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ARTICLE INFO ABSTRACT

Keywords: Expectations facilitate perception of expected stimuli but may hinder perception of unexpected alternatives.
Prior expectation Here, we consider how prior expectations about others’ intentions are integrated with visual kinematics over
Kinematics time in detecting the intention of an observed motor act (grasp-to-pour vs. grasp-to-drink). Using rigorous
Intention

psychophysics methods, we find that the processes of ascribing intentions to others are well described by drift
diffusion models in which evidence from observed movements is accumulated over time until a decision
threshold is reached. Testing of competing models revealed that when kinematics contained no discriminative
intention information, prior expectations predicted the intention choice of the observer. When kinematics
contained intention information, kinematics predicted the intention choice. These findings provide evidence for
a diffusion process in which the influence of expectations is modulated by movement informativeness and in-
formative kinematics can override initial expectations.

Action observation
Drift diffusion model

1. Introduction

If you see someone across the street waving an arm, they could be
hailing a taxi or swatting a fly. How do you decide which one it is?

One proposal is that the brain uses contextual cues to form ex-
pectations about the intention of the observed action (Clark, 2016;
Iacoboni, Molnar-Szakacs, Gallese, Buccino, & Mazziotta, 2005; Kilner,
2011; Summerfield & Egner, 2009). For example, seeing a yellow car
may lead you to expect that the person is trying to flag a taxi. According
to this view, the process of ascribing intentions to others begins even
before the start of the movement with a prior prediction of the goal or
intention of the to-be observed action (Kilner, 2011).

As soon as the other person starts moving, however, visually ob-
servable kinematics become another source of information to dis-
ambiguate intention. Observers watching an agent reaching to grasp an
object can judge properties of the object from the early kinematics of
the movement (Ansuini et al., 2016; Podda, Ansuini, Vastano, Cavallo,
& Becchio, 2017). Moreover, grasping kinematics transmit information
about what the agent will do next with the object, forming the basis for
ascribing intention (Ansuini, Cavallo, Bertone, & Becchio, 2015).
Combining quantitative behavioral methods with modelling, Cavallo,
Koul, Ansuini, Capozzi, and Becchio (2016) recently demonstrated that
intention discrimination covaries with movement kinematics on a trial-

by-trial basis. These latter results support a readout model in which, in
absence of contextual information, intention choice is directly related
to the unfolding parameters of the viewed movement (Becchio, Koul,
Ansuini, Bertone, & Cavallo, 2018). What remains to be investigated is
how contextual and kinematic information are integrated over time.
Contextual cues bias expectations about what is likely to occur, thereby
facilitating efficient processing of expected stimuli (Wurm & Schubotz,
2017). However, they can also be misleading. For example, despite the
approach of a taxi, the person may be still attempting to swat a fly. How
does the brain combine contextual information with the stream of ki-
nematic information to predict a response? Is kinematic evidence
powerful enough to overcome the initial, context-driven expectation?
A useful framework for addressing these questions is provided by
the drift diffusion model (DDM). The DDM is a sequential sampling
model that regards the decision process as the accumulation of sensory
information over time until a decision boundary threshold for choice is
reached (Bogacz, 2007; Gold & Shadlen, 2007; Ratcliff & McKoon,
2008; Ratcliff, Smith, Brown, & McKoon, 2016; Wagenmakers, 2009).
In two experiments, we used the DDM to separate the influence of ki-
nematics from the influence of context on the decision process. Parti-
cipants observed a hand reaching for a bottle, either to pour or to drink,
and were asked to decide on the intention of the observed movement. In
both experiments, movements were occluded at the time of contact of
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the fingers with the bottle. In the first, we varied the informativeness of
kinematic parameters of the observed reach-to-grasp movement to
show that in the absence of contextual information, the rate of ap-
proach to the decision boundary is determined by the amount of in-
tention-related information conveyed by movement kinematics (Ex-
periment 1). In the second experiment, we further varied the likelihood
of the upcoming movement (to drink or to pour) to show how the
contextual cues bias intention perception both prior to and during
evidence accumulation (Experiment 2).

2. Experiment 1

The DDM assumes that dichotomous decisions are based on the
accumulation of evidence. The accumulation begins at a starting point
(denoted 2), that reflects baseline evidence for each alternative. When
no prior information is available, the starting point z lies equidistant
from the two boundaries (a), and the rate of evidence accumulation
(drift rate, denoted v) is determined solely by the strength of the ob-
served signal. In the absence of contextual cues, information conveyed
by movement kinematics should set the drift rate. One way to in-
vestigate the influence of kinematic information on readout is to pro-
vide selective vision to different periods of the observed movement (e.g.
Chambon, et al., 2011). However, because the time available for visual
information processing is also varied across progressive occlusion
points, this paradigm makes it impossible to disentangle effects due to
actual information readout and the effects due to variations in the
length of the viewing period (Farrow, Abernethy, & Jackson, 2005). To
avoid this confusion, in Experiment 1, we took advantage of the readout
model developed by Cavallo et al. (2016) to manipulate the amount of
intention-related information transmitted by movement kinematics
while keeping the viewing period constant.

2.1. Materials and methods

2.1.1. Participants

Twenty right-handed participants (10 females, mean age 22 years,
range 19-27) took part in the experiment. The sample size was de-
termined in advance by power analysis using effect sizes observed in a
pilot study (n = 6). The sample size was calculated to detect a Cohen’s
d of 0.7 with alpha set at 0.05 (one-sided), and power set at 0.90 using
G*Power 3.1 (Faul, Erdfelder, Lang, & Buchner, 2007).

All participants had normal or corrected to normal vision and no
history of psychological or neurological disorders. Data from one par-
ticipant were discarded due to technical issues in data collection. Thus,
we report data from 19 participants (10 females, mean
age = 22.16 years, range = 19-27). The study was approved by local
ethical committee (Comitato Etico Regione Liguria) and was carried out
in accordance with the principles of the revised Helsinki Declaration
(World Medical Association General Assembly, 2008). All the partici-
pants provided written informed consent.

2.1.2. Stimuli generation

Video stimuli depicted a hand reaching towards and grasping a
bottle either with the intent to pour (grasp-to-pour) or to drink (grasp-
to-drink). Details of how these movements were acquired are available
from Cavallo et al. (2016). Below we provide a brief summary of the
methods relevant to this study.

Kinematics and video recording. A near-infrared motion capture
system with 9 cameras (frame rate, 100 Hz; Vicon System) was used to
track the hand kinematics of a distinct set of 17 naive participants
reaching towards and grasping a bottle with the intent either to pour
some water into a small glass (grasp-to-pour; N = 256) or to drink
water from the bottle (grasp-to-drink; N = 256). After data collection,
each trial was individually inspected for correct marker identification,
and then run through a low-pass Butterworth filter with a 6 Hz cut-off.
Kinematics parameters of interest (N = 16; see Supplementary Table 1)
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were computed throughout the reach-to-grasp phase of the movement
(based on reach onset and grasp offset) at intervals of 10% of the
normalized movement time. Movements were also filmed from a lateral
viewpoint using a digital video camera (Sony Handy Cam 3-D, 25
frames/sec) placed at about 120 cm from participant’s hand starting
position with the camera view angle directed perpendicularly to the
agent’s midline.

2.1.3. Stimuli selection

To manipulate the amount of intention-specifying information
transmitted by movements while keeping the viewing period constant,
we applied the Classification and Regression Tree (CaRT) model de-
veloped by Cavallo et al. (2016). Based on kinematic parameters of a
given movement, this readout model provides an estimate of the
probability of the predicted choice. In the present study, we combined
this information with the actual movement intention to select, for each
intention, two subsets of movements: (i) high-informative movements
(N = 50, 25 grasp-to-pour and 25 grasp-to-drink), i.e., movements for
which the predicted probability of correct choice was high (mean
predicted accuracy: 0.70); (ii) low-informative movements (N = 50, 25
grasp-to-pour and 25 grasp-to-drink), i.e., movements for which the
predicted probability of correct choice was at chance level (mean pre-
dicted accuracy: 0.50). The corresponding videos were used as stimuli
for the experiment (see Supplementary Videos 1-4). All video clips
were occluded at the time the fingers contacted the object using Adobe
Premiere Pro CS6 (.mp4 format, disabled audio, 25 frames/s, resolution
1280 x 800 pixel). Thus, each video clip started with the actual reach
onset, and ended at grasp offset, with the duration of the videos varying
according to the actual duration of the movements
(range = 760-1440 ms). The duration of the video clips did not differ
between intentions (grasp-to-pour: mean * SEM = 1.05 + 0.019s;
grasp-to-drink: mean * SEM = 1.02 + 0.019s; 1.25,
p = 0.21).

tos)

2.1.4. Task and procedure

Participants sat in front of a 24-inch computer monitor (1280 x 800
resolution, 75 Hz) at a viewing distance of 50 cm. Task structure con-
formed to a one-interval forced choice task with symmetric binary
choice (to drink vs. to pour). Each trial began with a screen (1500 ms)
informing the participant about the button press for a specific intention.
For half of the participants, the Italian word ‘beve’ (to drink) on the left
prompted a button press with index finger on the left button of a
wireless keyboard touchpad, while the word ‘versa’ (to pour) on the
right prompted a button press with middle finger on the touchpad right
button. The position of the two words was counterbalanced across
participants. This screen was followed by a green fixation cross (+) at
the center of the monitor for 1500 ms. Then, a video-clip showing the
reach-to-grasp phase of the action was presented. To ensure that
movement sequences could be temporally attended, i.e., that partici-
pants had enough time to focus on the hand before movement start, 9
(corresponding to 360 ms), 11 (440 ms), or 13 (520 ms) static frames
were randomly added at the beginning of each video clip. These static
frames depicted the initial hand posture as displayed in the first frame
of the to-be-observed video-clip. Participants were instructed to re-
spond drink or pour as accurately and quickly as possible either during
the video, or within a maximum of 3000 ms after the video ended. No
feedback was provided to participants at any stage of the experiment.

There were four blocks of 100 trials each. Each block randomly
mixed high-informative (N = 50) and low-informative movements
(N = 50). The entire experiment lasted approximately 60 min. Stimuli
presentation, timing, and randomization procedures were controlled
using E-prime (version 2.0.10.242).

2.1.5. Drift diffusion modeling
The proportion of correct responses and reaction times (RTs) for
correct and incorrect trials are shown in Fig. 1.



A. Koul et al.

a) accuracy b)
—— high-informative
—— low-informative 3
ﬁ 3
g g 2
8 3
5 g
5 £
o
O 050f-------\----cfreuunnn - c
Q

correct responses

Cognition 182 (2019) 213-219

reaction times

incorrect responses

)

X}

normalized RTs

high-informative low-informative

high-informative

low-informative high-informative low-informative

Fig. 1. Proportion of correct responses and reaction times in Experiment 1. Violin plots depicting distributions of proportion correct (a) and reaction times (b) for
high- and low-informative movements. Error bars represent standard error of mean.
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Fig. 2. Drift rate posterior probability distributions for high- and low-in-
formative movements in Experiment 1. Drift rates were significantly larger for
high-informative movements compared to low-informative movements (P, p
[high-informative > low-informative] = 1.0).

We fit each participant’s choices and RT distributions (for both
correct and incorrect trials) using a DDM. Estimation of the DDM
parameters was performed using the python-based hierarchical DDM
(HDDM) toolbox (Wiecki, Sofer, & Frank, 2013). This toolbox estimates
the parameter estimates in a Bayesian framework and additionally al-
lows for quantification of estimation uncertainty in the form of the
posterior distribution. The posterior distributions are approximated
accurately using the Markov chain Monte-Carlo (MCMC) sampling
methods. The DDM parameters are modelled as distributed according to
a normal (or truncated normal, depending on the bounds of parameter
intervals) distribution centred around the group mean with group
variance. A total of 5000 samples were drawn for each model where the
first 200 were discarded (burn-in) as the initial samples are likely to be
unreliable due to selection of random starting point.

We examined two variants of the DDM with different parameter
constraints for drift diffusion: Model 1 (M1) assumed the same value for
the drift rate for high-informative and low-informative movements,
Model 2 (M2) allowed drift rate to vary between high- and low-in-
formative movements. The deviance information criterion (DIC) was
used for model comparison, where lower DIC values favor models with
the highest likelihood and least number of parameters (Spiegelhalter,
Best, Carlin, & van der Linde, 2002). The actual absolute value of the
DIC is strongly dependent on the sample size of the experiment. A
difference of 10 between model DIC scores is generally interpreted as

evidence in favor of the better (i.e., lower) scoring model (Dunovan,
Tremel, & Wheeler, 2014).

Bayesian hypothesis testing was performed by analyzing the pos-
terior distribution of drift rate parameters. To determine significant
differences, we calculated the proportion of posteriors in which the drift
rate for high-informative movements was higher than that of low-in-
formative movements. A difference of less than 5% in the posterior
distribution overlap (P,p) was considered significant. Since the hier-
archical estimation procedure utilized violates the independence as-
sumption, we did not analyze subject parameter estimates in a fre-
quentistic test.

2.2. Results

We compared two variants of the HDDM with different constraints
for the drift diffusion parameter. The model fit significantly better when
drift was allowed to vary as a function of movement informativeness
(DIC = 28387.08 for M1, DIC = 28200.88 for M2). This indicates that
kinematics are incorporated in the decision process by a change in drift
rate.

Fig. 2 shows the posterior parameter estimates for high-informative
and low-informative movements. Drift rates were significantly larger
for high-informative movements than for low-informative movements
(Ppp [high-informative > low-informative] 1.0). As predicted,
whereas drift accumulation showed a positive gradient for high-in-
formative movements (PP|D [high-informative > 0] = 1.0), for low-
informative movements, drift rate was not significantly higher than 0
(Ppp [low-informative > 0 ] = 0.13). Taken together, these results
indicate that in the absence of contextual information, the rate of evi-
dence accumulation reflects the readout of the information conveyed by
movement kinematics.

3. Experiment 2

Having quantified the effect of movement informativeness on the
decision process, in Experiment 2 we proceeded to investigate how
movement informativeness is combined with context-driven expecta-
tions to make a response. Formally, two mechanisms have been sug-
gested for incorporating expectations about stimulus occurrence in
DDM: adjusting the starting point (z) of the decision process (the ‘origin
model’ or prior bias) or selectively increasing the rate of evidence ac-
cumulation (v) for the expected stimuli (the ‘gain model’ or dynamic
bias; Moran, 2015; for review, see Summerfield & de Lange, 2014). By
fitting alternative versions of the DDM, in Experiment 2 we tested the
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influence of these mechanisms both separately and in combination.
3.1. Materials and methods

3.1.1. Participants

Twenty healthy participants (10 females, mean age 22.25 years,
range 19-25) who had not taken part in Experiment 1 were recruited
for this study. All participants had normal or corrected to normal vision
and no history of psychological or neurological disorders. The study
was approved by local ethical committee (Comitato Etico Regione
Liguria) and was carried out in accordance with the principles of the
revised Helsinki Declaration (World Medical Association General
Assembly, 2008). All the participants provided written informed con-
sent.

3.1.2. Stimuli, task and procedures

The stimuli, task, and procedures were identical to those used in
Experiment 1, except that each trial was preceded by a cue informing
the participant of the probability that the upcoming stimulus would be
a ‘to drink’ or ‘to pour’ movement. The cue consisted of the Italian word
‘beve 80%’ (to-drink 80%) or ‘versa 80%’ (to-pour 80%) displayed
above the picture of the to-be-grasped bottle. An empty glass was dis-
played close to the bottle when the cue was ‘to-pour 80%’, but not when
the cue was ‘to-drink 80%’. Participants were informed of the cue’s
meaning prior to starting the experiment. For example, a ‘to-pour 80%’
cue indicated an 80% probability of seeing a grasp-to-pour movement
and a 20% probability of seeing a grasp-to-drink movement on the
upcoming trial. After 2000 ms, the cue screen disappeared and the trial
began. This manipulation resulted in four conditions: high-informative
movements preceded by a valid cue (valid/high-informative), high-in-
formative movements preceded by an invalid cue (invalid/high-in-
formative), low-informative movements preceded by a valid cue (valid/
low-informative), low-informative movements preceded by an invalid
cue (invalid/low-informative). As in experiment 1, participants com-
pleted 4 blocks. Each block had 100 trials with 80 valid trials (40
trials X 2 movement informativeness [high/low] and 20 invalid trials
(10 trials x 2 movement informativeness [high/low]). The entire ex-
periment lasted approximately 70 min.

3.1.3. Drift diffusion modeling

The proportion of correct responses and reaction times (RTs) for
correct and incorrect trials per condition are shown in Fig. 3.

We compared four hypothetical variants of the DDM for the inten-
tion choice behavior with different constraints for the starting point z
and the drift rate v parameters. Model 1 (M1) included a single estimate

for both the starting point and the drift rate. Model 2 (M2) included a
a) accuracy

b)

correct responses

proportion correct
normalized RTs
™

0.00
\ |
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Table 1
Experiment 2. Deviance information criterion (DIC) for competing diffusion
models of increasing complexity.

Model  Model parameter dependencies DIC values

M1 None 30648.12

M2 ‘v’ depends on movement informativeness 30445.57

M3 ‘v’ depends on movement informativeness 30441.98
‘2’ depends on cue

M4 ‘v’ depends on movement informativeness and cue validity =~ 30182.37

‘2’ depends on cue

single estimate for the starting point but allowed the drift rate to vary
between high- and low-informative movements. Model 3 (M3) assumed
a variable starting point as a function of cue and a variable drift rate as
function of movement informativeness. The fourth model, M4, assumed
a variable starting point as a function of cue. In addition, it assumed the
drift rate to vary as a function of both cue validity and movement in-
formativeness.

3.2. Results

Table 1 shows DIC values as a function of model complexity. Based
on estimated DIC values for each model, the model fit better when the
starting point varied as a function of cue and the drift rate was allowed
to vary as a function of both cue validity and movement informative-
ness (M4). Because DIC score for M4 was lower than that of all the other
models by at least 10 (Burnham & Anderson, 2002), this indicates that
M4 provided a sufficiently better fit to the data than competing models
to justify its greater complexity.

Examining posterior probability estimates of starting point, con-
firmed a significant shift in the origin of the accumulation process as a
function of cue (Ppp [cue ‘to drink’ < 0.5] < 0.001 and P, [cue ‘to
pour’ > 0.5] < 0.001). This indicates that when one intention (e.g., ‘to
drink) was more probable than the other intention (e.g., ‘to pour’) as
signaled by the contextual cue, the starting point of the decision process
(2) shifted towards the ‘to-drink’ boundary and vice versa. Additionally,
drift rates of both high-informative and low-informative movements
were faster following a valid cue than an invalid cue (Pp|p [valid/high-
informative > invalid/high-informative] = 1.0; P,p [valid/low-in-
formative > invalid/low-informative] 1.0), with valid/high-in-
formative drift rates being faster than valid/low-informative drift rates
(Ppp [valid/high-informative > valid/low-informative] = 1.0). This
indicates that uptake of intention-specifying information was faster for
expected (validly cued) compared to unexpected (invalidly cued)
movements.

reaction times
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Fig. 3. Proportion of correct responses and reaction times in Experiment 2. Violin plots depicting distributions of proportion correct (a) and reaction times (b) for
high- and low-informative movements following a valid (solid line) or invalid cue (dashed line). Error bars represent standard error of mean.
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Fig. 4. Starting point (a) and drift rate (b) posterior probability distributions in Experiment 2. When one intention (e.g., ‘to drink) was more probable than the other
intention (e.g., ‘to pour’) as signaled by a contextual cue, the starting point of the decision process shifted towards the cued boundary (Panel a). The drift rates of both
high-informative (red curves) and low-informative (blue curves) movements were faster following a valid cue (solid line) than an invalid cue (dashed lines), with
valid/high-informative drift rates being faster than valid/low-informative drift rates. All drift rates had positive values except invalid/low-informative. This indicates
that on all but invalid/low-informative movements the process reached the correct response boundary (Panel b). (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

As illustrated in Fig. 4, for low-informative movements, valid and
invalid drift rates had opposite signs. This indicates that on valid cue
trials observers were driven towards the correct response boundary. For
invalid cue trials, however, they were driven towards the incorrect
response boundary. For high-informative movements, drift rates had
positive values under both valid and invalid cue conditions (Pyp [valid/
low-informative > 0] = 1.0 and P,p [invalid/high-informative > 0]
1.0). This indicates that regardless of cue validity the process
reached the correct response boundary, though more slowly for invalid
cues than for valid cues.

4. General discussion

If you see someone across the street waving an arm, are they hailing
a taxi or swatting a fly? How do we decide?

Our results show that, in the absence of contextual influences, the
readout of kinematic information drives the decision. Observed move-
ments vary in the amount of intention-specifying information they
transmit (Becchio et al., 2018; Cavallo et al., 2016). Our DDM analysis
in Experiment 1 shows that, in the absence of contextual cues, the rate
of evidence accumulation reflects the uptake of such information, and is
significantly higher for high-informative movements than low-in-
formative movements. This complements earlier work (Cavallo et al.,
2016) by showing that variations in movement informativeness map
directly onto the amount of information per time unit that is absorbed.

A second finding is that expectations bias intention attribution both
prior to and during evidence accumulation. Accumulation-to-bound
models provide two possible explanations for the effects of expecta-
tions: (i) expectations lead to shifts in the starting point of evidence
accumulation (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006;
Diederich & Busemeyer, 2006; Edwards, 1965; Laming, 1968; Link &
Heath, 1975; Ratcliff, 1985; Voss, Rothermund, & Voss, 2004;
Wagenmakers, Ratcliff, Gomez, & Mckoon, 2007); or (ii) expectations
change the rate with which evidence is accumulated (Ashby, 1983;
Diederich & Busemeyer, 2006; Ratcliff, 1985). Our findings (Experi-
ment 2) suggest that both these mechanisms influence the ascription of
intention. Prior to evidence accumulation, expectations bias partici-
pants to make one response over the other by displacing the starting
point towards the cued intention (e.g., to pour). During evidence ac-
cumulation, a dynamic mechanism ensures that this initial bias trans-
lates into a gain in processing expected kinematics.

Consistent with the Bayesian perspective that prior information
should hold most sway over decisions when sensory evidence is im-
precise or ambiguous (Summerfield & De Lange, 2014), we found that

the influence of expectations on evidence accumulation was greater for
low-informative movements than for high-informative movements.
Notably, participants exposed to invalidly cued high-informative
movements were nonetheless able to identify the unexpected intention.
A third implication of our results is that informative kinematics can
counter invalid contextual expectations.

These findings have consequences for theories casting action un-
derstanding as hierarchical predictive coding (Clark, 2013, 2016;
Friston, Mattout, & Kilner, 2011; Kilner, Friston, & Frith, 2007; Zacks,
Speer, Swallow, Braver, & Reynolds, 2007). Under predictive coding,
evidence accumulation is best conceived as an evolving probability
distribution over multiple possible causes (that is, a generative model)
of sensation. The generative model starts with a prior prediction of the
intention of an observed action. Given this prior, the model generates a
prediction of the kinematics of the action. By comparing the predicted
sensory evidence with the actual sensory evidence, the system can as-
sess the likelihood of the intention. If the prediction is correct, we are
able to infer the intention of the observed action (Kilner et al., 2007).

But what if the prediction is incorrect? Predictive coding theories
typically make the simplifying assumption that “kinematics are not
transparently present in motor sequences alone, since there is no unique
mapping between such sequences and the intentions behind them”
(Clark, 2016). Under this assumption, the intention that is inferred will
always “depend upon the prior information received from a contextual
level” (Kilner et al., 2007). It follows that if the prediction is incorrect,
the incorrectly predicted intention should be inferred.

Our results show that this analysis corresponds to the limited case of
unexpected (i.e., invalidly cued) low-informative movements. For high-
informative movements, the error term generated by the comparison
between predicted and observed kinematics is large enough to override
the initial incorrect prediction. ‘What is present’ thus prevails over
‘what is probable’. This challenges the common view that kinematic
information “under-constraints the space of candidate cause” and
therefore requires prior expectations for intention understanding (e.g.
Chambon et al., 2011).

Taken together, our findings give evidence for a model in which the
influence of expectations is modulated by movement informativeness
(Fig. 5). It would be interesting to explore extensions of this model from
decision tasks with only two alternatives to real-world decisions with
multiple alternatives. Another important future direction will be to
examine situations in which kinematic information and contextual in-
formation change not only from trial to trial (as in the present task) but
also within a trial. For instance, during the unfolding of a given action,
the spatial arrangement of the observed scenario might change, or
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Fig. 5. Schematic representation of drift diffusion model of the decision process as a function of movement informativeness and expectations. For high-informative
movements, the process reaches the correct response boundary regardless of the expected intention. For low-informative movements, the processes reaches the

correct response boundaries only when the correct intention is expected.

additional contextual information might be provided. Understanding
how human observers integrate information present at different time
points may lead to a better comprehension of the dynamics of evidence
accumulation over time. Finally, it would be important to consider si-
tuations in which “behavior affords behavior” and the perceived action
is directly tied to one’s own action or not (Tversky, 2018). Visual mo-
tion direction decisions have been shown to be biased by the cost of the
action that is used to report the decision (Hagura, Haggard, &
Diedrichsen, 2017). We would predict that the cost of and the possi-
bility for our own actions also partly define how we ascribe intentions
to others (Sommerville & Woodward, 2005; Sommerville, Woodward, &
Needham, 2005).
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