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ABSTRACT
Cosmic rays (CRs) are frequently modelled as an additional fluid in hydrodynamic (HD) and magnetohydrodynamic (MHD)
simulations of astrophysical flows. The standard CR two-fluid model is described in terms of three conservation laws (expressing
conservation of mass, momentum, and total energy) and one additional equation (for the CR pressure) that cannot be cast in a
satisfactory conservative form. The presence of non-conservative terms with spatial derivatives in the model equations prevents a
unique weak solution behind a shock. We investigate a number of methods for the numerical solution of the two-fluid equations
and find that, in the presence of shock waves, the results generally depend on the numerical details (spatial reconstruction, time
stepping, the CFL number, and the adopted discretization). All methods converge to a unique result if the energy partition between
the thermal and non-thermal fluids at the shock is prescribed using a subgrid prescription. This highlights the non-uniqueness
problem of the two-fluid equations at shocks. From our numerical investigations, we report a robust method for which the
solutions are insensitive to the numerical details even in absence of a subgrid prescription, although we recommend a subgrid
closure at shocks using results from kinetic theory. The subgrid closure is crucial for a reliable post-shock solution and also its
impact on large-scale flows because the shock microphysics that determines CR acceleration is not accurately captured in a fluid
approximation. Critical test problems, limitations of fluid modelling, and future directions are discussed.
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1 IN T RO D U C T I O N

Macroscopic extension of the cosmic ray (CR) transport equation in
the form of the two-fluid CR-HD/MHD equations (Skilling 1971;
Drury & Voelk 1981) is very convenient to study the effects of
non-thermal processes in astrophysical systems. A two-fluid model
provides important insights about the dynamical effects of CRs on
large scales (such as blast waves, wind bubbles, galaxies; see e.g.
Chevalier 1983; Salem & Bryan 2014; Gupta et al. 2018a), which
are expensive to capture from the CR kinetic theory (see Drury 1983
for a review). In many astrophysical systems, the CR energy density
is comparable to the thermal/magnetic energy density, and the CR
pressure cannot be ignored.

A fluid description of CRs is justified since the Larmor radius
of energy density-dominating CRs (∼ 10−5 E10GeV/BμG pc) is much
smaller than the scales of interest and they are confined along the
direction of magnetic fields by self-generated magnetic fluctuations
at this scale (Kulsrud & Pearce 1969). Therefore, the two-fluid model
is applicable in a variety of astrophysical systems, ranging from a
star-forming cloud to clusters of galaxies.

Many astrophysical phenomena on large scales are studied with
the two-fluid model of CRs. CRs represent an attractive agent for
feedback heating as their energy loss time-scale is much longer than
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the cooling time of the thermal gas. CRs retain energy in the cloud
for a long time and provide extra pressure leading to a moderate
star formation rate. For a similar reason, CRs help to launch galactic
winds (e.g. Salem & Bryan 2014; Wiener, Oh & Zweibel 2017).
Investigations with two-fluid models also found that CRs can reduce
the temperature of the circumgalactic medium and account for the
observed absorption lines of various elements (e.g. Butsky & Quinn
2018). CR heating can be an efficient heating mechanism in galaxy
clusters (e.g. Guo & Oh 2008) and can affect buoyancy instabilities in
the intracluster medium (e.g. Sharma et al. 2009). These important
conclusions are based on numerical simulations of the two-fluid
model and therefore it is necessary to closely examine the properties
of these equations and their numerical implementation.

The two-fluid CR-HD model contains three conservation laws (for
mass, momentum, and total energy) plus one additional equation,
which governs the evolution of CR energy density. Since the CR
particle density is usually negligible compared to the thermal particle
density, the evolution of the CR particle density is not considered.
However, a CR particle carries significant kinetic energy, which
makes the energy density contribution of CRs (integrated over entire
spectrum) comparable to that of the thermal plasma.

Similar two-fluid equations are also used in other contexts. For
example, the two-fluid magnetohydrodynamic (MHD) equations
(with pressures along and perpendicular to field lines and equations
governing their evolution, and the generalization to include electrons
and ions separately) are used to study pressure anisotropy in astro-
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physical and fusion plasmas (e.g. Sharma et al. 2006; Jardin, Breslau
& Ferraro 2007). Both CR-HD/MHD and MHD with anisotropic
pressure have two internal energy equations but they do not have
a separate density/velocity equation for the second fluid. In the CR
two-fluid model, the equation that determines the evolution of CR
energy density cannot be cast in a conservative form owing to the
presence of a source (or coupling) term containing spatial derivatives
(either pcr∇ · v or v · ∇pcr). While this term does not represent an
issue for smooth flows, it poses a serious challenge in determining
the weak form of the equations. Therefore, the shock jump conditions
are non-unique and the solutions across a shock depend on numerical
details. Note that there are other two-fluid systems that do not have
the spatial derivatives in the source terms and for these the solution
across a shock is unique (e.g. Balsara et al. 2016).

The numerical discretization of the non-conservative terms in the
two-fluid CR-HD/MHD system can be done in different ways. How-
ever, these implementations may not produce an identical solution.
This crucial point was highlighted by Kudoh & Hanawa (2016).
They suggested that if the CR energy density is estimated from the
advection of a passive scalar, namely χ = p1/γcr

cr /ρ (where γ cr is
adiabatic index for CR fluid, pcr is CR pressure, ρ is gas density),
then the results are consistent with the underlying mathematical
formalism. This is equivalent to positing that the CR entropy pcr/ρ

γcr

is conserved across a shock. One advantage of this method is that the
two-fluid equations apparently become conservative, which makes
numerical application of Godunov-type shock-capturing schemes
straightforward. However, the assumption of a constant CR entropy
across a shock is inconsistent with the idea that most CRs are
accelerated at shocks. This motivates us to explore more physically
motivated strategies.

In this paper, we discuss several numerical discretizations of
the two-fluid CR-HD equations by implementing the equations in
the PLUTO code (Mignone et al. 2007). We find that for most
of the common methods, the numerical solutions depend on the
choice of spatial reconstruction, time stepping, and even the CFL
number. We suggest a method which gives robust numerical results
(i.e. solutions are less sensitive to these choices compared to other
methods). A physically reliable two-fluid implementation of CRs
must be calibrated with the results from kinetic (e.g. Particle-In-
Cell) simulations. Our results are crucial for simulating the impact
of CRs on large scales (e.g. galaxy), where the CR acceleration
microphysics is difficult to resolve.

The non-uniqueness problem that we discuss in this paper applies
to both the two-fluid hydro and MHD equations but we exclusively
consider the former to focus on this problem and its possible solution
in a simpler setting. Generalization to MHD is straightforward.

We organize this paper as follows. After presenting the basic
equations in Section 2, we discuss the closure problems in Section 3.
Different methods for implementing two-fluid equations are given
in Section 4. Section 5 presents results of various test problems.
Section 6 discusses broader implications of our work. Our main
results are summarized in Section 7.

2 G OV E R N I N G E QUAT I O N S

The two-fluid CR HD/MHD equations are obtained from the Fokker–
Planck CR transport equation (Skilling 1975), which is given by

∂f

∂t
+ (v + vst) · ∇f = P

3

∂f

∂P ∇ · (v + vst)

+∇ · [Dsb̂
(
b̂ · ∇f

)] + 1

P2

∂

∂P

(
P2DP

∂f

∂P

)
. (1)

Here f (x,P, t) is the CR distribution function assumed to be
isotropic in momentum space, P is the CR momentum, Ds and DP
are the diffusion coefficients in spatial and momentum space, v is the
velocity of thermal plasma. The term vst = (vst

x , vst
y , vst

z )ᵀ represents
the bulk velocity of the scattering centres of CR particles w.r.t. the
background plasma, known as the streaming velocity, which is along
the direction of the magnetic field (b̂) but down the gradient of CR
pressure (for a brief discussion see appendix A in Pfrommer et al.
2017). The first term on the RHS represents the CR convection term,
the second term is spatial diffusion while the third term represents
CR diffusion in the momentum space (Skilling 1975).

Drury & Voelk (1981) suggested that equation (1) can be simplified
if one rewrites it in terms of macroscopic variables. This is done by
taking the energy moment of equation (1), which yields

∂ ecr

∂t
+ (v + vst) · ∇ecr = (−ecr − pcr) ∇ · (v + vst)

+∇ · [κcrb̂
(
b̂ · ∇ecr

)] + �m. (2)

Here κcr is the CR diffusion coefficient integrated over the CR
distribution function (see equation 7 in Drury & Voelk 1981). CR
streaming and anisotropic diffusion along field lines cannot be
captured in hydrodynamics, therefore, we take |v|/|vst| � 1 and
κcrb̂(b̂ · ∇ecr) ≈ κcr∇ecr. It is also assumed that CR diffusion in
momentum space is negligible, so that �m → 0. This leads to the
two-fluid CR-HD equations, written as

∂U
∂t

+ ∇ · F = S, (3)

whereU = {ρ, ρ v, et, ecr}ᵀ is the conservative variable array, while
the flux tensor and the source term are given, respectively, by

F =

⎡
⎢⎢⎢⎢⎣

ρv

ρ vv + pt I

(et + pt) v − κcr∇ecr

ecr v − κcr∇ecr

⎤
⎥⎥⎥⎥⎦

ᵀ

, S =

⎡
⎢⎢⎢⎢⎣

0

0

0

−pcr∇ · v

⎤
⎥⎥⎥⎥⎦, (4)

where

et = eg + ecr =
(

1

2
ρ|v|2 + pg

γg − 1

)
+ pcr

γcr − 1
, (5)

and

pt = pg + pcr (6)

are, respectively, the total energy density (the sum of kinetic energy
density, gas thermal energy density, and CR energy density ecr) and
the total pressure (the sum of gas pressure pg and CR pressure pcr).
The adiabatic constants of the thermal and CR fluids are defined as
γ g = 1 + pg/eth (where thermal energy density eth = eg − ρ |v|2/2)
and γ cr = 1 + pcr/ecr, and their values are taken to be 5/3 and
4/3, respectively. Note that the last element of U (ecr) does not
obey a conservative equation. CRs can lose/gain energy due to
the term −pcr∇ · v representing coupling between thermal and CR
fluids. This term, involving a derivative, gives a non-zero and non-
unique contribution across a shock which depends on numerical
implementation. Later we explore various implementations of this
term and the associated numerical challenges.

2.1 Characteristic structure

In order to understand the characteristic structure of the two-fluid
equations, we neglect the CR diffusion term (i.e. the term κcr∇ecr
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Figure 1. Wave diagram of two-fluid (gas + CR) hydro system. Three
straight lines originating from (0,0) represent eigenvectors, where the
eigenvalues are labelled by λp. For details, see the texts associated with
equations (9) and (10).

of equation 4)1 and focus only on the hyperbolic structure of the
equations. Considering 1D Cartesian coordinate with three velocity
components, the primitive form of equation (3) then becomes

∂V
∂t

+ Ap(V)
∂V
∂x

= 0, (7)

where

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

vx

vy

vz

pg

pcr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ap =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vx ρ 0 0 0 0

0 vx 0 0 1
ρ

1
ρ

0 0 vx 0 0 0

0 0 0 vx 0 0

0 ρa2
g 0 0 vx 0

0 ρa2
cr 0 0 0 vx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

Here ag = (γgpg/ρ)
1
2 and acr = (γcrpcr/ρ)

1
2 . Defining the effective

sound speed as a = (a2
g + a2

cr)
1
2 , the eigenvalues of the characteristic

matrix Ap are found to be (also see Fig. 1)

λp = vx − a, vx, vx, vx, vx, vx + a. (9)

Right eigenvectors of the characteristic matrix Ap can be written as,

Rp = {rmn
p } =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 1

− a
ρ

0 0 0 0 a
ρ

0 0 1 0 0 0

0 0 0 1 0 0

a2
g 0 0 0 −1 a2

g

a2
cr 0 0 0 1 a2

cr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

In the absence of CR fluid, the 5th column and the 6th row of
the matrix Rp are absent, i.e. the right-going eigenvalue is λ = vx +
ag and the corresponding eigenvector r5 = {1, ag/ρ, 0, 0, a2

g}ᵀ. This
implies that the ratios between the fluctuations in density, velocity,
and pressure scale as 1 : ag/ρ : 0 : 0 : a2

g . Therefore, any change in
the x-velocity in a right going sound wave causes a simultaneous
change in the density and the pressure, which increase/decrease
without any ambiguity. However, the presence of CRs can introduce
ambiguity in the fluctuations, which is illustrated as follows.

1Diffusion term is usually separately implemented using the standard
parabolic schemes (e.g. Vaidya et al. 2017).

As shown in equation (10), for the right-going sound waves
in the two-fluid CR equations the ratios between the fluctuations
in density, velocity, thermal pressure, and CR pressure scale as
1 : a/ρ : 0 : 0 : a2

g : a2
cr, i.e. the fluctuation of the x-velocity can be

satisfied for multiple values of ag and acr (because a = (a2
g + a2

cr)
1
2 ).

This ambiguity affects the fluctuations of thermal and CR pressures.
Moreover, the 5th column of the right eigenvector shows that at the
contact discontinuity (represented by r2 to r5), the ratio between the
fluctuations of the thermal pressure and CR pressure is −1. This
means that, although the total pressure (pt, see equation 6) on both
sides of the contact discontinuity is constant, the thermal and CR
pressures may not remain the same across a contact discontinuity.
The fluctuation in thermal pressure across the contact discontinuity
is compensated by a gain/loss of the CR pressure or vice versa. This
subtlety in the characteristic structure of the two fluid CR equations
leads to numerical issues addressed in the next sections.

3 N O N - U N I QU E N E S S PRO B L E M AT SH O C K S

Related to the ambiguities discussed in the previous section, there
are serious problems regarding the uniqueness of the solutions of
the two-fluid equations at shocks. In two-fluid CR-HD, CR diffusion
coefficient (κcr) and CR adiabatic index (γ cr) need to be specified.
These are generally known as the closure parameters, as they must be
prescribed to close the system of equations (equation 3). Although
these choices are crucial to quantify the overall impact of CRs, their
role is significantly important at shocks. For example, if one considers
the time-evolution of CR distribution function (see e.g. Duffy, Drury
& Voelk 1994), then a self-consistent treatment for γ cr and κcr in the
two-fluid model is necessary. However, the fluid equations are not
sufficient to estimate these parameters (e.g. Achterberg, Blandford
& Periwal 1984). Here, we show that an additional equation of state
is required to obtain a unique post-shock solution, even when a
time-independent γ cr and κcr are used (as is common in the two-fluid
treatment). This EoS can be regarded as a closure across shocks when
the length scale of interest is much larger than the shock transition
scale. Since the galactic scales are orders of magnitude larger than
the CR Larmor radius, below we neglect CR diffusion and focus
on the far upstream and downstream of a shock. In Section 6, we
further discuss the role of cosmic ray diffusion in determining the
small-scale structure of a two-fluid shock.

In the shock rest frame, the mass, momentum, and energy
conservation equations for the two-fluid CR-HD model obey the
Rankine-Hugoniot jump conditions

[ρv] = 0, (11)

[
ρv2 + pg + pcr

] = 0, (12)[(
1

2
ρv2 + γg

γg − 1
pg + γcr

γcr − 1
pcr

)
v

]
= 0, (13)

respectively, where [A] = A1 − A2 and the subscripts 1 and 2
represent the far-upstream and downstream fluid variables. These
equations show that there are three conservation laws (for mass,
momentum, and total energy) but four unknowns (ρ, v, pg, pcr). This
constitutes a closure problem across shocks.

In order to highlight this problem, we introduce the compression
ratio R = ρ2/ρ1 = v1/v2, and the upstream gas and CR Mach
numbers, are respectively, defined as

Mg,1 = v1

(γgpg,1/ρ1)
1
2

, Mcr,1 = v1

(γcrpcr,1/ρ1)
1
2

, (14)

MNRAS 502, 2733–2749 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/2/2733/6105336 by U
niversita degli Studi di Torino user on 08 July 2021



2736 S. Gupta, P. Sharma and A. Mignone

while the effective upstream Mach number of the composite fluid
is M1 = (M−2

g,1 + M−2
cr,1)−

1
2 . We then normalize the gas and CR

pressures relative to the upstream gas pressure and denote them by
Pg,i = pg,i/pg,1 and Pcr,i = pcr,i/pg,1, respectively, where i ∈ 1, 2.
The shock jump conditions can then be rewritten as

M2
1 + 1 + Pcr,1

γg + γcrPcr,1
= M2

1

R + Pg,2 + Pcr,2

γg + γcrPcr,1
(15)

R
{M2

1

2
+ 1

γg + γcrPcr,1

(
γg

γg − 1
+ γcr

γcr − 1
Pcr,1

)}

=
{M2

1

2R + 1

γg + γcrPcr,1

(
γg

γg − 1
Pg,2 + γcr

γcr − 1
Pcr,2

)}
, (16)

where the normalized upstream CR pressure, Pcr,1 is

Pcr,1 = pcr,1

pg,1
=

(
γg

γcr

)(Mg,1

Mcr,1

)2

. (17)

Equations (15) and (16) must be solved for the downstream state
(Pg,2, Pcr,2, and R), given the upstream conditions. This is an under-
determined system since one has more unknowns than equations.

To get a unique solution, we need an additional equation and this is
the closure problem. We can fix the downstream CR pressure (Pcr,2)
in several ways. Here we briefly discuss three possible equation-of-
states (EoSs; see Appendix A for details).

(i) wcr–EoS: In this case, the downstream CR pressure is set to a
fraction wcr of the downstream total pressure, i.e.

wcr = pcr,2

pg,2 + pcr,2
= Pcr,2

(Pg,2 + Pcr,2)
, (18)

where 0 ≤ wcr ≤ 1. The post-shock solution depends on the
prescribed value of wcr (Appendix A1).

(ii) εcr–EoS: For this EoS, the downstream CR enthalpy flux is set
as a fraction εcr of the upstream total energy flux, i.e.

εcr =
γcr

γcr−1 pcr,2v2(
1
2 ρ1v

2
1 + γg

γg−1 pg,1 + γcr
γcr−1 pcr,1

)
v1

, (19)

where 0 ≤ εcr ≤ 1 ensures energy conservation. In Appendix A2.1, we
show that wcr–EOS and εcr–EOS are interchangeable and therefore
the shock solutions are expected to be similar in these two cases.

(iii) Adiabatic–EoS: In this case, the CR entropy across a shock
is assumed to be constant, i.e. the downstream CR pressure can be
set to

pcr,2 = pcr,1

(
ρ2

ρ1

)γcr

→ Pcr,2 = Pcr,1Rγcr . (20)

A method for obtaining post-shock solution for this EoS is discussed
in Appendix A3. This EoS is sometimes used to check consistency
between analytic solution and test problem in numerical simulation
(see e.g. Pfrommer et al. 2006; Kudoh & Hanawa 2016). However,
as we show here, this is only one of the possible EoSs.

Despite the closure problem discussed here, the CR two-fluid
equations are mostly used without an EoS imposed across shocks.
The impact of the closure problem in numerical implementation, as
well as in the resulting solutions, are presented in the next sections.

4 N U M E R I C A L F R A M E WO R K

In this section, we explore a variety of different discretization
strategies for the numerical solution of the two-fluid equations. All
methods differ essentially in the representation of the coupling term

(the non-conservative term in equation 4). Let Lh() and Ls() be the
discrete operators corresponding to the evolution of the homogeneous
part of the equations and to the source term alone, respectively. The
update step can then be achieved via operator splitting,

U∗ = Lh(Un)

Un+1 = Ls(U∗), (21)

or in a fully unsplit fashion:

Un+1 = (Lh + Ls)(Un). (22)

We label these two approaches as ‘OpSplit’ (equation 21) and
‘Unsplit’ (equation 22), respectively. Notice that the operator split
method presented here is only first-order accurate in time, but it can
be made formally second order accurate using Strang (or alternate)
splitting (Strang 1968).

The rationale for choosing Lh and Ls depends on the implemen-
tation of fluid energy densities and for this reason we classify them
into three different options: Option 1 – ‘Eg+Ecr’, 2 – ‘Et+Ecr’, and
3 – ‘Et+Scr’. The differences between various methods are briefly
illustrated in Table 1 and the nomenclature of different indices is
shown in Fig. 2. Note that since the implementation of mass and
momentum equations remain the same in all of the methods, we
focus solely on the energy equations.

4.1 Option 1: Eg+Ecr

Here the energies of thermal and CR fluids, coupled by the source
term, are evolved separately; i.e. we solve the following equations

∂eg

∂t
= −∇ · [(eg + pt)v

] + pcr∇ · v, (23)

∂ecr

∂t
= −∇ · (ecrv) − pcr∇ · v. (24)

By suitably rewriting the RHS of equations (23) and (24), the
coupling term may be implemented either as pcr∇ · v (pdv method)
or v · ∇pcr (vdp method). Although the former choice (pdv method)
is found to be numerically robust and more common, we discuss both
implementations separately in the following sections. Note that total
energy conservation is ensured by adopting the same discretization
for the source term in equations (23) and (24).

4.1.1 p dv method

In this method, the CR energy flux is defined, following equation (24)
by Fcr = ecrv. Since the source term is pcr∇ · v, we refer to this method
as the pdv method.

A1. OpSplit-pdv method: In many studies, the pcr∇ · v term has
been implemented using an operator splitting method (e.g. Pfrommer
et al. 2006; Sharma et al. 2009; Salem & Bryan 2014; Gupta et al.
2018a). Following equation (21), ecr is first evolved along with the
other hydrodynamic variables to yield e∗

cr. This value is then used
to calculate pcr∇ · v at the next step. For a 1st-order time-stepping
scheme this amounts to

e∗
cr,i = en

cr,i − �t

(
f n

i+ 1
2

− f n

i− 1
2

�xi

)
, (25)

en+1
cr,i = e∗

cr,i − �t p∗
cr,i

(
v∗

i+ 1
2

− v∗
i− 1

2

�xi

)
, (26)

where, in a Godunov-type finite volume scheme, f n

i+ 1
2

represents an

upwind flux computed with a Riemann solver. Here we employ the
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Table 1. Various methods for implementing the non-conservative term of CR-HD equations†.

Assumptions used Coupling terms Nomenclature and references e.g.
in numerical implementation

Two-fluid CR-HD A. p dv A1. Eg+Ecr (OpSplit-pdv)
Pfrommer et al. (2006); Sharma et al. (2009);

+pcr∇ · v Salem & Bryan (2014); Butsky & Quinn
(2018)

Option 1: Eg + Ecr −pcr∇ · v A2. Eg+Ecr (Unsplit-pdv)
Gas energy + CR energy eqs This work

B. v dp B1. Eg+Ecr (OpSplit-vdp)
−v · ∇pcr

+v · ∇pcr B2. Eg+Ecr (Unsplit-vdp)

A. p dv A1. Et+Ecr (OpSplit-pdv)
0 Yang et al. (2012);

Option 2: Et + Ecr −pcr∇ · v A2. Et+Ecr (Unsplit-pdv)
Total energy + CR energy eqs This work

B. v dp B1. Et+Ecr (OpSplit-vdp)
0

+v · ∇pcr B2. Et+Ecr (Unsplit-vdp)

Option 3: Et + Scr Et+Scr
Total energy + CR entropy eqs – Kudoh & Hanawa (2016)

Note. † Three options differ w.r.t. to the implementation of gas/total energy and CR energy equations. Option 1: Eg + Ecr, the energy density
of CRs [ecr = pcr/(γ cr − 1)] and gas [eg = ρ |v|2/2 + pg/(γg − 1)] are separately evolved, where the coupling term is taken either as pcr∇ · v
(p dv method) or v · ∇pcr (v dp method). Option 2: Et + Ecr, the total energy density, i.e. (eg + ecr) is used instead of eg in order to update the
energy density of the system and the coupling term can either be p dv or v dp, similar to Option 1. However, in Option 2, the coupling term does
not appear in the total energy equation. Option 3: Et + Scr, CR energy density is updated from the advection of a passive scalar and coupling
terms are absent. In options 1 and 2, depending on the implementation of the coupling terms, they can be divided into two sub methods: (i)
operator-splitting (OpSplit) and (ii) Unsplit. Naming of different methods is given in the rightmost column of this table.

Figure 2. Schematic representation of the grid. The black circles denote
zone-centres (labelled with integer notation, i), while dashed vertical lines
represent cell interfaces (labelled with half-integer notation, i + 1

2 ). V− and
V+ represent, respectively, the reconstructed value of a fluid quantity V
to the left (−) or right (+) with respect to the zone centre. For 1st-order
reconstruction, V −

i = V +
i = Vi .

HLL Riemann solver (see chapter 10 in Toro 2009) to evaluate the
fluxes of the conservative terms, while the interface velocity (see
Fig. 1) used for the non-conservative term in equation (26) is defined
as

v∗
i+ 1

2
= 1

2

(
v∗

i + v∗
i+1

)
. (27)

In other words, the quantity ∇ · v is estimated using a cell centred
method.2 The gas energy equation (23) is updated using a similar
discretization as equations (25) and (26). Equation (25) is readily

2Note that at the time of updating equations (23) and (24) without pcr∇ ·
v, the Riemann solver does not have any information about the term pcr∇
· v. We find that such splitting modifies the effective sound speed to a =

generalized to second-order temporal accuracy by using a Runge–
Kutta method already available in the code while direct extension
to curvilinear geometries is thoroughly described in the work by
Mignone (2014).

A2. Unsplit-pdv method: In the fully unsplit scheme (equa-
tion 22), the pcr∇ · v term is directly added to the RHS of
equations (23) and (24). This yields, for the CR energy equation,
the following update:

en+1
cr,i = en

cr,i − �t

[(
f n

i+ 1
2

− f n

i− 1
2

�xi

)
+ pn

cr,i

(
vn

i+ 1
2

− vn

i− 1
2

�xi

)]
.

(28)

Although several options are possible for choosing pn
cr,i and vn

i+ 1
2

(see e.g. Appendix C), one can take advantage of the Riemann solver
information to estimate pn

cr,i and vn

i+ 1
2
. We find that a robust choice

for the cell interface velocity is

vn

i+ 1
2

=
Un

[mx ],i+ 1
2

Un

[ρ],i+ 1
2

, (29)

where U[mx ] and U[ρ] are the momentum- and density-state variables
obtained from the HLL Riemann solver (Toro 2009).

The CR pressure in equation (28) can also be chosen in various
ways. We find that a robust selection is

pn
cr,i = γcr − 1

2

(
en

cr,i− 1
2

+ en

cr,i+ 1
2

)
, (30)

[(a2
g + (γg/γcr)a2

cr]
1
2 , instead of a = [a2

g + a2
cr]

1
2 (see Appendix B for the

derivation). The effective sound speed is required for computing the signal
speed/time-step of the Riemann solver.
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where en

cr,i+ 1
2

is the state-variable obtained from the HLL Riemann

solver, without including the pcr∇ · v term. We label this method as
‘Eg+Ecr (Unsplit-pdv)’.

One of the advantages of choosing the HLL solver is that it does
not distinguish between the left and right states of the contact wave.
This helps to avoid a selection ambiguity in the 5th eigenvector as
discussed in Section 2. Thus the choice of HLL Riemann solver is
motivated by simplicity and consistency in treating the fluxes and
the source terms.

4.1.2 v dp method

Alternatively, the coupling term can be implemented in v · ∇pcr form.
The evolution of CR energy density is then obtained by rewriting the
CR energy equation (equation 24) as

∂ecr

∂t
= −∇ · [(ecr + pcr)v] + v · ∇pcr, (31)

which, at the discrete level, becomes similar to equations (25) and
(28) by exchanging v and pcr.

Although, equations (24) and (31) are mathematically equivalent,
the numerical discretizations are not the same. Since the coupling
term now is v · ∇pcr, we call this method as vdp method. As before,
this coupling term can be included via an operator splitting method
(OpSplit-vdp) or an unsplit method (Unsplit-vdp).

One may now choose a cell-centred discretization for vi and the
arithmetic average between the left and right interface values for
pcr,i+ 1

2
. However, as it will be shown in Section 5, this choice

leads to results that depend on the type and order of the spatial
reconstruction algorithm. This effect is considerably less pronounced
with the previous (pdv) method.

4.2 Option 2: Et+Ecr

In this case, we replace equation (23) with the total energy equation

∂et

∂t
= −∇ · [(et + pt)v] , (32)

where et and pt are given by equations (5) and (6).
The total energy density now directly obeys a conservative equa-

tion. However, the CR energy equation still contains the coupling
term, which can be implemented using the pdv or vdp method as
described earlier. After extensive numerical testing, we have found
that the numerical results are consistent for various reconstruction
schemes only with the pdv method in a fully unsplit fashion, and
v and pcr are chosen as given in equations (29) and (30). We thus
label this method as ‘Et+Ecr (Unsplit-pdv)’. It is worth mentioning
that both ‘Et+Ecr (Unsplit-pdv)’ and ‘Eg+Ecr (Unsplit-pdv)’ give
an identical result when equations (29) and (30) are used.

4.3 Option 3: Et+Scr

Kudoh & Hanawa (2016) suggested that the difficulties related to
the presence of the coupling term may be avoided if the evolution of
CR energy density is obtained from the advection of a passive scalar.
They redefined the CR pressure as pcr ≡ ργcr

cr and used a passive
scalar: χ = ρcr/ρ ≡ p1/γcr

cr /ρ to update the CR energy equation.
Under this formalism, equation (24) or (31) reads

∂

∂t
(χρ) + ∇ · (χρ v) = 0. (33)

The remaining equations maintain the same form as for Option 2.
The advantage of this method is that the two-fluid equations become

manifestly conservative, which makes the application of Godunov-
type formalism straightforward.

Since equation (33) is a tracer equation, the CR entropy Scr ≡
pcr/ρ

γcr does not experience a jump across a shock front.3 However,
we argue that CRs, like the thermal plasma, should not be adiabatic
across a shock. Indeed, CRs are accelerated with non-negligible
efficiencies across strong shocks, but this possibility is not allowed by
the strict isentropic evolution imposed by the above scalar equation.
Isentropic evolution of CRs across shocks is discussed as one of the
equation-of-states in Section 3 (equation 20). The results from this
method are labelled by ‘Et+Scr’.

4.4 Shock detection

In previous sections, we have discussed various possible numerical
schemes for implementing CR energy equation. Since the coupling
term in this equation involves a spatial derivative, both the numerical
and physical two-fluid shock jump condition can be non-unique.
While a shock is generally defined as a surface where a sharp
transition between upstream and downstream occurs, in numerical
simulations, a shock is often broadened over several grid zones due
to non-negligible numerical viscosity. To impose an EoS across a
shock, it is important to discuss how one can detect shocked zones.
For shock detection, we use the following three conditions:

(i) Compressibility: ∇ · v < 0,
(ii) Pressure jump: (∇pt · �x)/pt, min ≥ δthreshold, and
(iii) Bypassing spurious waves at contact discontinuity which may

fulfil conditions (i) and (ii): ∇T · ∇ρ > 0,

where T is the fluid temperature (see e.g. section 3.1.1 in Pfrommer
et al. 2017; also see appendix B in Mignone et al. 2012). We find that
the choice δthreshold = 0.5 − 1 works quite well for the test problems
discussed in this work (see e.g. the top panel of Fig. 8).

5 TEST PRO BLEMS AND RESULTS

In this section, we compare the previously presented numerical
methods for the solution of selected one- and multidimensional
benchmarks. We briefly outline the used methods in the following:

(i) Eg+Ecr (OpSplit–pdv) (equations 25–27)
(ii) Et+Ecr (Unsplit–vdp) (equation 31),
(iii) Et+Ecr (Unsplit–pdv) (equations 28–30, and 32), and
(iv) Et+Scr (equation 33).

As we shall show, the ‘Et+Ecr (Unsplit–pdv)’ method appears to
be less sensitive to numerical details (spatial reconstruction, time-
stepping, and CFL number). The initial conditions for the selected
test problems are listed in Table 2. Computations are performed
using either a 1st-order scheme (Euler time stepping with flat
reconstruction), a 2nd-order scheme (RK2 time stepping with linear
reconstruction) or a 3rd-order scheme (RK3 time stepping with
WENO reconstruction). The fiducial CFL number is set to Ca =
0.6 unless otherwise stated.

5.1 Pressure balance mode

This is an important test problem designed to check the evolution
of a pressure balance mode. At t = 0, the left and right states are

3Entropy conservation also holds for the Euler equation in smooth regions
but the conservative/integral form of the equations must be evolved at shocks
for a physical solution.
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Table 2. Test problems.

Test Initial conditions tstop Nx Figure
{ρ, vx, pg, pcr}

1. Pressure balance
L : {1, 1, 0.1, 0.9}
R : {1, 1, 0.9, 0.1} 1.0 200 3

2. Shock tube A
L : {1, 0, 2, 1}
R : {0.2, 0, 0.02, 0.1} 0.1 1000 4, 5, 6

3. Shock tube B
L : {1, 0, 6.7 × 104, 1.3 × 105}
R : {0.2, 0, 2.4 × 102, 2.4 × 102} 10−4 1000 7

4. Blast wave see Section 5.4 Section 5.4 Section 5.4 8

Note. For all problems (except for ‘Pressure balance’ test problem where boundaries are periodic),
boundary conditions are set to outflow. Problems 1–3 are performed in 1D Cartesian geometry while for
test 4 we employ 1D spherical and 3D Cartesian geometries.
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Figure 3. Pressure balance test problem. The black dashed lines show the initial condition while circles represent various profiles after one box crossing at t =
1. We employ linear reconstruction, RK2 time stepping, and a CFL number of 0.6 for all schemes. Equilibrium is maintained for t > 0 only with ‘OpSplit–pdv’
(blue) and ‘Unsplit–pdv’ (green), while ‘Unsplit–vdp’ (red) and Et+Scr (magenta) generates spurious waves. The vdp method is not preferred over pdv because
although velocity is continuous across x = 0, CR pressure is not and therefore taking its derivative produces spurious disturbances at the contact discontinuity.

defined as (ρ, vx,pg, pcr)L = (1, 1, 0.1, 0.9) and (ρ, vx,, pg, pcr)R

= (1, 1, 0.9, 0.1). Since, the total pressure is the same across the
interface (pg + pcr = 1), the profiles should not change in time. The
pressure balance test is applicable to any multifluid system because
of its trivial analytical solution.

To obtain numerical solutions, we use the 2nd-order scheme
and impose periodic boundary conditions. The snapshots of fluid
quantities at t = 1 (i.e. after one advection time across the domain) are
shown in Fig. 3. ‘OpSplit–pdv’ (blue) and Unsplit–pdv (green) curves
do not show spurious oscillations. However, Unsplit–vdp (red)4 and

4For the ‘Unsplit–vdp’ method, one can find a suitable combination of pcr

and v, which does not show these spurious oscillations. However, we find that
the same choice does not provide a good solution for other test problems.

Et+Scr (magenta) schemes fail to maintain the pressure balance
mode (for both HLL and HLLC Riemann solvers).

Kudoh & Hanawa (2016) showed that the amplitude of the spurious
waves in Fig. 3 (for the Et+Scr method) can be reduced by increasing
the spatial resolution or including additional numerical diffusion.
However, both options are computationally expensive.

5.2 Shock tube A

The initial condition for this test consists of two constant states
separated by a discontinuity placed at x = 0. Left and right states are
defined as (ρ, vx,pg, pcr)L = (1, 0, 2, 1) and (ρ, vx,, pg, pcr)R = (0.2, 0,
0.02, 0.1), respectively. In all cases we employ 1000 equally spaced
zones. The set-up for this problem is identical to Kudoh & Hanawa
(2016).
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Figure 4. Snapshots of fluid variables for the two-fluid shock tube A (see problem 2 in Table 2). The black dashed curves represent the profiles at t = 0, and
while different colours correspond to the solution obtained at t = 0.1 with the methods listed in the legend. Computations have been obtained using the 1st-order
scheme. The insets display the zoomed-in view of the post-shock region showing that different methods do not give a unique solution.

Fig. 4 shows fluid variable profiles at t = 0 (black dashed curves)
and t = 0.1 (circles) where different colours correspond to the
four methods discussed in Section 4 (also see Section 5.1). The
solutions, obtained using 1st-order reconstruction, are not identical.
The blue and green curves – representing the ‘Eg+Ecr (OpSplit–
pdv)’ and ‘Et+Ecr (Unsplit–pdv)’ methods, respectively – look
similar although, as we shall see in Fig. 5, the solution obtained with
the ‘OpSplit’ method depends on the details of spatial reconstruction
and time-stepping.

We now turn our attention to the top rightmost panel of Fig. 4
showing the CR entropy profile (pcr/ρ4/3). In the two-fluid CR-
HD model, it is sometimes assumed that CRs are adiabatically
compressed in the post-shock region (Pfrommer et al. 2006). This
assumption also helps to obtain an analytical solution of the shock
tube problem. In numerical simulations this assumption is not
automatically fulfilled. In fact, we find that CRs are adiabatically
compressed only for the ‘Et+Scr’ method which is constructed to do
so in the first place. In general, the post-shock solution depends on
the method one uses.

As noted before, the computed results (for all methods except
‘unsplit–pdv’ and ‘Et+Scr’) depend on numerical details such as
reconstruction and the CFL number. While the ‘Et+Scr’ method is
expected to yield robust results at shocks, a constant CR entropy
across shocks is not physically justified as discussed earlier. More-
over, this method is unable to maintain pressure balance across a
contact discontinuity as shown in Section 5.1.

Fig. 5 shows the zoomed-in CR entropy profile from the shock tube
problem using four different methods. In each panel, black, green,
and blue curves correspond to solutions obtained using 1st, 2nd, and
3rd-order schemes. The top left-hand panels indicate that the results

are not unique: the profile obtained using the ‘Et+Ecr’ (Unsplit–
vdp, first panel) and ‘Eg+Ecr’ (OpSplit–pdv, second panel) methods
depend on the choice of spatial reconstruction. On the contrary, the
‘Et+Scr’ and ‘Et+Ecr’ (Unsplit–pdv) schemes (shown in the 3rd and
4th columns) are in better agreement.5

We now consider the bottom panels of Fig. 5 which, on the other
hand, exhibit very similar profiles and have been obtained by fixing
the CR pressure behind the shock, as explained in the following. First,
a shock detection algorithm (Section 4.4) is employed to identify
shocked zones. Then we redistribute the shocked zone thermal and
CR energies using the parameter

εshock = ecr

ecr + eth
= wcr(γg − 1)

[γcr − 1 + wcr(γg − γcr)]
, (34)

where

wcr = pcr

(pg + pcr)
. (35)

The redistribution of energy among CRs and the thermal fluid does
not change the total energy (in particular ecr + eth) of the cell. In
the bottom panels of Fig. 5, we have used wcr = 0.5 to obtain the
solutions. While using a parameter wcr to fix the post-shock CR
pressure, we notice that the post-shock conditions mainly depend on
the total pressure of the shocked-zone nearest to the downstream.
Thus, we are able to obtain identical numerical solutions irrespective
of the method by imposing a sub-grid closure for CRs at shocks
(see e.g. Caprioli & Spitkovsky 2014; Mignone et al. 2018). In

5We have also tested the HLLI solver of Dumbser & Balsara (2016) on this
problem and find non-uniqueness of the solution.

MNRAS 502, 2733–2749 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/2/2733/6105336 by U
niversita degli Studi di Torino user on 08 July 2021



Implementation of CR two-fluid equations 2741

 (a) Without fixing pcr behind the shock

 (b) With fixing pcr behind the shock
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Figure 5. The zoomed-in view of CR entropy (pcr/ρ4/3) from shock tube A. Four vertically aligned panels stand for the different methods. For each of these
methods, we show the results using the best possible combination of pcr and v from our experiments, except for the 3rd column where the coupling term is not
present. The three colours correspond to computations obtained with the 1st − (black), 2nd − (green), and 3rd − (blue) order numerical schemes, respectively.
In the top panel, the CR pressure is evolved using the equation. In the bottom panels, the post-shock CR pressure has been fixed using equation (34) with wcr =
0.5. This result demonstrates that if the energy exchange between thermal and CR fluid at the shock is fixed, then all methods converge to the same solution.

Section 3, we have discussed some other possible EoSs which can
be used. Although a sub-grid closure is recommended, one would
still prefer an implementation that is insensitive to the numerical
details. Therefore, we recommend the ‘Et+Ecr (Unsplit–pdv)’
method.

Fig. 6 shows the robustness of the ‘Et+Ecr (Unsplit–pdv)’ method
for different spatial reconstructions and time stepping (Appendix C
shows insensitivity of this method on the CFL number). As a refer-
ence solution, we have performed a simulation using an extremely
high spatial resolution. The snapshot of various profiles at t = 0.1 are
shown. Four different solid curves, i.e. black/grey (1st order), green
(2nd order), and blue (3rd order) curves show the solutions with
different spatial reconstruction. Since the profiles are identical, our
implementation of the ‘Et+Ecr (Unsplit–pdv)’ method is numerically
robust.

Summarizing our results, we conclude therefore that: (i) the
solution of the two-fluid equations in the post-shock region depends
on the choice of numerical methods, (ii) all methods give identical
results only when the CR pressure behind the shock is imposed ‘by
hand’ (e.g. using a subgrid closure at shocks as given in equation 34),
(iii) the results from our method ‘Et+Ecr (Unsplit–pdv)’ (equations
29 and 30) numerically robust even in absence of subgrid closure
at shocks. For these reasons we discuss, from the next section
onwards, the results from our best performing method, ‘Et + Ecr
(Unsplit–pdv)’.

5.3 Shock tube B

We now want to assess the sensitivity of the left- and right-going
wave speed estimates in our method. Such estimates are typically
required to calculate both the Riemann flux and the cell interface

state of the conservative variables for HLL-type solvers. In order to
check this, we set up the problem 3 in Table 2, which leads to the
formation of a right-going shock and left-going rarefaction waves.

In the literature, various choices are available for the left- and right-
going wave speeds. (see e.g. chapter 10 in Toro 2009). The simplest
choice is the direct wave speed estimates suggested by Davis (1988),
yielding (using the same notations of Fig. 2):

SR,i+1/2 = max(v+
i + a+

i , v−
i+1 + a−

i+1),

SL,i+1/2 = min(v+
i − a+

i , v−
i+1 − a−

i+1). (36)

The present implementation of the ‘Et+Ecr (Unsplit–pdv)’ shows a
spurious feature near the opening of the rarefaction wave (red curves
in Fig. 7). We address this issue by adjusting the spatial width of the
Riemann fan through a redefinition of the right- and left-wave speeds
as

S̃R,i+ 1
2

= max(v+
i + φ a+

i , v−
i+1 + φ a−

i+1)

S̃L,i+ 1
2

= min(v+
i − φ a+

i , v−
i+1 − φ a−

i+1), (37)

respectively, and choose φ = 1.1. Note that, when φ = 1 then
equation (37) reduces to equation (36). This trick basically increases
the width of the mixed state, which becomes 2 φ a at t + �t, instead
of 2 a (here a = (a2

g + a2
cr)

1
2 is the sound speed of composite fluid).

Increasing the width of the mixed state is justified by the fact that
during the solution of the Riemann problem we do not include the
coupling term which changes the effective signal speed (see e.g.
Appendix B). Although in the ‘Unsplit–pdv’ method we update the
CR energy equation (equation 28) in a single step, the required sound
wave speed may lie between [a2

g + a2
cr]

1
2 and [a2

g + (γg/γcr)a2
cr]

1
2 .
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Figure 6. Snapshot of various profiles from the two-fluid shock tube A (see Table 2) obtained using the Et+Ecr (Unsplit–pdv) method. The black dashed curves
show the profiles at t = 0 and circles at t = 0.1. Different colours represent results of different numerical schemes where ‘n’ denotes the number of grid points.
All runs are performed using the CFL number 0.6 (the results do not seem to depend on CFL numbers; see Appendix C) and without fixing pcr across the shock.
The figure shows that the results do not depend on numerics, i.e. higher order solvers reproduce results identical to high resolution 1st order solvers.

-10000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0  0.2  0.4  0.6  0.8  1
x

Thermal pressure

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0  0.2  0.4  0.6  0.8  1
x

CR pressure

 0

 50000

 100000

 150000

 200000

 0  0.2  0.4  0.6  0.8  1
x

Total pressure

 36000

 38000

 40000

 42000

 44000

 0.48  0.485  0.49  0.495  0.5  0.505  0.51  0.515

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 0.48 0.485 0.49 0.495 0.5 0.505 0.51 0.515

 48000

 50000

 52000

 54000

 56000

 58000

 60000

 62000

 64000

 0.48  0.485 0.49  0.495  0.5  0.505 0.51  0.515

Figure 7. Snapshot of various profiles at t = 10−4 from the shock tube B (problem 3 in Table 2). Solutions are obtained by using ‘Et+Ecr (Unsplit–pdv)’
method. Two different colours, green and red, show profiles with and without altering the signal speed (equations 36 and 37). The sub-plots display the zoomed-in
view of the black square. The figure shows that for green curves in which φ = 1.1 (equation 37), the results are smooth.

Note that, the factor φ introduced here is obtained from our numerical
experiments, with no rigorous proof.

Fig. 7 shows different pressure profiles at t = 10−4 obtained with φ

= 1 (red) and φ = 1.1 (green). For both solutions, in the post-shock
region, the ratio pcr/(pcr + pg) 
 0.03. Solutions are smooth only
for φ = 1.1, implying the necessity of a slightly higher wave speed
estimate in order to obtain a robust solution.

5.4 Sedov–Taylor blast wave

We have extended our implementation of CR-HD equations to
multidimensions and different geometries in the PLUTO code. We

perform the standard blast wave problem in 3D Cartesian and 1D
spherical geometries. The numerical set-up is discussed below.

At t = 0, we create high pressure in a small region by setting
pg = (γ g − 1)E/�V , where �V = 4/3π r3

inj is the small volume,
rinj = 0.01 (in code units), and E = 1051 erg. In the rest of the
computational domain, density, velocity, and pressures are set to 1,
0, and 60, respectively. We normalize density, velocity, and length to
ρu = mH cm−3 (1.67 × 10−24 g cm−3), vu = 105 cm s−1, and Lu =
3.086 × 1018 cm (1 parsec), respectively. For 1D spherical geometry,
the inner radial boundary at r = 0.001 is set to be reflective while
for 3D Cartesian, we set all boundaries to outflow. For the 3D run,
we employ 200 equally spaced zones along x, y, and z directions,
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Figure 8. Blastwave with CRs. Top panels show coloured maps of density, thermal and CR pressures from our 3D run (NxNyNz = 2003 grids) at t = 2 × 10−6

(in code units) in the z = 0 plane. In the bottom panels, we compare radial profiles from the 1D spherical (red) case with scatter plots of the 3D Cartesian run
using 1003 (blue) and 2003 (green) grid zones – showing that 3D profiles approach 1D for a fine grid spacing. In the velocity plot (2nd panel, bottom) we notice
that the fluid velocity in the 3D runs show some deviations from the 1D spherical run. We find that these deviations can be reduced by setting a large rinj so that
the energy injection region at t = 0 is close to spherical. Shocked zones (where CRs are injected using wcr = 0.5) are shown by black solid squares in the 2nd
panel, top row.

i.e. NxNyNz = 2003 (but we also perform a low resolution run using
NxNyNz = 1003 to check convergence), and for the 1D run we use
200 equally spaced zones. Simulations are performed using a CFL
number Ca = 0.2 for both geometries. Since we do not inject mass
initially, the Sedov–Taylor phase starts right at the beginning of the
shock evolution. The initial injection is purely thermal, but we inject
CRs at the shock as follows.

First, we identify shocked zones using the detection algorithm (see
Section 4.4) and then inject CRs in these zones using the parameter
wcr (equation 34) as done previously in 1D. We set wcr = 0.5, i.e.
equipartition between thermal and CR pressures in the post-shock
zones. The results from 3D (Cartesian) and 1D (spherical) runs are
shown in Fig. 8. In the top panels, we show the snapshots of density,
thermal and CR pressures in the z = 0 plane at t = 2 × 10−6 (code
unit) obtained from our 3D run. The second panel (top row) shows the
zoomed-in view of the shocked zones where CR energy is injected.
In the bottom panels, we compare the results between the 3D and
1D runs, showing good agreement. We, therefore, conclude that our
implementation (i.e. ‘Et+Ecr (Unsplit–pdv)’ method) is well suited
for multidimensional calculations.

6 D ISCUSSION

The results from the previous section have shown that the numerical
solution of the two-fluid equations depends on the discretization
of the coupling term and that the results become insensitive to the
choice of the method only when the post-shock CR pressure is fixed
by the parameter wcr (Fig. 5), which provides a possible closure to
the problem discussed in Section 3. Below we further discuss to what
extent the CR diffusion term that we have neglected until now can
affect our conclusions, and also present the limitations and broader
implications of this work.

6.1 Shock structure with CR diffusion

Several works on two-fluid shocks (Drury & Voelk 1981; Becker
& Kazanas 2001) have considered the impact of CR diffusion on
the shock structure. A non-negligible CR diffusion implies that the
CR pressure (unlike the gas pressure) remains continuous across
the shock transition (length scale ∼κcr/v1). Since the spatial width
of the shock is now broadened, some additional equations can be
formulated between far- upstream and downstream of a shock, which
are known as precursor-EoSs (Drury & Voelk 1981; Voelk, Drury
& McKenzie 1984; Jun, Clarke & Norman 1994). The precursor-
EoS connects the upstream and downstream and thereby allows to
investigate the shock structure, and it can be seen as a closure to
two-fluid equations. Although this method has been promising to
study shock modification due to CR acceleration, some features are
worth highlighting.

In CR-HD, two distinct shock structures are possible: a discon-
tinuous, gas-mediated sub-shock with CRs diffusing ahead of the
shock; and a CR-dominated smooth ‘shock’ (across which the gas
properties vary smoothly) for large Mach numbers, i.e. �12, see fig. 2
in Becker & Kazanas (2001), or the right-hand panels in fig. 5 of
Gupta et al. (2018a) for an astrophysical realization in a wind-driven
shock. In the latter case, most of the upstream kinetic energy flux
goes into CR acceleration rather than heating the thermal plasma,
and the astrophysical implications of this are enormous (see e.g.
Gupta, Nath & Sharma 2018b). However, the physical existence of
such shocks is yet to be established by kinetic plasma simulations. In
some parameter space, multiple solutions are predicted for the same
set of upstream conditions and the results are found to be sensitive
to the upstream variables close to the shock surface (for a brief
discussion, see section 6 in Becker & Kazanas 2001).

Apart from the multiplicity (non-unique) of the post-shock solu-
tions, the choice of the CR diffusion coefficient is crucial. Near a
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shock, magnetic fluctuations due the plasma instabilities (Kulsrud
& Pearce 1969; Bell 2004) can significantly modify κcr from those
used in large-scale flows (Schroer et al. 2020). Therefore although
in theory, CR diffusion allows us to find shock structure, the results
on the shock structure are inconclusive and further investigation is
needed. The results from kinetic studies, irrespective of whether a
globally smooth shock forms or not, can always be implemented as
a subgrid EoS.

6.2 Limitations and broader implications

Non-unique numerical results at the shocks that have been discussed
in this work is ultimately connected to the missing microphysics
in fluid approximation (Hoyle 1960). Both fluid and kinetic studies
showed that CRs drive a zoo of plasma instabilities that are respon-
sible for CR acceleration and eventually build-up the post-shock
CR pressure (Dorfi & Drury 1985; Drury & Falle 1986; Ryu, Kang
& Jones 1993; for a review see Marcowith et al. 2016). Since the
majority of these instabilities occurring on the CR Larmor radius
scale depend on the CR energy flux, neglecting them far away from
the shock is justified as long as their effects are incorporated in the
subgrid EoS connecting the far-upstream and downstream regions.
However, to obtain a detailed shock structure in fluid theory, we
must include a self-consistent (derived from kinetic considerations)
CR diffusion.

Note that the CR injection model presented in this work (see e.g.
Fig. 8) is different from those suggesting injection at the gas sub-
shocks (see e.g. Falle & Giddings 1987; Kang & Jones 1990; Saito,
Hoshino & Amano 2013). The sub-shock injection still relies on the
fluid approximation and the results can be affected by the choice
of the diffusion coefficient and other missing kinetic processes at
shocks. Moreover, injection at the gas sub-shock requires resolving
the shock transition region (Hin Navin Tsung, Oh & Jiang 2020)
which is computationally infeasible in galaxy-scale simulations.
From this perspective, our method may seem a simplification, but
we believe that in absence of a self-consistent model that takes into
account the necessary shock microphysics, the proposed method can
give better control on shock solutions and their impact on the large-
scale flow.

Although we recommend using such closures at shocks, it is
worth mentioning that this requires shock identification on the
computational grid. We suggest the ‘Et+Ecr (Unsplit–pdv)’ method
(Section 4.2) for a robust numerical solution, irrespective of the use
of a physically motivated subgrid closure at shocks.

The main limitation of our method is that it does not allow
investigating the time evolution of shock structure self-consistently.
This is not the aim of studies large-scale impact of CRs (length
scale � shock transition width). By defining the CR injection as a
function of time, the shock evolution may be inspected. A physically
reliable value of wcr (or an equivalent parameter; e.g. see Section 3
depends on upstream parameters (e.g. Mach number and magnetic
field orientation w.r.t. shock normal) and it needs to be prescribed
using Particle-In-Cell simulations (see e.g. Caprioli & Spitkovsky
2014). In MHD, the injection of CRs will also depend on the nature
of the shock (e.g. fast versus slow) and detailed calibration with
kinetic plasma simulations will be needed (Bret 2020).

7 SU M M A RY

In this work, we have shown that the two-fluid CR-HD model
suffers from a non-uniqueness problem at shocks. It contains
three conservation laws and one additional equation (for the CR

pressure) which cannot be cast in a satisfactory conservative form
and causes difficulties in its numerical implementation. A unique
shock jump condition is possible only if one makes an additional
assumption. The steady-state shock structures can be predicted by
assuming a suitable downstream CR pressure/energy (as discussed
in Section 3). There is a degeneracy between the gas and CR
pressures (see last paragraph of Section 2) because of which the
solutions may depend on numerics. Without fixing the fraction of
upstream energy transformed into CR energy and simply relying
on the numerical discretization of the non-conservative exchange
term involving derivatives pcr∇ · v (or equivalently, v · ∇pcr), makes
the solutions of the two-fluid equations across shocks depend on
the details of numerics (e.g. spatial reconstruction, time-stepping,
and even the CFL number). In this work, we have investigated
numerical implementation of the two-fluid CR-HD equations as
applied to large-scale simulations. Our findings are summarized as
follows:

(i) Numerical solution of the two-fluid equations depends on
implementation of the coupling term (pcr∇ · v or v · ∇pcr). We show
that the different discretizations do not show an identical solution
(Figs 4 and 5). This is because of the non-negligible and non-
unique contribution of the source term involving a derivative at the
shock.

(ii) We suggest a method (‘Et+Ecr (Unsplit–pdv)’, Section 4.2)
for which the solutions are robust to the choice of spatial recon-
struction, time-stepping, and the CFL number (see Fig. 6). In order
to ensure that the characteristic speed remains within the fastest
signal propagation speed, this method demands a slightly higher
signal speed than the standard estimate of the two-fluid sound speed
(Fig. 7).

(iii) We show that all methods give an identical solution only
when the CR pressure across the shock is fixed by an imposed EoS.
This can be done, for example, by specifying CR pressure in the
shocked zones (as done in Fig. 5; also see Section 3). A physically
realistic implementation of the CR pressure across a shock is possible
by calibrating with kinetic simulations using different upstream
parameters. In this approach, a shock must be properly identified.
We suggest the ‘Et+Ecr (Unsplit–pdv)’ method for a robust solution
irrespective of whether a subgrid closure is used at shocks.

In summary, this work highlights the critical aspects of the
two-fluid CR-HD equations. Although here we have not discussed
the CR-MHD system, these problems are also present there. The
implementation of CR-MHD will be discussed in a future work.
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A P P E N D I X A : D E TA I L S O F VA R I O U S EO S S

Here we present the detailed calculations for finding shock solution for a given EoS outlined in Section 3.

A1 wcr–EoS

Using equation (18), we substitute Pg,2 in equations (15) and (16). After combining them, we obtain a quadratic equation:

R2 A − RB + C = 0, where (A1)

A =
{

(γg + γcrPcr,1)
M2

1

2
+ γg

γg − 1
+ γcr

γcr − 1
Pcr,1

}
(A2)

B =
{

γg

γg − 1
(1 − wcr) + γcr

γcr − 1
wcr

}{
(γg + γcrPcr,1)M2

1 + (1 + Pcr,1)
}

(A3)

C =
{

γg

γg − 1
(1 − wcr) + γcr

γcr − 1
wcr − 1

2

}{
(γg + γcrPcr,1)M2

1

}
. (A4)

Note that wcr is a parameter specified in the downstream, and Pcr,1 (equation 17) andM1(Mcr,1,Mcr,1) are upstream parameters. The solutions
of equation (A1) is given by

R± = B ± (B2 − 4AC)
1
2

2A . (A5)

Since R− ≤ 1, R+ represents the physical solution and its values as a function of upstream Mach numbers for four different wcr are shown in
Fig A1. The figure indicates that the compression ratio increases with wcr. It can also be shown analytically:

lim
M1→∞

R+ = γg + 1

γg − 1
+ 2 wcr

(
γcr

γcr − 1
− γg

γg − 1

)
. (A6)

Taking γ g = 5/3 and γ cr = 4/3, we obtain R+ = 4 + 3wcr, which shows that the compression ratio approaches 7 when wcr → 1. Note that,
CR diffusion can increase the compression ratio even for a smaller wcr due to diffusive loss of CR energy (section 4.2.1 in Gupta et al. 2018a).

A2 εcr–EoS

In this case, we follow a similar approach as done in Appendix A1. We first normalize the gas and CR pressures of equation (19) w.r.t. the
upstream gas pressure and find

Pcr,2 = εcr
γcr − 1

γcr
R

(
γg + γcrPcr,1

){M2
1

2
+ 1

γg + γcrPcr,1

(
γg

γg − 1
+ γcr

γcr − 1
Pcr,1

)}
. (A7)

Then we substitute Pcr,2 (equation A7) in equations (15) and (16), which results in a quadratic equation identical to equation (A1), where

A = (γg + γcrPcr,1)M2
1

{
γg − 1

2γg
− γcr − 1

2γcr
εcr

(
γg − 1

γcr − 1

γcr

γg
− 1

)}
+ 1 + εcr

(
γcr − 1

γg − 1

γg

γcr
− 1

)
+ Pcr,1

{
(1 − εcr)

(
γg − 1

γcr − 1

γcr

γg

)
+ εcr

}
(A8)

Figure A1. Compression ratio (R) as a function of upstream gas (Mg,1) and CR (Mcr,1) Mach numbers for four different wcr. The left-most panel represents
a special case, wcr = 0 (corresponding to a downstream CR pressure pcr, 2 → 0), which can be considered as a one-fluid HD model in the limit Mcr,1 → ∞
(corresponding to pcr, 1 → 0). For a large Mg,1, this panel shows R → 4 (see the colour palette), as expected from the Rankine–Hugoniot shock-jump condition.
As expected, a larger wcr gives a higher compression ratio.
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Figure A2. Dependence of wcr (equation 18) on the upstream Mach numbers and εcr (equation 19). Each symbol in left-hand and middle panels represents
solution of wcr for a given εcr, where the colours represent the upstream CR (Mcr,1) and gas (Mg,1) Mach numbers, respectively. These two panels show that
for a high Mach number flow the parameter wcr mainly depends on εcr. The right-hand panel shows the dependence of wcr on εcr. The black solid curve shows
the analytic solution (equation A12).

B = {
(γg + γcrPcr,1)M2

1 + (1 + Pcr,1)
}

(A9)

C = (γg + γcrPcr,1)M2
1

(
γg + 1

2γg

)
. (A10)

Therefore, the solutions can be found by solving equation (A5). We find that the qualitative nature of the solutions remains similar to Fig. A1,
i.e. the compression ratio increases with εcr.

A2.1 Relation between wcr and εcr

The relation between wcr–EoS and εcr–EoS can be obtained as follows. From equation (18), we note that the value of wcr depends on
the downstream CR and gas pressures. In εcr–EOS, the downstream CR pressure (Pcr,2) is already parametrized by εcr, which is given in
equation (A7). The remaining quantity, Pg,2, can be obtained using the momentum conservation equation, equation (15), which gives

Pg,2 =
{(

γg + γcrPcr,1

)
M2

1

(
1 − 1

R

)
+ 1 + Pcr,1

}
− Pcr,2. (A11)

It is worth mentioning that the only constrain on the above equation is Pg,2 > 0, implying that the downstream CR pressure Pcr,2 <{(
γg + γcrPcr,1

)
M2

1

(
1 − 1

R
) + 1 + Pcr,1

}
. Since we now have Pg,2 and Pcr,2, we can obtain wcr as a function of R, M1, Pcr,1, and εcr where

R(M1,Pcr,1, εcr) can be calculated from the solution of equation (A5). Therefore, the parameter wcr becomes a function of Mg,1, Mcr,1, and
εcr. The value of wcr for various upstream Mach numbers and εcr are shown in Fig. A2. In the limit M1 → ∞, it can be shown that

wcr = εcr

8

R+(wcr)

1 − 1/R+(wcr)
→ wcr,± = 4

{−3(1 − εcr) ± (9 + 6εcr)1/2
}

3(8 − 3εcr)
, (A12)

where we have taken R+ from equation (A6) and the constrain 0 ≤ wcr ≤ 1 implies that wcr, + is the physical solution.

A3 Adiabatic–EoS

To find the compression ratio, we substitute Pcr,2 from equation (20) to equation (15) and obtain Pg,2 as a function of R, Pcr,1, and M1.
Replacing this Pg,2 in equation (16) we obtain

Rγcr+1 A − R2 B + RC + D = 0, where (A13)

A =
(

γcr

γcr − 1
− γg

γg − 1

)
Pcr,1

B =
{

(γg + γcrPcr,1)
M2

1

2
+ γg

γg − 1
+ γcr

γcr − 1
Pcr,1

}
;

C = γg

γg − 1

{
M2

1(γg + γcrPcr,1) + 1 + Pcr,1

}

D = M2
1(γg + γcrPcr,1)

(
1

2
− γg

γg − 1

)
. (A14)

Equation (A13) can be solved using a standard root-finding scheme (e.g. the Newton–Raphson method). After obtaining the solution for R,
we can calculate wcr (equation 18) and the results are shown in Fig. A3. The left-hand panel of Fig. A3 displays the compression ratio as a
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Figure A3. Solution for an adiabatic EoS. Left-hand panel: Compression ratio (R) as a function of upstream gas (Mg,1) and CR (Mcr,1) Mach numbers,
which shows that when both Mg,1 and Mcr,1 >> 1, R → 4. Right-hand panel: Dependence of wcr on the upstream Mach numbers. It shows that for a large
Mcr,1 (corresponding to a low upstream CR pressure), wcr → 0. In other words, it indicates that if upstream CR pressure is very low compared to upstream gas
pressure then the post-shock CR pressure is almost negligible compared to the gas pressure. For a large upstream CR pressure, the value of wcr → 1, i.e. the
downstream is mostly dominated by CR pressure.

function of Mg,1 and Mcr,1, which shows that the compression ratio ≤4. The right-hand panel shows wcr as a function of Mg,1 and Mcr,1.
It shows that if the upstream CR pressure is very small compared to the upstream ram pressure (i.e. when Mcr,1 � 1) then the post-shock
CR pressure is almost negligible compared to the gas pressure. For a large upstream CR pressure (Mcr,1 ∼ 1), the value of wcr → 1, i.e. the
downstream is mostly dominated by CR pressure. However, even in this regime, the compression ratio ≤4, which can be seen by comparing
the left-hand and right-hand panels. These results are easy to understand intuitively because the effective Mach number M1 ∼ 1; i.e. the shock
is too weak to show a noticeable change in CR pressure.

A P P E N D I X B: E I G E N VA L U E S W I T H O U T TH E C O U P L I N G T E R M

To obtain the HLL flux at left- and right-interface of the computational cell, we need to provide an estimate of the signal speed to the solver.
Since in the operator splitting method the solver does not have any information of the pcr∇ · v (or v · ∇pcr) coupling term, the signal speed can
be different from the actual speed of the complete system. This is illustrated as follows. Consider that the source term in equation (3), pcr∇ ·
v, is absent. In 1D Cartesian geometry, the Jacobian matrix without the coupling and diffusion terms is found to be

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

1
2 (γg − 3)v2 (3 − γg) v (γg − 1) (γcr − γg)

1
2 (γg − 3)v3 − v

(
a2

g

γg−1 + a2
cr

γcr−1

)
1
2 (3 − 2γg)v2 +

(
a2

g

γg−1 + a2
cr

γcr−1

)
γgv (γcr − γg)v

− va2
cr

γcr(γcr−1)
a2

cr
γcr(γcr−1) 0 v

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B1)

Eigenvalues of this matrix are λ = v − aeff, v, v, v + aeff where aeff = [a2
g + (γg/γcr)a2

cr]
1
2 . The methods involving the pdv source term give

the same set of eigenvalues. As γ g > γ cr, we note that the effective propagation speed aeff is slightly larger than the actual sound speed of the

composite fluid, which is [a2
g + a2

cr]
1
2 . Without using the effective sound speed as an estimate of the maximum signal propagation speed, one

may find spurious oscillations in the solution. Such an example has been discussed in Section 5.3. The effective sound speed (aeff) with vdp
splitting is also different from [a2

g + a2
cr]

1/2, and we advice caution even in this case for the signal speed estimate.

APPENDIX C : D EPENDENCE ON THE C FL NUMBER

Other than for the Et+Scr method, the coupling term has to be implemented in the two-fluid equations. In order to implement this term, we
have to choose pcr and v at the cell centre/interface, which can be chosen in various ways. We find that all of these choices do not produce
a unique/consistent result. To explicitly show this, we present the result from the shock tube A (problem 2 in Table 2) using three possible

MNRAS 502, 2733–2749 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/2/2733/6105336 by U
niversita degli Studi di Torino user on 08 July 2021



Implementation of CR two-fluid equations 2749

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.3 -0.2 -0.1  0  0.1  0.2  0.3

P1

P2

P3

This work

Dashed-dot: t = 0

Solid   CFL = 0.1

Dotted: CFL = 0.6

Density (ρ)

 0

 0.5

 1

 1.5

 2

-0.3 -0.2 -0.1  0  0.1  0.2  0.3

Velocity (vx)

 0.8

 0.85

 0.9

 0.95

 1

-0.3 -0.2 -0.1  0  0.1  0.2  0.3

pcr/ρ
4/3

 0

 0.5

 1

 1.5

 2

-0.3 -0.2 -0.1  0  0.1  0.2  0.3

x

Thermal pressure

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-0.3 -0.2 -0.1  0  0.1  0.2  0.3

x

CR pressure

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-0.3 -0.2 -0.1  0  0.1  0.2  0.3

x

Total pressure

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.14  0.16  0.18  0.2  0.22  0.24

Figure C1. Two-fluid shock tube (problem 2 in Table 2). The dashed-dotted black curves show profiles at t = 0 and the solid/dotted curves show profiles at t
= 0.1. For all runs, the used method is ‘Unsplit–pdv’, however, the choice of v and pcr are different (see the Possibilities 1–3 described in Appendix C). The
solutions are obtained using a 1st order numerical scheme, where Nx = 5000, but two different CFL numbers: for solid curves Ca = 0.1 and dotted curves Ca

= 0.6. The figure shows that the solution in the post-shock region depends not only on the choice of the numerical method but also the CFL number. For our
preferred method, shown with solid and dotted black lines, solutions are robust to the choice of CFL number.

combinations of pcr and v in equation (28). These choices are given below.

Possibility 1 :

⎧⎨
⎩

vn

i− 1
2

= 1
2

(
v

+,n
i−1 + v

−,n
i−1

)
; vn

i+ 1
2

= 1
2

(
v+,n

i + v−,n
i

)
; pn

cr,i = 1
2

(
p+,n

cr,i + p−,n
cr,i

)
; vn

i ≥ 0

vn

i− 1
2

= 1
2

(
v+,n

i + v−,n
i

)
; vn

i+ 1
2

= 1
2

(
v

+,n
i+1 + v

−,n
i+1

)
; pn

cr,i = same; vn
i < 0

Possibility 2 :

⎧⎪⎨
⎪⎩

vn

i− 1
2

=
Un

[mx],i− 1
2

Un

[ρ],i− 1
2

; vn

i+ 1
2

=
Un

[mx],i+ 1
2

Un

[ρ],i+ 1
2

; pn
cr,i = 1

2

(
p+,n

cr,i + p
−,n
cr,i+1

)
; vn

i ≥ 0

vn

i− 1
2

= same; vn

i+ 1
2

= same; pn
cr,i = 1

2

(
p

+,n
cr,i−1 + p−,n

cr,i

)
; vn

i < 0

Possibility 3 :

⎧⎪⎨
⎪⎩

vn

i− 1
2

=
Un

[mx],i− 1
2

Un

[ρ],i− 1
2

; vn

i+ 1
2

=
Un

[mx],i+ 1
2

Un

[ρ],i+ 1
2

; pn
cr,i = 1

2

(
p

+,n
cr,i−1 + p−,n

cr,i

)
; vn

i ≥ 0

vn

i− 1
2

= same; vn

i+ 1
2

= same; pn
cr,i = 1

2

(
p+,n

cr,i + p
−,n
cr,i+1

)
; vn

i < 0

Note that the possible choices are not limited to the above three combinations. Despite the similarity of these choices, we find that the results
are not identical and also depend on the CFL number. Fig. C1 shows the solutions for two different CFL numbers 0.1 (solid curves) and 0.6
(dotted curves), respectively. Each colour represents different possible combinations of pcr and v given above. We have tried several other
possibilities and found that all give different result. This experiment shows that our choice of v and pcr (i.e. equations 29 and 30) provides a
robust result (solid/dotted black curves), i.e. solutions are robust to the choice of spatial reconstructions (Fig. 6), time stepping (Fig. 5), and
the CFL number (Fig. C1).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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