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ABSTRACT

Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant
systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken
place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of
particular attention since the first TESS observations hinted at the possible presence of a near 2:3:3 resonant chain. Here we report the results of
observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system.
We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from 1.152+0.073

−0.070 to 2.87+0.14
−0.13

Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71 days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace
resonances, and the planetary densities show important variations from planet to planet, jumping from 1.02+0.28

−0.23 to 0.177+0.055
−0.061 times the Earth’s

density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary
in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain
of Laplace resonances. The brightness of TOI-178 (H=8.76 mag, J=9.37 mag, V=11.95 mag) allows for a precise characterisation of its orbital
architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and
the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution,
providing important clues on the formation of super-Earths and mini-Neptunes.

1. Introduction

Since the discovery of the first exoplanet orbiting a Sun-like star
by Mayor & Queloz (1995), the diversity of observed plane-
tary systems has continued to challenge our understanding of
their formation and evolution. As an ongoing effort to under-
stand these physical processes, observational facilities strive to
get a full picture of exoplanetary systems by looking for addi-

? CHEOPS Fellow
?? Winton Fellow

??? Juan Carlos Torres Fellow

tional candidates to known systems and by better constraining
the orbital architecture, radii, and masses of the known planets.

In particular, chains of planets in mean-motion resonances
(MMRs) are ‘Rosetta Stones’ of the formation and evolution of
planetary systems. Indeed, our current understanding of plane-
tary system formation theory implies that such configurations
are a common outcome of protoplanetary discs: Slow conver-
gent migration of a pair of planets in quasi-circular orbits leads
to a high probability of capture in first-order MMRs – the period
ratio of the two planets is equal to (k + 1)/k, with k an integer
(Lee & Peale 2002; Correia et al. 2018). As the disc strongly
damps the eccentricities of the protoplanets, this mechanism can
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repeat itself, trapping the planets in a chain of MMRs and lead-
ing to very closely packed configurations (Lissauer et al. 2011).
However, resonant configurations are not the most common or-
bital arrangements (Fabrycky et al. 2014). As the protoplanetary
disc dissipates, the eccentricity damping lessens, which can lead
to instabilities in packed systems (see, for example, Terquem &
Papaloizou 2007; Pu & Wu 2015; Izidoro et al. 2017).

For planets that remained in resonance and are close enough
to their host stars, tides become the dominant force that affects
the architecture of the systems, which can then lead to a de-
parture of the period ratio from the exact resonance (Henrard
& Lemaitre 1983; Papaloizou & Terquem 2010; Delisle et al.
2012). In some near-resonant systems, such as HD 158259, the
tides seem to have pulled the configuration entirely out of res-
onance (Hara et al. 2020). However, through gentle tidal evo-
lution it is possible to retain a resonant state even with null ec-
centricities through three-body resonances (Morbidelli 2002; Pa-
paloizou 2015). Such systems are too fine-tuned to result from
scattering events and hence can be used to constrain the outcome
of protoplanetary discs (Mills et al. 2016).

A Laplace resonance, in reference to the configuration of Io,
Europa, and Ganymede, is a three-body resonance where each
consecutive pair of bodies is in, or close to, two planet MMRs.
To date, only a few systems have been observed in a chain
of Laplace resonances: GJ 876 (Rivera et al. 2010), Kepler-60
(Goździewski et al. 2016), Kepler-80 (MacDonald et al. 2016),
Kepler-223 (Mills et al. 2016), Trappist-1 (Gillon et al. 2017;
Luger et al. 2017), and K2-138 (Christiansen et al. 2018; Lopez
et al. 2019). Out of these six systems, only K2-138 has so far
been observed by both transit and radial velocity (RV), mainly
due to the relative faintness of the other host stars in the visible
(V magnitudes greater than ∼14). However, TTVs could also be
used to estimate the mass of their planets (see, for example, Agol
et al. (2020) for the case of Trappist-1).

In this study, we present photometric and RV observations of
TOI-178, a V = 11.95 mag, K-type star that was first observed by
TESS1 in its Sector 2. We jointly analyse the photometric data of
TESS, two nights of NGTS2 and SPECULOOS3 data, and 285
hours of CHEOPS4 observations, along with 46 ESPRESSO5

RV points. This follow-up effort allows us to decipher the archi-
tecture of the system and demonstrate the presence of a chain of
Laplace resonances between the five outer planets.

We begin in Sect. 2 by presenting the rationale that led to
the CHEOPS observation sequence (two visits totalling 11 d fol-
lowed by two shorter visits). In Sect. 3, we describe the param-
eters of the star. In Sect. 4, we present the photometric and RV
data we use in the paper. In Sect. 5, we show how these data led
us to the detection of six planets – the outer five of which are in a
chain of Laplace resonances – and to constrain their parameters.
In Sect. 6, we explain the resonant state of the system, discuss its
stability, and describe the transit timing variations (TTVs) that
this system could potentially exhibit in the coming years. Fi-
nally, we discuss the internal structure of the planets in Sect. 7,
and conclusions are presented in Sect. 8.

2. CHEOPS observation strategy

The CHEOPS observation consisted of one long double visit (11
days) followed by two short visits (a few hours each) at pre-
cise dates. We explain in this section how we came up with this
particular observation strategy. Details on all the data used and
acquired, as well as their analysis, are presented in the following
sections.

The first release of candidates from the TESS alerts of Sec-
tor 2 included three planet candidates in TOI-178 with periods
of 6.55 d, 10.35 d, and 9.96 d. Based on these data, TOI-178 was
identified as a potential co-orbital system (Leleu et al. 2019) with
two planets oscillating around the same period. This prompted
ESPRESSO RV measurements and two sequences of simulta-
neous ground-based photometric observations with NGTS and
SPECULOOS. From the latter, no transit was observed for TOI-
178.02 (P = 10.35 d) in September 2019; however, a tran-
sit ascribed to this candidate was detected one month later by
NGTS and SPECULOOS. The abovementioned absence of a
TOI-178.02 transit combined with the three transits observed by
TESS at high S/N (above 10) was interpreted as an additional
sign of the strong TTVs expected in a co-orbital configuration.
This solution was supported by RV data that were consistent with
the horseshoe orbits of objects with similar masses (Leleu et al.
2015).

A continuous 11 d CHEOPS observation (split into two vis-
its for scheduling reasons) was therefore performed in August
2020 in order to confirm the orbital configuration of the system;
as the instantaneous period of both members of the co-orbital
pair will always be smaller than 11 d, at least one transit of both
targets should thus be detectable. Analysis of this light curve
led to the confirmation of the presence of two of the planets al-
ready discovered by TESS (in this study denoted as planets d
and e, with periods of 6.55 d and 9.96 d, respectively) and the
detection of two new inner transiting planets (denoted planets
b and c, with periods of 1.9 d and 3.2 d, respectively). How-
ever, one of the planets belonging to the proposed co-orbital pair
(with a period of 10.35 d) was not apparent in the light curve.
A potential hypothesis was that the first and third transit of the
TOI-178.02 candidate (P = 10.35 d) during TESS Sector 2 be-
longed to a planet of twice the period (20.7 d), while the second
transit belonged to another planet of unknown period. This sce-
nario was supported by the two ground-based observations men-
tioned above since a P = 20.7 d planet would not transit during
the September 2019 observation window. Using the ephemerides
from fitting the TESS, NGTS, and SPECULOOS data, we pre-
dicted the mid-transit of the 20.7-day candidate to occur between
UTC 14:06 and 14:23 on September 7, 2020 with 98% certainty.
A third visit of CHEOPS observed the system around this epoch
for 13.36 h and confirmed the presence of this new planet (g)
at the predicted time with consistent transit parameters. Further
analysis of all available photometric data found two possibilities
for the unknown period of the additional planet: ∼ 12.9 d or
∼ 15.24 d.

Careful analysis of the whole system additionally revealed
that planets c, d, e, and g were in a Laplace resonance. In or-
der to fit in the resonant chain, the unknown period of the ad-
ditional planet could have only two values: P = 13.4527 d or

1 Transiting Exoplanet Survey Satellite
2 Next Generation Transit Survey
3 Search for habitable Planets EClipsing ULtra-cOOl Stars
4 CHaracterising ExOPlanet Satellite
5 Echelle Spectrograph for Rocky Exoplanet and Stable Spectroscopic
Observations
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Fig. 1. Light curves from TESS Sector 2 described in Sects. 2 and 4.1.1. Unbinned data are shown as grey points, and data in 30-minute bins are
shown as black circles. The best fitting transit model for the system is shown in black; the associated parameter values are shown in Tables 3 and
4. The positions of the transits are marked with lines coloured according to the legend. The photometry before and after the mid-sector gap are
shown in the top and bottom panels, respectively. As the first transit of planet f (thick teal line) occurred precisely between the two transits of the
similarly sized planet g (period of 20.71 d - red lines), the three transits were originally thought to have arisen due to a single planet, which was
originally designated TOI-178.02 with a period of 10.35 d (see Sect. 2).

P = 15.2318 d (see Appendix C, Fig. C.1), the latter value being
more consistent with the RV data. A fourth CHEOPS visit was
therefore scheduled for 3 October, and it detected the transit for
the additional planet at a period of 15.231915+0.000115

−0.000095 day.
As we will detail in the following sections, we can confirm

the detection of a 6.56-day and a 9.96-day period planet by TESS
using the new observations presented in this paper. Furthermore,
we can announce the detection of planets with periods of 1.91,
3.24, 15.23, and 20.71 d (see Tables 3 and 4 for the complete
parameters of the system).

3. TOI-178 stellar characterisation

Forty-six ESPRESSO observations (see Sect. 4.2) of TOI-178,
a V = 11.95 mag K-dwarf, have been used to determine the
stellar spectral parameters. These observations were first shifted
and stacked to produce a combined spectrum. We then used the
publicly available spectral analysis package SME (Spectroscopy
Made Easy; Valenti & Piskunov 1996; Piskunov & Valenti 2017)
version 5.22 to model the co-added ESPRESSO spectrum. We
selected the ATLAS12 model atmosphere grids (Kurucz 2013)
and atomic line data from VALD to compute synthetic spec-
tra, which were fitted to the observations using a χ2-minimising
procedure. We modelled different spectral lines to obtain differ-
ent photospheric parameters starting with the line wings of Hα,
which are particularly sensitive to the stellar effective temper-
ature Teff . We then proceeded with the metal abundances and

the projected rotational velocity v sin i?, which were modelled
with narrow lines between 5900 and 6500 Å. We found similar
values for [Fe/H], [Ca/H], and [Na/H]. The macro-turbulent ve-
locity was modelled and found to be 1.2±0.9 km s−1, and micro-
turbulent velocity was fixed to 0.91 km s−1 following the formu-
lation in Bruntt et al. 2010. The surface gravity log g was con-
strained from the line wings of the Ca i triplet (6102, 6122, and
6162 Å) and the Ca i 6439 Å line with a fixed Teff and Ca abun-
dance.

We checked our model with the Na i doublet that is sen-
sitive to both Teff and log g, and, finally, we also tested the
MARCS 2012 (Gustafsson et al. 2008) model atmosphere grids.
The measured parameters are listed in Table 1. The SME results
are in agreement with the empirical SpecMatch-Emp (Yee et al.
2017) code, which fits the stellar optical spectra to a spectral li-
brary of 404 M5 to F1 stars, resulting in Teff = 4316 ± 70 K,
log g = 4.45 ± 0.15, and [Fe/H] = −0.29 ± 0.05 dex. We also
used ARES+MOOG (Sousa 2014; Sousa et al. 2015; Sneden
1973) to conduct the spectroscopic analysis on the same com-
bined ESPRESSO spectra, and, although we derived consistent
parameters (Teff = 4500 ± 230 K, log g = 4.38 ± 0.62, and
[Fe/H] = −0.34 ± 0.10), the large errors are indicative of the
difficulties in using equivalent width methods with colder stars:
Spectral lines are more crowded in the spectrum.

Using these precise spectral parameters as priors on stellar
atmospheric model selection, we determined the radius of TOI-
178 using the infrared flux method (IRFM; Blackwell & Shal-
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Fig. 2. Light curves from simultaneous observations of TOI-178 by
NGTS (green stars) and SPECULOOS-South (purple triangles), de-
scribed in Sects. 4.1.3 and 4.1.4, respectively. Unbinned data are shown
as grey points, and data in 15-minute bins are shown as green stars
(NGTS) and purple triangles (SPECULOOS). The observations oc-
curred on September 11, 2019 (top panel) and October 12, 2019 (bottom
panel). The transit model is shown in black. The position of the odd
transit of candidate TOI-178.02 is shown with a dashed red line, the
transit of planet g (which corresponds to an even transit of TOI-178.02)
is shown with the solid red line, and the transits of planet b are shown
with purple lines.

Table 1. Stellar properties of TOI-178, including the methods used to
derive them.

TOI-178
2MASS J00291228-3027133
Gaia DR2 2318295979126499200
TIC 251848941
TYC 6991-00475-1
Parameter Value Note
α [J2000] 00h29m12.30s 1
δ [J2000] -30◦27

′

13.46
′′

1
µα [mas/yr] 149.95±0.07 1
µδ [mas/yr] -87.25±0.04 1
$ [mas] 15.92±0.05 1
RV [km s−1] 57.4±0.5 1
V [mag] 11.95 2
G [mag] 11.15 1
J [mag] 9.37 3
H [mag] 8.76 3
K [mag] 8.66 3
W1 [mag] 8.57 4
W2 [mag] 8.64 4
Teff [K] 4316±70 spectroscopy
log g [cgs] 4.45±0.15 spectroscopy
[Fe/H] [dex] -0.23±0.05 spectroscopy
v sin i? [km s−1] 1.5±0.3 spectroscopy
R? [R�] 0.651±0.011 IRFM
M? [M�] 0.650+0.027

−0.029 isochrones
t? [Gyr] 7.1+6.1

−5.3 isochrones
L? [L�] 0.132±0.010 from R? and Teff

ρ? [ρ�] 2.35±0.17 from R? and M?

Notes. [1] Gaia Collaboration et al. (2018), [2] Høg et al. (2000), [3]
Skrutskie et al. (2006), [4] Wright et al. (2010)

lis 1977) in a Markov chain Monte Carlo (MCMC) approach.
The IRFM computes the stellar angular diameter and effective
temperature by comparing observed broadband optical and in-
frared fluxes and synthetic photometry obtained from convolu-
tion of the considered filter throughputs, using the known zero-
point magnitudes, with the stellar atmospheric model, with the
stellar radius then calculated using the parallax of the star. For
this study, we retrieved the Gaia G, GBP, and GRP, 2MASS
J, H, and K, and WISE W1 and W2 fluxes and relative un-
certainties from the most recent data releases (Skrutskie et al.
2006; Wright et al. 2010; Gaia Collaboration et al. 2018, re-
spectively), and utilised the stellar atmospheric models from
the atlas Catalogues (Castelli & Kurucz 2003), to obtain R? =
0.651± 0.011 R�, and Teff = 4352± 52 K, in agreement with the
spectroscopic Teff used as a prior.

We inferred the mass and age of TOI-178 using stellar evo-
lutionary models, using as inputs Te f f , R? and Fe/H, with evolu-
tionary tracks and isochrones generated by two grids of models
separately, the PARSEC6 v1.2S code (Marigo et al. 2017) and
the CLES code (Code Liégeois d’Évolution Stellaire; Scuflaire
et al. 2008), with the reported values representing a careful com-
bination of results from both sets of models. This was done be-
cause the sets of models differ slightly in their approaches (reac-
tion rates, opacity and overshoot treatment, and helium-to-metal
enrichment ratio), and thus by comparing masses and ages de-
rived from both grids it is possible to include systematic uncer-
tainties within the modelling of the position of TOI-178 on evo-
lutionary tracks and isochrones. A detailed discussion of com-
bining the PARSEC and CLES models to determine masses and
ages can be found in Bonfanti et al. (2021). For this study, we
derived M? = 0.647+0.035

−0.032 M� and t? = 7.1+6.2
−5.4 Gyr. All stellar pa-

rameters are shown in Table 1.

4. Data

4.1. Photometric data

In order to determine the orbital configuration of the TOI-178
planetary system, we obtained photometric time series observa-
tions from multiple telescopes, as detailed below.

4.1.1. TESS

Listed as TIC 251848941 in the TESS Input Catalog (TIC; Stas-
sun et al. 2018, 2019), TOI-178 was observed by TESS in Sec-
tor 2, by camera 2, from August 22, 2018 to September 20,
2018. The individual frames were processed into 2-minute ca-
dence observations and reduced by the Science Processing Oper-
ations Center (SPOC; Jenkins et al. 2016) into light curves made
publicly available at the Mikulski Archive for Space Telescopes
(MAST). For our analysis, we retrieved the Presearch Data Con-
ditioning Single Aperture Photometry (PDCSAP) light curve
data, using the default quality bitmask, which have undergone
known systematic correction (Smith et al. 2012; Stumpe et al.
2014). Lastly, we rejected data points flagged as of bad quality
by SPOC (QUALITY > 0) and those with ‘Not-a-Number’ flux or
flux error values. After these quality cuts, the TESS light curve
of TOI-178 contained 18,316 data points spanning 25.95 d. The
full dataset with the transits of the six identified planets is shown
in Fig. 1.

6 Padova and Trieste Stellar Evolutionary Code
http://stev.oapd.inaf.it/cgi-bin/cmd.
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4.1.2. CHEOPS

CHEOPS, the first ESA small-class mission, is dedicated to the
observation of bright stars (V . 12 mag) that are known to host
planets and performs ultra high precision photometry, with the
precision limited by stellar photon noise of 150 ppm/min for
a V = 9 magnitude star. The CHEOPS instrument is composed
of an f/8 Ritchey-Chretien on-axis telescope (∼30 cm diame-
ter) equipped with a single frame-transfer back-side illuminated
charge-coupled device (CCD) detector. The satellite was suc-
cessfully launched from Kourou (French Guiana) into a ∼700 km
altitude Sun-synchronous orbit on December 18, 2019. CHEOPS
took its first image on February 7, 2020, and, after it passed the
in-orbit commissioning (IOC) phase, routine operations started
on March 25, 2020. More details on the mission can be found in
Benz et al. (2020), and the first results have recently been pre-
sented in Lendl et al. (2020).

The versatility of the CHEOPS mission allows for space-
based follow-up photometry of planetary systems identified by
the TESS mission. This is particularly useful for completing
the inventory of multi-planetary systems whose outer transiting
planets have periods beyond ∼10 days.

We obtained four observation runs (or visits) of TOI-178
with CHEOPS between 4 August 2020 and 3 October 2020 as
part of the Guaranteed Time, totalling 11.88 days on target with
the observing log shown in Table 2. The majority of this time
was spent during the first two visits (with lengths of 99.78 h
and 164.06 h), which were conducted sequentially beginning on
August 4, 2020 and ending on August 15, 2020; as such, we
achieved a near-continuous 11-day photometric time series. The
runs were split due to scheduling constraints, with a 0.84 h gap
between visits. The third and fourth visits were conducted to
confirm the additional planets predicted in the scenario presented
in Sect. 2. They took place on September 7, 2020 and October 3,
2020 and lasted for 13.36 h and 8.00 h, respectively.

Due to the low-Earth orbit of CHEOPS, the spacecraft-target
line of sight was interrupted by Earth occultations and pas-
sages through the South Atlantic Anomaly (SAA), where no data
were downlinked. This resulted in gaps in the photometry on
CHEOPS orbit timescales (around 100 min). For our observa-
tions of TOI-178, this resulted in light curve efficiencies of 51%,
54%, 65%, and 86%. For all four visits, we used an exposure
time of 60 s.

These data were automatically processed with the latest ver-
sion of the CHEOPS data reduction pipeline (DRP v12; Hoyer
et al. 2020). This includes image calibration (bias, gain, non-
linearity, dark current, and flat field) and instrumental and envi-
ronmental corrections (cosmic rays and smearing trails of field
stars and background). The DRP also performs aperture pho-
tometry for a set of three size-fixed apertures – R=22.5′′(RINF),
25′′(DEFAULT), and 30′′(RSUP) – plus one extra aperture that
minimises the contamination from nearby field stars (ROPT),
which, in the case of TOI-178, was set at R=28.5′′. The DRP
estimates the level of contamination by simulating the field-of-
view of TOI-178 using the GAIA star catalogue (Gaia Collabo-
ration et al. 2018) to determinate the location and flux of the stars
throughout the duration of the visit. In the case of TOI-178, the
mean contamination level was below 0.1% and was mostly mod-
ulated by the rotation around the target of a nearby star of Gaia
G=13.3 mag at a projected sky distance of 60.8′′from the target.
The contamination as a function of time (or, equivalently, as a
function of the roll angle of the satellite) is provided as a product
of the DRP for further de-trending (see Sect.5.1). For the second
visit, careful removal of one ‘telegraphic’ pixel (a pixel with a

Fig. 3. Extraction of 80×80 arcsec of the CHEOPS field-of-view for
two different data frames at the beginning (top) and the end (bottom)
of the second visit (see Table 2). The TOI-178 PSF is shown at the
centre, with the DEFAULT DRP photometric aperture represented by
the dashed black circles. The telegraphic pixel location that appeared
close to the end of the observation is marked by the red circle.

non-stable abnormal behaviour during the visit) within the pho-
tometric aperture was needed. The location of this telegraphic
pixel is shown in red in Fig.3, and details regarding the detec-
tion and correction are described in Appendix A. Following the
reductions, we found that the light curves obtained using the DE-
FAULT aperture (R=25′′) yielded the lowest RMS for all visits
and, as such, are used for this study (see Appendix A, Fig. A.1).

Lastly, it became apparent that – due to the nature of the
CHEOPS orbit and the rotation of the CHEOPS field around the
target – photometric, non-astrophysical short-term trends – ei-
ther from a varying background, a nearby contaminating source,
or other sources – can be found in the data on orbital timescales.
These effects can be efficiently modelled by using a Gaussian
process (GP) with roll angle as input (e.g. Lendl et al. 2020; Bon-
fanti et al. 2021), as we will discuss in our data analysis (Sect.
5.1.2). Following this, the average noise over a 3 h sliding win-
dow for the four visits of the G = 11.15 mag target was found to
be 63.9, 64.2, 66.3, and 75.8 ppm. In all cases, this marginally
improved upon the precision of the light curves that we had
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previously simulated for these observation windows using the
CHEOPSim tool (Futyan et al. 2020).

4.1.3. NGTS

The NGTS (Wheatley et al. 2018) facility consists of twelve
20-cm diameter robotic telescopes and is situated at the ESO
Paranal Observatory in Chile. The individual NGTS telescopes
have a wide field-of-view of 8 square-degrees and a plate scale
of 5 ′′ pixel−1. The DONUTS auto-guiding algorithm (McCor-
mac et al. 2013) affords the NGTS telescopes sub-pixel level
guiding. Simultaneous observations using multiple NGTS tele-
scopes have been shown to yield ultra high precision light curves
of exoplanet transits (Bryant et al. 2020; Smith et al. 2020).

TOI-178 was observed using NGTS multi-telescope obser-
vations on two nights. On UT September 10, 2019, TOI-178 was
observed using six NGTS telescopes during the predicted tran-
sit event of TESS candidate TOI-178.02. However, the NGTS
data for this night rule out a transit occurring during the obser-
vations. A second predicted transit event of TOI-178.02 was ob-
served on the night of UT October 11, 2019 using seven NGTS
telescopes, and on this night the transit event was robustly de-
tected by NGTS. A total of 13,991 images were obtained on the
first night, and 12,854 were obtained on the second. For both
nights, the images were taken using the custom NGTS filter (520
- 890 nm) with an exposure time of 10 s. All NGTS observations
of TOI-178 were performed with airmass < 2 and under photo-
metric sky conditions.

The NGTS images were reduced using a custom pipeline that
uses the SEP library to perform source extraction and aperture
photometry (Bertin & Arnouts 1996; Barbary 2016). A selection
of comparison stars with brightnesses, colours, and CCD posi-
tions similar to those of TOI-178 were identified using the sec-
ond GAIA data release (DR2) (Gaia Collaboration et al. 2018).
More details on the photometry pipeline are provided in Bryant
et al. (2020).

The NGTS light curves are presented in Fig. 2. They show
transit events for planet b and planet g on the nights of September
11, 2019 and October 1, 2019, respectively.

4.1.4. SPECULOOS

The SPECULOOS Southern Observatory (SSO; Gillon 2018;
Burdanov et al. 2018; Delrez et al. 2018) is located at ESO’s
Paranal Observatory in Chile and is part of the SPECULOOS
project. The facility consists of a network of four robotic 1-m
telescopes (Callisto, Europa, Ganymede, and Io). Each robotic
SSO telescope has a primary aperture of 1 m and a focal length of
8 m, and is equipped with a 2k×2k deep-depletion CCD camera
whose 13.5 µm pixel size corresponds to 0.35" on the sky (field-
of-view = 12′x12′). Observations were performed on the nights
of October 10, 2019 (for ' 8 hours) and November 11, 2019 (for
' 8 hours) with three SPECULOOS telescopes on sky simultane-
ously (SSO/Io, SSO/Europa, and SSO/Ganymede). These obser-
vations were carried out in a Sloan i’ filter with exposure times
of 10 s. A small de-focus was applied to avoid saturation as the
target was too bright for SSO. Light curves were extracted using
the SSO pipeline (Murray et al. 2020) and are shown in purple
in Fig. 2. For each observing night, the SSO pipeline used the
casutools software (Irwin et al. 2004) to perform automated
differential photometry and to correct for systematics caused by
time-varying telluric water vapour.

4.2. ESPRESSO data

The RV data we analyse consist of 46 ESPRESSO points7. Each
measurement was taken in high resolution (HR) mode with an in-
tegration time of 20 min using a single telescope (UT) and slow
read-out (HR 21). The source on fibre B is the Fabry-Perot inter-
ferometer. Observations were made with a maximum airmass of
1.8 and a minimum 30◦ separation from the Moon.

The measurements span from September 29, 2019 to January
20, 2020 and have an average nominal error bar of 93 cm/s. We
also included the time series of Hα measurements, the full width
half maximum (FWHM), and the S -index in our analysis. The
velocity and ancillary indicators are extracted from the spectra
with the standard ESPRESSO pipeline v 2.0.0 (Pepe et al. 2020).
The RV time series with nominal error bars is shown in Fig. 5.

5. Detections and parameter estimations

In this section, we analyse the photometric and spectral data in
order to derive the orbital and planetary parameters of the six
planets in the system.

5.1. Analysis of the photometry

5.1.1. Identification of the solution

The first release of candidates from the TESS alerts of Sec-
tor 2 included three planet candidates in TOI-178 with periods
of 6.55 d, 10.35 d, and 9.96 d, which transited four, three, and
two times, respectively. In addition, our analysis of this dataset
with the DST (Détection Spécialisée de Transits Cabrera et al.
2012) yielded two additional candidates: a clear 3.23 d signal
and a fainter 1.91 d signal. Upon receiving visits 1 and 2 from
CHEOPS (Table 2), a study of the CHEOPS data alone with
successive applications of the boxed-least-square (BLS) algo-
rithm (Kovács et al. 2002) retrieved the 6.55 d, 3.23 d, and 1.91 d
signals, in phase agreement with the TESS data. An additional
dip, consistent in epoch with a transit of the 9.9 d candidate, was
also identified; however, it could also marginally correspond to a
transit of the 10.35 d candidate. The transit of one of these candi-
dates was hence missing, pointing to a mis-attribution of transits
in the TESS Sector 2 data.

In order to identify new possible solutions for the avail-
able data (TESS Sector 2, NGTS visits in September and Oc-
tober 2019, and CHEOPS visits 1 and 2), we individually pre-
detrended each light curve and subtracted the signal of the 6.55 d,
3.23 d, and 1.91 d candidates. We then applied the BLS algo-
rithm to this dataset for the first time. The resulting periodogram
(Fig. 6, top panel) had: several peaks of similar power due to the
existence of multiple transits; dips of similar depths and dura-
tions; and, overall, a low number of transits per candidate spread
along a long baseline. We hence explored different solutions by
successively ignoring some of the highest peaks of the BLS pe-
riodogram, proceeding as follows: On the first periodogram, we
saved the most likely candidate of period P1 and removed the
corresponding signal in the light curve; we then applied the BLS
a second time to obtain a second candidate of period P2. That
created a first pair of candidates, ci, j = c0,0, where i and j are the
number of peaks that have been ignored in the first or second it-
eration of the BLS, respectively (in this case, no peaks have been
ignored). We then repeated this process, but ignoring the result
of the BLS for periods less than 0.2 d away from the highest peak

7 The first 32 come from programme 0104.C-0873(A) and the last 14
from 1104.C-0350 (Guaranteed Time observations).
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Fig. 4. Similar to Fig. 1, but instead displaying data from the four CHEOPS visits described in Sect. 4.1.2. Top panel: 11 d observation. Transits
of planets c and d at ∼ 2459075 BJD occur too close to each other for their corresponding lines to be individually visible in the figure. Bottom-left
panel: Subsequent observation scheduled to confirm the presence of a planet with a 20.7 d period (planet g), which overlaps with a transit of planet
e. Bottom-right panel: Final observation scheduled to confirm the presence of a planet fitting in the Laplace resonance (planet f , with a period of
∼15.23 d), which overlaps with a transit of planet b.

Table 2. Log of CHEOPS observations of TOI-178.

visit Identified Start date Duration Data points File key Efficiency Exp. Time
# planets [UTC] [h] [#] [%] [s]
1 b,c,d,e 2020-08-04T22:11:39 99.78 3030 CH_PR100031_TG030201_V0100 51 60
2 b,c,d 2020-08-09T02:48:39 164.04 5280 CH_PR100031_TG030301_V0100 54 60
3 e,g 2020-09-07T08:06:44 13.36 521 CH_PR100031_TG030701_V0100 65 60
4 b,f 2020-10-03T18:51:46 8.00 413 CH_PR100031_TG033301_V0100 86 60
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TOI 178 ESPRESSO radial velocities

Fig. 5. ESPRESSO RV data of TOI-178.

of the periodogram (in black in the top panel of Fig. 6). Since we
ignored the black peak, the second highest is the blue one, which

we assigned to period P1, and we removed the associated signal
in the light curve. For this candidate, i = 1 since we ignored one
peak in the first BLS. For the second iteration of the BLS, we
did not ignore any peaks and hence take the largest one ( j = 0),
leading to the pair of candidates c1,0. We repeated this process
25 times, yielding 25 potential pairs of candidates c0≤i≤4,0≤ j≤4.
For all of these potential solutions, we modelled the transits of
the five candidates – 1.91 d, 3.23 d, 6.55 d, and ci, j – using the
batman package (Kreidberg 2015) and ran an MCMC on the
pre-detrended light curve to estimate the relative likelihood of
the different ci, j.

The c3,0 pair was favoured (its first BLS is shown with the
green curve in the top panel of Fig. 6), and the second iteration
of the BLS (shown in the middle panel) yielded a1.91 d, 3.23 d,
6.55 d, 9.96 d, and 20.71 d solution, which explained all the sig-
nificant dips observed in the NGTS/SPECULOOS data (Fig. 2)
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Fig. 6. Successive use of the BLS algorithm to identify the new candi-
dates. In the top panel, the green curve has its highest power at 9.96 d
once the three highest peaks (i = 3) at 18.35 d (black), 10.37 d (blue),
and 9.17 d (orange) are ignored. The middle panel shows the BLS after
the removal of the 9.96 d signal in the light curve, with no peaks ignored
( j = 0), and the bottom panel shows the BLS after the removal of the
20.71 d signal as well.

and the first visit of CHEOPS (Fig. 4 - top). This solution was
later confirmed by the predicted double transit observed by the
third visit of CHEOPS (Fig. 4 - bottom left).

Applying the BLS algorithm to the residuals of the available
photometric data (bottom panel of Fig. 6), two mutually exclu-
sive peaks appeared, 12.9 d and 15.24 d, which shared the odd
transit of the previous TOI178.02 candidate. The 12.9 d signal
was slightly favoured by the BLS analysis; however, the global
fit of the light curve favoured the ∼ 15.24 d signal. In addition,
this solution was very close to the period that would fit the res-

onant structure of the system (see Sect. 6). The 15.23 d candi-
date was confirmed by a fourth CHEOPS visit (Fig. 4 - bottom
right). In the next section, we develop the characterisation of
this six-planet solution: 1.91 d, 3.23 d, 6.55 d, 9.96 d, 15.23 d,
and 20.71 d.

5.1.2. Determination of radii and orbital parameters

To characterise the system, we performed a joint fit of the TESS,
NGTS, and CHEOPS photometry. As the NGTS and SPECU-
LOOS data presented in Fig. 2 cover the same epoch of obser-
vations, we only included the NGTS data in our fit as they had a
smaller RMS photometric scatter.

The fit was performed with the juliet package (Espinoza
et al. 2019), which uses batman (Kreidberg 2015) for the mod-
elling of transits and the nested sampling dynesty algorithm
(Speagle 2020; Skilling 2004, 2006a; Higson et al. 2019; Buch-
ner 2014, 2017; Skilling 2006b) for estimating Bayesian poste-
riors and evidence. In our analysis, the fitted parameters for each
planet were: the planet-to-star radius ratio Rp/R?, the impact pa-
rameter b, the orbital period P, and the mid-transit time T0. We
also fitted for the stellar density ρ?, which, together with the or-
bital period P of each planet, defines through Kepler’s third law
a value for the scaled semi-major axis a/R? of each planet. We
assumed a normal prior for the stellar density based on the value
and uncertainty reported in Table 1 (Sect. 3) and wide uniform
priors for the other transit parameters. The orbits were assumed
to be circular, as justified in Sect. 6.3. For each bandpass (TESS,
CHEOPS, and NGTS), we fitted two quadratic limb-darkening
coefficients, which were parametrised with the (q1, q2) sampling
scheme of Kipping (2013). Normal priors were placed on these
limb-darkening coefficients based on Claret & Bloemen (2011).

We modelled the correlated noise present in the light curves
simultaneously with the planetary signals to ensure a full prop-
agation of the uncertainties. We first performed individual anal-
yses of each light curve in order to select for each of them the
best correlated noise model based on Bayesian evidence. We ex-
plored a large range of models for the CHEOPS light curves,
consisting of first- to fourth-order polynomials in the recorded
external parameters (most importantly: time, background level,
position of the point-spread-function (PSF) centroid, space-
craft roll angle, and contamination), as well as GPs (celerite
Foreman-Mackey et al. 2017 and george Ambikasaran et al.
2014) against time, roll angle, or a combination of the two.
We found that a Matérn 3/2 GP against roll angle was strongly
favoured for all visits to account for the roll-angle-dependent
photometric variations (cf. Sect. 4.1.2). First- to second-order
polynomials in time and x−y centroid position were also needed
for the first three visits. For the TESS light curve, we used a
Matérn 3/2 GP against time, and we used a linear function of
airmass for the NGTS light curves. For each light curve, we also
fitted a jitter term, which was added quadratically to the error
bars of the data points, to account for any underestimation of the
uncertainties or any excess noise not captured by our modelling.

The results of our joint fit are displayed in Tables 3 (plan-
ets b, c, and d) and 4 (planets e, f , and g). The transits of all
detected planets are shown in Figs. 1 (TESS), 2 (NGTS), and 4
(CHEOPS), with the phase-folded transits in the CHEOPS data
presented in Fig. 7.

All planets appear to be in the super-Earth to mini-Neptune
range, with the inner two planets falling to either side of the
radius valley (Fulton et al. 2017). The inclination of the plan-
ets are also worth mentioning: The projected inclination of the
four outer planets differ only by about 0.1 deg. As discussed in
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Table 3. Fitted and derived results for planets b, c, and d associated with the fits to the photometry and spectroscopy described in Sects. 5.1 and
5.2, respectively. a Teq = Teff

√
R?/a ( f (1 − AB))1/4, assuming an efficient heat redistribution ( f = 1/4) and a null Bond albedo (AB = 0).

Parameter (unit) b c d
Fitted parameters (photometry)

Rp/R? 0.01623 ± 0.00097 0.0235+0.0015
−0.0013 0.03623+0.00087

−0.00091
b (R?) 0.17+0.19

−0.13 0.34+0.30
−0.23 0.485+0.051

−0.060
T0 (BJD-TBD) 2458741.6365+0.0043

−0.0030 2458741.4783+0.0034
−0.0029 2458747.14623+0.00087

−0.00095
P (d) 1.914558 ± 0.000018 3.238450+0.000020

−0.000019 6.557700 ± 0.000016
ρ? (ρ�) 2.35 ± 0.17 (same for all planets)

Fitted parameters (spectroscopy)
K (ms−1) 1.05+0.25

−0.30 2.77+0.22
−0.33 1.34+0.31

−0.39
Derived parameters

δtr (ppm) 263+32
−30 551+68

−59 1313+64
−65

detection SNR 8.2 8.1 20.2
R?/a 0.1161+0.0030

−0.0027 0.0818+0.0021
−0.0019 0.0511+0.0013

−0.0012
a/R? 8.61+0.21

−0.22 12.23+0.29
−0.31 19.57+0.47

−0.49
Rp (R⊕) 1.152+0.073

−0.070 1.669+0.114
−0.099 2.572+0.075

−0.078
a (AU) 0.02607 ± 0.00078 0.0370 ± 0.0011 0.0592 ± 0.0018
i (deg) 88.8+0.8

−1.3 88.4+1.1
−1.6 88.58+0.20

−0.18
t14 (h) 1.692+0.056

−0.086 1.95+0.15
−0.25 2.346+0.047

−0.046
Teq (K)a 1040+22

−21 873 ± 18 690 ± 14
Mp (M⊕) 1.50+0.39

−0.44 4.77+0.55
−0.68 3.01+0.80

−1.03
ρp (ρ⊕) 0.98+0.35

−0.31 1.02+0.28
−0.23 0.177+0.055

−0.061

Table 4. Fitted and derived results for planets e, f , and g associated with the fits to the photometry and spectroscopy described in Sects. 5.1 and
5.2, respectively. a Teq = Teff

√
R?/a ( f (1 − AB))1/4, assuming an efficient heat redistribution ( f = 1/4) and a null Bond albedo (AB = 0).

Parameter (unit) e f g
Fitted parameters (photometry)

Rp/R? 0.0311+0.0011
−0.0012 0.0322 ± 0.0014 0.0404+0.0019

−0.0018
b (R?) 0.583+0.046

−0.066 0.765+0.027
−0.031 0.866+0.017

−0.019
T0 (BJD-TBD) 2458751.4658+0.0016

−0.0019 2458745.7178+0.0023
−0.0027 2458748.0302+0.0023

−0.0017
P (d) 9.961881 ± 0.000042 15.231915+0.000115

−0.000095 20.70950+0.00014
−0.00011

ρ? (ρ�) 2.35 ± 0.17 (same for all planets)
Fitted parameters (spectroscopy)

K (ms−1) 1.62+0.41
−0.34 2.76+0.46

−0.42 1.30+0.38
−0.59

Derived parameters
δtr (ppm) 968+69

−71 1037+94
−90 1633+157

−139
detection SNR 13.6 11.0 10.4

R?/a 0.03866+0.00100
−0.00090 0.02913+0.00075

−0.00068 0.02373+0.00061
−0.00056

a/R? 25.87+0.62
−0.65 34.33+0.82

−0.87 42.13+1.01
−1.06

Rp (R⊕) 2.207+0.088
−0.090 2.287+0.108

−0.110 2.87+0.14
−0.13

a (AU) 0.0783+0.0023
−0.0024 0.1039 ± 0.0031 0.1275+0.0038

−0.0039
i (deg) 88.71+0.16

−0.13 88.723+0.071
−0.069 88.823+0.045

−0.047
t14 (h) 2.501+0.106

−0.077 2.348+0.097
−0.087 2.167+0.090

−0.082
Teq (K)a 600 ± 12 521 ± 11 470 ± 10
Mp (M⊕) 3.86+1.25

−0.94 7.72+1.67
−1.52 3.94+1.31

−1.62
ρp (ρ⊕) 0.360+0.143

−0.097 0.65+0.21
−0.15 0.166+0.065

−0.068

Agol et al. (2020) in the case of TRAPPIST-1, it is unlikely that
the underlying inclinations and ascending nodes are scattered
given the clustering of the projected inclination; hence, the outer
part of the system is probably quite flat. In addition, the uncer-
tainty on the inclination of the inner planets allows for the near-
coplanarity of the entire system, a feature that was also found in
the TRAPPIST-1 system (Agol et al. 2020).

5.2. Analysis of the radial velocities

5.2.1. Detections

In this section, we consider the 46 ESPRESSO data points only
and look for potential planet detections. Our analysis follows the
same steps as in Hara et al. (2020) and is described in detail in
Appendix B. To search for potential periodicities, we computed
the `1-periodogram8 of the RV as defined in Hara et al. (2017).
This method outputs a figure that has a similar aspect as a regu-

8 https://github.com/nathanchara/l1periodogram
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Fig. 7. Detrended CHEOPS light curves phase-folded to the periods of
each of the planets, with signals of the other planets removed. Unbinned
data are shown with grey points, data in 15-minute bins are shown with
coloured circles, and samples drawn from the posterior distribution of
the global fit are shown with coloured lines.

lar periodogram, but with fewer peaks due to aliasing. The peaks
can be assigned a false alarm probability (FAP), whose interpre-
tation is close to the FAP of a regular periodogram peak.

A preliminary analysis of ancillary indicators Hα, FWHM,
bisector span (Queloz et al. 2001), and log R′HK (Noyes 1984)
revealed that they exhibit statistically significant periodicities at
≈ 36 days and ≈ 16 days, such that stellar activity effects are to
be expected in the RVs, especially at these periods. In our analy-
sis, stellar activity has been taken into account both with a linear
model constructed with activity indicators smoothed with a GP
regression similarly to Haywood et al. (2014), which we call the
base model, and with a Gaussian noise model with a white, cor-
related (Gaussian kernel), and quasi-periodic component.

Radial velocity signals found to be statistically significant
might vary from one activity model to another. To confirm the
robustness of our detections, we tested whether signal detections
can be claimed for a variety of noise models, following Hara
et al. (2020). This approach consists of three steps. First, we
computed the `1-periodogram of the data on a grid of mod-
els. The linear base models considered include an an offset and
smoothed ancillary indicators (Hα, FWHM, neither, or both),
where the smoothing is done with a GP regression with a Gaus-

Fig. 8. Impact parameter (top) and inclination (bottom) of the six plan-
ets of the TOI-178 system. In the top panel, the solid line shows the
evolution of the impact parameter as a function of the period assuming
that all planets are in the same plane (obtained by linear fit). The dashed
line shows that an outer planet in the same plane will not transit if its
period is above 26.4 d.

sian kernel. The noise models we considered are Gaussian with
three components: white, red with a Gaussian kernel, and quasi-
periodic. According to the analysis of the ancillary indicators,
the quasi-periodic term of the noise is fixed at 36.5 days. We
considered a grid of values for each noise component (ampli-
tude and decay timescale) and computed the `1-periodograms.
Secondly, we ranked the noise models with a procedure based
on cross-validation (CV). Finally, we examined the distribution
of FAPs of each signal in the 20% highest ranked models.

Here we will succinctly describe the conclusions of our anal-
ysis and refer the reader to Appendix B for a more detailed
presentation. The `1-periodogram corresponding to the highest
ranked model is represented in Fig. 9. The periods at which the
peaks occur are shown in red and account for most of the signals
that might appear with varying assumptions on the noise (or ac-
tivity) model. More precisely, we find the following results. We
note that these results stem from an analysis of over 1300 noise
models and that they are not all portrayed in Fig. 9, which only
shows the results from the highest ranked noise model.

First, our analysis yields a consistent, significant detection
of signals close to 3.2, ≈ 36, and ≈ 16 days. Radial velocity
then allows an independent detection of planet c. Signals at ≈
36 and ≈ 16 d appear in ancillary indicators, and as such we
attributed these apparent periodicities in RV to stellar activity.
The 16-day signal is, however, very likely partly due to planet
f . Indeed, when the activity signals close to 40 and 16 days are
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modelled and the signal of transiting planets is removed, one
finds a residual signal at 15.1 or 15.2 days, even though the 16
and 15.2-day signals are very close.

Second, we find signals, though not statistically significant
ones, at 6.5 and 9.8 days (consistent with planets d and e) and at
2.08 days, which is the one-day alias (see Dawson & Fabrycky
2010) of 1.91 days (planet b). Third, we do not consistently find
a candidate near 20.7 days. However, a 20.6 d signal appears in
the highest ranked model, and a stellar activity signal might hide
the signal corresponding to TOI-178 g.

Fourth, the signal at 43.3 days appearing in Fig. 9 might be
a residual effect of an imperfect correction of the activity. How-
ever, we have not strictly ruled out the possibility that it stems
from a planetary companion at 45 days. As will be discussed
in the conclusion, this period corresponds to one of the possible
ways to continue the Laplace resonance beyond planet g. Finally,
depending on the assumptions, hints at 1.2 or 5.6 days (aliases
of each other) can appear.

For comparison, we performed the RV analysis with an itera-
tive periodogram approach. This analysis is able to show signals
corresponding to 15.2, 3.2, and 6.5 days; however, it is unable to
clearly establish the significance of the 3.2 d signal and fails to
unveil candidates at 1.91 and 9.9 days.

The photometric data allow us to independently detect six
planets at 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71 days. As de-
tailed in Appendix B, we find that the phases of RV and photo-
metric signals are consistent within 2σ. We phase-folded the RV
data at the periods given in Tables 3 and 4, which are shown in
Fig. 10 with periods increasing from top to bottom. The varia-
tions at 3.24 and 15.2 days, corresponding to the planets with the
most significant RV signals, are the clearest. As a final remark,
the signals corresponding to the transiting planets have been fit-
ted, and the strongest periodic signals occur at 38 and 16.3 days,
which is compatible with the activity periods seen in the ancil-
lary indicators.

5.2.2. Mass and density estimations

To estimate the planetary masses, we fitted circular orbits to the
radial velocities. As shown in Sect. 6, for the system to be stable,
eccentricities cannot be greater than a few percent. We set the
posterior distributions obtained from the fits to photometric data
from Tables 3 and 4 as priors on Tc and period. This approach,
as opposed to a joint fit, is justified by the fact that, here, RVs
brings very little information to the parameters constrained by
photometry, and vice versa. Activity signals are clearly present
in the RV data, and, depending on the activity model used, mass
estimates may vary. To assess the model dependency of mass
estimates, we used two different activity models. Both include
as a linear predictor the smoothed Hα time series, as described
above. In the first model, we represented activity as a sum of
two sine functions at 36 and 16 days and a correlated noise with
an exponential kernel. This was motivated by the fact that both
periodicities appear in the ancillary indicators, but with different
phases. The correlated noise models low-frequency variations,
which can also be anticipated from the analysis of the indicators.
The second model of activity consists of a correlated Gaussian
noise with a quasi-periodic kernel. We computed the posterior
distributions of the orbital parameters with an adaptive MCMC,
as in Delisle et al. (2018). This analysis is presented in detail in
Appendix B.5.

The mass estimates for each model are given in Tables B.2, 3,
and 4, respectively. The 1σ intervals obtained with the two meth-
ods all have a large overlap. In Tables 3 and 4, we give the
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Table 5. Instantaneous distances from resonances for the six planets of
TOI-178, expressed in terms of near-resonant angles φ. The λ symbol
indicates the mean longitude of the planet specified in the subscript.

φi dφi/dt [deg/day] super-period [day]

φ0 = 3λb − 5λc 8.2811+0.0065
−0.0062 43.472+0.033

−0.034
φ1 = 1λc − 2λd 1.36886+7.8e−04

−7.6e−04 262.99+0.15
−0.15

φ2 = 2λd − 3λe 1.38188+9.4e−04
−9.7e−04 260.52+0.18

−0.18
φ3 = 2λe − 3λ f 1.37131+8.0e−04

−7.8e−04 262.52+0.15
−0.15

φ4 = 3λ f − 4λg 1.37050+6.0e−04
−6.0e−04 262.68+0.12

−0.11

mass and density intervals in a conservative manner: The lower
and upper bounds are respectively taken as the minimum lower
bound and maximum upper bound we obtained with the two es-
timation methods. The mass estimates are given as the mean of
the estimates obtained with the two methods, which are poste-
rior medians. We took this approach and did not select the error
bars of one model or another since model comparisons depend
heavily on the prior chosen, which, in our case, would be rather
arbitrary. We find planet masses and densities in the ranges of
1.50+0.39

−0.44 7.72+1.67
−1.52 M⊕ and 0.177+0.055

−0.061 1.02+0.28
−0.23 ρ⊕.

It appears that the mass of planet f (at 15.24 days) is the
highest. This result might seem untrustworthy since there are ac-
tivity signals close to 16 days in the ancillary indicators and since
1/(1/15.23 − 1/16) = 316 days, which is greater than the obser-
vation time span. However, the two activity models considered
here – one of which includes a signal at 16 days – yield a similar
mass estimates, and the convergence of MCMC was ensured by
computing the number of effective samples. As a consequence,
we deemed the mass estimate appropriate. Nonetheless, more
stellar activity models can be considered, and the mass inter-
vals might still evolve as more data come along and the results
become less model-dependent. A longer baseline would be suit-
able, so that the difference between 15.2 and 16 would be greater
than the frequency resolution.

6. Dynamics

6.1. A Laplace resonant chain

Mean-motion resonances are orbital configurations where the
period ratio of a pair of planets is equal to, or oscillates around,
a rational number of the form (k + q)/k, where k and q are inte-
gers. In TOI-178, candidates b and c are close to a second-order
MMR (q = 2): Pc/Pb = 1.6915 ≈ 5/3, while c, d, e, f , and
g are close, pairwise, to first-order MMRs (q = 1): Pd/Pc =
2.0249 ≈ 2/1, Pe/Pd = 1.5191 ≈ 3/2, P f /Pe = 1.5290 ≈ 3/2,
and Pg/P f = 1.3595 ≈ 4/3. Pairs of planets lying just outside
MMRs are common occurrences in systems observed by transit
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Table 6. Estimated values of the Laplace angles of planets c to g of TOI-178 towards the beginning of TESS Sector 2 at 2458350.0 BJD (August
2018). The derivative of the angles are averaged values from between August 2018 and August 2020, based on the solution presented in Tables 3
and 4. The equilibrium values of the Laplace angles are discussed in Sect. 6.2.

ψ j value [deg] dψ j/dt [deg/year] equilibrium [deg] distance from eq. [deg]

ψ1 = φ1 − φ2 = 1λc − 4λd + 3λe 166.70+0.82
−0.82 −4.74+0.47

−0.48 180 −13.30+0.82
−0.82

ψ2 = φ2 − φ3 = 2λd − 5λe + 3λ f 157.57+1.16
−1.06 3.86+0.58

−0.60 168.94 ± 7.79 −11.37+7.88
−7.86

ψ3 = 1
2 (φ3 − φ4) = 1λe − 3λ f + 2λg 71.98+0.38

−0.48 0.15+0.23
−0.22 78.90 ± 1.23 −6.92+1.29

−1.32

(Fabrycky et al. 2014). To study such pairs of planets, a relevant
quantity is the distance to the exact resonance. Taking the pair
of c and d as an example, the distance to the 2/1 MMR in the
frequency space is given by 1nc − 2nd, where nc = 2π/Pc is the
mean motion of planet c. Following Lithwick et al. (2012), we
name the associated timescale the ‘super-period’:

Pc,d ≡
1

|(k + q)/Pd − k/Pc|
. (1)

The values of these quantities are given in Table 5 for plan-
ets b to g, along with the expression of the associated angles
φi. Transit timing variations are expected over the super-period,
with amplitudes depending on the distance to the resonance, the
mass of the perturbing planet, and the eccentricities of the pair
(Lithwick et al. 2012). The fact that the super-periods of all three
of these pairs are close to the same value from planet c outwards
has additional implications : The difference between the angles
φi is evolving very slowly. In other words, there is a Laplace
relation between consecutive triplets:

dψ1/dt = d(φ1 − φ2)/dt = 1nc − 4nd + 3ne ≈ 0 ,
dψ2/dt = d(φ2 − φ3)/dt = 2nd − 5ne + 3n f ≈ 0 ,

dψ3/dt =
1
2

d(φ3 − φ4)/dt = 1ne − 3n f + 2ng ≈ 0 ,

(2)

implying that the system is in a 2:4:6:9:12 Laplace resonant
chain. The values of the Laplace angles ψ j and derivatives are
given in Table 6. The values of the ψ j are instantaneous and
computed at the date 2458350.0 BJD, which is towards the be-
ginning of the observation of TESS Sector 2. As no significant
TTVs were determined over the last two years, the derivatives of
the ψ j are average values over that period. The Laplace relations
described in Eq. (2) do not extend towards the innermost triplet
of the system: According to Eqs. (C.3) and (C.4), Pb,c should be
equal to half of Pc,d for the b-c-d triplet to form a Laplace rela-
tion, which is not the case (see Table 5). To continue the chain,
planet b would have needed a period of ∼ 1.95 d. Its current pe-
riod of 1.91 d could indicate that it was previously in the chain
but was pulled away, possibly by tidal forces.

Figure 11 shows the evolution of the Laplace angles when
integrating the nominal solution given in Tables 3 and 4, start-
ing at the beginning of the observation of TESS Sector 2. The
three angles librate over the integrated time for the selected ini-
tial conditions, with combinations of periods ranging from a few
years to several decades. The exact periods and amplitudes of
these variations depend on the masses and eccentricities of the
involved planets. The theoretical equilibria of the resonant an-
gles are discussed in Sect. 6.2, while the long-term stability of
this system is discussed in Sect. 6.3.

6.2. Equilibria of the resonant chain

For a given resonant chain, there might exist several equilibrium
values around which the Laplace angles could librate (Delisle

2017). For instance, the four planets known to orbit Kepler-223
are observed to librate around one of the six possible equilibria
predicted by theory (Mills et al. 2016; Delisle 2017).

We used the method described in Delisle (2017) to determine
the position of the possible equilibria for the Laplace angles of
TOI-178. The five external planets (c to g) orbiting TOI-178 are
involved in a 2:4:6:9:12 resonant chain. All consecutive pairs of
planets in the chain are close to first-order MMRs (1:2, 2:3, 2:3,
3:4). Moreover, as in the Kepler-223 system, there are also strong
interactions between non-consecutive planets. Indeed, planet e
and planet g (which are non-consecutive) are also close to a 1:2
MMR. As explained in Delisle (2017), this breaks the symme-
try of the equilibria (i.e. the equilibrium is not necessarily at
180 deg), and the position of the equilibria for the Laplace angles
depends on the planets’ masses.

We solved for the position of these equilibria using the
masses given in Tables 3 and 4. We also propagated the errors
to estimate the uncertainty on the Laplace angle equilibria. We
find two possible equilibria for the system, which are symmetric
with respect to 0 deg. We provide the values of the Laplace an-
gles corresponding to the first equilibrium in Table 6 (the second
is simply obtained by taking ψ j → −ψ j for each angle).

It should be noted that these values correspond to the position
of the fixed point around which the system is expected to librate.
Depending on the libration amplitude, the instantaneous values
of the Laplace angles can significantly differ from the equilib-
rium. For instance, in the case of Kepler-223, the amplitude of
libration could be determined and is about 15 deg for all Laplace
angles (Mills et al. 2016). In Table 6, we observe that all instan-
taneous values of Laplace angles (as of August 2018) are also
found within 15 deg of the expected equilibrium. We note that
ψ1 was moving away from the equilibrium throughout the two
years of observations (see the averaged derivatives in Table 6).
This would imply a final (as of September 2020) distance from
equilibrium of about 23 deg. On the other hand, ψ2 was mov-
ing closer to the equilibrium and ψ3 was only slowly evolving
during this two-year span. A more precise determination of the
evolution of Laplace angles (with more data and the detection
of TTVs) would be needed to estimate the amplitude of libra-
tion of each angle. However, it is unlikely to find values so close
to the equilibrium for each of the three angles by chance alone.
Therefore, these results provide strong evidence that the system
is indeed librating around the Laplace equilibrium.

6.3. Stability

Planets c to g are embedded in a resonant chain, which seems
to greatly stabilise this planetary system. The distance between
the planets being quite small, their eccentricities may become a
major source of instability. This point is illustrated by Fig. 12,
which shows a section of the system’s phase space. The initial
conditions and masses of the planets are displayed in Tables 3
and 4, with the exception of those of planet f , for which the ini-
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Fig. 10. Phase-folded RV. Error bars correspond to nominal errors.

tial period and eccentricity vary; all other planets start on circular
orbits. The colour code corresponds to a stability index based on
the diffusion of the main frequencies of the system defined as
(Laskar 1990, 1993):

log10
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Fig. 11. Example of the evolution of the Laplace angles over 100 years,
starting from TESS observation of Sector 2, using the masses and orbital
parameters from Tables 3 and 4.

where n(1)
f and n(2)

f are the proper mean motion of planet f in de-
gree per year, computed over the first half and the second half of
the integration, respectively, implying that the stability increases
from red to black (for more details, see Sect. 4.1 of Petit et al.
2018). This map shows that the eccentricity of planet f must not
exceed a few hundredths if the system is to remain stable. The
same stability maps (not reproduced here) made for each of the
planets of the system lead to the same result: The planetary ec-
centricities have to be small in order to guarantee the system’s
stability. This constrain is verified if the system starts with suf-
ficiently small eccentricities. In particular, we verified that start-
ing a set of numerical integrations on circular orbits with masses
and initial conditions close to those of the nominal solution and
integrating the system over 100 000 years (i.e. about 19 million
orbits of planet b or 1.3 million orbits of planet g) does not excite
the eccentricities above 1/100 in most cases.

All the Pi versus ei stability maps, such as the one in the top
panel of Fig. 12, show long quasi-vertical structures that contain
very stable regions in their central parts and less stable regions
at their edges. These are mainly MMRs between two or three
planets. In particular, the black area crossed by the dashed white
line in the top panel of Fig. 12 corresponds to the resonant chain
where the nominal system is located.

The bottom panel of Fig. 12 shows a different section of the
phase space where P f and Pg vary and all eccentricities are ini-
tialised at 0. This reveals part of the resonant structure of the
system. The black regions are stable, while the green to red ar-
eas mark the instability caused by the resonance web. This figure
still highlights the stability island in which the planetary system
is located. This narrow region is surrounded by resonances: the
ne − 3n f + 2ng = 0 Laplace resonance (central diagonal strip),
high-order two-body MMRs between planets f and g (horizontal
strips), and high-order two-body MMRs between planets e and
f (vertical lines).

The extent of this resonant chain versus the initial period
and mass of planet f is shown in Fig. 13. On both panels, the
x-axis corresponds to the orbital period of planet f , while the y-
axis corresponds to the planetary mass. The figure presents two
different, but complementary, aspects of the dynamics of TOI-
178. The bottom panel indicates whether the Laplace angles ψ1,
ψ2, and ψ3 librate or not. More precisely, the colour code corre-
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sponds to the number of angles that librate during the first 200
years of integration. The top panel present the same stability in-
dicator as Fig. 12. Three regions stand out clearly from this fig-
ure, each with a different dynamical regime.

The central region (yellow in the bottom panel), where the
three Laplace angles librate simultaneously (see also Fig. 11),
shows the heart of the 2:4:6:9:12 resonant chain, where the nom-
inal system is located. On the stability map (top), its dark black
colour reveals a very low diffusion rate and therefore a very long-
term stability. This central region seems not to depend strongly
on the mass of planet f .

On the other hand, the modification of the orbital period
within a fraction of a day changes the dynamics of the system.
Indeed, outside of the central region where the three Laplace
angles librate, which is about 0.015 days wide, chaotic layers
are present (red in the top panel panel, dark blue in the bot-
tom) where none of the three Laplace angles librate. Here, the
red colour of the stability index corresponds to a significant, but
moderate, diffusion rate. Thus, although in this region the trajec-
tories are not quasi-periodic, the chaos has limited consequences
(it is bounded) and probably does not lead to the destruction of
the system.

Outside of these layers lies a very stable (quasi-periodic) re-
gion. The blue on the Laplace angle map shows that only one
Laplace angle librates, while the others circulate. Although the
2:4:6:9:12 chain is broken, planets c, d, e, and g remain inside
the 2:4:6:12 resonant chain, independently of the orbital period
of planet f . The stability map indicates a very strong regularity
of the whole region. Nevertheless, one can notice the presence of
some narrow zones where the diffusion is more important; they
are induced by high-order orbital resonances but do not have any
significant consequence on the stability of the system.

The study described in this section gives only a very par-
tial picture of the structure of the phase space (parameter space)
of the problem. Nevertheless, it can be seen that as long as the
system is in the complete resonant chain, which is the case for
the nominal derived parameters and for the bulk of the posterior
given in Tables 3 and 4, it remains stable.

6.4. Expected TTVs

Since planets c, d, e, f , and g are, pairwise, close to first-order
MMRs, we expect TTVs to occur over the super-period (Eq. 1,
see also Lithwick et al. 2012), which is roughly 260 days for all
these pairs (Table 5). The amplitude of these TTVs depends on
the masses and eccentricities of each planet of a pair. Since the
stability analysis concludes that the system is more stable with
eccentricities close to 0, we integrated the initial conditions de-
scribed in Tables 3 and 4 over 6 years, starting during the obser-
vation of TESS Sector 2 using the rebound package (Rein & Liu
2012; Rein & Spiegel 2015). The resulting TTVs are shown in
Fig. 14. In addition to the terms coming from the super-periods,
the six-year evolution of the TTVs shows hints of the long-term
evolution of the Laplace angles.

As the exact shape of the TTVs depends mainly on the
masses of the involved planets, the sampling of the 260-day sig-
nal over a few years, in addition to a longer monitoring of the
evolution of the Laplace angles, can provide precise constrains
on the orbital configuration and masses of this system, as well
as the presence of other planets in the chain. The detailed study
of the TTVs of this system will be the subject of a forthcoming
paper.
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Fig. 12. Stability indicator (defined in Eq. 3) for TOI-178 as a function
of the periods and eccentricity of planet f (top). The red areas show
the initial conditions of unstable trajectories, while black shows stable
(quasi-periodic) trajectories. The bottom panel shows the same stabil-
ity criterion with respect to the initial periods of planets f and g. The
dashed white lines show the observed periods reported in Table 4.

7. Internal structure

7.1. Minimum mass of the protoplanetary disc

The total mass of the planets detected in TOI-178 is approxi-
mately 24.8+5.96

−6.23M⊕. Assuming a mass fraction of H and He of
maximum ∼ 20% (similar to those of Uranus and Neptune), the
amount of heavy elements in the planets is at least 14.85M⊕
(16th quantile). This number can be compared with the mass of
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heavy elements one would expect in a protoplanetary disc sim-
ilar to the Minimum Mass Solar Nebula (MMSN) but around
TOI-178. Assuming a disc mass equal to 1% of the stellar mass,
and using the metallicity of TOI-178 ([Fe/H] = −0.23, corre-
sponding to a metal content of Z ∼ 0.0061), the mass of heavy
elements in such a disc would equal ∼ 13M⊕, which is remark-
ably similar to the minimum mass of heavy elements in planets,
as mentioned above. The concept of the MMSN, scaled appro-
priately to reflect the reduced mass and metallicity of TOI-178,
seems therefore to be as applicable for this system as for the So-
lar System. We note, however, that in (Hayashi 1981) the MMSN
model is assumed to be based on the in situ formation of planets,
whereas here we compare the mass of planets with the whole
mass of solids in the inner parts. Another implication of this
comparison is that a problem in term of available mass would
appear should the planetary masses be revised to higher values
or should another massive planet be detected in the same system.
In such a case, the TOI-178 system would point towards a for-

mation channel similar to the one envisioned for the Trappist-1
system (Schoonenberg et al. 2019).

7.2. Mass-radius relation

The six planets we detected in the TOI-178 system are in the
super-Earth to mini-Neptune range, with radii ranging from
1.152+0.073

−0.070 to 2.87+0.14
−0.13 R⊕. Although the mass determination

is limited by the extent of the available spectroscopic dataset,
planets b and c appear to have roughly terrestrial densities of
0.98+0.35

−0.31ρ⊕ and 1.02+0.28
−0.23, respectively, where ρ⊕ is the density

of the Earth. The outer planets seem to have significantly lower
densities; in particular, we estimate the density of planet d to be
0.177+0.055

−0.061ρ⊕.
Figure 15 shows the position of the six planets in a mass-

radius diagram, in comparison with planets with mass and radius
uncertainties less than 40% (light grey). Planets belonging to five
systems in Laplace resonance are indicated in the same diagram:
Trappist-1, K2-138, Kepler-60, Kepler-80, and Kepler 223. The
diversity of planetary composition in TOI-178 is clearly visible
in the diagram: The two inner planets have a radius compatible
with a gas-free structure, whereas the others contain water and/or
gas. This is similar to the Kepler-80 system, where the two in-
nermost planets are compatible with a gas-free structure and the
two outermost ones likely contain gas. Planets in Kepler-223,
Kepler-60, and Trappist-1 seem to have a more homogeneous
structure: All planets in Kepler-223 have a gas envelope, and the
planets in Kepler-60 and Trappist-1 have small gas envelopes
(below ∼ .01% of the total mass).

Considering the TOI-178 system in greater detail, planets d,
e, and g are located above the pure water line and definitely con-
tain a non-zero gas mass fraction. Planet d and, depending on its
mass, planet g are located in a part of the diagram where no other
planets exist (at least no planets with mass uncertainties smaller
than 40%) and must contain a large gas fraction.

Figure 16 is a diagram showing the location of the TOI-
178 planets in stellar insolation versus the planetary radius. The
colour code illustrates the density of exoplanets. This diagrams
clearly shows the so-called evaporation valley9. Planets b and c
are located below the valley, and their high densities could result
from the evaporation of a primordial envelope. The outer planets
are located above the valley and have probably preserved (part
of) their primordial gas envelope.

7.3. Comparison with other systems in Laplace resonance

The difference between the TOI-178 system and other systems
in Laplace resonance can clearly be seen in Fig. 17, where we
show the density of planets as a function of their equilibrium
temperature for the same systems as in Fig. 15. In Kepler-60,
Kepler-80, and Kepler-223, the density of the planets decreases
when the equilibrium temperature decreases. This can be under-
stood as the effect of evaporation that removes part of the pri-
mordial gaseous envelope, this effect being stronger for planets
closer to their stars. The densities of K2-138 are also 1-σ con-
sistent with such behaviour. In Trappist-1, the density of planets
is always higher than 4 g/cm3 and increases (with the exception
of Trappist-1 f) with decreasing equilibrium temperature. This is
likely due to the presence of more ices in planets far from their

9 We note that if the presence of a valley seems robust, it could be due
to effects that are not related to evaporation, e.g. core cooling (Gupta
& Schlichting 2019), or from combined formation and evolution effects
(Venturini et al. 2020).
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Fig. 14. Example of TTVs of the six planets of TOI-178, starting from the TESS observation of Sector 2 and spanning 6 years, using the masses
and orbital parameters from Tables 3 and 4.

stars (Agol et al. 2020). Contrary to the three Kepler systems, in
the TOI-178 system the density of the planets is not a growing
function of the equilibrium temperature. Indeed, TOI-178f has a
density higher than that of planet e, and TOI-178d has a density
smaller than that of planet e.

Planet f is substantially more massive than all the other plan-
ets in the system. From a formation perspective, one would ex-
pect this planet to have a density smaller than the other planets,
in particular planet e, at the end of the formation phase, simi-
lar to what we observe, for example, for Jupiter, Saturn, Uranus,
and Neptune. Since this planet is farther away from the star com-
pared to planet e, evaporation should have been less effective for
planet f compared to planet e. The combined effect of forma-
tion and evolution should therefore lead to a smaller density for
planet f compared to planet e. Similarly, planet d is smaller than
planet e and is located closer to the star. Using the same argu-
ments, the combined effect of formation and evolution should
have led to planet d having a density larger than that of planet e.
The TOI-178 system therefore seems at odds with the general
understanding of planetary formation and evaporation, where
one would expect the density to decrease when the distance to
the star increases, or when the mass of the planet increases.

7.4. Internal structure modelling

We used a Bayesian analysis to compute the posterior distribu-
tion of the internal planetary structure parameters. The method
we used closely follows the one in Dorn et al. (2015) and Dorn
et al. (2017) and has already been used in Mortier et al. (2020)
and Delrez (2020 - submitted). Here we review the main physical
assumptions of the model.

The model is split into two parts. The first is the forward
model, which provides the planetary radius as a function of the
internal structure parameters, and the second is the Bayesian
analysis, which provides the posterior distribution of the inter-
nal structure parameters, given the observed radii, masses, and
stellar parameters (in particular their composition).

For the forward model, we assume that each planet is com-
posed of four layers: an iron-sulfur inner core, a mantle, a water
layer, and a gas layer. We used the equation of state (EOS) for
Hakim et al. (2018) for the core, the EOS from Sotin et al. (2007)
for the silicate mantle, and the EOS from Haldemann et al.
(2020) for the water. These three layers constitute the ‘solid’
part of the planets. The thickness of the gas layer (assumed to
be made of pure H/He) is computed as a function of the stellar
age, mass, and radius of the solid part as well as irradiation from
the star, using the formulas in Lopez & Fortney (2014). The in-
ternal structure parameters of each planet are therefore the iron
molar fraction in the core, the Si and Mg molar fraction in the
mantle, the mass fraction of all layers (inner core, mantle, and
water), the age of the planet (equal to the age of the star), and
the irradiation from the star. More technical details regarding the
calculation of the forward model are given in Appendix D.

In the Bayesian analysis part of the model, we proceeded in
two steps. We first generated 150000 synthetic stars, taking their
masses, radii, effective temperatures, and ages at random fol-
lowing the stellar parameters computed in Sect. 3. The Fe/Si/Mg
bulk molar ratios in the star are assumed to be solar, with an un-
certainty of 0.05 (uncertainty on [Fe/H], see Sect. 3). For each
of these stars, we generated 1000 planetary systems, varying the
internal structure parameters of all planets and assuming that the
bulk Fe/Si/Mg molar ratios are equal to the stellar ones. We then
computed the transit depth and RV semi-amplitude for each of
the planets and retained the models that fitted the observed data
within the error bars. By doing so, we included the fact that all
synthetic planets orbit a star with exactly the same parameters.
Indeed, planetary masses and radii are correlated by the fact that
the fitted quantities are the transit depth and RV semi-amplitude,
which depend on the stellar radius and mass. In order to take this
correlation into account, it is therefore important to fit the plane-
tary system at once, rather than fitting each planet independently.

For the Bayesian analysis, we assumed the following two pri-
ors: first, that the mass fraction of the gas envelope is uniform in
log; and second, that the mass fraction of the inner core, mantle,
and water layer are uniform on the simplex (the surface on which
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Fig. 15. TOI-178 planets compared to other known transiting exoplanets with radius and mass uncertainties less than 40% (grey) and other systems
known to harbour a Laplace resonance. Data on known exoplanets were taken from the NASA Exoplanet Archive on 18 September 2020. The
dashed lines show theoretical mass-radius curves for some idealised compositions (Zeng et al. 2019). The six planets orbiting around TOI-178 are
indicated; the colour of the points and error bars give the equilibrium temperature. The seven planets orbiting Trappist-1 are shown with diamonds,
and the parameters are taken from Agol et al. (2020). The three planets orbiting Kepler-60 are shown with ’X’ marks, and the parameters are taken
from Jontof-Hutter et al. (2016). The six planets orbiting K2-138 are shown with squares, and the parameters are taken from Lopez et al. (2019).
The four planets orbiting Kepler-80 are shown with inverse triangles, and the parameters are taken from MacDonald et al. (2016). The four planets
orbiting Kepler-223 are shown with regular triangles, and the parameters are taken from Mills et al. (2016).

Fig. 16. Diagram of the position of the TOI-178 planets in a stellar light
intensity (relative to Earth) versus planetary radius. The marker size
is inversely proportional to the density, and the colour code gives the
density of exoplanets, from yellow for empty regions of the diagram to
violet for high-density and/or highly populated regions.

they add up to one) for the solid part. We also assumed: the mass
fraction of water to be smaller than 50% (Thiabaud et al. 2014;
Marboeuf et al. 2014); the molar fraction of iron in the inner
core to be uniform between 0.5 and 1; and the molar fraction of
Si, Mg, and Fe in the mantle to be uniform on the simplex (they
also add up to one). In order to compare TOI-178 with other sys-
tems with a Laplace resonance, we also performed a Bayesian
analysis for the K2-138, Kepler-60, Kepler-80, and Kepler-223

systems to compute the probability distribution of the gas mass
in the different planets. The parameters for all systems are taken
from the references mentioned above, and for all systems we
have assumed that [Si/H]=[Mg/H]=[Fe/H]. We did not consider
the Trappist-1 system in this comparison as it is likely that the
variations in the densities of these planets result from variations
in their ice contents (Agol et al. 2020).

The posteriors distributions of the two most important pa-
rameters (mass fractions and composition of the mantle) of each
planet in TOI-178 are shown in Appendix D, Figs. D.2 to D.7.
We focus here on the mass of gas in each planet, and we plot
the mass of the gaseous envelope for each planet as a function of
their equilibrium temperature in Fig. 18.

In all three Kepler systems, the gas mass in planets generally
decreases when the equilibrium temperature decreases, as can be
seen in Fig. 18. One exception to this tendency is the mass of the
envelope of Kepler-223d, which is larger than that of planet e in
the same system. Kepler-223d is, however, more massive than
planets c and e in the same system, and one would expect from
formation models that the mass of the primordial gas envelope
is a growing function of the total planetary mass. In K2-138,
the gas fraction is compatible (within 1-sigma error bars) with
a monotonous function of the equilibrium temperature. In the
case of TOI-178, the mass of gas also globally increases when
the equilibrium temperature decreases, with the notable excep-
tion of planet d. Indeed, a linear interpolation would provide a
gas mass for planet d of the order of 10−6 − 10−5M⊕, whereas
the interior structure modelling gives values of 9.66 × 10−3M⊕
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Fig. 17. Densities of planets in the TOI-178, Trappist-1, K2-138, Kepler-60, Kepler-80, and Kepler-223 systems as a function of their equilibrium
temperatures. The error bars give the 16% and 84% quantiles, and the marker is located at the median of the computed distribution. The colour
code gives the planetary masses in Earth masses. The parameters of the planets are taken from the references mentioned in Fig. 15.

and 2.56 × 10−2M⊕ for the 16% and 84% quantiles. Even more
intriguing, our results show that the amount of gas in planet d is
larger than in planet e, the latter being both more massive and
at a larger distance from the star. Indeed, from the joint proba-
bility distribution of all planetary parameters as provided by the
Bayesian model, the probability that planet d has more gas than
planet e is 92%.

From a formation point of view, one would generally expect
that the mass of gas is a growing function of the core mass. From
an evolution perspective, one would also expect that evaporation
is more effective for planets closer to the star. Both would point
towards a gas mass in planet d that should be smaller than that
of planet e. The large amount of gas in planet d and, more gen-
erally, the apparent irregularity in the planetary envelope masses
are surprising in view of the apparent regularity of the orbital
configuration of the system, which was presented in Sect. 6.

8. Discussion and conclusions

In this study, we presented new observations of TOI-178 by
CHEOPS, ESPRESSO, NGTS, and SPECULOOS. Thanks to
this follow-up effort, we were able to determine the architecture
of the system: Out of the three previously announced candidates
at 6.56 d, 9.96 d, and 10.3 d, we confirm the first two (6.56 d and
9.96 d) and re-attribute the transits of the third to 15.23 d and
20.7 d planets, in addition to the detection of two new inner plan-
ets at 1.91 d and 3.24 d; all of these planets were confirmed by
follow-up observations. In total, we therefore announce six plan-
ets in the super-Earth to mini-Neptune range, with orbital peri-
ods from 1.9 d to 20.7 d, all of which (with the exception of the
innermost planet) are in a 2:4:6:9:12 Laplace resonant chain. All
the orbits appear to be quasi-coplanar, with projected mutual in-
clinations between the outer planets estimated at about 0.1 deg, a
feature that is also visible in other systems with three-body reso-
nances, such as Trappist-1 (Agol et al. 2020) and the Galilean
moons. Current ephemeris and mass estimations indicate that
the TOI-178 system is very stable, with Laplace angles librat-
ing over decades. In the TESS Sector 29 data, made available
during the referee process of this paper, we recovered the tran-
sits of planets b, c, d, e, and f at the predicted dates. The transit

Table 7. Potential periods that would continue the resonant chain in a
near (k + q) : k MMR with planet g, taking the super-period at 260
days (see equations in Appendix C). Changing the super-period by a
few days typically changes the resulting period by less than 0.1 day.

k, q Period [day]

1, 1 45.0028
2, 1 32.3522
3, 1 28.3653
4, 1 26.4124
5, 1 25.2533
3, 2 36.4508
5, 2 29.9470
7, 2 27.2461

of planet g was not observed as it transited during the gap and
was observed during the third CHEOPS visit (see Fig. 4).

As there is no theoretical reason for the resonant chain to
stop at 20.7 days, and the current limit probably comes from the
duration of the available photometric and RV datasets, we give
in Table 7 the periods that would continue the resonant chain
for first-order (q = 1) and second-order (q = 2) MMRs. These
periods result from the equations detailed in Appendix C. In
the TOI-178 system, as well as in similar systems in Laplace
resonance, planet pairs are virtually all nearly first-order MMRs.
The most likely of the periods shown in Table 7 are therefore
the first-order solutions with low k, hence 45.00, 32.35, or 28.36
days; however, additional planets with such periods would
not be transiting if they were in the same orbital plane as the
others (see Fig. 8). We note that, for a star such as TOI-178,
the inner boundary of the habitable zone lies around 0.2 AU, or
at a period of the order of 40 days. Additional planets in the
Laplace resonance could therefore orbit inside, or very close to,
the habitable zone.

The brightness of TOI-178 allows for further characterisa-
tion of the system by photometric measurements, radial veloc-
ities, and transit spectroscopy. These measurements will be es-
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Fig. 18. Gas mass in the planets of the TOI-178, K2-138, Kepler-60, Kepler-80, and Kepler-223 systems as a function of their equilibrium
temperatures. The error bars give the 16% and 84% quantiles and the marker is located at the median of the computed distribution. The colour
code gives the planetary masses in Earth masses. The parameters of the planets are taken from the references mentioned in Fig. 15.

sential for further constraining the system, not only on its orbital
architecture but also for the physical characterisation of the dif-
ferent planets.

As discussed above, the current mass and radius determina-
tions show significant differences between the different planets.
It appears that the two innermost planets are likely to be rocky,
which may be due to the fact that they have lost their primary,
hydrogen-dominated atmospheres through escape (Kubyshkina
et al. 2018, 2019), whereas all the other planets may have re-
tained part of their primordial gas envelope. In this respect, the
different planets of the TOI-178 system lie on both sides of the
radius valley (Fulton et al. 2017). Therefore, reconstructing the
past orbital and atmospheric history of this planet may provide
clues regarding the origin of the valley. The system is located at
a declination in the sky that makes it observable by most ground-
based observatories around the globe. Furthermore, the host star
is bright enough and the radii of the outer planets large enough
to make them potentially amenable to optical and infrared trans-
mission spectroscopy observations from both ground and space,
particularly by employing the upcoming E-ELT and James Webb
Space Telescope (JWST) facilities. Indeed, it has been shown
that the JWST has the capacity to perform transmission spec-
troscopy of planets with radii down to 1.5 R⊕ (Samuel et al.
2014).

Planets d and f are particularly interesting as their densities
are very different from those of their neighbours, and they depart
from the general tendency of planetary density (i.e. decreasing
for decreasing equilibrium temperatures). The densities of plan-
ets d and f , in the context of the general trend seen in TOI-178,
are difficult to understand in terms of formation and evaporation
process, and they could be difficult to reproduce with planetary
system formation models (Mordasini et al. 2012; Alibert et al.
2013; Emsenhuber et al. 2020). We stress that even though two
different analyses yielded similar estimates of masses and den-
sities, they were performed with only 46 data points. As such,
these estimates need to be confirmed by further RV measure-
ments, which would provide, in particular, a better frequency
resolution and confirm the mass estimate of planet f .

The orbital configuration of TOI-178 is too fragile to sur-
vive giant impacts, or even significant close encounters: Fig. 12

shows that a sudden change in period of one of the planets of less
than a few ∼ .01 d can render the system chaotic, while Fig. 13
shows that modifying a single period axis can break the resonant
structure of the entire chain. Understanding, in a single frame-
work, the apparent disorder in terms of planetary density on one
side and the high level of order seen in the orbital architecture
on the other side will be a challenge for planetary system for-
mation models. Additional observations with CHEOPS and RV
facilities will allow further constraining of the internal structures
of all planets in the system, in particular the (lack of) similarity
between the water fraction and gas mass fraction between plan-
ets.

Follow-up transit observations should also unveil TTVs for
all but the innermost planet of the TOI-178 system (see Fig. 14),
with two timescales: a ∼ 260 d signal with an amplitude of sev-
eral minutes to a few tens of minutes and a larger signal over
several years or decades. Future observations of this system can
hence be used to measure the planetary masses and estimate ec-
centricities directly from TTVs as well as compare the results
with masses derived from RV measurements.

Finally, the innermost planet, b, lies just outside the 3:5
MMR with planet c; however, it is too far to be part of the
Laplace chain, which would require a period of ∼ 1.95d. Since
the formation of the Laplace resonant chain probably results
from a slow drift from a chain of two-planet resonances due to
tidal effects (Papaloizou & Terquem 2010; Delisle et al. 2012;
Papaloizou 2015; MacDonald et al. 2016), the current state of the
system might constrain the dissipative processes that tore apart
the innermost link of the chain while the rest of the configuration
survived.

The TOI-178 system, as revealed by the recent observations
described in this paper, contains a number of very important fea-
tures: Laplace resonances, variation in densities from planet to
planet, and a stellar brightness that allows a number of follow-
up observations (photometric, atmospheric, and spectroscopic).
It is therefore likely to become one of the Rosetta Stones for
understanding planet formation and evolution, even more so if
additional planets continuing the chain of Laplace resonances is
discovered orbiting inside the habitable zone.

Article number, page 19 of 29



A&A proofs: manuscript no. TOI178

Software list:

– ellc (Maxted 2016).
– emcee (Foreman-Mackey et al. 2013).
– lmfit (Newville et al. 2014).
– tqdm (da Costa-Luis et al. 2018).
– Tensorflow
– Keras
– pycheops10 Maxted et al., in prep..
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Appendix A: Inspection of the CHEOPS data

The four CHEOPS visits were automatically processed through
the DRP with individual frames undergoing various calibrations
and corrections; aperture photometry was subsequently con-
ducted for four aperture radii, as highlighted in Sect. 4.1.2 and
covered in detailed in Hoyer et al. 2020. The light curves pro-
duced for all runs in this study – which are often referred to
as ‘raw’ in order to indicate no post-processing detrending has
taken place and which were obtained with the DEFAULT aper-
ture – are shown in Fig. A.1. For the first, third, and fourth visits,
standard data processing within the DRP was performed; how-
ever, for the second run, careful treatment of telegraphic pixels
was needed.

In the CHEOPS CCD, there is a large number of hot pixels
(see, for example, Fig. 3). Moreover, the behaviour of some nor-
mal pixels can change to an abnormal state within the duration
of a visit. For example, a pixel can become ‘hot’ after an SAA
crossing of the satellite. These pixels are called telegraphic due
to their unstable response during the observations, and they can
disturb the photometry if located inside the photometric aper-
ture. To rule out the possibility that the detected transit events
in the light curves correspond to the effect of telegraphic pixels,
the data frames were carefully inspected and compared to the
detection map of hot pixels delivered by the CHEOPS DRP (see
details in Hoyer et al. 2020). By doing this, one telegraphic pixel
was detected inside the DEFAULT aperture at the end of the sec-
ond TOI-178 visit . The exact CCD location of this abnormal
pixel is shown in Fig. 3. The effect of this pixel in the photom-
etry is shown in the form of a jump in flux in the light curve of
the visit (top panel, Fig. A.2) at BJD∼2 459 076.5, which corre-
sponds to the flux increase of the pixel (middle panel, Fig. A.2).
After correcting the data by simply cancelling the flux of this
pixel through the full observation and repeating the photometry
extraction with the same aperture (R=25′′), we removed the flux
jump in the light curve (bottom panel, Fig. A.2). No telegraphic
pixels were detected in the other TOI-178 visits.

Appendix B: Analysis of the radial velocity data

Appendix B.1: Method

In this appendix, we describe the analysis of the RV data
alone. To search for planet detections, we computed the `1-
periodogram of the RV, as defined in Hara et al. (2017). This
tool is based on a sparse recovery technique called the basis pur-
suit algorithm (Chen et al. 1998). It aims to find a representation
of the RV time series as a sum of a small number of sinusoids
whose frequencies are in the input grid. The `1-periodogram has
the advantage, over a regular periodogram, of searching for sev-
eral periodic components at the same time, therefore drastically
reducing the impact of aliasing (Hara et al. 2017).

The `1-periodogram has three inputs: a frequency grid, onto
which the signal will be decomposed in the Fourier domain;
a noise model in the form of a covariance matrix; and a base
model. The base model represents offsets, trends, or activity
models and can be understood as follows. The principle be-
hind the `1-periodogram is to consider the signal in the Fourier
domain and to minimise the sum of the absolute value of the
Fourier coefficients on a discretised frequency grid (their `1
norm) while ensuring that the inverse Fourier transform is close
enough to the model in a certain, precise sense. Due to the `1
norm penalty, frequencies ‘compete’ against one another to have
non-zero coefficients. However, one might assume that certain

Fig. A.1. DRP-produced light curves (DEFAULT aperture) of the four
CHEOPS visits to TOI-178 presented in this work. Three-σ outliers
have been removed for better visualisation.

Fig. A.2. TOI-178 normalised light curve of the second visit (grey sym-
bols) shown in the top panel with its 10 min smoothed version overplot-
ted (blue symbols). The flux jumps produced by the appearance of a new
hot pixel are marked with the dashed vertical lines. The light curve of
the detected telegraphic pixel is presented in the middle panel, showing
its anomalous behaviour at the end of the visit. The light curve extracted
from the corrected data is shown in the bottom panel. For better visual-
isation, the light curves are presented after a 3-σ clipping and corrected
by a second-order polynomial in time.

frequencies, and more largely certain signals, are in the data by
default and should not be penalised by the `1 norm. We can
define a linear model whose column vectors are not penalised,
which we call the base model.
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Fig. B.1. Periodograms of the ancillary indicator time series (Hα,
FWHM, bisector span, and log R′HK shown in blue, orange, green, and
red, respectively). Top: Periodograms of the raw ancillary indicator time
series. Bottom: Periodograms of the same time series when the signal
corresponding to the maximum peak is injected in the base model.

The signals found to be statistically significant might vary
depending on the frequency grid, base, and noise models. To ex-
plore this aspect, as in Hara et al. (2020), we computed the `1-
periodogram of the data with different assumptions regarding the
noise covariance. We then ranked the covariance models via CV.
That is, we fixed a frequency grid. Secondly, for every choice
of base and noise models, we recorded which detections are an-
nounced. We assessed the score of the detections+noise models
via CV. The data were separated randomly into a training set and
a test set that contain, respectively, 70 and 30% of the data. The
model was fitted onto the training set, and we computed the like-
lihood of the data on the test set. This operation was repeated
250 times, and we attributed the median of the 250 scores to the
triplet base model, covariance model, and signal detected. To de-
termine if a signal at a given period was significant, we studied
the distribution of its FAP among the highest ranked models.

Appendix B.2: Definition of the alternative models

To define the alternative RV models we, as a preliminary step,
analysed the Hα, FWHM, bisector span, and log R′HK time se-
ries as provided by the ESPRESSO pipeline. We computed the
residual periodograms as described in (Baluev 2008). These pe-
riodograms allowed us to take into account general linear base
models that are fitted along candidate frequencies. We computed
the periodograms and iteratively added a sinusoidal function
whose frequency corresponds to the maximum peak of the pe-
riodogram. Iterations 1 and 2 are shown in the top and bottom
panels of Fig. B.1, respectively. The 36-day and 16-day posi-
tions (top and bottom panels, respectively) are marked with dot-
ted black lines. Pursuing the iterations, we find signal detections
with FAP <10−3 of periods at 36, 115, and 15.9 days for Hα;
35.5, 20.8, and 145 days for the FWHM; 36 and 16 days for the
bisector span; and 36.7 and 16.5 days for the log R′HK . The 36-
day periodicities are always detected with FAP < 10−6. These
results indicate that activity effects in the RV at ≈ 36 and ≈ 16
days are to be expected, along with low frequency effects. These
signals likely stem from the rotation period of the star, which

creates signals at the fundamental frequency and the first har-
monic.

We now turn to the RV and define the alternative noise mod-
els we explored. These are Gaussian, with a white component,
an exponential decay, and a quasi-periodic term, as given by the
formula

Vkl = δk,l(σ2
k + σ2

W ) + σ2
R e
−

(tk−tl )2

2τ2
R +σ2

QP e
−

(tk−tl )2

τ2
QP

sin2
(

tk−tl
Pact

)
, (B.1)

where Vkl is the element of the covariance matrix at row k and
column l; δk,l is the Kronecker symbol; σk is the nominal uncer-
tainty on the measurement k; and σW , σR, τR, σQP, and Pact are
the parameters of our noise model. A preliminary analysis on the
ancillary indicators (FWHM, S-index, and Hα) showed that they
all exhibit statistically significant variations at ≈ 40 (36 days), as
well as a periodogram peak at 16 d. The 36 and 16 d signals ex-
hibit phases compatible with each other at 1 sigma, except for
the 36 d signal in the FWHM which is 3σ away from the phase
fitted on the S-index and Hα. This points to a stellar rotation
period of 36 d. We considered all the possible combinations of
values for σR and σW in 0.0,0.5 1.0,1.25, 1.5,1.75,2 m/s, τ = 0,
2, 4, 6 d, Pact = 36.5 d, σQP = 0,1,2,3,4 m/s, and τQP = 18, 36,
or 72 d.

The computation of the `1-periodogram was made assum-
ing a certain base model. By this, we mean a linear model that
is assumed to be in the data by default and will thus automat-
ically be fitted. This base model could represent, for instance,
offsets, trends, or certain periodic signals. We tried the following
base models: one offset, one offset and smoothed Hα, one offset
and smoothed FWHM, and one offset and the smoothed Hα and
FWHM time series. The smoothing of a given indicator is done
via a GP. This process has a Gaussian kernel, whose parameters
(timescale and amplitude) have been optimised to maximise the
likelihood of the data.

Appendix B.3: Results

In Fig. B.2, we represent the `1-periodogram obtained with the
noise model with the maximum CV score with three differ-
ent base models (from top to bottom: without any indicator,
with smoothed Hα, and with both smoothed Hα and smoothed
FWHM). In all cases, we find signals at 35-40 d, 15 d, and 3.24
d, as well as a peak at 6.55 d. We can also find peaks at 21 d, 9.84
d, 2.08 d, 1.92 1.44, or 1.21 days, depending on the models used.
We note that 2.08 and 1.92 d are aliases of each other, so that the
presence of one or the other might originate from the same sig-
nal. The model with the overall highest CV score includes only
the smoothed Hα time series in the base model and with the no-
tations of Eq. (B.1), σW = 1.75 m/s, σR = 1.5 m/s, τ = 2 days,
and σQP = 0, and it corresponds to the middle panel in Fig. B.2.

We computed the `1-periodogram on a grid from 0 to 0.95
cycles per day, hence ignoring periods below one day, with all
combinations of the base and noise models. As in Hara et al.
(2020), the models are ranked by CV. We then considered the
20% highest ranked models (all noise and base models consid-
ered), which we denote with CV20, and computed the number of
times a signal is included in the model. A signal is considered
to be included if a peak has a frequency within 1/Tobs of a ref-
erence frequency 1/P0, where Tobs is the observation time span
and has an FAP below 0.5. We report these values in Table B.1
for the reference periods P0 that correspond to signals appear-
ing at least once in Fig. B.2. We note that, due to the short time
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span, the frequency resolution is not good enough to distinguish
between 36 and 45 days.

We find that signals at 36, 16, and 3.2 days are consistently
included in the model. The 3.2-day signal presents a median FAP
of 0.002 and can therefore be confidently detected. When the
base model consists of only an offset, 36 and 16 days are sys-
tematically significant with FAP <5%, but their significance de-
creases when activity indicators are included in the model. Since
these periodicities also appear in ancillary indicators, we con-
clude that they are due to activity. Signals at 6.5 and 9.9 days
appear in ≈ 15% of the models, but with low significance. Al-
though detections cannot be claimed from the RV data only, we
note that there are signals at 2.08 d (alias of 1.91 d) and 9.9 d. We
find that they are in phase with the photometric signals within 1.5
σ, which further strengthens the detection of transiting planets at
these periods. We finally note a small hint at 1.2 days (which can
also appear at its alias, 5.6 days, in certain models).

The period of planet f is 15.2 days, and an activity signal in
that region seems to be present (≈ 16 d, depending on ancillary
indicators). The periods are such that 1/(1/15.23 − 1/16) = 316
days, which is greater than the observation time span. To check
whether our activity model allows us to detect planet f in the RV
(and yield a meaningful mass estimate), we added to the base
model all the known transiting planets, except the 15.2-day one,
as well as the smoothed Hα indicators and sine functions at 15.7
(closest to 15.2 days) and 36 days. From that we obtain Fig. B.3,
where a signal at 15.2 days appears with an FAP of ≈ 20%.

The 20.7-day transiting planet could correspond to the peak
at 21.6 d in the `1-periodogram (Fig. B.2, top). When restricting
the frequency grid to 0 to 0.55 cycles per day, the best CV model
yields Fig. 9, where a signal appears at 20.6 days. However, sig-
nals close to 20.7 days seem to disappear when the stellar activ-
ity model is changed. The planetary signature might be hidden
in the RV due to stellar effects. Further observations would allow
us to better disentangle stellar and planetary signals.

Appendix B.4: Detections: Conclusion

In conclusion, we can claim an independent detection of the 3.2
d planet with RV. We find significant signatures at 36 and 15-16
days, which we attribute to activity. We find signals at 1.91 d
(or its alias 2.08 d), 6.5 d, and 9.9 d in phase with the detected
transits. We see a signal at 21 d for some models, which could
correspond to the 20.7 d planet, but it seems that there are not
enough points to disentangle a planetary signal from activity at
this period. We note that modelling an activity signal at 15.7
days leaves a signal at 15.2 days, which likely stems from the
presence of a planet at this period.

Finally, we checked the consistency in the phase of the sig-
nals fitted onto the photometric and RV data. We performed an
MCMC computation of the orbital elements on the RVs with ex-
actly the same priors as model 2, except that we set a flat prior
on the phases. We find that the uncertainties on the phase corre-
sponding to planets b, c, d, e, f , and g correspond respectively to
7, 2, 3.3, 4, and 100% of the period. The phases from transits are
included, respectively, in the 1.5, 1, 2, 1, and 1 σ intervals de-
rived from the RVs, such that we deem the phases derived from
RVs consistent with the transits.

Appendix B.5: Mass and density estimates

The RV measurements allowed us to obtain mass estimates of
the planets. These estimates can depend on the model of stellar

Fig. B.2. `1-periodogram of the ESPRESSO RV corresponding to the
best CV score with different linear base models for the data: Top: Only
one offset. Middle: Offset, smoothed Hα. Bottom: Smoothed Hα and
smoothed FWHM.
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Fig. B.3. `1-periodogram when all transiting planets are added to the
base models, as well as a smoothed Hα indicator and sinusoids at 15.7
and 36 days.

activity used. To account for this, we estimated masses with two
different stellar activity models: (1) Activity is modelled as two
sinusoidal signals plus a correlated noise, and (2) activity is mod-
elled as a correlated Gaussian noise with a semi-periodic kernel.
In both cases, we added the Hα time series smoothed with a GP,
as described in Sect. B.3. In model 1, the two sinusoids have
periods of ≈ 40 days and ≈ 16 days. This is motivated by the
fact that these periodicities appeared systematically in ancillary
indicators, though with different phases. We therefore allowed
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Table B.1. Inclusion in the top 20% best models of different periodici-
ties. We report the FAP associated with the best model, the frequency of
inclusion in the model, and the median FAP in the top 20% best models.

Period
(d)

FAP (best
fit)

Inclusion
in the
model

CV20 me-
dian FAP

1.21 5.33 · 10−1 1.730% -
1.44 1.00 0.0% -
1.914 1.00 0.0% -
2.08 2.93 · 10−1 0.384% -
3.24 1.33 · 10−2 100.0% 2.20 · 10−3

6.5 1.31 · 10−1 15.57% -
9.9 3.41 · 10−1 16.63% -
15.2 8.38 · 10−2 89.32% 6.83 · 10−2

20.7 1.00 0.0% -
36 (45) 5.24 · 10−1 95.48% 2.57 · 10−1

the phase to vary freely in the RVs. The priors on the stellar ac-
tivity periods are taken as Gaussians with mean 16 days, σ = 1
day and mean 36.8 days, σ = 8 days, according to the variabil-
ity of the position of the peaks appearing in the spectroscopic
ancillary indicators. We further added free noise components:
a white component and a correlated component with an expo-
nential kernel. The prior on the variance is a truncated Gaussian
with σ = 100 m2/s2, and the prior on the noise timescale is log-
uniform between 1h and 30 days. The second model is a GP (or
here, correlated Gaussian noise) with a quasi-periodic kernel k
of the form

k(t;σW , σR, λ, ν) = σ2
W + σ2

R e−
t
τ cos(νt). (B.2)

We imposed a Gaussian truncated prior on σ2
W , σ

2
R with σ = 100

m2/s2. We imposed a flat prior on ν between 2π/50 and 2π/30
rad/day and a log-uniform prior on τ on 1h to 1000 days. For
planets b, c, d, g, e, and f , the priors on the periods and the times
of conjunction are set as Gaussian with means and variances set
according to the constraints obtained from the joint fit of the
TESS and CHEOPS data. The densities are computed by com-
bining the posterior samples of mass and the posterior samples of
radii, assuming the mass and radius estimates are independent.

We ran an adaptive MCMC algorithm as described in Delisle
et al. (2018), implementing spleaf (Delisle et al. 2020)11, which
offers optimised routines to compute the inverse of covariance
matrices. We checked the convergence of the algorithm by as-
certaining that 600 effective samples had been obtained for each
variable (Delisle et al. 2018). The posterior medians as well as
the 1σ credible intervals are reported in Table B.2 for both activ-
ity models. The kernel (B.2) is close to the stochastic harmonic
oscillator (SHO), as defined in Foreman-Mackey et al. (2017).
We also tried the SHO kernel and simply imposed that the qual-
ity factor Q be greater than one half, the other parameters having
flat priors. We found very similar results, and, as such, they are
not reported in Table B.2.

Modelling errors might leave a trace in the residuals. In Hara
et al. (2019), it is shown that if the model used for the analy-
sis is correct, the residuals of the maximum likelihood model,
appropriately weighted, should follow a normal distribution and
not exhibit correlations. In Fig. B.4, we show the histogram of
the residuals (in blue) and the probability distribution function
of a normal variable. The two appear to be in agreement. We fur-
ther computed the Shapiro-Wilk normality test (Shapiro & Wilk
11 https://gitlab.unige.ch/Jean-Baptiste.Delisle/spleaf

Table B.2. Mass estimation with activity model as two sinusoids, Hα
model, and correlated noise.

Parameter Estimates (1) Estimates (2)
Planets

TOI 178b (1.9 days)
K [m/s] 1.05+0.11

−0.11 1.04+0.27
−0.28

m [M⊕] 1.52+0.18
−0.22 1.49+0.40

−0.43
ρ [ρ⊕] 0.99+0.26

−0.20 0.97+0.36
−0.30

TOI 178c (3.2 days)
K [m/s] 2.83+0.15

−0.13 2.72+0.27
−0.28

m[M⊕] 4.88+0.43
−0.47 4.67+0.62

−0.58
ρ [ρ⊕] 1.04+0.25

−0.21 0.99+0.26
−0.20

TOI 178d (6.5 days)
K [m/s] 1.53+0.18

−0.20 1.24+0.33
−0.29

m[M⊕] 3.33+0.45
−0.53 2.70+0.71

−0.71
ρ [ρ⊕] 0.197+0.04

−0.03 0.158+0.047
−0.042

TOI 178e (9.9 days)
K [m/s] 1.38+0.19

−0.15 1.72+0.31
−0.35

m[M⊕] 3.44+0.53
−0.49 4.28+0.82

−0.96
ρ [ρ⊕] 0.32+0.07

−0.06 0.4+0.103
−0.090

TOI 178f (15.2 days)
K [m/s] 2.49+0.25

−0.24 2.88+0.34
−0.37

m[M⊕] 7.18+0.89
−0.93 8.28+1.11

−1.34
ρ [ρ⊕] 0.60+0.13

−0.10 0.69+0.16
−0.13

TOI 178g (20.7 days)
K [m/s] 1.29+0.20

−0.21 1.19+0.42
−0.47

m [M⊕] 4.10+0.73
−0.73 3.78+1.47

−1.45
ρ [ρ⊕] 0.173+0.044

−0.037 0.159+0.073
−0.061

Other signals)
Signal at ≈ 40 days (probably Prot)

P [days] 39.4+1.09
−3 -

K [m/s] 3.01+0.35
−0.36 -

Activity signal at 16 days
P [days] 16.2+0.28

−0 -
K [m/s] 1.07+0.44

−0.40 -
Noise parameters

σW [m/s] 0.51+0.13
−0.11 0.90+0.26

−0.25
σR [m/s] 0.75+0.22

−0.11 -
τR [days] 5.74+4.03

−5.12 -
σQP [m/s] - 2.90+0.99

−1.47
τQP [days] - 350+192

−337
P [days] - 42.7+3.27

−3.72

1965) and found a p-value of 0.78, which is compatible with
normality. The variogram does not exhibit signs of correlations.
The same analysis was performed with model 2, for which the
residuals also exhibit neither non-normality nor correlation (p-
value of 0.99 on the residuals). We conclude that both models
are compatible with the data.

Appendix C: Continuation of a Laplace resonant
chain

TOI-178 is in a configuration where successive pairs of plan-
ets are at the same distance to the exact neighbouring first-order
MMR. Generalising the configuration a bit, we define fictive
planets 1, 2, and 3 such that planets 1 and 2 are close to the
resonance (k1 + q1) : k1 and planets 2 and 3 are close to the reso-
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Fig. B.4. Histograms of the weighted residuals of the maximum likeli-
hood model (top) and their variogram (bottom) for activity modelled as
two sinusoidal functions (model 1).

nance (k2 + q2) : k2, where ki and qi are integers. We hence write
the near-resonant angles:

ϕ1 = k1λ1 − (k1 + q1)λ2 ,

ϕ2 = k2λ2 − (k2 + q2)λ3 ,
(C.1)

where λi is the mean longitude of planet i. The associated dis-
tances to the resonances read:

∆1 = k1n1 − (k1 + q1)n2 ,

∆2 = k2n2 − (k2 + q2)n3 ,
(C.2)

where ni is the mean motion of planet i. A Laplace relation exists
between these three planets if:

j1∆1 − j2∆2 ≈ 0 , (C.3)

where j1 and j2 are integers. In addition, the invariance by rota-
tion of the Laplace angle (D’Alembert relation) gives:

j1q1 = j2q2 . (C.4)

As a result, the Laplace relation requires:

n3 ≈
k2n2 −

q2
q1

∆1

k2 + q2
, (C.5)

which translates, for the period of the third planet, as:

P3 ≈
k2 + q2

k2
P2
−

q2
q1P1,2

, (C.6)

where P1,2 is the super-period associated with ∆1. From this
we can compute the periods of potential additional planets that
would continue the Laplace resonant chain of TOI-178. Taking
planets f and g as planets 1 and 2, the formula to compute the
possible period of a planet x that could continue the resonant
chain becomes:

Px =
k + q

k
P f
−

q
P f ,g

, (C.7)
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Fig. C.1. Super-period of planet f with respect to e (in red) and g (in
black) for a set of first-order MMRs. The purple line indicates the value
of the super-period (260 day) between the other pairs of the chain. Only
two possible periods allowed planet f to be part of the resonant chain,
which correspond to the near-intersection of the right-hand side of a red
curve, the left-hand side of a black curve, and the horizontal purple line.

where P f ,g is the super-period between the near first-order reso-
nances of the known chain defined by Eq. (1), here ∼ 260 days,
and k and q are integers such that planet x and f are near a
(k + q)/k MMR. Some of the relevant periods are displayed in
Table 7. A similar computation allowed us to determine the pos-
sible period of planet f prior to its confirmation by CHEOPS
(see Fig. C.1).

Appendix D: Internal structure

We provide here the posterior distributions of the interior plane-
tary models, as well as some more details on their calculations.
As mentioned in the main text, deriving the posterior distribution
of the internal structure parameters requires computing the ra-
dius of planets millions of times for different sets of parameters.
In order to speed up this calculation, we first computed a large
(5 million-point) database of internal structure models, varying
the different parameters. This database was split randomly into
three sets: one training set (80% of the models), one validation
set, and one test set (the last two each containing 10% of the
whole database). We then, in a second time, fitted a deep neu-
ral network (DNN) in order to be able to compute the radius of
a planet very rapidly with a given set of internal structure pa-
rameters. The architecture of the DNN we used is made of six
layers of 2048 nodes each, and we used the classical rectified
linear unit (ReLU) as an activation function (Alibert & Venturini
2019). The DNN is trained for a few hundred epochs, using a
learning rate that is progressively reduced from 1.e − 2 down to
1.e − 4. Our DNN allowed us to compute these radii with an av-
erage error below 0.25% and with an increased rapidity of many
orders of magnitude (a few thousand models computed per sec-
ond). Figure D.1 shows the prediction error we reach on the test
set (which was not used for training). The error on the predicted
radius is lower than 0.4% – an error much lower than the un-
certainty on the radii we obtained for the TOI-178 planets – in
99.9% of the cases. It is finally important to note that this model
does not include the compression effect that would be generated
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Fig. D.1. Histogram of the prediction error from our DNN on the test
set. The y-axis is in log scale, and the x-axis covers an error from -1%
to 1%.

by the gas envelope onto the solid part. Given the mass of the
gas envelope in all planets, this approximation is justified.

The following plots show the posterior distribution of the in-
terior structure parameters. The parameters are: the inner core,
mantle, and water mass fraction relative to the mass of the solid
planet; the Fe, Si, and Mg molar fraction in the mantle; the Fe
molar fraction in the core; and the mass of gas (log scale). It
is important to remember that since the core, mantle, and water
mass fractions add up to one, they are not independent. This is
also the case for the Si, Mg, and Fe molar fraction in the mantle.

Fig. D.2. Corner plot showing the main parameters of the internal struc-
ture of planet b. The parameters are: the core mass fraction; the mantle
mass fraction; the water mass fraction (all relative to the solid planet);
the molar fractions of Fe, Si, and Mg in the mantle; the molar fraction
of Fe in the core; and the mass of gas (log scale). The dashed lines give
the positions of the 16% and 84% quantiles, and the number at the top
of each column gives the median and the 16% and 84 % quantiles.

Fig. D.3. Same as Fig. D.2 but for planet c.
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Fig. D.4. Same as Fig. D.2 but for planet d.

Fig. D.5. Same as Fig. D.2 but for planet e.

Fig. D.6. Same as Fig. D.2 but for planet f .

Fig. D.7. Same as Fig. D.2 but for planet g.
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