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Abstract
A new model of vibrational energy transfer in molecular systems taking into account anharmonic
(third order) interactions of localized vibrations with a chain of harmonic oscillators is developed.
The role of the energy spectrum of the chain and of the magnitude of the non-linear coupling is
discussed in detail by an exact numerical solution of the quantum dynamical problem based on
the tensor-train (matrix product state) representation of the vibrational wave function. Results
show that the type of wave packet motion is determined by the eigen-spectrum of the chain and by
its excitation time. It is found that when the excitation of the chain takes place on a much shorter
timescale than the energy transfer along the chain the vibrational wave packet moves in a ballistic
way independently of the length of the chain. On the other hand when the excitation of the chain
takes place on the timescale of the energy transfer along the chain the overall motion becomes
superballistic. These findings shed new light on recent observations of ballistic energy transfer
along polymethylene chains.

1. Introduction

Vibrational energy redistribution in molecular systems is one of the fundamental topics of modern physical
chemistry. Bonds are broken and formed as a result of energy transfer between nuclear degrees of freedom
moving on a certain potential energy landscape: it is this flow that ultimately controls the outcome of all
chemical reactions. The main features of the energy flow depend on the topography of the potential energy
surface (PES) and on the initial conditions of the system, yet the determination of general laws is impossible
if not for the simplest cases.

A wide range of theoretical studies investigating models consisting primarily of chains of bonded atoms
demonstrated how a variety of phenomena can emerge even in such simple systems. Most of these studies
are based on second order (local) potentials and nearest neighbour couplings [1–8]. However, when second
order models of vibrational energy flow are employed to compute relaxation and dephasing times a very
poor agreement with available experimental data is obtained [9].

On the one hand, the role of the anharmonicity of the PES—mainly Fermi resonances—on the
vibrational energy relaxation and dephasing has been recognized since the early 70’s [9, 10], while the first
approximate rate theory of vibrational energy flow in molecules induced by cubic couplings was developed
by Logan and Wolynes in the 90’s [11–13]. Rate theory based approaches have been widely applied during
the last decades [14–17], while, due to the inherent mathematical and numerical complexity, full quantum
dynamical treatments of vibrational energy flow processes in anharmonic systems are still restricted to a few
cases [18–22].Furthermore, investigations on model systems have been focussed almost exclusively on the
properties of the chain which carries the vibrational energy [2], and little attention has been paid to the way
the initial vibrational excitation is created, and to the extent of the delocalization of the wave function
during the energy flow.

© 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/abc9ed
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0060-4520
https://orcid.org/0000-0003-3092-3343
mailto:raffaele.borrelli@unito.it


New J. Phys. 22 (2020) 123002 R Borrelli and M F Gelin

Figure 1. Model molecule used in the construction of the Hamiltonian. The N ≡ N and C = O stretching vibrations are fully
localized harmonic oscillators coupled through a chain of harmonic oscillators via anharmonic third-order interactions.

On the other hand, ultrafast IR and 2D-IR measurements have shed new light on energy relaxation
paths in molecular chains [23, 24, 24–29]. In these experiments vibrational energy redistribution is
observed after an excess energy has been deposited in a spatially localized region of a system by
photo-excitation. The region of the molecule being excited is associated with a localized optically active
vibration such as C = O, C ≡ N, amide or C–H, stretching. After the initial excitation the energy content of
other localized vibrations can be monitored by some type of time-resolved spectroscopic technique [26]. A
prototype of these systems, recently studied by Rutbtsov and co-workers, is sketched in figure 1. Normal
mode analysis reveals that the N ≡ N and the C = O stretching vibrations are localized on a very small
group of atoms. Upon excitation of the N ≡ N stretching, the energy is transferred to the C = O mode via a
two step mechanism: first the excess energy is transferred to the chain by a subpicosecond process, and then
it travels ‘ballistically’ reaching the acceptor carbonyl group after a time that is proportional to the length of
the polymethylenic chain. Theoretical studies based on approximate rate theory have highlighted the
importance of the vibrational band structure of the polymethylenic chain on the overall energy transfer
process suggesting that the ballistic energy transfer is obtained because the energy is distributed among high
frequency vibrations with little or no friction at all [28].

However, rate theories cannot provide information about the structure of the vibrational wave function
during the process, and cannot disentangle the interplay between coherence and delocalization in the
efficiency of the energy transfer. While it might be possible to tackle the problem by a direct computation of
the multi-dimensional PES of the system depicted in figure 1, here we follow a different route which aims at
disentangling the role of anharmonic and harmonic terms of the PES in the transport mechanism.

The remainder of the paper is organized as follows: in section 2 we develop a realistic microscopic model
of vibrational energy transfer in oscillator chains by taking into account the initial process of
photo-excitation of localized vibrations and the subsequent transfer of energy to a chain via cubic
anharmonic interactions; the tensor-train (TT) methodology is briefly introduced in section 3; then in
section 4 an accurate numerical study of the model is performed using recent developments of the
time-dependent TT formalism [30–36]. The main conclusions are summarized in section 5.

2. Model of energy flow in a chain

The physico-mathematical formalism required to describe the process of vibrational energy transfer in
molecules is rooted in the well known GF method by Wilson [37], and in the extensions that have been
developed to include anharmonic interactions (see for example [38]). Once a proper set of internal
coordinates, comprising bond distances, bond angles and dihedrals, has been chosen the prescriptions to
write the kinetic energy operator are readily implemented, while the computation of the PES remains a
formidable task but for the simplest cases.

Here we wish to construct a model system that mimics a molecular structure which is characterized by
two localized vibrational modes, QA and QF, interacting with the ends of a chain of harmonic oscillators.
The vibration QA interacts with a radiation field via a dipole operator enabling a direct photo-excitation of
one side of the chain (see figure 2).

The most generic structure of the Hamiltonian operator H implementing the above model can be
written in the form (� = 1)

H =
ωA

2

(
P2

A + Q2
A

)
+ Hc +

ωF

2

(
P2

F + Q2
F

)
+ V

(
QA, QF , {qi}

)
+ μAQAE (t) . (1)

The localized vibrations A and F are represented as harmonic oscillators with frequencies ωA,F, respectively;
Hc is the Hamiltonian of the chain connecting A and F and V(QA, QF, {qi}) represents the interaction of the
two modes QA and QF with the chain modes {qi}; finally the term μAQAE(t) describes the dipole
interaction of the oscillator A with the external electric field (the dipole moment is assumed to be linear on
the oscillator coordinate QA, E(t) is the dimensionless electric field envelope, and μA is the coupling
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Figure 2. (a) Chain of interacting oscillators. The oscillators A and F interact via cubic couplings (Fermi resonances) with the
chain (curved connections) while the harmonic oscillators of the chain interacts quadratically (straight lines). βA,F are the cubic
constant couplings of the Hamiltonian operator. (b) The chain can be mapped, via a linear transformation, to a system of two
oscillators interacting via cubic couplings with an ensemble of harmonic oscillators. βAkl,βFkl are the cubic constant couplings of
the transformed Hamiltonian operator (see the main text for details).

constant). The chain comprises Nc oscillators, and its Hamiltonian operator, Hc, can be modelled by
assuming a local mode picture and introducing only nearest neighbour interactions

Hc =
1

2

Nc−1∑
i=1

Gi,i+1pipi+1 +
1

2

Nc−1∑
i=1

Fi,i+1qiqi+1, (2)

where the actual values of the elements of the G and F matrices define the eigen-spectrum of the chain. We
refer the readers to reference [37] for a detailed derivation of the G and F matrices and for a comprehensive
explanation of the GF methodology. Here qi represent local possibly internal coordinates, and pi are their
conjugate momenta. The overall number of oscillators in the model, including the QA and QF modes, is
N = Nc + 2. Rather than trying to compute Hc for a specific molecular structure we model the chain by
defining a central frequency ω0 and the bandwidth of its spectrum. Therefore Hc can be written in the final
form

HC =
ω0

2

Nc∑
i=1

(
p2

i + q2
i

)
+ D

Nc−1∑
i=1

(
pipi+1 + qiqi+1

)
. (3)

Here D is a coupling constant which determines the bandwidth of the energy eigenvalues of the chain
normal modes. While it might seem an oversimplification, direct computations of the spectrum of
polymethylenic chains indeed show this type of band structure for several types of vibrations like C–C
stretchings and CH2 waggings [39, 40], which, as we shall see in the next sections, represent a most relevant
route of energy transport. The mechanism of energy flow from A to F depends both on the chain
properties, and on the couplings between the localized vibrations and the chain. We assume that these latter
are Fermi type interactions, i.e. cubic anharmonicities, which involve the vibrations QA, QF and the first and
last oscillator of the chain, q1 and qNc , respectively

V(QA, QF , {qi}) = βAQAq2
1 + βFQFq2

Nc
. (4)

This type of interaction can induce transitions in which one quantum is destroyed in the localized
vibrations and two quanta are created in the chain (and viceversa). In order for the cubic interactions to
effectively drive energy transfer to the chain, the frequencies ωA,F of the two vibrations QA, QF must be close
to the double of the characteristic chain frequency ω0 (ωA,F ≈ 2ω0). Here we neglect any other cubic
coupling between the modes QA, QF and the remaining modes of the chain. This choice is motivated by the
observation that the third order coupling coefficients are determined mostly by the geometrical overlap of
the normal modes [41], therefore it is equivalent to state that the harmonic mode QA (QF) has a significant
overlap only with the harmonic local mode q1 (qNc). The relevance of third order coupling terms is also
discussed in [18, 19] although within a quite different model. We further mention that a similar type of
energy transfer mechanism has also been described very recently in a Mo2 –N2 complex and has been
suggested as a possible way to activate specific chemical bonds [42, 43]. Finally, we remark that while most
experimental data on IVR are obtained from condensed phase experiments, the model described above does
not include any dissipative process. This is justified by the different timescales of inter- and intra-molecular
vibrational energy transfer, which are also experimentally observed in the systems described above [26].

In order to clarify the relation of the above model with other approaches in which IVR processes are
triggered by anharmonic interactions it is useful to transform the Hamiltonian of the chain into its diagonal
form by a unitary transformation (see appendix A)

H̃c = U†HcU =
1

2

Nc∑
k=1

ωk(P2
k + Q2

k), (5)
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where the frequencies of the eigen-modes, Qk, satisfy the dispersion relation ωk=ω0+2D cos(πk/(Nc + 1)).
Therefore the chain represents a collection of harmonic oscillators with frequencies centred around ω0 and
having a bandwidth 4D. The eigen-modes of the chain are related to the site modes by the linear
transformation Qk =

∑
l Tklql, where the explicit structure of the T matrix is given in the appendix A.

The eigen-mode transformation also induces a transformation of the anharmonic interaction
V(QA, QF, {qi}) which becomes

Ṽ(QA, QF , {Qk}) =
∑
X,m,n

βXmnQXQmQn, {X = A, F}. (6)

The explicit expression for the coupling constants βXmn is given in the appendix A and depends both on the
parameters βA,F and on the eigenvector matrix T. Therefore, the initial model with the Hamiltonian of
equation 1 is completely equivalent to a system in which the harmonic oscillators QA, QF are coupled, via
cubic interactions, to a collection of harmonic oscillators with eigen-energies falling in the range
(ω0 − 2D,ω0 + 2D)

H =
ωA

2

(
P2

A + Q2
A

)
+

ωF

2

(
P2

F + Q2
F

)
+

1

2

∑
k

ωk

(
P2

k + Q2
k

)
+

∑
X,m,n

βXmnQXQmQn. (7)

This model can be easily extended to include local anharmonicities of the chain but for the moment we skip
this complication.

After having defined the equivalence of the two models it is clear that the energy transport does not
depend exclusively on the chain properties but rather on the interplay between the chain structure, i.e. its
spectrum and eigenvectors, and the third order coupling constants βA,βF. In the next sections we address
the problem of the role played by these parameters in the mechanism of energy flow by tackling directly the
quantum dynamical problem using numerical techniques based on TTs.

3. Numerical methodology

The quantum dynamical analysis of the above IVR model requires efficient numerical methods for the
solution of the associated time-dependent Schrödinger equation. Here we employ a special type of
representation of wave functions known as TT format (or matrix product states, MPS, in the physics
literature) which has turned out to be a promising approximation in multi-dimensional problems [34,
44–49]. Below we sketch the basic principles of the TT decomposition, and show how it can be applied to
efficiently solve the time-dependent Schrödinger equation. The reader is referred to the original papers [34,
46, 49] for a detailed analysis of the TT decomposition.

Let us consider a generic expression of a state of a d dimensional quantum system in the form

|Ψ〉 =
∑

i1,i2,...,id

C(i1, . . . , id) |i1〉 ⊗ |i2〉 · · · |id〉 , (8)

where |ik〉 labels the basis states of the kth dynamical variable, and the elements C(i1, . . . , id) are complex
numbers labelled by d indices. If we truncate the summation of each index ik the elements C(i1, . . . , id)
represent a tensor of rank d. The evaluation of the summation in equation (8) requires the computation
(and storage) of nd terms, where n is the average size of the one-dimensional basis set, which becomes
prohibitive for large d. Using the TT format, the tensor C is approximated as

C(i1, . . . , id) ≈ G1(i1)G2(i2) · · ·Gd(id), (9)

where Gk(ik) is a rk−1 × rk complex matrix. In the explicit index notation

C(i1, . . . , id) =
∑

α0α1...αd

G1(α0, i1,α1)G2(α1, i2,α2) · · ·Gd(αd−1, id,αd). (10)

The matrices Gk are three dimensional arrays, called cores of the TT decomposition. The ranks rk are called
compression ranks. Using the TT decomposition of equation (9) it is possible, at least in principle, to
overcome most of the difficulties caused by the dimensions of the problem. Indeed, the wave function is
entirely defined by d arrays of dimensions rk−1 × nk × rk thus the required storage dimension is of the order
dnr2. The accuracy of the approximation is controlled by the value of the compression ranks, with larger rk

providing better approximations.

4



New J. Phys. 22 (2020) 123002 R Borrelli and M F Gelin

In a time-dependent theory the cores Gk(ik) are time dependent complex matrices whose equations of
motion can be found by applying the time-dependent variational principle (TDVP) to the parametrized
form of the wave function

|Ψ(G(t))〉 =
∑
i1 ···id

G1(i1, t)G2(i2, t) · · ·Gd(id, t) |i1〉 ⊗ |i2〉 · · · |id〉 . (11)

The resulting equations of motion can be written in the form

d

dt
|Ψ(G(t))〉 = −iP̂T (G(t))H |Ψ(G(t))〉 (12)

and provide an approximate solution of the original equation on the manifold of TT tensors of fixed rank,
MTT. In equation (12), P̂T (G(t)) is the orthogonal projection operator into the tangent space of MTT at
|Ψ(G(t))〉.

Several techniques exist to compute the time evolution of TT/MPS [35, 48, 50, 51]. Here we adopt the
so-called adaptive 2-site time-dependent variational integrator (2TDVP) [30, 35]. With respect to the
one-site TDVP integrator this scheme has the advantage to dynamically increase the ranks rk of the cores of
the TT decomposition until convergence is reached or up to a maximum threshold value. We refer the
reader to the recent review [30] for numerical details and properties of the 2TDVP integrator. All the
computations presented in this paper have been performed using a in-house code based on the itensor
software library [52]. We also mention that previous exact treatments of IVR in anharmonic chains
reported in reference [19] employ the multi-layer multi configurational time-dependent Hartree method.

4. Computational results

Taking as starting point the system depicted in figure 1, in the following numerical study we let the
frequency of the modes A, F be 2000 cm−1, which is comparable to the usual frequency of a carbonyl
stretching vibration and assume ω0 = 1000 cm−1 [28]. The quantum dynamics of the model system is
analysed as a function of the third-order coupling parameters βA,F, of the bandwidth parameter D and of
the length of the chain. In order to keep the system at a size that is physically realistic but still suitable for a
numerical quantum dynamical treatment we employ 16, 32 and 64 site chains. Although the two
Hamiltonian operators of equations (1) and (7) are equivalent we prefer to adopt the local mode
representation [equation (1)] for the actual numerical solution of the problem since it is more suitable for
TT methodologies. Furthermore, the local mode representation enables a direct visualization of the energy
flow along the chain in real time (see below).

Since only high-frequency vibrational modes are considered, thermal effects are negligible and
temperature can safely be set to zero. Hence the initial state of the system is obtained first by determining
the ground state of the full anharmonic Hamiltonian and then exciting it with an ultrashort laser pulse. In
order to simplify the numerical procedures we assume a δ(t) envelope of the electric field. We point out that
the ground state of the system |G〉 already contains small correlations between the vibrational modes QA, QF

and the chain modes due to the third order couplings. However, upon the instantaneous excitation only the
mode QA is allowed to absorb energy, thus energy is deposited only at one end of the chain. This way of
preparing the initial state is very close to the real physical process involved in ultrafast time-resolved IR
measurements.

Since we use the TT/MPS representation of the wave function the ground state |G〉 of the Hamiltonian
operator in equation (1) is obtained by using the numerical density matrix renormalization group theory
(DMRG) [53]. Once we have obtained |G〉, the dipole operator QA is applied to simulate the instantaneous
photo-excitation process

|ψ(0)〉 = QA |G〉 . (13)

|ψ(0)〉 is not an eigenstate of H and its evolution in time is obtained by solving the associated
time-dependent Schrödinger equation. In all our numerical simulations the threshold in the singular-value
decompositions of the tensors is set to 10−10, ensuring energy conservation during the evolution which is
fundamental to correctly describe long-time hydrodynamic behaviour of quantum systems.

In figure 3(a) the populations of the chain sites and of the oscillators A and F are reported as a function
of time for the case of D = 50 cm−1 and βA,F = 150 cm−1. The resulting bandwidth of the harmonic
oscillator chain is 4D = 200 cm−1 which is typical for the C–C stretching and CH2 wagging bands of
polymethylene chains. The first thing to notice is that the Fermi resonance effectively removes the single
quantum that has been created by photo-excitation from mode QA enabling a very fast energy transfer to
the chain which takes place in about 200 fs. This initial depopulation of the mode QA is Gaussian,

5
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Figure 3. (a) Evolution of site occupation numbers in a system with 18 vibrational degrees of freedom (Nc = 16); full lines
represent the occupation numbers of modes QA and QF, dotted lines represent the occupation numbers of the chain sites;
(b) square root of m2(t) (full line) and inverse participation ratio (dashed line). See text for the definitions. Model parameters
ω0 = 1000 cm−1, βA,F = 150 cm−1, D = 50 cm−1.

〈nA(t)〉 = exp{−(t/τA)2}, where τA = 71 fs is the so-called Zeno time which can be evaluated as described
in [54, 55]. After 800 fs the excitation of the last vibration of the chain reaches its maximum, and then the
occupation number of the mode QF starts to increase reaching a maximum at 1000 fs. Interestingly, the
maximum value of the occupation numbers of the chain sites decreases along the chain but for the last two
sites. We notice that the occupation number 〈n1〉, of the chain oscillator q1 which is directly coupled to QA

reaches the value of 1.3 at t ≈ 100 fs, which reflects the Fermi-resonant nature of the coupling. In fact, the
complete annihilation of one quantum on mode QA and the creation of two quanta on the first site of the
chain is never observed due to quantum interference effects caused by the remaining sites of the chain. After
200 fs, when 〈nA(t)〉 ≈ 0, there are at least 6 vibrations which share the excess energy. The extent of
delocalization of the wave packet can be easily determined by looking at the inverse participation ratio
defined as [33, 56, 57]

IPR(t) =

(∑N
k=1 〈nk(t)〉

)2

∑N
k=1 〈nk(t)〉2

. (14)

IPR(t) = 1 when there is a maximum of localization in a single site of system, while IPR(t) ≈ N when the
energy in fully delocalized on the entire system (remind that N = Nc + 2 is the total number of oscillators
in the system). In figure 3(b) IPR(t) is reported as a function of time. Since the initial wave packet is fully
localized on site A, IPR starts from its minimum value of 1 and then increases with time reaching a value of
8 around 800 fs. This means that not all sites of the chain have the same excitation level. From 800 to
1200 fs the IPR decreases. Comparing the IPR value with the occupation numbers of the chain of
figure 3(a), this sudden decrease of the IPR value can be clearly associated with a localization of the excess
energy on the last two sites of the chain and on the mode QF. After this transitory localization, the IPR
increases again reaching a maximum value of 10 after 1.5 ps. This corresponds to a significant delocalization
of the energy between the degrees of freedom of the system.

The computed occupation numbers clearly indicate that only a small fraction of excess energy becomes
actually localized on mode QF.

A global description of the dynamical evolution of the vibrational wave packet is provided by its second
moment

m2(t) =
1

N

N∑
k=1

k2 〈nk〉 . (15)

The square root of this quantity follows a general power law of the type
√

m2(t) ∝ tν where ν = 0
corresponds to complete localization, ν = 1/2 to a classical small-step diffusion, ν = 1 to ballistic motion,
ν ∈ (0, 1) to anomalous diffusion, and ν > 1 to superballistic motion.

In a complex dynamical process the parameter ν will not be a constant, and the type of dynamics can be
described as piecewise ballistic or diffusive according to the approximate value of ν in a specific time

6
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Figure 4. (a) Evolution of site occupation numbers in a system with 34 vibrational degrees of freedom (Nc = 32); full lines
represent the occupation numbers of mode QA and QF, dotted lines represent the occupations numbers of the chain sites;
(b) square root of m2(t) (full line) and inverse participation ratio (dashed line). See text for the definitions. Model parameters
ω0 = 1000 cm−1, βA,F = 150 cm−1, D = 50 cm−1.

Figure 5. (a) Evolution of site occupation numbers in a system with 66 vibrational degrees of freedom (Nc = 64); for clarity
only 〈nA〉 and 〈nF〉 are shown; (b) square root of m2(t) (full line) and inverse participation ratio (dashed line). See text for the
definitions. Model parameters ω0 = 1000 cm−1, βA,F = 150 cm−1, D = 50 cm−1.

interval. From figure 3 we can observe that up to 800 fs ν ≈ 1, suggesting that the motion is almost
perfectly ballistic. After 800 fs the curve flattens and fluctuates corresponding first to a partial localization of
the energy at one end of the chain and then to a diffusive-like behaviour.

Figure 4 shows the results of dynamics for a system with 34 harmonic oscillators, i.e. with a chain of 32
sites, and a Fermi coupling constant βA = βF = 150 cm−1. The linear dependence of

√
m2(t) up to 1800 fs

suggests a ballistic type of motion which is followed by a localization up to about 2.5 ps. The time for the
observation of the excitation of the QF mode is about 2000 fs, exactly the double of the time observed in the
16 oscillator chain model. This is clearly the result of the ballistic motion of the system which follows the
excitation of QA. The qualitative behaviour of the IPR is also similar to that described for the 16 site model,
with an initial increase up to 1800 fs followed by a decrease as a result of the energy localization at the end
of the chain and then to an increase associated with a spread of the wave packet along the chain.

As can be clearly seen from figure 5, doubling again the length of the chain to 64 sites gives a
qualitatively similar picture. Indeed, the energy transfer time, τ ET, defined as the time required to observe
the maximum occupation number on the last site of the chain doubles, see figures 4 and 5.

7
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Figure 6. (a) Evolution of occupation numbers of the modes QA and QF for three different lengths of the chain. The dotted
curves represent the decay of the population of QA (the three curves cannot be distinguished because they overlap). The three bell
shaped curves represent the population of QF for different lengths of the chain, Nc = 16(red), 32(yellow), 64(cyano). (b) Square
root of m2(t) for three different lengths of the chain. Model parameters ω0 = 1000 cm−1, βA,F = 50 cm−1, D = 50 cm−1.

In the models treated so far the ballistic behaviour is predominant causing a linear increase of τET with
increasing the length of the chain. This behaviour is in line with experimental findings obtained by
time-resolved 2D-IR spectroscopy on molecules belonging to the family described in figure 1 [25, 28].

The vibrational dynamics described so far is characterized by two distinct timescales: the ultrafast
de-excitation of the mode QA with the time τA which corresponds to an ultrafast energy transfer to the
harmonic chain, followed by ballistic motion along the chain, characterized by the time τ ET (the
characteristic energy transfer time) that is proportional to the length of the chain.

However, if the coupling between the excited oscillator QA and the chain is lowered to βA = 50 cm−1,
then τA = 213 fs, the separation of timescales starts to fade at least for the shortest 16 site chain, and
vibrational wave packet dynamics becomes more complex. This behaviour can be clearly observed in
figure 6(a) where the three bell-shaped curves represent the occupation number, 〈nF(t)〉, of mode QF for
Nc = 16, 32, 64 oscillators, and the decaying dashed line represents the population of mode QA. Indeed,
with increasing Nc from 16 to 32 the transition time does not double, while changing from 32 to 64 insures
that τ ET � τA, and a clear doubling of τET is observed.

Figure 7 shows a direct comparison of evolution of the occupation numbers and of the root mean
square deviation,

√
m2(t), of the 16 site chain for two different values of the Fermi resonance coupling

parameter, βA,F, while keeping D = 100 cm−1. When the coupling parameter is fairly large,
βA,F = 150 cm−1, the mode QA transfers completely the excess energy which travels along the chain to reach
the mode QF in a ballistic type of motion (

√
m2(t) ∝ t). This two stage process is associated with a quite

large population of the harmonic oscillators of the chain (see dotted curves in figure 7(a)). We also notice
that around 1.3 ps a revival of the occupation number of mode QA (black full line) is evident: energy is
reflected back from QF to QA. During this localization process

√
m2(t) reaches a minimum.

Conversely, when the coupling parameter is small, βA,F = 50 cm−1, the chain keeps a very small level of
excitation during the entire process. This can be clearly seen from the occupation numbers of the chain
oscillators which remain much smaller than in the previous case. In this sense the chain is not an efficient
transport layer. When this type of quantum transition becomes predominant the energy transfer proceeds
in a superballistic way. Indeed, examination of figure 7(b)) reveals that

√
m2(t) ∝ tν with ν > 1 at least up

to 600 fs.
In order to identify the main features of the present model that rule the transition from ballistic to

superballistic motion it is convenient to analyse the root mean square deviation
√

m2(t) for different values
of the bandwidth 4D and couplings βA,F as reported in figures 8–10. The system with a 16 oscillator chain,
see figure 8, shows two distinct behaviours. For D = 50 cm−1 the motion is ballistic up to almost 1 ps, with
a minor deviation emerging, as already discussed, for the vale βA,F = 50 cm−1. With doubling D the motion
looses its ballistic behaviour but for the largest value of βA,F = 150 cm−1. For small values of the cubic
coupling constants a higher order component appears in the behaviour of

√
m2(t) and the dynamics can be

described as superballistic (ν > 1). A similar analysis holds true for the model with a 32 oscillator chain
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Figure 7. Evolution of the occupation numbers of the modes QA (black full line) and QF (red full line) in the system with
Nc=16 oscillators and of the root mean square deviation

√
m2(t) (bold dashed line); (a) βA,F=50 cm−1 and(b) βA,F=150 cm−1.

Dotted lines represent the occupation numbers of the oscillators of the chain. In both cases ω0 = 1000 cm−1, D = 100 cm−1.

Figure 8. Square root of m2(t) of the system with Nc = 16 for two different values of the chain bandwidth parameter
(a) D = 50 cm−1, (b) D = 100 cm−1.

(see figure 9). The main difference with the previous case is that the ballistic behaviour here is more
pronounced even for small values of βA,F. On the other hand, the 64 site chain exhibits a ballistic behaviour
in almost all conditions, with small superballistic features observable at short times and only for the
smallest value of βA,F.

An alternative point of view on the dynamics of the energy flow can be derived by an examination of the
transformed Hamiltonian operator of equation (7). For very large Fermi resonance couplings βX, X = A, F
the transformed parameters βXkl remain large enough to couple effectively the modes QA,F to a significant
fraction of the chain eigen-modes Qk. The large density of coupled states makes the energy flow from QA to
the chain very close to an irreversible rate process. As a rule of thumb this happens when 〈ρ(E)βAkl〉 � 1,
where ρ(E) ≈ Nc/4D is the average density of states of the chain, and the brackets mean some average
value. In the opposite limit, i.e. 〈ρ(E)βAkl〉 � 1, resonant tunnelling through a few energy levels of the chain
becomes important (see right panel of figure 2), causing deviation from the ballistic regime.

We further notice that in standard IVR theories Fermi resonances are known to be effective in the
energy transport mechanism when the ratio between the coupling constant and the resonance offset
becomes large, i.e. βAkl/(ωA − ωk − ωl) � 1, whereas in the current model their efficacy is mostly

9
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Figure 9. Square root of m2(t) of the systems with Nc = 32 for two different values of the chain bandwidth parameter
(a) D = 50 cm−1, (b) D = 100 cm−1, and several values of the cubic coupling indicated in the legends.

Figure 10. Square root of m2(t) of the systems with Nc = 64 for two different values of the chain bandwidth parameter
(a) D = 50 cm−1, (b) D = 100 cm−1, and several values of the cubic coupling indicated in the legends.

determined by the bandwidth parameter of the chain, D. However, the two criteria are not in contrast with
each other and the former is recovered when the chain Hamiltonian is transformed into the eigen-mode
representation.

5. Conclusions

In this paper we have developed a new model for energy transfer in molecular systems. The model
comprises two local oscillators connected via cubic anharmonic couplings to the two ends of a chain of
harmonic oscillators. We have numerically studied the evolution of a vibrational wave packet after the initial
excitation of one local oscillator using TT (matrix product state) techniques combined with a 2TDVP
integrator.

The results show a remarkable variety of wave packet dynamics depending on the specific choice of a few
system parameters, namely the magnitude of the cubic coupling constants, the energy bandwidth of the
chain of harmonic oscillators, and the length of the chain. It has been found that two regimes exist for the
energy transport process. The first is a two step mechanism in which the energy is first transferred
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completely from the local oscillator QA to the chain, and then travels ballistically along the chain to reach
the local oscillator QF. This mechanism is active when the cubic coupling is fairly large and the bandwidth
of the chain is relatively small. The second mechanism appears when the time required for the mode QA to
lose its excess energy is comparable to the time required for the energy to be transported along the chain
itself. Under these conditions a non-linear dependence of the square root of the mean standard deviation
m2(t), which is associated with a non ballistic spread of the vibrational wave packet, is observed.

The first regime is very likely active in several molecular systems described recently in the scientific
literature [26]. The second regime might not be stable under ordinary conditions, as it requires a
quasi-resonant tunnelling and very small cubic coupling constants. Although this condition is very likely
fulfiled, small anharmonicities of the PES of the chain, which have been neglected in the present treatment,
might strongly affect the wave packet dynamics. Work is currently in progress to assess this point.
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Appendix A. Eigenvalues and eigenvectors of Hc

The Hamiltonian describing a chain of coupled harmonic oscillators has been studied countless number of
times (see for example [58]). The diagonalization of Hc in the form

Hc =
ω0

2

Nc∑
i=1

(
p2

i + q2
i

)
+ D

Nc−1∑
i=1

(
pipi+1 + qiqi+1

)
(A.1)

can be easily accomplished once we write it in the form

Hc =
1

2

(
p†Ap + q†Aq

)
, (A.2)

where p = {pi; i = 1, . . . , Nc}, q = {qi; i = 1, . . . , Nc} and

A =

⎛
⎜⎜⎜⎝
ω0 D 0 . . .

D ω0 D . . .
0 D ω0 . . .
...

... . . . . . .

⎞
⎟⎟⎟⎠ . (A.3)

The Toepliz matrix A of dimensions Nc × Nc can be easily diagonalized by the unitary transformation
T = {Tkl} with elements (see for example [59])

Tkl =

√
2

Nc + 1
sin

(
klπ

Nc + 1

)
(A.4)

and the eigenvalue corresponding to the eigenvector Tk are given by

ωk = ω0 + 2D cos

(
kπ

Nc + 1

)
(A.5)

thus λk ∈ [ω0 − 2D,ω0 + 2D]. Therefore, after the transformation Q = Tq, P = T†p and considering that
T = T† we can write

Hc =
1

2

Nc∑
k=1

ωk(P2
k + Qk)2. (A.6)

After the eigen-mode representation of the chain has been performed the coupling operators between the
chain and the local oscillator mode QA and QF become

T†VT = βAQA

(∑
k

T1kQk

)2

+ βFQF

(∑
h

TNckQk

)2

(A.7)
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which, upon expansion gives

T†VT = βAQA

(∑
k

T2
1kQ2

k +
∑

kl

T1kT1lQkQl

)
+ βFQF

(∑
h

T2
NckQ2

k +
∑

kl

TNckTNclQkQl

)

=
∑

kl

βAklQAQkQl +
∑

kl

βFklQFQkQl, (A.8)

where
βAkl = βAT1kT1l βFkl = βFTNckTNcl. (A.9)

Using equation (A.4) we obtain

βAkl =
2βA

Nc + 1
sin

(
kπ

Nc + 1

)
sin

(
lπ

Nc + 1

)
(A.10)

βFkl =
2βF

Nc + 1
sin

(
Nckπ

Nc + 1

)
sin

(
Nclπ

Nc + 1

)
. (A.11)

The maximum value of the transformed third-order parameters is βAkl = 2βA/(Nc + 1) for
k = l = (Nc + 1)/2. This result implies that the values of the couplings βAkl depend on the length of the
chain, and, in our case, they are one to two orders of magnitudes smaller that the actual value of βA,F.
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