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Managing Uncertainty in Image Databases 

Abstract   

In this chapter, we discuss functionalities of multimedia databases, which are not present in 

traditional databases, but are needed when dealing with multimedia information. Multimedia data 

are inherently subjective: for example, the association of a meaning and the corresponding content 

description to an image as well as the evaluation of the difference between two images or two 

pieces of music usually depend on the user who is involved in the evaluation process. Subjective 

information usually needs to be combined with objective information, such as image color 

histograms or sound frequencies, obtained through (generally imprecise) data analysis processes.  

Therefore, the inherently fuzzy nature of multimedia data, both at subjective and at objective levels, 

may lead to multiple, possibly inconsistent, interpretations of data. We propose the FNF2 data 

model, a Non First Normal Form extension of the relational model, which takes into account 

subjectivity and fuzziness, while being intuitive and enabling user friendly information access and 

manipulation mechanisms. 

 

INTRODUCTION 

In the multimedia age, characterized by new emergent kinds of data, such as images, sounds, texts, 

and video objects, the need for information storage and retrieval requirements cannot be satisfied by 

simply relying on traditional databases. The various properties of these objects cannot be properly 

captured by the relational or object oriented models. Therefore, Multimedia Databases have to 

provide new functionalities, depending on the type of -possibly heterogeneous- multimedia data 

being stored. Within this context, new challenges, from the problems related to data representation 



to the challenges related to the indexing and retrieval of such complex information have to be 

addressed. 

In this chapter, we discuss functionalities of multimedia databases which are not present in 

traditional databases, but are needed when dealing with multimedia information. Multimedia data 

are inherently subjective: for example, the association of a meaning and the corresponding content 

description to an image as well as the evaluation of the difference between two images or two 

pieces of music usually depend on the user who is involved in the evaluation process. Furthermore, 

such subjective information usually needs to be combined with objective information, such as 

image color histograms or sound frequencies, obtained through data analysis. Data analysis 

processes are generally imprecise. Therefore, the inherently fuzzy nature of multimedia data, both at 

subjective and at objective levels, may lead to multiple, possibly inconsistent, interpretations of 

data. Thus, providing a data model which can take into account subjectivity and fuzziness, while 

being intuitive and enabling user friendly information access and manipulation mechanisms, is a 

challenging goal. 

Although most of the results presented here also apply to different multimedia information 

management scenarios, in this chapter we specifically focus on image data, which illustrate the 

common subjectivity and fuzziness aspects well. 

To properly store a collection of images in a database, the system must offer appropriate capabilities 

to explore the relationships among the different images, to recognize the relevant image features, 

and  to provide methods and techniques to express those relationships and features, and to query on 

them. As opposed to the classical relational data model, in which queries are usually posed textually 

(or through some visual interface, which does not increase the expressive power of the textual 

format in which queries are in fact automatically translated) in image databases queries are usually 

expressed in non textual  forms. This is the case, for example, of Query By Example or Query by 



Content forms, in which a query may include an image as part of it and the returned result does not 

rely on a crisp evaluation process, but relies on a notion of similarity between the query and the 

images in the database.  In particular, returned images are associated with a degree of satisfaction of 

the query, which represents to which extent the image can be considered similar to the given one, 

according to the chosen notion of similarity.  

Fuzziness and uncertainty related to image query processing cannot be directly represented in the 

relational data model. Therefore, several approaches (Takashi & al., 1993, Raju & al., 1988 and 

Yang & al., 2001) have been proposed to extend the relational data model to appropriately include 

these aspects. In particular, (Zaniolo & al., 1997) extend the relational model to incorporate 

uncertainty at the tuple level, while describing different approaches at the attribute level. In the 

tuple-level approaches the schema of the relations can also include attributes specifically 

representing uncertainty values. Thus, each tuple may contain one or more uncertainty values for 

the corresponding attributes, each one representing the fuzziness associated to one interpretation for 

the data values stored in the other attributes of the tuple. The uncertainty attributes have usually real 

values or are expressed in terms of intervals on real numbers. In the attribute-level approaches, 

instead of associating a value representing the uncertainty of the data to the tuple as a whole, a 

degree of uncertainty is associated directly to every single attribute value. In image databases, in 

which images are represented in terms of their various feature values, extracted from the image 

using appropriate image processing and analysis processes, attribute level approaches are more 

applicable: it is easier to store and maintain detailed information about the different relevant aspects 

of a given image using an attribute-based approach instead of associating a unique, global value to 

the overall image tuple. 

In the next section we present the background on modelling and accessing image databases and  the 

state of the art on dealing with fuzzy information in image databases. After discussing the problem 



of image representation, we present related work in the area of image retrieval, and comment on 

relevant fuzzy models for image databases. The following section describes our FNF2 data model 

and its suitability for image retrieval. Concluding remarks are given in the final section. 

BACKGROUND AND RELATED WORK   

Problems related to modelling and accessing image database have been addressed in various 

scientific communities, from different perspectives. Some aspects, such as the issues related to 

feature extraction and representation, have been specifically studied in both Computer Vision and 

Image Processing communities (Del Bimbo, 1998), while aspects related to storage, indexing, and 

query processing have received great interest in the Database community (Grosky, 1997, 

Subrahmanian, 1997, Krishnapuram & al., 2005 and Buche & al., 2005). 

Given the high dimensionality of the problem, different authors and research groups mainly 

concentrate on some specific aspects, while making simplifying assumptions on the other aspects.  

For example, a simplifying assumption widely adopted in the database community is that textual 

description and representation of images are available; that is, data are annotated. From a different 

perspective, most researchers from the computer vision and the image processing communities 

make simplifying hypotheses about data modelling and data retrieval methods and work in the 

context of image repositories or image directories, instead of image databases. 

A complete image database systems should benefit from the integration of the methods and results 

from the different communities. In this section, we introduce the main components of image 

database systems to motivate the role of fuzziness in image databases and we present alternative 

approaches for fuzzy data modelling for image retrieval (Raju & al., 1988, Takashi & al., 1993, 

Petri 1996,Yazici & al., 1999, Yang & al., 2001,  Subrahmanian, 1997). 



Image representation  

Images are represented in the database as collections of low level features. To detect the prominent 

features in the stored images, image databases use feature extraction modules, implemented on the 

basis of computer vision techniques. The most frequently used image features are colors, textures, 

shapes, and spatial descriptors (Del Bimbo, 1998). 

Colors are usually described through color histograms (Swan & al., 1991), which associate a bin to 

each distinct color. Each bin contains those pixels which have the corresponding color in the image, 

thus the size of the bin reflects how much that color is present in the image. Color histograms 

capture the color distribution in a given image from a quantitative point of view, but they are 

sufficient neither to describe spatial color distribution, nor to handle color correlations in the 

images. These aspects of color, and more specifically spatial relationships between colored pixels in 

a certain image region, can be better represented by analyzing textures and shapes (Wang Jing & 

al., 2003, Smeulders & al.,  2000, and Del Bimbo, 1998). 

According to the feature contrast model (Wei Jiang, 2004), a visual stimulus may be characterized 

as a set of binary features, i.e. a stimulus is represented by means of the set of feature properties that 

it satisfies. For every feature, a set of possible values is fixed. The representation of any visual 

object is a set of binary values, which denote the fact that the corresponding feature can be 

considered as having or not having that particular value in the given object. Equivalently, the 

feature set for a given stimulus can be characterized as a set of logic predicates that the stimulus 

does satisfy (Santini & al., 2001).  

On the other hand, binary (Boolean) logic is not always suitable for modeling image features. With 

the goal of taking into account the noise of visual stimuli perception and representation, fuzzy 

theory is recognized as a natural modelling framework. In this framework, any image I is 



characterized in terms of a number of fuzzy measurements ni on the image features and properties. 

For example, let us assume that the shape of an object in an image is the interesting feature to be 

represented. It can be the case that different observers (or different shape-extraction algorithms) 

provide different shape characterizations for the same object. One observer might say that a given 

shape is "highly" oval or that it is "almost" rectangular. Expressions such as highly, or almost, recall 

this notion of fuzziness, which is implicitly embedded in the similarity evaluation of visual stimuli. 

Each image can be characterized in terms of its physical representation and the information 

extracted  from the image, or provided by the user. More formally, let I be the set of all the images 

in the given image database. Given a set of classes of membership M and a set of possible 

memberships values P, the analysis process is a function computed by an – either a human or a 

computer vision - system V, which associates to any feature in I a set of elements from M, each one 

with its specific grade of membership  , i.e.: 

 

If  , then for any class ci, pi is a measure of the membership of  i  to ci.   

The function V abstracts the process of analyzing the physical representations of the images, to 

produce a description for each of them with an associated grade of uncertainty.  In the following 

discussion and examples, when representing the set V(i), we do not list the pairs whose second 

components (i.e. grades) are 0; these correspond to feature properties which are classified as 

missing in the considered object. Thus, we read the set  as the 

specification of all the properties that are satisfied by the object i, with their degree of satisfaction. 

For retrieval, given a set of low-level features, a notion of similarity/dissimilarity, possibly based on 

distance metrics, is defined over the features. The definition of the similarity between two stimuli 

depends on the formalisms in which the stimuli are represented. The retrieval process is performed 
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using this dis/similarity concept in the corresponding feature space. Naturally, similarity and 

dissimilarity are opposite of each other. In many cases, dissimilarity measures characterize the 

difference between a given pair of images as a distance in some suitable, mostly metric, feature 

space (Ashby & al., 1988,  and Santini & al., 2001).   

The image retrieval problem  

Intuitively, the image retrieval problem is deciding whether, and to which extent, any image stored 

in the database matches a criterion, specified by means of a query or an example. Even when low-

level features of an image are not fuzzy, image information content (needed for measuring the 

degree of match between a query and the image) can not always be considered as being univocal. In 

general, what the image represents and what is important in the image depends on the observer as 

well as on the context in which the image is inserted into the collection (Itti & al., 2001). Therefore, 

there is not a unique notion of similarity. To account for this, similarity models can be classified in 

a way to distinguish between perceived similarity and judged similarity. If a and b are any two 

stimuli, and A and B are their representations in the feature space, the perceived similarity between 

the two stimuli is a function s(A;B) of their representations, while the judged similarity is a function 

of the perceived similarity, that is a function s(A,B) =g[s(A;B)], where  g is a suitable 

monotonically non decreasing function (Itti & al., 2001). Here, monotonicity  ensures that it cannot 

be the case that  two images are subjectively seen as more similar than another pair, while being 

less similar according to perceived similarity. Specific similarity functions have been defined to 

capture the uncertainty related to similarity concepts (Wang, 2005). 

In some cases, the image description comes from human-provided annotations. In these cases, query 

processing requires the evaluation of a semantic similarity between the query terms describing the 

target image and the annotations describing the images in the database.  This task is usually done by 



means of pattern recognition techniques (Boccignone & al., 2005), which return high level features 

(as opposed to low-level features like color histograms), with associated grades of confidence. A 

grade of confidence denotes the degree of membership of the given feature to the discovered 

pattern. 

Uncertainty-based  Models For Image Databases 

In the following, we present the literature focussing on the role and importance of uncertainty, 

necessary for a complete image database definition and implementation.  

Buckles & al., (1982) were among the first authors who proposed a formal treatment of fuzziness in 

relational databases, in a more general setting, not specifically conceived with images and other 

multimedia data.  In their model fuzziness is associated to data by means of linguistic terms (for 

example, terms like “bad” and “good” are considered in their approach) and they define a notion of 

similarity on linguistic terms.  More recently, the authors classified databases in different groups, 

characterized as dealing with precise data, imprecise data, and  vague data respectively (Buckles & 

al., 1995). The model is best applied to enterprises (or parts of enterprises) in which the linguistic 

sets are finite and may be extended to continuous domains. The case of precise data virtually 

includes all the database systems in wide-spread use. On the other hand, imprecise data model is the 

basis of the studies on uncertainty in databases. The key notion is that while only one value applies 

to the enterprise, the database extension may contain a set and each database object is “surely”, 

“maybe”, or “surely not” a response to the query (possibility theory). The vague database refers to 

the databases dealing with attribute values, for which it is assumed that no precise value exists. 

They are represented as linguistic terms and these terms are themselves related to each other by 

similarity relationships.  



A natural extension of the previous works is provided by Yazici & al,  (1999). This work motivates 

the need for non-first-normal form models to model and manage uncertainty in the relational data 

model. It introduces the ExIFO model for conceptual design of fuzzy databases and for logical 

design based on non-first-normal form logical database models. In particular, the ExIFO model 

deals with incompleteness, null data, and fuzziness. It represents uncertainty at the attribute level by 

means of new constructors at the conceptual and logical levels, thus defining fuzzy entity types. 

Raju & al, (1988) represent ambiguities in data values, as well as impreciseness in the association 

among them, through a fuzzy relational data model. The authors describe and formalize the 

treatment of the integrity constraints for a fuzzy data model: they define relational operators for 

fuzzy relations and investigate the applicability of fuzzy logic to capture integrity constraints. 

Moreover, they address the problem of lossless join decomposition of fuzzy relations for a given set 

of fuzzy functional dependencies.  

In a collection of works edited by Zaniolo (1997),  Subrahmanian  introduces a foundational theory 

for managing uncertainty in databases and knowledge-bases in general.  In particular, uncertainty is 

represented at the tuple level; that is, each tuple is extended to include one or more uncertainty 

attributes, representing the likelihood of the overall information associated with the tuple. Given 

this model, a probabilistic extension of classical relational algebra operators is also provided. These 

take into account the uncertainty aspects included in the relations. The model is general enough to 

be applied to different fuzzy knowledge management scenarios, including image databases.  

However, in this case, it fully relies on an annotated scenario, and does not consider the numerous 

low-level or intermediate level descriptions (or features) that can be independently extracted from 

image data by means of image processing techniques. 

More recently, Atnafu (2004) proposed an integration of similarity-based queries into image 

DBMS. In particular, the authors propose an image data repository model, a formal algebra for 



content-based image operations, and several image processing and retrieval technique. Several 

“similarity” based operators adapted to image data are discussed within an Object Relational DBMS 

framework. Uncertainty is incorporated in the definition of similarity (distance) based operators: the 

authors consider metric space computations returning similar images based on the value of an 

uncertainty threshold, that can be chosen appropriately based on the peculiarities of an application. 

Starting from this concept, they define a content-based algebra, with selection and join operators. 

Krishnapuram & al. (2004)  propose  a Content Based Image Retrieval System based on fuzzy logic, 

FIRST (Fuzzy Image Retrieval SysTem). In particular, the authors propose a data model based on 

Fuzzy Attributed Relational Graph (FARG), in which each image is represented as a graph whose 

nodes represent the objects and edges represent relations (e.g. spatial relations) between them. A 

given query is converted to a FARG and the query processing is reduced to a sub-graph matching 

problem. To reduce the NP complexity of the sub-graph matching problem, Krishnapuram also 

proposes indexing schemes based on a leader clustering algorithm. The underlying data structure, 

which extends the relational model, is more expressive than the previously existing approaches. As 

a trade-off, creating and maintaining such data structure is more complex. 

Buche (2005) describes a relational model extended with the, so called, multi-views fuzzy querying. 

The model is specifically well suited for biological processes, but it has interesting applications to 

image databases as well. As an innovative contribution, fuzzy data are integrated and dealt with by 

referring to ontologies and semantic rules. The model captures incompleteness and impreciseness 

and it expresses user preferences with a fuzzy model in which an ontology is used to express 

fuzziness: the values of a domain are connected using the “a kind of” semantic link.  



In the next section, we discuss an attribute level fuzzy extension of the relational model. Unlike the 

other approaches, presented above, this model captures the uncertainty in the description of images 

at different levels.  

THE FNF2 MODEL 

In this section, we define the FNF2 model for image databases. We first introduce motivating 

examples and then present a formal definition of the model. 

Motivating Examples 

Let us assume that we are given a database containing a collection of digital pictures and let us 

consider a set of queries that we may want to pose on this collection: 

Query1: Find those images which contain a high quantity of sun-light and also contain a mountain. 

To process this query, the system first needs a color-based retrieval module, to find all the images 

in which those colors that usually are associated to the light (red and white) appear, in such a 

quantity that the system would classify their amount as high. This process will involve a fuzzy 

description of the color content of the digital image.  Secondly, the system also needs semantic 

information (extracted automatically or obtained from a repository of human annotations) about the 

pictures in the database, to tell whether they contain any mountains. 

 

Figure 1: Ves_pict.gif, a picture of the Vesuvio Vulcan at the Sunset. 



As described earlier, an automatic vision system analyzes a given image and extracts information 

about colors, textures, shapes and spatial descriptors, each associated with  a degree of certainty. 

For example, the analysis of the Ves_pict.gif image in Figure 1, by means of an automatic vision 

system developed at the University of Napoli (Chianese & al., 2001), returns fuzzy feature 

descriptors.  Multiple colors appear in the image and the system associates to each color attribute 

value a certainty degree: grey appears with certainty degree 0.6; red with certainty 0.75;  white with 

certainty 0.7;  blue with certainty 0.411; and yellow with certainty 0.417. Texture attribute is 

recognized as thin with certainty degree 0.6; mixed thin and coarse with certainty 0.9; net with 

certainty 0.571;  and crisp with certainty 0.322. The recognized semantic attribute is mountain with 

a confidence 0.871. 

Similarly, the automatic vision system analyzes the image in Figure 2 (the picture of  a coast 

landscape, in which blue is the dominant color), Figure 3 (the picture of a mountain covered with 

snow, in which white is the dominant color), and Figure 4 (a sunset in a saguaro desert, in which 

purple and burgundy dominate).  

 

 

 

Figure 2: Coast_pict.gif, a coast Landscape. 

 

. 

 



Figure 3: Snow_pict.gif, a snow-mountain picture 

. Figure 4: Sunset_pic.gif, a saguaro-mountain picture. 

The information that the automatic system extracts  is summarized in  Table 1. 

File Color Texture Content 
Ves_pict.gif <grey,0.600>,                

<red,0.750>,       
<blue,0.750>,                 
<yellow,0.417>,      
<white, 0.700>               

<thin,0.600>, 
<thinCoar,0.900>, 
<crisp,0.322>, 
<net,0.571> 

< mountain,0.871> 

Coast_pict.gif <blue,0.827>,            
<beige,0.765>          
<green,0.816>             

<thin, 0.704> <SeaCoastPicture,0.939> 

Snow_pict.gif <white,0.939>,             
<gray, 0.569> 

<mixt_texture, 0.674 <SnowMountain,0.918> 

Sunset_pict.gif <purple,0.866>                 
<yellow,0.786>              
<burgundy,0.856> 

<thin,0.704>                         
<crisp,0.346> 

<Sunset, 0.839> 

Table 1. The fuzzy attribute values extracted from images in figure 1,2,3 and 4. 

This automatically extracted information has to be properly stored in the database. Furthermore, to 

solve Query1, the fuzzy values may  need to be retrieved and combined during the query answering 

process.  

Query2: Find those  images that are similar to Ves_pict.jpg. 



This second type of query involves a query by example; the images in the database must be 

retrieved based on their similarities to the given example. The major difference from Query1is that, 

in this case, the aspects of interest in the image are not explicitly enumerated, but the relevant 

information on which similarity is to be checked has to be automatically detected. Knowing that our 

system has extracted from Ves_pict.gif  color, texture, and semantic information, as described 

above, the query can be rephrased as: ``find all the images that have red and white as predominant 

colors, that have a thin texture and that contain a mountain''. 

To move towards a model that can handle queries like Query1 and Query2, we have to address two 

main issues. First, we have to deal with uncertainty in data at the attribute level (e.g., uncertainties 

associated with colors, textures, contents and so on). Secondly, we have to develop mechanisms to 

process the given queries when uncertainties are associated to the available data at the attribute 

level.  

The FNF2 Data Model 

The fuzzy relational model we are proposing is an extension of the standard relational model. In the 

proposed extension, the considered attribute value domains are fuzzy. Fuzzy data models can be 

interpreted as extensions of traditional data models using fuzzy set theory (Zadeh, 1971) and the 

possibility theory (Zadeh, 1978). We first define a fuzzy tuple. 

FNF2 fuzzy tuple. Let D1, …, Dn be n domains. A fuzzy n-tuple is any element of the cartesian 

product 2D1 × …× 2Dn,  where 2Di  is the fuzzy powerset of Di, that is, the set of all fuzzy subsets of 

Di. 



According to the definition, any n-tuple is a sequence < vs1, ..., vsn >, where each vsi is a set of 

elements, of the form <vj, fj>. Here, vj is a value from the corresponding fuzzy domain  Di, and fj is 

its corresponding fuzzy membership value. 

For the sake of simplicity and readability, we denote those attribute value sets vsi  that are 

singletons and where the only member of the set has fuzzy membership degree equal to 1 (which 

represents full, certain membership),  by means of the only domain value. This is the case, for 

example, for the “Ves_pict.gif”,  “Coast_pict.gif”,  “Snow_pict.gif”, and “Sunset_pict.gif” values of 

the File field in the data presented in Table 1. 

As we have already mentioned, we also consider, as a special case, the presence of a membership 

degree of 0. This represents the certain non-membership. In our model, the presence of a pairs < v, 

0> in an attribute value does not provide any information in addition to what we could have if we 

did remove that pair from the set, since domain values that do not appear in an attribute value are 

implicitly associated to the membership degree 0. For example, the attribute values {< red, 0.5 >}, 

and {<red, 0.5 >, < green, 0.0>}, provide the same information. Thus, we assume that our attribute 

value sets do not contain any such pair. Since the fuzzy values are derived from data returned by 

some automatic vision systems, and since data provided by visual systems are only non zero values 

(systems only give information about feature values they find in the considered image) this is also 

not a restriction from an implementation point of view.   

FNF2 fuzzy relation schema: A fuzzy relation schema is used to associate attribute names to the 

domains. In the following, we also use the term fuzzy attribute to denote an attribute A whose 

domain dom(A) is a fuzzy set. 

A fuzzy relational schema is defined as a symbol R, that is the name of the fuzzy relation, and a set 

X = { A1, … , An } of (names of) fuzzy attributes. The schema is denoted as R(X). 



FNF2 fuzzy relation: A fuzzy relation is an instance of a fuzzy relation schema; that is, a fuzzy 

relation is a set of fuzzy tuples, as stated in the following definition. 

Let R({ A1, A2,… , An}) be a relational schema. A fuzzy relation, defined over R, is a set of fuzzy 

tuples t = < vs1, …, vsn > such that each vsi is a fuzzy subset of dom(Ai). 

An example of a fuzzy relation has already been given in Table 1. The schema of this example 

relation has four attributes, File, Color, Texture and  Content. Each attribute value is a set of 

<domain_value, fuzzy_value> pairs. 

Manipulation of FNF2 Fuzzy Relations 

FNF2 relations are accessed and manipulated by means of a corresponding FNF2 algebra. The 

usual set theoretic operators can be extended to fuzzy sets in different ways, depending on the 

specific semantics associated with the fuzzy logical connectives. In fact, several semantics have 

been proposed for fuzzy logical connectives and  (Ù) and or (Ú), but it has been proved that the min-

max semantics is the only semantics for conjunction and disjunction that preserves logical 

equivalences and satisfies the idempotency  property (Yager, 1982). This motivates our choice to 

adopt the following definitions for fuzzy logical operators. 

-Fuzzy intersection (and): A Ù B ={< u, min(µA(u), µB(u))>  |  u Î U} 

-Fuzzy union (or): A Ú B = {<u, max(µA(u), µB(u)) > |  u Î U} 

- Fuzzy complementation (not): ¬ A ={<u,  1 - µA(u)) > |  u Î U} 

In these definitions, U represents the universe, i.e., the domain against which fuzzy memberships is 

evaluated. 

In this chapter, we do not present the details of the algebra. Instead, we concentrate on some 

primary aspects on which the FNF2 algebra is founded: (i) tuple comparison, which is at the basis of 



all the operations that require some logical predicate on tuples to be evaluated;  (ii) tuple 

combination, on which most algebraic operations rely, to put information together after identifying 

the relevant tuples to be combined, and  (iii) tuple ordering, the basis of all the operations having to 

do with ranking based on a given criterion. 

Tuple comparison: Tuple comparison is at the basis of several algebraic operations, including the 

set oriented ones. In FNF2 data model, attribute values are sets of pairs. Depending on the query, 

comparison can either involve the complete information represented by the tuples or can be 

restricted to a particular component.  Indeed, it might be necessary to recognize and combine those 

tuples which contain, for every attribute in their schema, the same sets of values: these values might 

differ at most because of membership degrees.  

This notion is formalized in the definition of data identical tuples: Let R({ A1, A2,…, An})  be a 

relation schema, and r be an instance of R. Let t1 = <vs11, …, vsn1> and t2 = <vs12, …, vsn2> denote 

two tuples of r. t1 and t2 are  data identical  iff for every index i, it holds that  data1= {u | <u, 

µdom(Ai)(u)> Î vsi1} = data2= {u | <u, µdom(Ai)(u)> Î vsi2}. As an example, consider the following 

tuples, t1  and t2, which are data identical. 

 File Color Texture Content 
t1 Ves_pict.gif <black,0.7>, 

<red,0.815>, 
<beige,0.414>, 
<brown,0.311>, 
<white, 0.628> 

<thin,0.715>, 
<mixed,0.715>, 
<net,0.511>, 
<crisp, 0.121> 

< human, 0.95> 

t2 Ves_pict.gif <black,0.75>, 
<red,0.8>, 
<beige,0.6>, 
<brown,0.3>, 
<white, 0.7> 

<thin,0.6>, 
<mixed,0.715>, 
<net,0.7>, 
<crisp,0.1> 

< human, 0.9> 

As the comparison operator, depending on the intended meaning of the query processing operations, 

either more traditional equality or data identicalness can be used. Consider for example the set 

union operation. Union merges the tuples appearing in the given sets and removes duplicates. If 



equality is used as the comparison operator, the resulting relation can contain multiple instances of 

data identical tuples, which are not eliminated because of the different degrees of certainty of their 

attribute values.  This could be the intended meaning if the operation has the goal of keeping track 

of all the data retrieved by the feature extraction modules. On the other hand, for applications that 

aim at returning a single certainty information for every feature data value in the result, the 

existence of data identical tuples can not be acceptable. Therefore data identical tuples should be 

combined. Similar considerations apply to the other set operators as well. In particular, intersection 

returns the tuples that are in common. Therefore, it depends on the meaning associated to “being in 

common”, and on the treatment chosen for data identical (but distinct) tuples occurring in the 

relations being intersected. Similarly, set difference returns the tuples appearing in the first relation 

and not appearing in the second one. Therefore, it also depends on the comparison operator chosen 

and on the treatment selected for data identical tuples. 

Tuple combination: Different alternative combination functions can be defined, depending on the 

intended meaning of the union operation. In particular, if we want to adopt a skeptical treatment 

towards the combination results, we use conjunction as the combination function for data identical 

tuples, while an optimistic treatment of combination would make disjunction preferable: 

- Optimistic combination (  Åo   ): Let t1 = <vs11, …, vsn1> and t2 = <vs12, …, vsn2> be  two data 

identical tuples. t1  Åo   t2 =  <vs1, …, vsn> ,where for each i,  vsi=  {< u, µ1(u) > Ú < u, µ2(u) > |  < 

u, µ1(u) >Î  vsi1 and < u, µ2(u) >Î  vsi2 }. 

- The skeptical combination (  Ås   )  is defined in the analogous way, by applying the fuzzy and 

operator on the values instead of the fuzzy or:  t1  Ås   t2 =  <vs1, …, vsn>, where for each i,  vsi=  {< 

u, µ1(u) > Ù < u, µ2(u) > |  < u, µ1(u) >Î  vsi1 and < u, µ2(u) >Î  vsi2 }. 



As an example, we consider the two data identical tuples, t1 and t2, introduced above. Their 

optimistic and skeptical combinations are the following. 

 File Color Texture Content 
t1  Åo   t2 Ves_pict.gif <black, 0.75>, 

<red, 0.815>, 
<beige, 0.6>, 
<brown, 0.311>, 
<white, 0.7> 

<thin, 0.715>, 
<mixed, 0.715>, 
<net, 0.7>, <crisp, 
0.121> 

< human, 0.95> 

t1  Ås   t2 Ves_pict.gif <black, 0.7>, 
<red, 0.8>, 
<beige, 0.414>, 
<brown, 0.3>, 
<white, 0.628> 

<thin, 0.6>, 
<mixed, 0.715>, 
<net, 0.511>, 
<crisp, 0.1> 

< human, 0.9> 

Both optimistic combination and skeptical combination are commutative and associative. They 

inherit the properties from commutativity and associativity of fuzzy and and fuzzy or, and from the 

standard set union. Therefore, combination operators can be straightforwardly extended to sets of 

data identical tuples.  

The comparison and combination operators defined so far are mainly needed for set oriented 

operations. To move towards a complete algebra on the fuzzy data model, we need to be able to 

express more general conditions on the tuple and on their components. The fuzzy attribute based 

model is very flexible and allows us to express may interesting relationships and conditions. A 

sample is provided next. 

Selection conditions on tuples.  Selection conditions are either basic or complex. Basic conditions 

are those that are atomic. Complex conditions are defined by means of conjunction, disjunction, and 

negation of atomic conditions. The FNF2 model admits different classes of conditions. We list some 

illustrative examples as starting points to help define selection conditions. 

 

Comparing with constants. These conditions are defined on individual attribute values  (i.e., a 

single set of value/degree pairs). 



1  -  Fuzzy pair membership condition tests whether a given pair belongs to a given set .  This 

condition is generally used to retrieve images with a specific feature value. For example, in any 

query like “Find all images in the relation r in which the color red appears with certainty 0.8”. 

Syntactically, this selection condition can be expressed as <red,0.8> Î r.Color. 

2  -  Fuzzy pair membership condition, restricted to data-value, tests whether a pair with a 

specific data value belongs to a given attribute value. For example, this condition allows the 

retrieval of images in which some quantity of red is identified by the feature extraction module. 

This query could be expressed as <red, _>Î r.Color, where “_” is a wildcard. 

3  -  Fuzzy pair membership condition, restricted to certainty-value, tests whether a pair with 

specific certainty value belongs to a given attribute value. For example, we might be interested in 

knowing if there is any color which has been recognized with  certainty 0.9, in a given collection of 

pictures. This query can be written as  <_, 0.9 >Î r.Color. 

4  -  Fuzzy pair membership condition, restricted to certainty value thresholds, tests whether there 

is any pair with a certainty value above a given threshold (or, similarly, below the threshold).  

Conditions of this sort allow the users to retrieve those images whose data certainty values are 

above the threshold of interest for the specific application.  For example, the condition <_, 0.5>Î<=  

r.Color would retrieve those images which have at least one color with  a certainty value at least  

0.5. 

When we need to combine different tuples (as it is the case for join operations in the relational 

algebra), we need to express conditions that relate those attribute values relevant to the query, in the 

given tuples.  The following is a (non exhaustive) list of conditions that can be expressed in our 

FNF2 model to compare attribute values. 

 

Comparing two attribute values (i.e., comparing two sets of fuzzy pairs):  



1  -  Equality of the sets. This condition can be used for testing whether two tuples have exactly the 

same value, for a given attribute. For example, the condition  r1.Color = r2.Color could be used to 

retrieve those image pairs, in relations r1 and r2, which are described as having the same colors with 

the same certainty values,.  

2  -  Equality of the two sets, restricted to the data component.  If we are interested in image pairs 

described as having the same colors, but we do not care about the certainty values associated to 

their descriptions, we can restrict the attribute value comparison to data values as follows:  r1.Color 

=d r2.Color . 

3  -  Equality of the two sets, restricted to the certainty component. This case is similar to the 

previous one, but applies when we are interested in comparing the degrees of certainty, without 

checking the corresponding data values: r1.Color =c r2.Color. 

4  -  Set inclusion. If we are interested, for example, in checking whether the color descriptions of 

an image is included, with the same certainty degrees, in the description of another, we could 

express this condition as  r1.Color Í r2.Color 

5  -  Set inclusion, restricted to the data component. We can use this type of conditions, for 

instance, if we want to check whether all the colors which describe a given image also appear in the 

description of another image (possibly with different certainty values) .  A restricted set inclusion 

type condition which expresses this requests is as follows: r1.Color Íd r2.Color. 

6  -  Set inclusion,  restricted to the certainty component. In some cases, we might want to check 

whether the data about two images have been collected with the same degrees of certainty, no 

matter what the corresponding data values are. We would express this as r1.Color Íc r2.Color. 

7  -  Overlapping of the two sets. This condition allows us, for instance, to test whether two images 

have some color in common, described with the same certainty; that is, if their Color attributes have 

a non empty intersection. Syntactically, this condition would be expressed as  (r1.Color 

r2.Color)≠Æ. Ç



8  -  Overlapping of the two sets, restricted to the data component.  If we are interested in the 

presence of common colors, but we can ignore their degrees of certainty, we can restrict the test to 

the data component of the common pairs: (r1.Color d r2.Color) ≠Æ. 

9  -  Overlapping of the two sets, restricted to the certainty component. Analogously, if we are 

interested in the presence of any color described with the same certainty, we can use (r1.Color c 

r2.Color) ≠Æ. 

10  -  Relative ordering of the two set. In many cases, different value sets might result from the 

same data processed by different vision systems. FNF2 model allows us to test whether data in 

common are more reliable (i.e., more certain) according to one set or the other. The condition 

r1.Color £ r2.Color checks, for example, if all the common the values in the Color attributes in the 

two tuples (one from r1 and the other from  r2) have higher certainty values in the second than the 

first. 

The above conditions, and other conditions that we could express in FNF2, can be seen as  atomic 

conditions that can be combined in a complex condition, by means of conjunction, disjunction, and 

negation connectives. Thus any combination of predicates are applicable either on the data 

elements or on the certainty elements.  For example, FNF2 allows us to check whether two tuples 

“have exactly the same color information, but the granularity of texture in the first one is finer than 

the second one.” Naturally, for the execution of this query a partial order over granularity of texture 

description must be defined a priori. Thus, FNF2 model enables a natural extension, suitable for 

managing image data, of the relational algebra, with both standard (both atomic and complex) 

selection conditions and ad hoc (atomic and complex) conditions described in this section. 

EXPERIMENTAL STUDIES 

 
The FNF2 model  is a data model on which  many different systems can be implemented.  In order 

to directly experience the expressive power of our model,  and without any performance evaluation 

Ç

Ç



goal (since the performance of the resulting model  would nott be a property of the model, but 

would depend on the chosen feature extraction, indexing, and clustering  mechanisms), we 

developed a  prototype system, called  FIB (Fuzzy Image database).  

FIB  extends  relational databases both in terms of the data model (fuzzy relations are used instead 

of standard ones), and in terms of the implemented algebraic operators, which include  selection 

conditions of  all the forms we  listed in the previous section.   As for the tuple  combination 

functions, in the existing prototype only skeptical  version is currently available. 

 

 

Figure 5: system architecture. 

Figure 5  illustrates the architecture of the system, which consists of the following major 

components. 

• With the goal of supporting  visual,  textual, as well as  visual/textual queries, a graphical 

user interface is available for users’ query expression. The interface code consists of 

approximately 7500 lines of Java code. 



• An image query processing engine implements the various feature extraction algorithms  

described in (Chianese & al., 2001). This module provides the fuzzy information to be 

stored in the fuzzy relations.   

• An algebraic optimizer,  rewrites the queries, taking into account a number of algebraic 

equivalences. These equivalences are basically extensions (to the FNF2  model) of the well 

known equivalences of the standard relational algebra. They allow significant cost reduction 

in the query evaluation process by properly choosing the ordering of the operators (for 

example, by anticipating projections and selections over Cartesian products and joins). 

• A query  translator  transforms algebraic queries in a sequence of PL/SQL statements, that 

is,  in queries over the object relational database. 

• An object relational database system contains the information about the images and their 

contents. The database engine is written in PL/SQL code, in an Oracle 9i environment.  

 

Figure 6 shows a  screen dump of the system GUI, with the menu to  query the system.  

 

Figure 6: a screen dump of the described prototype system. 



 

FUTURE TRENDS AND CONCLUSIONS  

The problem of managing uncertainty in image databases, to define  image retrieval methods that 

better match the users’ expectations, is becoming more and more important. Unfortunately, it is far 

from being solved in a way that can be acceptable for the needs of the database and image 

processing communities. 

The major current trends in the image database research include 

a) development of a theoretical framework to manage uncertainty using several theories 

(probability, fuzziness); 

b) development of  a unified data model based on relational or object oriented databases; and 

c) development of a model to measure the complexity of image database content and image 

database retrieval (similarity) algorithms. 

The goal of this chapter was to highlight uncertainty-related challenges inherent in image databases 

and discuss several cutting-edge solutions, illustrating the theory, tools, and technology available to 

support various types of uncertainty. In particular, we have introduced a new and powerful model, 

FNF2, developed by the authors, and we have described the main features and technical 

contributions of the model. The model is well suited for the definition of an extension of the 

relational algebra, for managing image data. A preliminary version of the extended algebra has 

already been defined by the authors (Chianese & al., 2004) under some simplifying hypotheses 

about comparison and combination operators. In particular, in the algebra the  tuple combination 

operators have been limited to their skeptical versions. A prototype system based on the FNF2   



model, and including the extended relational algebra operators, has also been implemented at the 

University of Napoli “Federico II”. An extended version of the algebra, with the presence of both 

skeptical and optimistic versions of the operators, is work in progress. 
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