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Abstract
The metastatic cancer disease represents the real and urgent clinical need in oncology. Therefore, an understanding of the 
complex molecular mechanisms sustaining the metastatic cascade is critical to advance cancer therapies. Recent studies 
highlight how redox signaling influences the behavior of metastatic cancer cells, contributes to their travel in bloodstream 
from the primary tumor to the distant organs and conditions the progression of the micrometastases or their dormant state. 
Radical oxygen species not only regulate intracellular processes but participate to paracrine circuits by diffusion to nearby 
cells, thus assuming unpredicted roles in the communication between metastatic cancer cells, blood circulating cells, and 
stroma cells at site of colonization. Here, we review recent insights in the role of radical oxygen species in the metastasis 
formation with a special focus on extravasation at metastatic sites.
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Introduction

Metastasis spreading from the primary lesion to secondary 
sites causes over 90% of human cancer deaths [1]. Fortu-
nately, it is evident that the number of patients living with 
a controlled and dormant metastatic disease is increasing in 
the last twenty years [2].

Metastasis diffusion is a multiple step process with dif-
ferent bottlenecks, which renders the journey of cancer cells 
in bloodstream highly demanding with few chances to get to 
the final destination. Although, primary tumors can discard 
millions of cells into the capillaries every day, a metastatic 
event occurs rarely. The cancer population accountable 

for the metastatic process is defined metastatic cancer cell 
(MCC), the protagonist of cancer progression. The first step 
is the intravasation of MCCs into the tumor vascular bed. 
Then, MCCs move into the blood as a single cell or clusters, 
possibly surrounded by platelets or polymorphonuclear cells 
(PMNs). Patterns of MCCs in the bloodstream and features 
of the vasculature in each organ influence the efficacy of 
the metastatic process. Furthermore, there are increasing 
evidences suggesting a role of primary tumor secretome in 
dictating the selection of metastatic sites. For example, pri-
mary tumors release angiocrine molecules or chemokines 
able to directly or indirectly address bone marrow-derived 
hematopoietic progenitors at site of metastatic spreading to 
induce an immune-suppressive environment [3]. Primary 
tumor cells might also release exosomes, which fuse with 
resident cells at their predicted destination and transfer their 
cargo to prepare the pre-metastatic niche [4]. Alternatively, 
in the presence of shear forces MCCs discharge cytosolic 
microparticles, which are ingested by different myeloid cell 
types in progressive and temporally differentiated waves to 
prepare the features of the metastasis homing. According to 
the myeloid cell types, the MCC cargos might address their 
functions towards a pro- or anti-metastatic effect [5].

When MCCs stop at the capillary surface of targeted tis-
sues, they extravasate into the parenchyma and settle within 
an area near the capillaries termed “metastatic niche [6]”, 
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where they remain in dormant state or start to invade sur-
rounding tissues (Fig. 1).

This scenario is well supported by a huge amounts of 
in vitro and in vivo data [1, 7]. Nevertheless, the molecu-
lar and biological bases underpinning metastatic diffusion 
remain barely investigated and understood. For this rea-
son, many questions are still unsolved limiting the design 
of successful therapeutic approaches able to counteract the 
metastatic disease. Which are the mechanisms sustaining the 
organ tropism from the primary tumor to the site of meta-
static seeding? Which are the features of cells moving out 
the primary tumor with the capability to colonize distant 
organs? Which are the minimal requirements sustaining sur-
vival and expansion of a metastatic clone in a distant and 
often hostile organ?

This review will focus on the role of redox state and radi-
cal oxygen species (ROS) in influencing the success rate of 
metastatic process analyzing the extravasation and the settle-
ment of MCCs in distant organs [6, 8]. Low and physiologic 
concentrations of ROS represent a rapid and versatile tool 
for fine-tuning many intracellular processes [9], and might 
dynamically regulate oncogenesis. A paradigmatic exam-
ple of this concept has been recently provided in pancreatic 
adenocarcinoma models by analyzing the role of TP53-
induced glycolysis and apoptosis regulator (TIGAR), a bis-
phosphatase that activates the oxidative pentose phosphate 
pathway to generate antioxidant nicotinamide adenine dinu-
cleotide phosphate (NADPH). In this study high levels of 
TIGAR first promote pancreatic cancer initiation by limiting 
ROS, thereafter low levels of TIGAR promote the metastatic 
capacity of pancreatic cancer cells by enhancing ROS [10].

Furthermore, recent observations extended their regula-
tory roles from intracellular mechanisms to signal circuits 
occurring between single cells. ROS might be generated 

within cells before being released in a paracrine manner 
diffusing to nearby target cells, or ROS-generating systems 
might be delivered through exosomes to affect the behavior 
of neighboring cells [11].

Sources of radical species

Endogenous free radicals, both ROS and reactive nitrogen 
species (RNS), are produced in several sub-cellular orga-
nelles (mitochondria, peroxisomes, endoplasmic reticulum) 
and according to their concentrations and half-time exert 
both signaling and oxidative damage on lipids, nucleic acids 
and proteins.

The first step of cellular production of ROS is the reduc-
tion of  O2 to superoxide ion  (O2

•−). Almost 95% of  O2•− is 
unspecifically produced along the electron transfer through 
the complexes of the mitochondrial electron transport chain. 
The residual production is catalyzed by NADPH oxidase 
(NOX) family, which transfers electrons from NADPH to 
 O2. Superoxide is then detoxified to generate other ROS 
molecules, which include hydroxyl radical, aloxyl, peroxyl, 
singlet oxygen and non-radical  H2O2, which is the primary 
mediator of ROS-driven cellular signaling (Fig. 2a). In par-
ticular in mitochondria, where  Fe++ can be released by dam-
aged cytochromes upon  O2

•− generation,  H2O2 converts to 
hydroxyl radical through Fenton’s reaction (Fig. 2b) [9].

The most relevant detoxifying enzyme is the superoxide-
dismutase (SOD), which converts superoxide into  H2O2. 
According to the cell status and the subcellular localiza-
tion,  H2O2 is differently processed. It might be converted 
into water by the reductase activity of peroxiredoxin (Prx), 
catalase, thioredoxin (Trx) reductase and glutathione (GSH) 
peroxidase-GSH reductase system (Fig. 2c) [9, 12].

Fig. 1  Steps of the metastatic process. Schematic representation of the three steps of metastatic process focusing on the role of Metastatic Can-
cer Cells, responsible for cancer progression
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ROS metabolism is strictly connected with RNS and 
in particular with nitric oxide (NO), which is synthesized 
by various isoforms of nitric oxide synthase (NOS). NO 
can further react with superoxide to form peroxynitrite 
 ONOO−, which mediates the nitrosylation or the oxida-
tion of amino acid residues such as tyrosine, cysteine, 
methionine, and tryptophan.

Evolution has developed highly organized systems to 
quench the dangerous effect of the excessive ROS produc-
tion or fine-tune their physiologic role [12]. These anti-
oxidant pathways include plasmatic small molecules (bili-
rubin, urate, ascorbate, vitamin E) and proteins (albumin, 
ceruloplasmin, ferritin) that sequester metallic ions  (Fe++, 
 Cu+) undergoing oxidation and the enzymatic reductive 
systems [12]. Furthermore, the cell capability to control 
ROS effects is further orchestrated by the Nuclear fac-
tor erythroid 2-related factor-2 (NRF-2), which regulates 
the transcription of genes involved in the biosynthesis of 
NADPH, GSH and in the Prx-Trx pathway. Under redox 
homeostasis, cytosolic NRF-2 binds Kelk-like ECH-asso-
ciated protein 1 and undergoes degradation. When ROS 
are abundant, the formation of this complex is limited and 
NRF-2 translocates to the nucleus, where it promotes an 
antioxidant transcriptional program [13].

Features of the metastatic cancer cells

There is growing evidence that tumorigenesis is fueled by 
a minute population of cells endowed with unique self-
renewal potential and arising when transit-amplifying cells 
with mutant genomes differentiate and enter the stem cell 
state. These cells are operationally classified as initiat-
ing cancer cells [1]. By their innate or acquired ability to 
resist to current therapies, these cells might be responsi-
ble for tumor dissemination and metastasis after therapies 
[1]. The current hypothesis is that MCCs present features 
shared with initiating cancer cells but at the moment no 
specific biomarkers to phenotypically distinguish them are 
available.

A typical feature of MCCs is the ability to show a meta-
stable phenotype encompassing epithelial and mesenchy-
mal traits [14]. The cell dedifferentiation occurring during 
epithelial-to-mesenchymal transition (EMT) consists in the 
transcriptional repression of E-cadherin paralleled by the 
transcriptional induction of mesenchymal markers, includ-
ing N-cadherin, vimentin, alpha-smooth muscle actin 
and fibroblast-specific protein 1 [1]. The transcriptional 
changes are mediated by a set of transcription factors, 

Fig. 2   Source of oxidative stress. Schematic representation of ROS 
production and scavenging. a Superoxide is mainly generated from 
the oxidation of NADPH by NOXs or mitochondria through elec-
tron chain complexes I and III. ROS might result from the enzy-
matic activity of membrane-bound NOX. NOXs consume NADPH 

to generate  O2
.− and then  H2O2. b Fenton reaction: catalytic reaction 

converting hydrogen peroxide in the presence of ferrous ions into a 
highly toxic hydroxyl free radical. c The scavenging system involving 
the catalase or GPX coupled with GSH oxidation, Prx and Trx
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Snail, Slug, Twist1 and Zeb, activated by tumor-growth 
factor β (TGFβ), Notch and Wingless-INT (Wnt) signaling 
pathways [1]. After seeding cancer cells undergo mesen-
chymal to epithelial transition (MET), halting migration 
and allowing proliferation [14]. Since MET is necessary 
for the metastatic process, it is conceivable that MCC rep-
resents a cancer cell in transitional EMT/MET state.

Oxidative stress plays a contributive role in this context, 
being a driver of malignant transformation and fostering a 
highly metastatic phenotype [15]. Nevertheless, the exact 
effect of ROS on metastatic cascade is still controversial. 
Although, moderate ROS levels sustain tumor develop-
ment by activation of cell survival, proliferation and migra-
tion pathways, the balance of cellular ROS levels is critic, 
because a high ROS concentration leads to apoptosis of can-
cer cells. For this reason cancer cells depend on elevated 
antioxidant capacity, which allows ROS levels without 
exceed the threshold compromising cell viability [15]. In 
this light, clinical trials using antioxidants failed, since can-
cer patients experienced worse prognosis. On the other hand, 
there are also some studies demonstrating that the inhibi-
tion of mitochondrial oxidative stress is able to counteract 
metastatic cascade.

The higher content of ROS is ensured by increased basal 
metabolic activity, mitochondrial dysfunction paralleled to 
hypoxia or mitophagy, uncontrolled cytokines signaling, and 
oncogene activity. Several known ROS sources, including 
NOXs, cyclooxygenases, or lipoxygenases, show an intense 
enzymatic activity contributing to keep ROS levels higher 
than in normal cells. Different signaling pathways associated 
with oxidative stress influence metastatic phenotype.

TGF-β increases ROS production by activating the 
transcription of NOX-2 and -4 and suppresses antioxidant 
enzymes, leading to a redox imbalance [16]. ROS, in turn, 
induce/activate TGF-β pathway at different levels and medi-
ate some of its effects. In particular ROS can facilitate the 
release of the active form of TGF-β from the small and large 
latent complexes, which immobilize this cytokine in the 
extracellular matrix [17].

Wnt is a complex signaling pathway that controls cell 
differentiation and proliferation in embryo and adults by a 
canonical or non-canonical pathway. Canonical pathway 
is characterized by the nuclear translocation of β-catenin, 
while the non-canonical pathway signals through Frizzled 
receptors and triggers calcium-mediated biological functions 
including cell polarity and stemness [18]. ROS have an acti-
vating impact on Wnt system. Trx-like protein nucleoredoxin 
negatively regulates the inhibitory activity on the destruc-
tion complex deputed to degrade β-catenin. The oxidation 
of this reductase or its deletion stabilizes β-catenin, thus 
favoring its transcriptional activity. Wnt pathway itself acti-
vates ROS generation and amplifies its signaling activity by 
a Src-dependent phosphorylation of NOX-1 and subsequent 

production of  H2O2 [19]. Furthermore alteration of redox 
state antagonize the effect of Dickkopf 1, an endogenous 
Wnt inhibitor [18], and stabilize the Frizzled co-receptor 
Low-density lipoprotein receptor-related protein 5 [20].

Accumulating evidences have suggested that ROS also 
function as second messengers modulating stem cell self-
renewal and differentiation by regulation of intricate signal-
ing networks.

Differently from cancer cells, cancer stem cells produce 
low amount of ROS [21].

To maintain low level of ROS, the metabolic set point of 
cancer stem cells is set-up to favor the reductive metabo-
lism and the production of antioxidants. This peculiarity is 
mainly governed by hypoxia inducible factor (HIF) [22] and 
NRF-2 systems [22, 23].

HIF induces glycolytic genes and pyruvate dehydroge-
nase kinase 1, which phosphorylates and inhibits pyruvate 
dehydrogenase to switch cells from oxidative to glycolytic 
metabolism. Furthermore it triggers mitophagy [24] and 
represses oxidative metabolism by inhibiting the fatty acid 
oxidation and the complex I of electron transport chain [25]. 
Finally, HIF increased the production of NADPH by activat-
ing the mitochondrial catabolism of serine [26] thus increas-
ing the production of antioxidant species.

Interestingly, NRF-2, the master gene of redox system, 
is often mutated in cancers [27] and is highly expressed in 
some cancer stem cell types [23]. Similarly to HIF, NRF-2 
activates the transcription of glycolytic genes and pyruvate 
kinase dehydrogenase, thus reducing mitochondrial oxida-
tion and ROS production [28]. Furthermore, NRF-2 might 
participate indirectly to hepatic oncogenesis as inferred by 
the impact of loss of PKCλ/ι in hepatocarcinoma. In fact the 
deletion of this kinase in hepatocytes promotes the onset of 
hepatocarcinoma linked to increased ROS and NRF2 activa-
tion [16].

A holistic and fruitful interpretation of the experimental 
data available can be obtained by considering the involve-
ment of redox metabolism in metastasis diffusion as a 
dynamic process finalized to maintain a balanced redox 
state a little bit shifted towards reducing equivalents final-
ized to maintain ROS levels consistent with the cellular fit-
ness. The analysis of melanoma patient-derived xenografts 
elegantly demonstrates that metastatic activity is related to 
the concomitant increase of ROS production and antioxidant 
molecules, such as NADPH and GSH [15]. The investigation 
of redox state related to primary tumors, circulating tumor 
cells and metastatic sites allowed to demonstrate that MCCs 
are able to rewire their metabolic profile to withstand the 
oxidative stress they experience along the metastatic travel. 
Actually, ROS levels are higher in circulating cells and in 
metastatic nodules than primary tumors. However, the ratio 
GSH/oxidized GSH (GSSG) and the amount of NADPH 
originated from folate pathway are higher in metastasis than 
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the primary lesions indicating that cancer cells undergo an 
adaptive change to buffer the oxidative stress (Fig. 3).

The travel of metastatic cancer cells 
in the bloodstream

To successfully and safely navigate into the blood circula-
tion, extravasate and colonize a distant site from the primary 
tumors MCCs need the collaboration of other cell types, 
including endothelial cells (ECs), PMNs and platelets. These 
cells have specific metabolic peculiarities, which impact on 
oxidoreductive system and indeed on MCC circulation.

ROS generation and function in vascular endothelial 
cells

ROS generation

Redox balance is crucial for endothelial fitness and its 
homeostasis gets worse during life. Endothelial oxidative 
stress is involved in many pathological events, including 
vasoconstriction, vascular remodeling, inflammation, angi-
ogenesis and fibrosis [29]. In this light, ECs need ROS for 
many of their activities, but concomitantly a precise con-
trol is required to avoid the detrimental effects of oxidative 

stress, which might be further facilitated and amplified by 
the assumption that ECs could directly sense the high  O2 
levels into the blood.

ECs have different systems to generate ROS. Nox-4 and 
Nox-2 account for the basal tone of ROS whereas Nox-1 
and Nox-5 have been shown to mediate both physiological 
and pathological events in the vascular system [30]. Another 
mechanism for ROS production relies on the cooperation 
between NOX and NOS3. Uncoupled NOS3 generates 
 H2O2 instead of NO when the availability of arginine or the 
cofactor tetrahydrobipterin is low. Superoxide reacts with 
NO forming peroxynitrite that further oxidizes tetrahydro-
bipterin creating a vicious circle and more NOS3 uncou-
pling [31]. Xanthine oxidoreductase, which catalyzes the 
reduction of hypoxanthine to uric acid and generates  H2O2 
and  O2, together with the mitochondrial electron transport 
chain are involved in ROS production during pathological 
conditions [30]. ROS also regulate the activity of  H2S, a gas 
involved in endothelial functions, including angiogenesis, 
and primarily produced by the trans-sulfuration enzyme 
cystathionine-γ-lyase.  H2S exists as hydrosulphide anions 
 (HS–) and protons  (H+) with the remaining third being in 
the form of  H2S undissociated gas. The mechanism sup-
porting  H2S functions requires ROS-dependent activation of 
polysulphides (reviewed in [32]), which can oxidize cytes-
ine residues in target proteins leading to the formation of 

Fig. 3  Intrinsic features of dedifferentiation mechanisms adopted 
by cancer to generate a pool of stem cells sustaining tumor growth. 
During EMT, epithelial cells de-differentiate into mesenchymal 
cells. This process is possible by gradual alteration of specific mark-
ers and progressive change in metabolic pathways. Epithelial cells 
obtain energy from oxidative phosphorylation, whereas mesenchy-
mal cells are glycolytic. Mesenchymal cells can then originate cancer 
stem cells by a further step of dedifferentiation, in which a reductive 

metabolism is established as well as the production of anti-oxidant 
species. The high metastatic phenotype is sustained by a fine bal-
ance between ROS and antioxidant levels. ROS levels are generated 
by a high metabolic activity, paralleled by mitochondrial dysfunction, 
cytokine signaling. TGFβ signaling is both sensitive to and induces 
ROS. ROS content in MCC induces Wnt signaling. Among active 
antioxidant systems, HIF, NRF-2, NADPH and GSH play a pivotal 
role
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disulfide bonds. Furthermore, polysulphides are less polar 
and more lipophilic than  H2S facilitating their diffusion in 
adjacent cells to propagate the activating signal.

Considering the almost unlimited availability of  O2 and 
the requirement of a judicious ROS level, ECs have devel-
oped different strategies to avoid oxidative stress and in 
particular they utilize diversified reducing systems. The 
use of glycolysis to produce ATP instead of mitochondrial 
respiration is the first method exploited by quiescent and 
angiogenic ECs to keep ROS production in a narrow and 
low range [33]. In nascent vessel, glycolysis rate is increased 
both in migratory tip cell and proliferative stalk cell as com-
pared to quiescent ECs far from the sprouting area [34]. This 
process is largely correlated with the increased expression 
of phosphofructokinase-2/fructose-2,6-bisphosphatase-3, 
which catalyzes the synthesis of fructose-2,6-biphosphate, 
the allosteric activator of phosphofructokinase-1 [34]. Of 
note, a recent paper contradicts this vision indicating that 
both glycolysis and mitochondrial respiration occur during 
proliferation of non-tip cells [35].

To reduce the risk of oxidative stress, quiescent ECs show 
a high rate of fatty acid oxidation to fuel tricarboxylic acid 
cycle (TCA). The activation of this pathway does not sup-
port ATP production or biomass synthesis but assures redox 
homeostasis. The TCA metabolite malate can be exported 
to the cytosol via the dicarboxylate carrier and oxidized to 
pyruvate by the NADP-dependent malate dehydrogenase. 
NADPH in turn supports GSH synthesis resulting in ROS 
quenching [36]. Of note, the inhibition of carnitine acyl-
transferase I, the limiting step of mitochondrial fatty acid 
oxidation fueling TCA, leads to endothelial alteration [36].

Furthermore, other metabolic pathways contribute to 
generate an efficient and antioxidant system in ECs. Sup-
plemental Table 1 summarizes the most important effects 

induced by the alteration of the endothelial reductive path-
ways to frame the role of vasculature in the metastatic pro-
cess (Fig. 4).

ROS function

In the metastatic process, ECs represent both a physical bar-
rier to be crossed by MCC and a support to the formation 
of the metastatic niche [6]. Leukocyte extravasation is an 
operative guideline to examine EC functions engaged by 
MCC [37] (Fig. 5).

Leukocyte diapedesis occurs at site of tissue injury, where 
inflammatory cytokines induce the expression of endothe-
lial selectins, which orchestrate the ‘first contact’. Locally 
accumulated chemokines instruct leukocytes to polarize and 
acquire a motile phenotype. This step needs the interaction 
between leukocyte and their endothelial ligands ICAM-1 and 
VCAM-1. Subsequently, the cells form protrusions to cross 
endothelial barrier, through EC intercellular junctions or by 
penetrating EC body [38].

The arrest of MCC on vascular surface depends on the 
physical restriction of capillaries [37], or on active adhesive 
processes involving selectins, integrins, cadherins, CD44 
and immunoglobulin superfamily receptors [39, 40].

As demonstrated for leukocytes, MCC starts to crawl on 
endothelial surface by the formation of weak adhesions by 
the engagement of endothelial E-selectin [41] or CD44 and 
αvβ3 integrin, as recently reported in vivo [39]. Different 
modes to stabilize this arrest with higher adhesion strength 
have been described and exploit integrins, CD44 and mucins 
[39, 40]. A striking difference between the two processes 
relies on their specific triggering stimuli: while inflammation 
represents the onset of leukocyte extravasation, the mecha-
nisms allowing MCC to colonize a specific organ are poorly 

Fig. 4  Endothelial ROS sources. 
ECs generate ROS through 
several enzymatic systems: 
NADPH oxidases (NOXs), 
nitric oxide synthase 3 (NOS3), 
xanthine oxidoreductase and 
during mitochondrial respira-
tion. Considering the high EC 
exposure to  O2, endothelium 
developed different reducing 
systems, including glycolysis, 
fatty acid oxidation and glu-
tathione (GSH) synthesis
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understood [1, 7, 8]. An emerging concept focuses on the 
ability of primary tumors to instruct vascular barrier to host 
MCC by releasing exosomes and specific microRNAs that 
modify EC permeability [4]. Interestingly, exosomes can 
directly scavenge or produce ROS but they can also act on 
ROS indirectly, modifying the ROS content of their target 
cells [11]. Nevertheless, the role of exosome ROS-related 
cargo in metastatic cascade is completely unknown.

ROS are produced during leukocyte diapedesis by ECs 
[42] and regulate their molecular arrangement, which char-
acterizes cytoskeleton and junctional dynamics occurring 
during leukocytes transmigration (Supplemental Table 2).

ROS generation and function in polymorphonuclear 
cells

PMNs, cells of the innate immune system, are recruited at 
site of infections to phagocytize and kill pathogens. They 
are professional ROS producers to exert their antimicrobial 
defense function. PMN phagocytosis or chemo-attraction 
depends on ROS release, mostly produced by NOX-2 func-
tion and by myeloperoxidases, specific enzymes of PMNs. 
NOX-2 activation and its cooperation with myeloperoxidase 
occur both outside PMN plasma membrane and in phago-
some. The former characterizes PMN activation by soluble 
inflammatory stimuli (immune-complexes, anaphylatoxins, 
chemokines and cytokines) with the concomitant release of 
azurophil granules, containing myeloperoxidase. The latter 
is typical of phagocytosis, in which PMN membrane embeds 
the pathogen and fuses with azurophil granules enabling 
ROS synthesis inside the phagosome [43]. To remove bac-
teria, PMN release neutrophil extracellular traps (NET), a 
mesh of nucleic acid, enzymes and antimicrobial agents, 
whose assembly depends on ROS availability [44]. Specifi-
cally, ROS damage the membrane of azurophils granules and 

nucleus, allowing elastase and myeloperoxidase to enter into 
nucleus promoting chromatin condensation [45].

ROS generation and function in platelets

Platelets show a basal production of ROS, which rapidly 
increases when platelets start to adhere to injured vessel 
walls, to one another or to other circulating cells [46–48]. 
This adhesive process is largely mediated by platelet inte-
grins [46], which might undergo post-translational modifi-
cations of critical cystein thiol groups. ROS generation is 
mainly mediated by NOX-1 and NOX-2 and occurs during 
platelet activation with an enhancing effect. Tumor necrosis 
factor receptor associated factor-4 binds the cytosolic tail 
of the collagen receptor glycoprotein VI and recruits at the 
plasma-membrane the p47phox subunit of NOX-1 and-2 lead-
ing to ROS generation [49].

Besides influencing integrin-mediated adhesive process 
[46], ROS might modulate the intracellular signaling path-
ways supporting granule release and activation of polyun-
satured fatty acids (e.g. arachidonic acid) cascade [50]. The 
deletion of Prx2 allows higher levels of ROS and potentiates 
platelet activation [51]. ROS antagonizes the disaggregating 
activity mediated by NO, by reducing its activity and form-
ing peroxynitrites [52].

Polymorphonuclear cells and platelets: fellow 
travelers of metastatic cancer cells

The MCC journey in bloodstream is unsafe. They circulate 
as single cell or clusters [40]. Indeed, the formation of het-
erotypic cell clusters with leukocytes or platelets is instru-
mental to protect MCCs from immune attack, anoikis, and 
dangerous effects of shear stress. Furthermore, these clusters 
favor the metastasis extravasation step and their presence 
has been often linked with a worse prognosis [53]. On the 

Fig. 5  Endothelial role during 
MCC journey. Endothelium 
works as a physical barrier to 
be crossed by MCC and as a 
support to the formation of the 
metastatic niche through differ-
ent signaling pathways sensitive 
to ROS



 Angiogenesis

1 3

contrary, in vivo depletion of PMNs has anti-metastatic 
effect [54]. The active redox metabolism of these cells can 
influence MCC behavior to move in blood circulation and to 
cross endothelial barrier. Of note, a recent paper highlights 
the role of ROS in determining the heterotypic PMN-plate-
lets interactions during inflammation-induced microvascular 
occlusion. The data show that platelet and PMN NOX-2-de-
rived ROS regulate the function of surface receptors GPIbα 
and αMβ2 integrin, which are instrumental for PMN-platelet 
adhesion [47]. These results inspire a similar scenario that 
could occur during the cluster formation of MCCs, leuko-
cytes and platelets (Fig. 6).

The role of Polymorphonuclear cells

Increasing evidences indicate that MCCs might circulate in 
bloodstream surrounded by PMNs [55]. Interestingly, MCCs 
interacting with PMNs express higher amounts of cell-cycle 
genes than MCCs traveling alone [55], indicating a strict 
cooperation between the two cell types. The formation of 
these clusters is mediated by the expression of adhesive mol-
ecules on MCCs (ICAM, VCAM) and their cognate recep-
tors on PMN surface [55]. This in trans cell–cell stimula-
tion results in the release of inflammatory cytokines (IL-1β, 
IL-6) by MCCs that stimulate PMNs [55]. It is plausible that 
PMNs release their granule contents and in particular azuro-
phil granules, which contain myeloperoxidase able to gener-
ate ROS [43]. Of note, ROS regulate cell cycle via phospho-
rylation and ubiquitination of regulatory molecules, such 
as the phosphatase Cdc25 and cycle kinase inhibitors [56]. 
These observations have been recently replicated in vivo by 
analyzing the effect of ROS on Xenopus embryos [57]. In 
this model mitochondria ROS oscillations parallel cell cycle 

and recognize as target Cdc25 by changing its phosphoryla-
tion levels. The use of ROS synthesis inhibitors results in 
an impairment in the cycling Cdc25C hyper/hypophospho-
rylation oscillations and in a deregulation of cell cycle. In 
general, it is also stimulating to speculate that ROS produced 
by PMNs, contribute to maintain the stemness metastable 
phenotype of MCCs. This symbiotic cooperation between 
MCCs and PMNs is reminiscent to that observed in the para-
sitic disease leishmaniosis, where parasites are camouflaged 
within PMNs and use their azurophilic granules to survive 
[58] (Fig. 6).

Very recently, clusters of MCCs, PMNs and myeloid-
derived suppressor cells (MDSC) have been described 
in melanoma and breast cancer patients [59]. This tripar-
tite alliance results in pro-survival signaling for MCCs. 
Increased ROS produced by PMN-MDSCs upregulate 
Notch1 in MMCs through the ROS-NRF-2 axis, thus prim-
ing MCCs to respond to Jagged-mediated, PMN-MDSC-
driven Notch activation.

The role of platelets

Platelets interact with MCCs activating themselves and 
releasing their granules [60] in blood circulation. Their 
physical interaction is mainly mediated via GPIb-IX-V, 
GPIIb-IIIa and tumor cell integrin. However other mole-
cules expressed on platelet surface have been identified and 
include P-selectin, C-type lectin-like receptor 2 (CLEC-2), 
α6β1integrin and toll-like receptor 4, which respectively 
interact with tumor mucins, podoplanin, high-mobility 
group box 1 and a disintegrin and metalloproteinases 9 
(ADAM9) [60]. More recently, it has been described the 
role of the purinergic receptor P2Y12 on platelet surface and 

Fig. 6  PMN and platelet role 
during MCC journey. PNMs 
and platelets protect MCCs 
from immune cells, anoikis and 
endothelial shear stress. They 
support MCCs during extrava-
sation and establishment of 
the metastatic niche. Different 
signaling pathways sensitive to 
ROS are implied in PMN/plate-
lets crosstalk with MCCs
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ADP at interface between cancer cells and platelets, which 
promote ovarian cancer progression [61]. Finally, platelets 
protect MCCs from high shear forces and from immune cells 
by molecular processes mainly active on natural killer cells 
[62].

TGFβ accumulated in platelet α granules and the direct 
platelet-tumor cell contacts synergistically activate Smad 
and NF-kB pathways in MCCs, resulting in their transition 
to an invasive mesenchymal-like phenotype and enhanced 
metastasis in vivo [63]. A similar effect has been recently 
reported for ATP and purinergic receptors [64] (Fig. 6). 
Because ROS might regulate MCC phenotype and plate-
let activation is associated with ROS production [46–48], 
it is reasonable to speculate that also ROS-derived platelets 
participate to the survival of tumor cells, as reported for 
PMNs [55].

Metastatic cancer cell seeding at metastatic 
site

Metastatic cancer cell extravasation as single cell 
or homotypic cell clusters

MCC extravasation mirrors leukocyte diapedesis and 
requires strict and private interactions with ECs. They 
might extravasate as single cell or as clusters formed at 
the primary site, during the intravasation step, the travel in 
the bloodstream or at the secondary site arrest (reviewed 
in [65]). The MCC extravasation occurs by paracellular 
migration through the EC junctions [66] or by the less 
explored trans-cellular route from the apical to the baso-
lateral side of ECs [65]. How MCCs select the way to 
migrate is poorly known and seems to depend on the can-
cer cell types [40]. In both modalities, ECs show extend-
ing filopodia-like processes, which might guide invading 
cells towards low resistance points. As well described 
for leukocyte diapedesis, the paracellular migration of 
MCCs requires the dismantling of adherens junctions and 
a retraction of ECs [66]. It is plausible to envisage that 
soluble molecules released by MCCs or by companion 
cells trigger a small GTPase-mediated cascade leading to 
the phosphorylation of myosin light chain and the subse-
quent actomyosin-mediated tension of ECs. MCCs might 
also activate Src/proline rich tyrosine kinase 2 pathway, 
which induces phosphorylation and disassembly of the 
VE-cadherin/β-catenin complex and therefore induces 
EC junction opening [66]. All these intracellular mech-
anisms are largely influenced by the presence of ROS. 
Interestingly, MCCs adapt their cytoskeleton to cross EC 
barrier and form invadopodia, which are dynamic actin-
rich protrusive structures regulated by Rac and Rho small 
GTPases, capable of degrading the extracellular matrix 

and to guide extravasation [67]. Invadopodia formation 
relies on the presence of a family of adaptor named Tks, 
which has a significant homology for p47phox subunit of 
NOX [68]. Importantly, the total levels of ROS generated 
by cancer cells decreases considerably after silencing of 
Tks [68], indicating that endogenous Tks proteins might 
be required for ROS generation in cancer cells and most 
probably in invadopodia, where they contribute to actin 
dynamics.

Alternatively, extravasation occurs after MCC arrest-
ing on EC surface and their intravascular proliferation 
without penetrating the capillary wall. The tumor mass 
then mechanically disrupts capillaries leading to MCC 
invasion [69]. Finally, some tumor cells might induce EC 
necroptosis followed by MCC extravasation and metasta-
sis. MCCs activate this programmed necrosis by triggering 
a signaling pathway involving TGF-β-activated kinase 1 
or receptor-interacting serine/threonine-protein kinase 1 
[70]. The role of ROS in regulating the signaling pathways 
sustaining necroptosis is largely unknown and the few data 
available are contradicting. Actually, it was observed both 
an increased and a decreased ROS production respectively 
in TGF-β-activated kinase 1-deficient PMNs [71] and epi-
thelial cells [72].

Metastatic cancer cell extravasation as heterotypic 
cell clusters

PMNs and platelets surrounding MCCs are not only limited 
to serve as bodyguard during their travel in the circulation, 
but they are instrumental to cross endothelial wall. PMNs 
adherent on endothelial layer stop MCCs on the site of pos-
sible colonization by favoring their seeding [73]. PMN ROS 
are involved in the production of NET, which surrounds 
MCCs, thereby favors adhesion and promotes metastasis. 
The role of ROS in NET production is not necessarily con-
nected with an inflammatory status. In cancer patients the 
albumin reservoir of free thiol is reduced with a reduced 
ROS scavenger activity. Therefore, ROS might accumulate 
within PMNs leading to NETosis and seeding of hematog-
enous metastases [74].

In vivo experimental models have demonstrated that 
MCC adhesion to ECs is increased by platelets [75]. Fur-
thermore, ADP or ATP released by cancer-activated plate-
lets stimulated P2Y purinergic receptors to promote an 
increased vascular permeability, most probably by acting on 
VE-cadherin/β–catenin system, and tumor cell transmigra-
tion [76]. A further mechanism exploited by platelet-MCC 
clusters at endothelial surface relies on leukocyte recruit-
ment. Activated platelets, being in contact with MCCs, 
release CXCL5 and CXCL7 chemokines and recruit leuco-
cytes, which in turn contribute to MCC extravasation [77].
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The end of the journey: the metastatic niche

After crossing the vascular wall, MCCs organize themselves 
to colonize the new organ starting from the “metastatic 
niches”, which are reminiscent of the stem cell niche firstly 
described in hematopoiesis. Features of the metastatic niche 
show a dynamic behavior alongside disease progression as 
well as the mechanism sustaining its formation, that precede 
MCC seeding under the influence of molecules released by 
the primary tumor (see above) or molecules becoming active 
on cancer cell arrival [6]. Metastatic niche is formed by ECs, 
infiltrating leukocytes and fibroblasts and in some tissues 
by specialized cells including astrocytes in brain, Kupffer 
cells in liver and osteoblasts in bone. The niche exerts many 
functions to support disease progression including the pro-
tection of tumor cells from the attack of immune system by 
creating an immunosuppressive microenvironment, and the 
maintenance of the metastable stemness phenotype in dor-
mant state. In these conditions, cancer cells might remain in 
a quiescent state for years and decades and form the micro 
metastases. Unpredictable signals can trigger the breakout of 
latency, characterized by the proliferative licensing engaged 
by pro-survival signals and vascular angiogenesis, which 
awaken MCCs from the dormant state. These activities are 
mediated by a wide array of soluble molecules, including 
growth factors, cytokines and prostanoids, the physic-chemi-
cal features of extracellular matrix, and the contact mediated 
intercellular communications. As final result of this complex 
interplay, cancer cells start an overt growth and an invasion 
of the tissue near the niche becoming manifest and clinically 

relevant metastasis [6]. ROS produced inside the metastatic 
niche from different cellular sources negatively or positively 
regulate the metastatic cascade (Fig. 7).

ROS and polymorphonuclear cells

PMNs represent a relevant source of ROS. In a preclinical 
model of lung carcinoma, cancer cells signal to bone-res-
ident osteoblasts through the systemic release of the solu-
ble receptor for advanced glycation end. Stimulated osteo-
blasts in turn promote the generation of a specific subset 
of tumorigenic PMNs  (SiglecFhi) with cancer promoting 
functions mediated by macrophage M2 polarization and 
ROS mediated immune suppression [78]. Interestingly at 
the metastatic niche ROS might increase the pro-meta-
static effect of PMNs by increasing the production of ferri-
tin [79], which is a powerful mitogen for cancer cells. The 
presence of PMNs in the niche and their ability to extrude 
NET is essential for the omental metastasis of ovarian 
cancer. In fact the deletion of the peptidylarginine deami-
nase 4, an enzyme that cooperates with NOX to determine 
chromatin decondesation during NET formation, blocks 
omental metastasis [80]. NET production is also required 
for awakening dormant cancer through NET-associated 
proteases, which remodel laminin thus promoting the pro-
liferation of dormant cancer cells [81]. On the contrary, 
ROS released by PMNs can exert an anti-tumor activity 
by suppressing the pro-tumoral IL-17+ γδ T cells [82].

Fig. 7  Establishment of the metastatic niche. The metastatic niche 
is characterized by the presence of different signaling pathways sus-
taining an immunosuppressive microenvironment and a metastable 

stemness phenotype, which allow dormancy and activation of meta-
static cells. ROS influence metastatic niche features
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ROS and angiogenesis

The first demonstration of the essential role of ECs in main-
taining stemness features of tumor cells has been provided 
in brain tumors, where anti-angiogenic therapies altered 
the perivascular niche hosting cancer cells and reduced the 
cancer stem cell population [83]. It is definitely established 
that vascular supply is crucial for metastasis embedding 
and it occurs by generation of new vessels [8] or by vessel 
co-option, a process whereby tumor cells proliferate around 
capillaries.

The role of ROS in angiogenic process has been inferred 
by the use of anti-oxidant molecules that inhibit angiogen-
esis. This notion is further supported by mouse genetic stud-
ies, showing that the deletion of genes involved in redox 
metabolism, such as catalase or NOX, has a deep impact on 
sprouting angiogenesis and vascular remodeling (reviewed 
in [84]). ROS influence angiogenesis by acting on Vascular-
Endothelial growth factor (VEGF) pathway. Specifically, 
ROS might induce VEGF production by different cell types, 
such as ECs, vascular smooth muscle cells, fibroblasts, per-
icytes and macrophages, and VEGF itself activates ROS 
production by involving both cytosolic and mitochondrial 
production [85]. Furthermore, ROS increase the expression 
of VEGF receptor 2 on ECs, and promote its activation and 
downstream signals [85]. Besides VEGF pathway, ROS 
might exploit other systems to promote angiogenesis. For 
instance, end products of lipid oxidation are recognized by 
Toll-like receptor 2 on ECs leading to angiogenic response 
[86].

ROS and immune suppressive function

Metastatic niche is characterized by immune suppressive 
conditions that induce MCCs to escape from immune surveil-
lance. This immunotolerance state is promoted by MDSCs, 
regulatory T cells  (Treg), and M2-polarized macrophages 
[87]. For instance, tumor cells induce the expression of tumor 
necrosis factor-α-induced protein 8-like 2 in myeloid cells 
through ROS. This protein in turn increases the expression 
of pro-tumoral mediators while inhibiting the expression of 
antitumoral mediators. ROS prevent also the differentiation 
of MDSC into mature myeloid cells, thus maintaining their 
immune-suppressive activities [88]. ROS themselves represent 
a MDSC weapon to suppress T cells, by specific effects on 
CD8 and CD3 molecules and T cell receptor [89]. ROS have 
a similar function on  Treg. Actually, it has been reported that 
macrophages lacking NOX displayed hampered  Treg induction 
and T-cell suppression [90]. Interestingly, X-linked chronic 
granulomatous disease  gp91phox- deficient patients, which have 
an impairment in ROS production, showed a reduced number 
of circulating  Treg [91]. As reported for MDSC,  Treg exert their 
suppressive activity by releasing exosomes containing NOX-2. 

These microvesicles are up-taken by T-cells where they pro-
duce ROS, which inhibit T cell receptor signal transduction 
by reducing phosphorylation of the T cell receptor-associated 
tyrosine kinase ZAP70 [92].

Depending on the content of intracellular GSH, the M1 
and M2 macrophages, which respectively have an anti- and 
pro-tumoral function, are characterized as oxidative and 
reductive macrophages [93]. In contrast to M1 macrophages, 
M2 polarization is connected with a reduced ROS activity 
[93]. However, these results conflict with the observation 
that blocking  O2− synthesis impaired M2 polarization [94].

ROS and extracellular matrix

The chemical and stiffening features of metastatic niche 
are constantly remodeled to follow the needs of MCCs. An 
example is the release from primary tumor of lysyl oxidase, 
which in the lung cross-links collagen IV to increase the 
anchorage of breast MCCs [95]. Niche stromal cells release 
metalloproteases required to remodel extracellular matrix 
and stiffness changes regulating the dormant state of MCCs 
[96]. Finally, extracellular matrix stiffening mechano-acti-
vates glycolysis and glutamine metabolism within the tumor 
niche. A symbiotic metabolic collaboration relies on the 
exchange between aspartate and glutamate respectively from 
fibroblasts and cancer cells, which sustain tumor growth and 
balance redox state in fibroblasts to promote the extracellular 
matrix remodeling [97].

The chemical nature of molecular constituents of extra-
cellular matrix, including proteins (collagens, fibronectin, 
laminins) and proteoglycans, is characterized by regions 
suitable for redox-regulation by ROS [98]. For instance, the 
mature structure of collagen and fibronectin requires post-
translational oxidative modifications that might be catalyzed 
by specific oxidases or by ROS generated in the microenvi-
ronment [98]. Metalloprotease activity is enhanced by oxida-
tive activation of an internal inhibitory thiol group and the 
promoter of metalloprotease-1 is sensitive to redox balance. 
Redox-dependent expression has been shown to be regu-
lated through Ets-1 and AP-1 DNA consensus binding site 
of the promoter in response to oxidant-dependent activity of 
MAP kinase [99]. An epigenetic ROS-dependent mechanism 
further amplifies metalloprotease-1 expression. High levels 
of ROS promote HDAC2 degradation, thereby keeping the 
metalloprotease-1 gene promoter accessible to transcription 
factors [100].

Concluding remarks

Hereby, we reviewed features and mechanisms harnessing 
cell detachment from the primary tumor able to circulate 
into the bloodstream and ultimately colonize a distant 
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organ establishing a metastatic niche, which could remain 
quiescent for years and become manifest and clinically rel-
evant all at once by unpredictable signals. All the aspects 
related to the metastatic program have been discussed 
focusing on how ROS can influence specific features of 
MCCs, which favor migratory and stem phenotype acquisi-
tion allowing MCC circulation into the blood and seeding 
at the metastatic site of distant organs, where metastatic 
niche develops. Specifically, ROS might influence the 
development of MCCs within the primary tumors with 
intermediate features between epithelial and mesenchy-
mal phenotype and gain of stemness and migratory skills 
favoring circulation into the vasculature. The journey of 
MCCs into the blood is closely followed by ECs, PMNs, 
and platelets, whose functions depends on ROS availabil-
ity. Once reached the site of metastasis, either homotypic 
or heterotypic clusters might give rise to a metastatic niche 
with specific structural and metabolic characteristics, able 
to sustain metastasis survival and protect from immune 
system surveillance.
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