br>27 | 705        | Carpathian Mountains, Romania. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i>        |
| 38<br>38 | 706        | <b>323-325</b> , 42–59.                                                                        |
| 39       | 707        | SAUL, L.R., SQUIRES, R.L. & GOEDERT J.L. 1996. A new genus of cryptic lucinid? bivalve         |
| 40       | 708        | from Eocene cold seeps and turbidite-influenced mudstone, western Washington.                  |
| 41       | 709        | Journal of Paleontology <b>70</b> , 788–794.                                                   |
| 42       | 710        | SIBUET, M. & OLU, K. 1998. Biogeography, biodiversity and fluid dependence of deep-sea         |
| 43       | 711        | cold-seep communities at active and passive margins. Deep-Sea Research II 45, 517-             |
| 44       | 712        | 567.                                                                                           |
| 45       | 713        | SQUIRES, R.L. & GOEDERT J.L. 1991. New Late Eocene mollusks from localized limestone           |
| 46       | 714        | deposits formed by subduction-related methane seeps, southwestern Washington.                  |
| 47       | 715        | Journal of Paleontology 65, 412–416.                                                           |
| 40<br>70 | 716        | STILLER, J., ROUSSET, V., PLEIJEL, F., CHEVALDONNE, P., VRIJENHOEK, R.C. & ROUSE, G.W.         |
| 49<br>50 | 717        | 2013. Phylogeny, biogeography and systematics of hydrothermal vent and methane seep            |
| 51       | 718        | Amphisamytha (Ampharetidae, Annelida), with descriptions of three new species.                 |
| 52       | 719        | Systematics and Biodiversity 11, 35–65.                                                        |
| 53       | 720        | TAVIANI, M. 1994. The "calcari a Lucina" macrofauna reconsidered: Deep-sea faunal oases        |
| 54       | 721        | from Miocene-age cold vents in the Romagna Apennine, Italy. Geo-Marine Letters 14,             |
| 55       | 722        | 185–191.                                                                                       |
| 56       | 723        | TAVIANI, M. 2011. The deep-sea chemoautotroph microbial world as experienced by the            |
| 57       | 724        | Mediterranean metazoans through time. In Advances in Stromatolite Geobiology.                  |
| 58       |            |                                                                                                |
| 59<br>60 |            |                                                                                                |
| 00       |            | 74                                                                                             |

| 2        |     |                                                                                            |
|----------|-----|--------------------------------------------------------------------------------------------|
| 3        | 725 | Lecture Notes in Earth Sciences 131 (eds J. Reitner et al.), pp. 277–295. Berlin:          |
| 4        | 726 | Springer.                                                                                  |
| 5        | 727 | TAVIANI, M. 2014. Marine chemosynthesis in the Mediterranean Sea. In The Mediterranean     |
| 6        | 728 | Sea: Its history and present challenges (eds S. Goffredo & Z. Dubinsky), pp. 69-83.        |
| /        | 729 | Dordrecht: Springer.                                                                       |
| o<br>a   | 730 | TAVIANI, M., ANGELETTI, L. & CEREGATO, A. 2011. Chemosynthetic bivalves of the family      |
| 10       | 731 | Solemyidae (Bivalvia, Protobranchia) in the Neogene of the Mediterranean Basin.            |
| 11       | 732 | Journal of Paleontology 85, 1067–1076.                                                     |
| 12       | 733 | TAVIANI, M., ANGELETTI, L., CEREGATO, A., FOGLINI, F., FROGLIA, C. & TRINCARDI, F. 2013.   |
| 13       | 734 | The Gela Basin pockmark field in the strait of Sicily (Mediterranean Sea):                 |
| 14       | 735 | chemosymbiotic faunal and carbonate signatures of postglacial to modern cold seepage.      |
| 15       | 736 | Biogeosciences 10, 4653–4671.                                                              |
| 16       | 737 | TEICHERT, B.M.A. & VAN DE SCHOOTBRUGGE, B. 2013. Tracing Phanerozoic hydrocarbon           |
| 1/       | 738 | seepage from local basins to the global Earth system. Palaeogeography,                     |
| 10       | 739 | Palaeoclimatology, Palaeoecology <b>390</b> , 1–3.                                         |
| 20       | 740 | THIEL, V., PECKMANN, J., SCHMALE, O., REITNER, J. & MICHAELIS, W. 2001. A new straight-    |
| 21       | 741 | chain hydrocarbon biomarker associated with anaerobic methane cycling. Organic             |
| 22       | 742 | <i>Geochemistry</i> <b>32</b> , 1019–1023.                                                 |
| 23       | 743 | TREUDE, T., KNITTEL, K., BLUMENBERG, M., SEIFERT, R. & BOETIUS, A. 2005. Subsurface        |
| 24       | 744 | microbial methanotrophic mats in the Black Sea. Applied and Environmental                  |
| 25       | 745 | <i>Microbiology</i> <b>71</b> , 6375-6378.                                                 |
| 26       | 746 | TRIBOLLET, A., GOLUBIC, S., RADTKE, G. & REITNER, J. 2011. On microbiocorrosion. In        |
| 27       | 747 | Advances in Stromatolite Geobiology. Lecture Notes in Earth Sciences 131 (eds J.           |
| 28<br>20 | 748 | Reitner et al.), pp. 265–276. Berlin: Springer.                                            |
| 30       | 749 | VACELET, J., FIALA-MÉDIONI, A., FISHER, C.R. & BOURY-ESNAULT, N. 1996. Symbiosis           |
| 31       | 750 | between methane oxidizing bacteria and a deep-sea carnivorous cladorhizid sponge.          |
| 32       | 751 | Marine Ecology Progress Series 145, 77–85.                                                 |
| 33       | 752 | VENTURINI, S., SELMO, E., TARLAO, A. & TUNIS, G. 1998. Fossiliferous methanogenic          |
| 34       | 753 | limestones in the Eocene flysch of Istria (Croatia). Giornale di Geologia 60, 219–234.     |
| 35       | 754 | VRIJENHOEK, R.C., 2013. On the instability and evolutionary age of deep-sea chemosynthetic |
| 36       | 755 | communities. Deep-Sea Research II 92, 189–200.                                             |
| 37       | 756 | ŽIVKOVIC, S. & BABIĆ, L. 2003. Paleoceanographic implications of smaller benthic and       |
| 38<br>30 | 757 | planktonic foraminifera from the Eocene Pazin Basin (Coastal Dinarides, Croatia).          |
| 39<br>40 | 758 | <i>Facies</i> <b>49</b> , 49–60.                                                           |
| 41       | 759 |                                                                                            |
| 42       | 760 |                                                                                            |
| 43       |     |                                                                                            |
| 44       |     |                                                                                            |
| 45       |     |                                                                                            |
| 46       |     |                                                                                            |
| 47<br>10 |     |                                                                                            |
| 40<br>10 |     |                                                                                            |
| 50       |     |                                                                                            |

# Page 25 of 38

Figure and table captions:

# **Proof For Review**

| 2          |
|------------|
| 3          |
| 4          |
| 5          |
| 5          |
| 6          |
| 7          |
| 8          |
| 9          |
| 10         |
| 10         |
| 11         |
| 12         |
| 13         |
| 14         |
| 15         |
| 16         |
| 10         |
| 17         |
| 18         |
| 19         |
| 20         |
| 21         |
| 22         |
| ~~         |
| 23         |
| 24         |
| 25         |
| 26         |
| 27         |
| 20         |
| 20         |
| 29         |
| 30         |
| 31         |
| 32         |
| 33         |
| 34         |
| 25         |
| 30         |
| 30         |
| 37         |
| 38         |
| 39         |
| 40         |
| /1         |
| 41         |
| 42         |
| 43         |
| 44         |
| 45         |
| 46         |
| /7         |
| +/<br>40   |
| 48         |
| 49         |
| 50         |
| 51         |
| 52         |
| 53         |
| 55         |
| <b>0</b> 4 |
| 55         |
| 56         |
| 57         |
| 58         |
| 59         |
| 60         |
| 00         |

| 762 | Figure 1. Working area. (a) Distribution of the main domains of Cenozoic seep deposits in the      |
|-----|----------------------------------------------------------------------------------------------------|
| 763 | Mediterranean area. (b) Geological sketch of the Istria region and location of the Buje seep       |
| 764 | deposits (45°24'31''N, 13°40'01''E).                                                               |
| 765 |                                                                                                    |
| 766 | Figure 2. Composite image of studied Buje 1 to 3 seep deposits assembled from three                |
| 767 | photographs.                                                                                       |
| 768 |                                                                                                    |
| 769 | Figure 3. Outcrop photographs of the studied seep carbonates. (a) Buje 1 and 2 seep deposits;      |
| 770 | person for scale. Note that the Buje 1 seep deposit is faintly stratified. (b) The lenticular Buje |
| 771 | 3 seep deposit; hammer for scale.                                                                  |
| 772 |                                                                                                    |
| 773 | Figure 4. Bivalves from the Buje 1 seep deposit. (a-c) The solemyid Acharax; (a) large             |
| 774 | specimen (GZG.INV.82757), (b) detail showing the S-shaped band on the anterodorsal shell           |
| 775 | margin (arrow), and (c) small fragment showing radial ribs on the anterior part of the shell       |
| 776 | (GZG.INV.82758). (d) The protobranch Nucula (GZG.INV.82759). (e) Large specimen of                 |
| 777 | Thyasira showing the posterior sulcus (GZG.INV.82760). (f-j) The lucinid Amanocina; (f)            |
| 778 | specimen with naticid drill hole (arrow; GZG.INV.82761); (g,h) specimen showing the                |
| 779 | narrow escutcheon (GZG.INV.82762); (i,j) large specimen (GZG.INV.82763) in dorsal view             |
| 780 | (i) and view on the edentulous hinge (j).                                                          |
| 781 |                                                                                                    |
| 782 | Figure 5. Scanned thin sections of the three Buje seep deposits: (a) Buje 1, (b) Buje 2 (c) Buje   |
| 783 | 3. The limestones represent bioturbated mudstone and wackestone; arrows indicate geopetal          |
| 784 | cavities (a) and black corrosion rims (c).                                                         |

| 2  |  |
|----|--|
| 3  |  |
| 4  |  |
| 5  |  |
| 6  |  |
| 7  |  |
| 0  |  |
| 0  |  |
| 9  |  |
| 10 |  |
| 11 |  |
| 12 |  |
| 13 |  |
| 14 |  |
| 15 |  |
| 16 |  |
| 17 |  |
| 10 |  |
| 10 |  |
| 19 |  |
| 20 |  |
| 21 |  |
| 22 |  |
| 23 |  |
| 24 |  |
| 25 |  |
| 26 |  |
| 27 |  |
| 28 |  |
| 20 |  |
| 20 |  |
| 21 |  |
| 21 |  |
| 32 |  |
| 33 |  |
| 34 |  |
| 35 |  |
| 36 |  |
| 37 |  |
| 38 |  |
| 39 |  |
| 40 |  |
| 41 |  |
| 42 |  |
| 43 |  |
| 11 |  |
| 15 |  |
| 40 |  |
| 40 |  |
| 47 |  |
| 48 |  |
| 49 |  |
| 50 |  |
| 51 |  |
| 52 |  |
| 53 |  |
| 54 |  |
| 55 |  |
| 56 |  |
| 57 |  |
| 58 |  |
| 50 |  |
| 09 |  |
| οU |  |

| 786 | Figure 6. Petrography of Buje seep deposits. m – matrix micrite; pm – peloidal micrite; ccc –   |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------|--|--|--|--|
| 787 | circumgranular calcite cement; bbc – banded and botryoidal cement; s – sediment; ec – equant    |  |  |  |  |
| 788 | calcite cement. (a) Angular clasts cemented by matrix micrite, plane-polarized light. (b) Same  |  |  |  |  |
| 789 | detail as (a) showing the brightly fluorescent micrite; fluorescence image. (c) Fossiliferous   |  |  |  |  |
| 790 | wackestone containing planktic (white arrows) and benthic (black arrows) foraminifera;          |  |  |  |  |
| 791 | plane-polarized light. (d-f) Irregular cavities filled with peloidal micrite, sediment, and     |  |  |  |  |
| 792 | different generations of carbonate cements; plane-polarized light.                              |  |  |  |  |
| 793 |                                                                                                 |  |  |  |  |
| 794 | Figure 7. Petrography of cauliflower micrite. m – matrix micrite; pm – peloidal micrite; ccc –  |  |  |  |  |
| 795 | circumgranular calcite cement; cm – cauliflower micrite; ec – equant calcite cement. (a)        |  |  |  |  |
| 796 | Domal and grooved cauliflower micrite that grew on peloidal micrite and was postdated by        |  |  |  |  |
| 797 | circumgranular calcite and equant calcite cement, plane-polarized light. (b) Detail of (a). (c) |  |  |  |  |
| 798 | Close up view of the cauliflower micrite with internal reticulate porosity filled by microspar  |  |  |  |  |
| 799 | (arrows); crossed-polarized light. (d) The cauliflower micrite exhibits an intense              |  |  |  |  |
| 800 | autofluorescence; fluorescence image.                                                           |  |  |  |  |
| 801 |                                                                                                 |  |  |  |  |
| 802 | Figure 8. Corrosion patterns. m – matrix micrite; bbc – banded and botryoidal cement; s –       |  |  |  |  |
| 803 | sediment. (a) Highly irregular cavity surface covered by a black rim (arrows); plane-polarized  |  |  |  |  |
| 804 | light. (b) Close up view of the dark irregular rim (arrow); plane-polarized light. (c) Bright   |  |  |  |  |
| 805 | spots on corrosion surfaces reveal an enrichment in iron (Fe) and manganese (Mn); see           |  |  |  |  |
| 806 | inserted EDS spectrum; SEM micrograph of thin section, backscatter view.                        |  |  |  |  |
| 807 |                                                                                                 |  |  |  |  |
| 808 | Figure 9. Cross plot of the carbon and oxygen stable isotope compositions in per mil versus     |  |  |  |  |
| 809 | VPDB standard of micrite forming the Buje seep deposits.                                        |  |  |  |  |
| 810 |                                                                                                 |  |  |  |  |
|     |                                                                                                 |  |  |  |  |

### Page 27 of 38

### **Proof For Review**

| Figure 10. Lipid biomarker patterns of the Buje 1 seep deposit; numbers in italics indicate                  |
|--------------------------------------------------------------------------------------------------------------|
| compound-specific $\delta^{13}$ C values in per mil versus VPDB standard. Gas chromatograms (total           |
| ion current) of hydrocarbon (a) and carboxylic acid (b) fractions. (a) Circles $-n$ -alkanes;                |
| white triangles – regular, head-to-tail linked isoprenoids; black triangles – irregular, tail-to-tail        |
| linked isoprenoids; grey triangles - irregular, head-to-head linked isoprenoids (biphytanes);                |
| Cr -crocetane; Ph - phytane; PMI - pentamethylicosane; Sq - squalane; black squares -                        |
| steranes; istd – internal standard. (b) Circles – $n$ -fatty acids; $i - iso$ -fatty acids; $ai - anteiso$ - |
| fatty acids; M – monoenoic fatty acids; white triangles – regular, head-to-tail linked                       |
| isoprenoidal acids; PMI – pentamethylicosanoic acid; $\beta\beta$ -32-HA – $17\beta(H)$ , $21\beta(H)$ -     |
| bishomohopanoic acid; istd – internal standard.                                                              |
|                                                                                                              |
|                                                                                                              |
|                                                                                                              |
|                                                                                                              |
|                                                                                                              |

#### 822 Table 1. Schematic overview of the Palaeogene and Neogene seep deposits across the Mediterranean

|                                          |                               |                                                                                       |                                                                                                  | δ <sup>13</sup> C | δ <sup>18</sup> O |                                                                                                           |
|------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------|-------------------|-----------------------------------------------------------------------------------------------------------|
| Locality                                 | Age                           | Type of seep                                                                          | Fossil assemblage                                                                                | [%VPDB]           | [%VPDB]           | References                                                                                                |
| Emilian<br>Apennine (Italy)              | Early<br>Pliocene             | Fossiliferous<br>limestones, conduits                                                 | Solemyids and lucinids                                                                           | -25 to -17        | -3 to +3          | Taviani <i>et al.</i> 1997;<br>Barbieri and<br>Cavalazzi, 2005                                            |
| Tortona<br>Apennine<br>(Piedmont, Italy) | Late<br>Miocene               | <i>Lucina</i> and brecciated<br>limestones, carbonate<br>beds with veins,<br>conduits | Lucinids, tubeworms, bacterial biofilms                                                          | -56 to +6         | -6 to +7          | Dela Pierre <i>et al.</i><br>2010; Martire <i>et al.</i><br>2010; Natalicchio <i>et al.</i><br>2012, 2013 |
| Maiella, central<br>Apennine (Italy)     | Late<br>Miocene               | Brecciated limestones                                                                 | absent                                                                                           | -40 to +4         | -9 to +4          | Iadanza et al. 2013                                                                                       |
| Monferrato<br>(Piedmont, Italy)          | Middle<br>and Late<br>Miocene | <i>Lucina</i> and brecciated limestones, macroconcretions with veins, conduits        | Lucinids, tubeworms, bacterial biofilms                                                          | -45 to -9         | -1 to 8           | Clari <i>et al.</i> 1988, 1994,<br>2009; Peckmann <i>et al.</i><br>1999                                   |
| Sicily (Italy)                           | Middle<br>and Late<br>Miocene | <i>Lucina</i> and brecciated limestones                                               | Lucinids (?)                                                                                     | -49 to -29        | +3 to +9          | Ricci Lucchi and Vai,<br>1994                                                                             |
| Tuscan-<br>Romagna<br>Apennine (Italy)   | Early and<br>Late<br>Miocene  | Fossiliferous and brecciated limestones                                               | Solemyids, lucinids,<br>bathymodiolins, and<br>vesicomyids                                       | -58 to -16        | -5 to +5          | Taviani <i>et al.</i> 1997;<br>Conti and Fontana,<br>1999, 2005; Lucente<br>and Taviani, 2005             |
| Buje (Croatia)                           | Middle<br>Eocene              | Fossiliferous<br>limestones                                                           | Solemyids (Acharax),<br>thyasirids (Thyasira),<br>lucinids (Amanocina),<br>nuculids, Callianassa | -42 to -23        | -4 to 0           | Venturini <i>et al.</i> 1998;<br>this study                                                               |
|                                          |                               |                                                                                       |                                                                                                  |                   |                   |                                                                                                           |
|                                          |                               |                                                                                       |                                                                                                  |                   |                   |                                                                                                           |
|                                          |                               |                                                                                       |                                                                                                  |                   |                   |                                                                                                           |





Figure 1. Working area. (a) Distribution of the main domains of Cenozoic seep deposits in the Mediterranean area. (b) Geological sketch of the Istria region and location of the Buje seep deposits (45°24'31"N, 13°40'01"E).

129x208mm (600 x 600 DPI)



Figure 2. Composite image of studied Buje 1 to 3 seep deposits assembled from three photographs.  $48 \times 14mm$  (300 x 300 DPI)



Figure 3. Outcrop photographs of the studied seep carbonates. (a) Buje 1 and 2 seep deposits; person for scale. Note that the Buje 1 seep deposit is faintly stratified. (b) The lenticular Buje 3 seep deposit; hammer for scale.

121x185mm (300 x 300 DPI)



Figure 4. Bivalves from the Buje 1 seep deposit. (a-c) The solemyid Acharax; (a) large specimen (GZG.INV.82757), (b) detail showing the S-shaped band on the anterodorsal shell margin (arrow), and (c) small fragment showing radial ribs on the anterior part of the shell (GZG.INV.82758). (d) The protobranch Nucula (GZG.INV.82759). (e) Large specimen of Thyasira showing the posterior sulcus (GZG.INV.82760). (f-j) The lucinid Amanocina; (f) specimen with naticid drill hole (arrow; GZG.INV.82761); (g,h) specimen showing the narrow escutcheon (GZG.INV.82762); (i,j) large specimen (GZG.INV.82763) in dorsal view (i) and view on the edentulous hinge (j). 168x178mm (300 x 300 DPI)



Figure 5. Scanned thin sections of the three Buje seep deposits: (a) Buje 1, (b) Buje 2 (c) Buje 3. The limestones represent bioturbated mudstone and wackestone; arrows indicate geopetal cavities (a) and black corrosion rims (c). 165x341mm (300 x 300 DPI)





Figure 6. Petrography of Buje seep deposits. m – matrix micrite; pm – peloidal micrite; ccc – circumgranular calcite cement; bbc – banded and botryoidal cement; s – sediment; ec – equant calcite cement. (a) Angular clasts cemented by matrix micrite, plane-polarized light. (b) Same detail as (a) showing the brightly fluorescent micrite; fluorescence image. (c) Fossiliferous wackestone containing planktic (white arrows) and benthic (black arrows) foraminifera; plane-polarized light. (d-f) Irregular cavities filled with peloidal micrite, sediment, and different generations of carbonate cements; plane-polarized light. (191x215mm (300 x 300 DPI)



Figure 7. Petrography of cauliflower micrite. m – matrix micrite; pm – peloidal micrite; ccc – circumgranular calcite cement; cm – cauliflower micrite; ec – equant calcite cement. (a) Domal and grooved cauliflower micrite that grew on peloidal micrite and was postdated by circumgranular calcite and equant calcite cement, plane-polarized light. (b) Detail of (a). (c) Close up view of the cauliflower micrite with internal reticulate porosity filled by microspar (arrows); crossed-polarized light. (d) The cauliflower micrite exhibits an intense autofluorescence; fluorescence image.

127x96mm (300 x 300 DPI)



Figure 8. Corrosion patterns. m – matrix micrite; bbc – banded and botryoidal cement; s – sediment. (a) Highly irregular cavity surface covered by a black rim (arrows); plane-polarized light. (b) Close up view of the dark irregular rim (arrow); plane-polarized light. (c) Bright spots on corrosion surfaces reveal an enrichment in iron (Fe) and manganese (Mn); see inserted EDS spectrum; SEM micrograph of thin section, backscatter view. 182x416mm (300 x 300 DPI)





Figure 10. Lipid biomarker patterns of the Buje 1 seep deposit; numbers in italics indicate compound-specific δ13C values in per mil versus VPDB standard. Gas chromatograms (total ion current) of hydrocarbon (a) and carboxylic acid (b) fractions. (a) Circles – n-alkanes; white triangles – regular, head-to-tail linked isoprenoids; black triangles – irregular, tail-to-tail linked isoprenoids; grey triangles – irregular, head-to-head linked isoprenoids (biphytanes); Cr –crocetane; Ph – phytane; PMI – pentamethylicosane; Sq – squalane; black squares – steranes; istd – internal standard. (b) Circles – n-fatty acids; i – iso-fatty acids; ai – anteiso-fatty acids; M – monoenoic fatty acids; white triangles – regular, head-to-tail linked isoprenoidal acids; PMI – pentamethylicosanoic acid; ββ-32-HA – 17β(H),21β(H)-bishomohopanoic acid; istd – internal standard.

202x241mm (600 x 600 DPI)