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Abstract: We study harmonic functions for generalised Mehler semigroups in infinite
dimensions. The class of generalised Mehler semigroups includes transition semigroups
determined by infinite dimensional Ornstein-Uhlenbeck processes perturbed by a Lévy
noise. We prove results about existence and nonexistence of nonconstant bounded
harmonic functions and establish convexity of positive harmonic functions. The paper
extends some results proved in [27] to a separable Hilbert space setting.

1 Introduction

The classical Liouville theorem for the Laplace operator L states that if, for a bounded
C2-function u,

Lu(x) = 0, x ∈ Rn,

then u is constant on Rn. This result can be equivalently formulated in terms of the
heat semigroup Pt,

Ptu(x) =
1√

(2πt)n

∫

Rn

u(y)e
|x−y|2

2t dy, t > 0, P0u(x) = u(x), x ∈ Rn, t ≥ 0,

1Partially supported by the Italian National Project MURST “Equazioni di Kolmogorov” and by
the “Centre of Excellence”, IM PAN-BC, Warsaw, Poland.
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i.e., if, for a bounded Borel function u, one has Ptu(x) = u(x), for all t ≥ 0, x ∈ Rn,
then u is constant on Rn.

More generaly, let E be a Polish space and let Pt be a Markov semigroup, acting on
the space Bb(E) of all real Borel and bounded functions defined on E. A bounded from
below function u : E → R is said to be harmonic for Pt, if u is Borel and invariant for
Pt, i.e.,

Ptu(x) = u(x), t ≥ 0, x ∈ E. (1.1)

We say that a harmonic function u is a bounded harmonic function (BHF) or a positive
harmonic function (PHF) for Pt if in addition u is bounded or nonnegative. Note that
if u is a BHF for Pt, then

Lu(x) = 0, x ∈ E,

where the operator L is defined as follows:

Lu(x) = lim
t→0+

Ptu(x)− u(x)
t

, x ∈ E. (1.2)

A converse statement is true as well, see Section 3. Preliminaries are gathered in Section
2.

Our main concern in the present paper are harmonic functions for generalized Mehler
semigroups introduced in [5]. They have recently received a lot of attention, see for
instance [32], [9], [17], [21], [28] and references therein. This class includes transition
semigroups determined by infinite dimensional Ornstein-Uhlenbeck processes perturbed
by a Lévy noise. Those processes are solutions to the following infinite dimensional
stochastic differential equation on a Hilbert space H,

dXt = AXtdt + BdWt + CdZt, X0 = x ∈ H, t ≥ 0. (1.3)

Here A generates a C0-semigroup etA on H, B and C are bounded linear operators from
another Hilbert space U into H. Moreover Wt and Zt are independent processes; Wt

is a U -valued Wiener process and Zt is a U -valued Lévy process (without a Gaussian
component).

One says that the transition semigroup Pt has the Liouville property if all BHFs for
Pt are constant. The Liouville property has been studied for various classes of linear
and nonlinear operators L on Rn. In particular, second order elliptic operators on Rn, or
on differentiable manifolds E, have been intensively investigated, see for instance [23],
[6], [1], [31], [3], [18] and references therein. Liouville theorems for nonlocal operators
are given in [2] and [27]. The probabilistic interpretation of the Liouville property is
discussed in [27], see also [23]. A Liouville theorem for the infinite dimensional heat
semigroup has already been considered in [12]. For connections between the Liouville
property and the existence of invariant ergodic measures, see also Remark 4.4.

Theorem 4.1 of Section 4 is our main result on the Liouville property. In the par-
ticular case of an Ornstein-Uhlenbeck process Xt perturbed by a Lévy noise, see (1.3),
and under suitable assumptions, the theorem states that the corresponding transition
semigroup Pt has the Liouville property if and only if all λ in the spectrum σ(A) of A
have nonpositive real part. Moreover, when there exists λ ∈ σ(A) with positive real
part, we are able to construct a nonconstant BHF for Pt. This theorem extends to
infinite dimensions a result given in [27].

2



In Section 5, we prove a result concerning positive harmonic functions. Under the
assumptions of Theorem 4.1, we show that all PHFs for the transition semigroup Pt

associated to (1.3) are convex. This result can be regarded as a stronger version of the
first part of Theorem 4.1, see also Corollary 5.3.

The final section contains two open questions.

2 Preliminaries

Let H be a real separable Hilbert with inner product 〈·, ·〉 and norm | · |. We will identify
H with H∗ (the topological dual of H). Let U be another separable Hilbert space. By
L(U,H) we denote the space of all bounded linear operators from U into H. We set
L(H,H) = L(H). If B ∈ L(U,H), its adjoint operator is denoted by B∗ (B∗ ∈ L(H,U)).

The space Cb(H) (resp. Bb(H)) stands for the Banach space of all real, continuous
(resp. Borel) and bounded functions f : H → R, endowed with the supremum norm:
‖f‖0 = supx∈H |f(x)|.

The space Ck
b (H) is the set of all k-times differentiable functions f , whose Fréchet

derivatives Dif , 1 ≤ i ≤ k, are continuous and bounded on H, up to the order k ≥ 1.
Moreover we set C∞b (H) = ∩k≥1 Ck

b (H).

2.1 Characteristic functions

We collect some basic facts about characteristic functions in infinite dimensions. These
will be used in the sequel, see [22] or [7] for more details.

A function ψ : H → C is said to be negative definite if, for any h1, . . . hn ∈ H, c1,
. . . cn ∈ C, verifying

∑n
k=1 ck = 0, one has:

∑n
i,j=1 ψ(hi − hj)cicj ≤ 0.

A function θ : H → C is said to be positive definite if, for any h1, . . . hn ∈ H, the
n × n Hermitian matrix (θ(hi − hj))ij is positive definite. Remark that ψ : H → C is
negative definite if and only if the function exp(−tψ(·)) is positive definite for any t > 0.

A mapping g : H → C is said to be Sazonov continuous on H if it is continuous with
respect to the locally convex topology on H generated by the seminorms p(x) = |Sx|,
x ∈ H, where S ranges over the family of all Hilbert-Schmidt operators on H. Of course
any Sazonov continuous function is in particular continuous.

The Bochner theorem states that any function f : H → C is the characteristic
function of a probability measure µ on H, i.e.,

µ̂(h) =
∫

H
ei〈y,h〉µ(dy) = f(h), h ∈ H,

if and only if f is positive definite, Sazonov continuous and such that f(0) = 1.
Let Q be a symmetric nonnegative definite trace class operator on H, we denote by

N(x,Q), x ∈ H, the Gaussian measure on H with mean x and covariance operator Q.
The trace of Q will be denoted by Tr (Q).

2.2 Mehler semigroups

A Lévy process Zt with values in H is a H-valued process defined on some stochastic
basis (Ω,F , (Ft)t≥0,P), continuous in probability, having stationary independent incre-
ments, càdlàg trajectories, and such that Z0 = 0.
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One has that
Eei〈Zt,s〉 = exp(−tψ(s)), s ∈ H, (2.1)

where ψ : H → C is a Sazonov continuous, negative definite function such that ψ(0) = 0.
We call ψ the exponent of Zt. Viceversa given ψ with the previous properties, there
exists a unique in law H-valued Lévy process Zt, such that (2.1) holds.

The exponent ψ can be expressed by the following infinite dimensional Lévy-Khintchine
formula,

ψ(s) =
1
2
〈Qs, s〉 − i〈a, s〉 −

∫

H

(
ei〈s,y〉 − 1− i〈s, y〉

1 + |y|2
)
M(dy), s ∈ H, (2.2)

where Q is a symmetric nonnegative definite trace class operator on H, a ∈ H and M
is the spectral Lévy measure on H associated to Zt, see also [29].

A generalised Mehler semigroup St, acting on Bb(H), is given by

Stf(x) =
∫

H
f(etAx + y)µt(dy), t ≥ 0, x ∈ H, f ∈ Bb(H), (2.3)

where etA is a C0-semigroup on H, with generator A, µt, t ≥ 0, is a family of probability
measures on H, such that

µ̂t(h) = exp
(
−

∫ t

0
ψ(esA∗h)ds

)
, h ∈ H, t ≥ 0. (2.4)

Here ψ : H → C is a continuous, negative definite function such that ψ(0) = 0. We call
ψ the exponent of St. Note that we are not assuming that the exponent ψ is Sazonov
continuous, i.e., we are not requiring that exp(−ψ(·)) is the characteristic function of
a probability measure on H or, equivalently, that there exists an associated H-valued
Lévy process.

Generalized Mehler semigroups were introduced in [5], see also [32], [9], [17], [21]
and [28].

3 Abstract Liouville theorems

Here, combining arguments from [14] and [24], we prove an abstract result which allows
to formulate the Liouville problem in terms of generators, see in particular Theorem 3.1.
We also provide an application to an infinite dimensional Ornstein-Uhlenbeck operator.

Let Pt be any Markov semigroup acting on Bb(E), the space of all bounded Borel
functions on a Polish space E. Define the subspace

B0(E) = {f ∈ Bb(E), such that, for any x ∈ E, the map: t 7→ Ptf(x) is continuous
on [0,∞)}.

(3.1)
This space is a slight modification of the space B0

b (E) introduced in [14], see also Remark
3.3. It is easy to verify that the space B0(E) is invariant for Pt. Moreover it is a closed
subspace of Bb(E) with respect to the supremum norm. This space also satisfies the
assumptions (i) and (ii) in [24, Section 5].
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We consider Pt acting on B0(E) and define a generator L : D(L) ⊂ B0(E) → B0(E)
of Pt as a version of the Dynkin weak generator, by the formula:

D(L) :=
{

u ∈ B0(E) : sup
t>0

∥∥∥Ptu− u

t

∥∥∥
0

< ∞, ∃ g ∈ B0(E) such that (3.2)

lim
t→0+

Ptu(x)− u(x)
t

= g(x), ∀x ∈ E},

Lu(x) = lim
t→0+

Ptu(x)− u(x)
t

, for u ∈ D(L), x ∈ E.

We have the following characterisation.

Theorem 3.1 If f ∈ Bb(E) then

f ∈ D(L) and Lf = 0 ⇐⇒ f is a BHF for Pt.

The theorem is a direct corollary of the following proposition.

Proposition 3.2 For any function f ∈ Bb(E), the following statements are equivalent:

(i) f ∈ D(L);
(ii) there exists g ∈ B0(E) such that

Ptf(x)− f(x) =
∫ t

0
Psg(x)ds, x ∈ E, t ≥ 0. (3.3)

Moreover if (3.3) holds then Lf = g.

Proof (ii) ⇒ (i). By (3.3) one has that f ∈ B0(E). Moreover Ptf(x)−f(x)
t → g(x), as

t → 0+, for any x ∈ E. Finally, there results:

sup
t>0

∥∥∥Ptf − f

t

∥∥∥
0
≤ sup

s>0
‖Psg‖0 ≤ ‖g‖0.

(i) ⇒ (ii). Fix x ∈ E. Note that

lim
t→0+

Ps

(Ptf − f

t

)
(x) = PsLf(x), s ≥ 0.

Hence, there exists the right derivative ∂+
s Psf(x) = PsLf(x), s ≥ 0. Since the functions:

s 7→ Psf(x) and s 7→ PsLf(x) are both continuous on [0,+∞), by a well known lemma
of Real Analysis, the function: s 7→ Psf(x) is C1([0, +∞)). This gives the assertion.

Remark 3.3 Given a Markov transition semigroup Pt, acting on Bb(E), Dynkin intro-
duces in [14] the space B0

b (E) = {f ∈ Bb(E) such that limt→0+ Ptf(x) = f(x), x ∈
E}. Moreover he defines the weak generator L̃ of Pt as in (3.2), replacing B0(E) with
B0

b (E). It is clear that L̃ extends the operator L given in (3.2). However, it seems a
difficult problem to clarify if B0

b (E) = B0(E) holds in general. Moreover, it is not clear
how to prove an analogous of Proposition 3.2 when L is replaced by L̃.
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Let us apply the previous theorem to the generator of a Gaussian Ornstein-Uhlenbeck
process Xt, which solves the SDE:

dXt = AXtdt + dWt, x ∈ H. (3.4)

Here Wt is a Q−Wiener process with values in H and Q is a trace class operator on H,
see also (2.2). Moreover A generates a C0-semigroup etA on H.

Define Ĉ ⊂ C2
b (H) as the space of all functions f such that Df(x) ∈ D(A∗), for all

x ∈ H, and the functions A∗Df and D2f are both uniformly continuous and bounded
on H.

Combining [34, Theorem 5.1] and Theorem 3.1, we get

Proposition 3.4 Let us consider the Ornstein-Uhlenbeck semigroup Pt associated to
the process Xt in (3.4). Then for any f ∈ Ĉ, one has:

Af(x) =
1
2
Tr (QD2f(x)) + 〈A∗Df(x), x〉 = 0, x ∈ H ⇐⇒ f is a BHF for Pt.

Proof By the Ito formula, in [34] it is showed that, for any f ∈ Ĉ, f ∈ D(L) if and
only if Af is bounded. Moreover if f ∈ Ĉ ∩D(L), then Lf = Af . Using this result and
Theorem 3.1, we finish the proof.

4 The Liouville theorem

If A : D(A) ⊂ H → H is a closed operator on H, we denote by σ(A) its spectrum
and by A∗ its adjoint operator. We collect our assumptions on the generalised Mehler
semigroup St, see (2.3) and (2.4).

Hypothesis 4.1 (i) there exists B0 ∈ L(U,H), where U is another Hilbert space, such
that the linear nonnegative bounded operators Qt : H → H,

Qtx =
∫ t

0
esAB0B

∗
0esA∗x ds, x ∈ H, are trace class, t > 0; (4.1)

(ii) µt = νt ∗N(0, Qt), where νt is a family of probability measures on H, such that

ν̂t(h) = exp
(
−

∫ t

0
ψ1(esA∗h)ds

)
, h ∈ H, t ≥ 0, (4.2)

with ψ1 : H → C being a continuous, negative definite function such that ψ1(0) = 0.

Hypothesis 4.2 There exists T > 0, such that etA(H) ⊂ Q
1/2
t (H), t ≥ T .

If St is in particular the Gaussian Ornstein-Uhlenbeck semigroup corresponding to (3.4),
then Hypothesis 4.2 is implied by the strong Feller property of St. Recall that a Markov
semigroup Pt, acting on Bb(H), is called strong Feller if

Pt(Bb(H)) ⊂ Cb(H), t > 0. (4.3)

Hypothesis 4.3 One has:
∫

H
(log |y| ∨ 0)M(dy) < ∞. (4.4)
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Remark that if H is finite dimensional, then the previous hypotheses reduce to the
assumptions in [27, Theorem 3.1].

The aim of this section is to prove the following theorem.

Theorem 4.1 Let St be a generalised Mehler semigroup on H. If Hypotheses 4.1 and
4.2 hold and moreover

s(A) := sup{Re(λ) : λ ∈ σ(A)} ≤ 0, (4.5)

then all BHFs for St are constant.
If Hypotheses 4.1, 4.2 and 4.3 hold and further

sup{Re(λ) : λ ∈ σ(A)} > 0,

then there exists a nonconstant BHF h for St.

Remark 4.2 As we mentioned in Introduction, a natural class of generalised Mehler
semigroups which satisfy Hypotheses 4.1 and 4.2 is the one associated to the SDE

dXt = AXtdt + BdWt + CdZt, X0 = x ∈ H, t ≥ 0, (4.6)

where A generates a C0-semigroup etA on H, B and C ∈ L(U,H). Here Wt and Zt are
U -valued, independent Q0-Wiener and Lévy processes (the operator Q0 is a symmetric
nonnegative trace class operator on U). Without any loss of generality, we may assume
that Zt has no Gaussian component (i.e., the exponent ψ0 of Zt is given by (2.2) with
Q = 0).

It is well known that there exists a unique mild solution to (4.6), see [9] and [11].
This is given by

Xx
t = Y x

t + ηt, (4.7)

where

Y x
t = etAx +

∫ t

0
e(t−s)ABdWs, ηt =

∫ t

0
e(t−s)ACdZs.

The latter stochastic integral involving Zt can be defined as a limit in probability of
elementary processes. Moreover Y x

t is a Gaussian Ornstein-Uhlenbeck process, compare
with (3.4). Clearly, setting B0 = B Q

1/2
0 , the operators B0 and A satisfy condition (i)

in Hypothesis 4.1.
If µt denotes the law of X0

t , then it is clear that the Markov semigroup St associated
to Xx

t is given by

Stf(x) =
∫

H
f(etAx + y)µt(dy), t ≥ 0, x ∈ H, f ∈ Bb(H). (4.8)

If νt is the law of ηt then we have µt = νt ∗N(0, Qt). Indeed

µ̂t(h) = exp
(
−

∫ t

0
|B∗

0esA∗h|2ds
)

exp
(
−

∫ t

0
ψ0(C∗esA∗h) ds

)

= ˆN(0, Qt)(h) ν̂t(h), h ∈ H.
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Remark 4.3 An example of a generalised Mehler semigroup with exponent ψ which is
not Sazonov continuous, is the one determined by the SDE

dYt = AYtdt + B0dWt, Y0 = x ∈ H, t ≥ 0, (4.9)

where A : D(A) ⊂ H → H generates a C0-semigroup etA on H, B0 ∈ L(U,H) and the
process Wt is a U -valued cylindrical Wiener process, see [11] for more details.

If we assume that A and B0 verify (i) in Hypothesis 4.1, then there exists a unique
H-valued process Y x

t , which is the mild solution to (4.9),

Y x
t = etAx +

∫ t

0
e(t−s)AB0dWs, x ∈ H, t ≥ 0. (4.10)

Note that Y x
t is a Gaussian process. The associated Ornstein-Uhlenbeck semigroup Ut

is given by

Utf(x) = Ef(Y x
t ) =

∫

H
f(etAx + y) κt(dy), f ∈ Bb(H), (4.11)

x ∈ H, t > 0, where κt = N(0, Qt) is the Gaussian measure on H with mean 0 and
covariance operator Qt, see (4.1). Note that the exponent ψ of Ut, i.e.,

ψ(y) = |B∗
0y|2, y ∈ H,

is not Sazonov continuous unless the operator B0 is Hilbert-Schmidt. However the
associated process Y x

t takes values in H, i.e., the function: y 7→ ∫ t
0 ψ(esA∗y)ds is Sazonov

continuous on H, for each t ≥ 0.

Remark 4.4 One can show that the existence of an ergodic invariant probability mea-
sure with full support for a strong Feller transition semigroup implies the Liouville
property. However, we are especially interested in cases in which there are no invariant
probability measures. In particular if some λ ∈ σ(A) is purely imaginary, then there
are no invariant probability measures for the Ornstein-Uhlenbeck semigroup Ut given
in (4.11), see [11], but still, under Hypothesis 4.2, the Liouville theorem holds.

In the proof of the first statement of Theorem 4.1, we will need assertion (1) of the
next result. This lemma also extends previous results proved in [11, Section 9.4] and in
[28]. Recall that IB denotes the indicator function of a set B ⊂ H.

Lemma 4.5 Let us assume that Hypotheses 4.1 and 4.2 hold. Then one has:
(1) St(Bb(H)) ⊂ C∞

b (H), t ≥ T .
(2) St is irreducible, i.e., StIO(x) > 0, for any x ∈ H, t ≥ T and O open set in H.

Proof Take any f ∈ Bb(H). We have:

Stf(x) =
∫

H
νt(dz)

∫

H
f(etAx + y + z)N(0, Qt)(dy) (4.12)

=
∫

H
νt(dz)

∫

H
f(y + z)N(etAx,Qt)(dy), t ≥ 0, x ∈ H.

8



Using the Cameron-Martin formula, see [11], we can differentiate Stf in each direction
h ∈ H and get, for any x ∈ H, t ≥ T ,

〈DStf(x), h〉 =
∫

H
νt(dz)

∫

H
f(etAx + y + z)〈Qt

−1/2y, Qt
−1/2etAh〉N(0, Qt)dy. (4.13)

Recall that the function: y 7→ 〈Qt
−1/2y, Qt

−1/2etAh〉 is a Gaussian random variable on
the probability space (H,B(H), N(0, Qt)), for any t ≥ T , see [11] and [34].

Formulas similar to (4.13) can be easily established for higher order derivatives of
Stf . It is then straightforward to verify that Stf ∈ C∞b (H), t ≥ T . This concludes the
proof of the first statement.

The second statement follows since the measure N(0, Qt) has support on the whole
H, for any t ≥ T .

Proof of Theorem 4.1. The first part. Here we prove that any bounded harmonic
function for St is constant.

By Hypothesis 4.2, the closed operators Q
−1/2
t etA are bounded operators on H, for

any t ≥ T . They have also a control theoretic meaning, see for instance [33] or [10].
Note that (i) in Hypothesis 4.1 and Hypothesis 4.2 imply that the semigroup etA is
compact, for any t ≥ T . To see this, we write eTA = Q

1/2
T (Q−1/2

T eTA) and remark that
the operator Q

1/2
T is Hilbert-Schmidt.

Thus we can apply the following result, which is proved in [25],

lim
t→∞Q

−1/2
t etAx = 0, x ∈ H, if and only if s(A) = sup{Re(λ) : λ ∈ σ(A)} ≤ 0.

(4.14)
Take any BHF f for St. We show that f is constant. By (4.13), we get the estimate:

‖〈Df(·), h〉‖0 = ‖〈DStf(·), h〉‖0

≤ ‖f‖0

∫

H
νt(dz)

∫

H
|〈Qt

−1/2y, Qt
−1/2etAh〉|N(0, Qt)dy ≤ |Qt

−1/2etAh| ‖f‖0,

t ≥ T, h ∈ H. Now letting t → ∞ in the last formula, we get that f is constant, using
(4.14). The assertion is proved.

The second part. Here we assume that s(A) > 0 and construct a nonconstant BHF h

for St. It was already noted that Hypotheses 4.1 and 4.2 imply that etA is compact, for
any t ≥ T . Hence, see [15], pages 330 and 247, the spectrum σ(A) consists entirely of
eigenvalues of finite algebraic multiplicity, is discrete and at most countable. Moreover,
for any r ∈ R, the set

{µ ∈ σ(A) : Re(µ) ≥ r} is finite. (4.15)

It follows that there exists an isolated eigenvalue µ such that s(A) = Re(µ). Using this
fact, the claim follows by the next result.

Proposition 4.6 Let St be a generalised Mehler semigroup on H. Assume that there
exists an isolated eigenvalue µ of A with finite algebraic multiplicity and such that
Re(µ) > 0. Then there exists a nonconstant BHF h for St.
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Proof Let D0 be the finite dimensional subspace of H consisting of all generalised
eigenvectors of A associated to µ.

Let P0 : H → D0 be the linear Riesz projection onto D0 (not orthogonal in general),

P0x =
1

2πi

∫

γ
(w −A)−1x dw, x ∈ H, (4.16)

where γ is a circle enclosing µ in its interior and σ(A)/{µ} in its exterior, see for instance
Lemma 2.5.7 in [10] and [15, page 245]. We have H = D0⊕D1, where D1 = (I−P0)H.
The closed subspaces D0 and D1 are both invariant for etA and moreover D0 ⊂ D(A).
We set A0 = AP0 and further A1 = A(I − P0), where

A0 : D0 → D0, A1 : (D(A) ∩D1) ⊂ D1 → D1. (4.17)

The operator A0 generates a group etA0 on D0 and A1 generates a C0-semigroup etA1

on D1. The projection P0 commutes with etA and the restrictions of etA to D0 and D1

coincide with etA0 and etA1 respectively. Moreover on D0 one has: σ(A0) = {µ}. By
means of P0, let us define a generalised Mehler semigroup S0

t on D0,

S0
t f(a) =

∫

H
f(etAP0a + P0y)µt(dy) =

∫

D0

f(etA0a + z)(P0 ◦ µt)(dz),

where t ≥ 0, a ∈ D0, f ∈ Bb(D0) and (P0 ◦ µt) is the probability measure on D0 image
of µt under P0. Suppose that we find g : D0 → R, such that

S0
t g(a) = g(a), a ∈ D0, (4.18)

i.e., g is a BHF for S0
t . Then, defining h(x) = g(P0x), x ∈ H, we get that h is a

nonconstant BHF for St. Thus our aim is to construct a nonconstant BHF g for S0
t .

Note that

ˆ(P0 ◦ µt)(y) = µ̂t(P ∗
0 y) = exp

(
−

∫ t

0
ψ(P ∗

0 erA∗y)dr
)
, y ∈ D0.

Since D0 is finite dimensional, the negative function ψ0 : D0 → C, ψ0(s) = ψ(P ∗
0 s),

s ∈ D0, corresponds to a Lévy process Lt with values in D0 and defined on a stochastic
basis (Ω,F , (Ft)t≥0,P). The law νt of Lt verifies:

ν̂t(y) = exp(−tψ(P ∗
0 y)), y ∈ D0, t ≥ 0.

Let us consider the process X̃a
t on D0,

X̃a
t = etA0a +

∫ t

0
e(t−s)A0dLt, t ≥ 0, a ∈ D0. (4.19)

It is clear that the law of X̃0
t is just (P0 ◦ µt), t ≥ 0. This implies that the Markov

semigroup associated to X̃a
t is S0

t .
We have reduced our initial problem of finding a nonconstant BHF for St to a

corresponding finite dimensional problem. Now in order to construct a nonconstant
function g such that (4.18) holds, we can apply [27, Proposition 3.6]. The proof is
complete.
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Remark 4.7 Here we show a possible improvement of Hypothesis 4.3.
Let F(H) be the subspace of L(H) consisting of all finite rank operators R which

commute with etA, i.e., RetA = etAR, t ≥ 0.

For any R ∈ F(H), MR denotes the spectral Lévy measure on ImR = R(H) corre-
sponding to ψR through formula (2.2), where ψR(s) = ψ(R∗s), s ∈ R(H); note that ψR :
R(H) → C is a continuous, negative definite function such that ψR(0) = 0. Moreover
the image of µt under R, has characteristic function

ˆ(R ◦ µt)(h) = exp
(
−

∫ t

0
ψR(esA∗h)ds

)
, h ∈ R(H), t ≥ 0.

It is straightforward to check that the second part of Theorem 4.1 continues to hold if
Hypothesis 4.3 is replaced by the following weaker assumption:

∫

P (H)
(log |y| ∨ 0)MP (dy) < ∞, for any projection P ∈ F(H)

Remark 4.8 One can extend the definition of generalised Mehler semigroup and show
that Theorem 4.1 holds true in this more general setting.

A shifted generalised Mehler semigroup Pt, acting on Bb(H), is given by

Ptf(x) =
∫

H
f(etAx + etAh− h + y)µt(dy), t ≥ 0, x ∈ H, f ∈ Bb(H), (4.20)

compare with (2.3), where etA is a C0-semigroup on H, µt, t ≥ 0, is a family of probability
measures on H satisfying (2.4) and h is a fixed vector in H. It is straightforward to
verify that Pt is a Markov semigroup acting on Bb(H).

An example of shifted generalised Mehler semigroup is the Markov semigroup Pt

associated to the Markov process Jx
t ,

Jx
t = Xx+h

t − h, t ≥ 0, x ∈ H,

where Xx
t is the mild solution to (4.6). If in addition we assume that h ∈ D(A), then

Jx
t solves

dJt = AJtdt + Ahdt + BdWt + CdZt, J0 = x ∈ H, t ≥ 0,

under the same assumptions of Remark 4.2.
There is a one to one correspondence between BHFs for St given in (2.3) and BHFs

for Pt. Indeed if g is a BHF for Pt, then the function f , f(y) = g(y−h), y ∈ H, is a BHF
for St. Viceversa, if u is a BHF for St, then the function w, w(z) = u(z + h), z ∈ H, is
a BHF for Pt. This shows that Theorem 4.1, with the same assumptions on etA, B and
µt, holds more generally when the generalised Mehler semigroup St is replaced by the
semigroup Pt, given in (4.20), without any additional hypothesis on h ∈ H.

5 Convexity of positive harmonic functions

In this section we prove that positive harmonic functions for generalized Mehler semi-
groups are convex under suitable assumptions. This result can be regarded as a stronger
version of the first part of Theorem 4.1, see in particular Corollary 5.3.
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Theorem 5.1 Assume Hypotheses 4.1 and 4.2 and consider the generalised Mehler
semigroup St given in (2.3). Moreover suppose that

s(A) = sup{Re(λ) : λ ∈ σ(A)} ≤ 0. (5.1)

holds. Then any positive harmonic function g for St is convex on H.

The following lemma is an extension of a result due to S. Kwapien [19] (proved by him
in the Gaussian case with a similar proof).

Lemma 5.2 Under Hypotheses 4.1 and 4.2, for any nonnegative function f : H → R,
there results:

Stf(x + a) + Stf(x− a) ≥ 2Ct(a) Stf(x), x, a ∈ H, (5.2)

where Ct(a) = exp
(
− 1

2 |Q
−1/2
t etAa|2

)
, t > 0.

Proof Using the notation in (4.12), we have:

Stf(x) =
∫

H
νt(dz)

∫

H
f(etAx + y + z)N(0, Qt)(dy), t ≥ 0.

By the Cameron-Martin formula, one finds:

Stf(x + a) =
∫

H
νt(dz)

∫

H
f(etAx + y + z)

dNetAa,Qt

dN0,Qt

(y)N0,Qt(dy)

=
∫

H
νt(dz)

∫

H
f(etAx + y + z) exp

[
− 1

2
|Q−1/2

t etAa|2 + 〈Q−1/2
t etAa,Q

−1/2
t y〉

]
N0,Qt(dy).

It follows that
1
2
(Stf(x + a) + Stf(x− a))

= e−
1
2
|Q−1/2

t etAa|2
∫

H
νt(dz)

∫

H
f(etAx + y + z)

1
2

(
e〈Q

−1/2
t etAa,Q

−1/2
t y〉

+ e−〈Q
−1/2
t etAa,Q

−1/2
t y〉

)
N0,Qt(dy)

≥ exp
[
− 1

2
|Q−1/2

t etAa|2
] ∫

H
νt(dz)

∫

H
f(etAx + y + z)N0,Qt(dy)

= Ct(a) Stf(x).

Proof of Theorem 5.1. By the previous lemma, we have:

1
2
(g(x + a) + g(x− a)) =

1
2
(Stg(x + a) + Stg(x− a))

≥ exp
[
− 1

2
|Q−1/2

t etAa|2
]
Stg(x) = exp

[
− 1

2
|Q−1/2

t etAa|2
]
g(x).

Passing to the limit as t →∞, we infer, see (4.14),

1
2
(g(x + a) + g(x− a)) ≥ g(x), x, a ∈ H. (5.3)

By a classical result due to Sierpinski, see [30], this condition together with the mea-
surability of g imply the convexity of g.
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Corollary 5.3 Under the assumptions of Theorem 5.1, any bounded harmonic function
g for St is constant on H.

Proof We may assume that that 1 − g is a nonnegative BHF (otherwise replace g by
g

‖g‖0 ). Using 1− g instead of g in (5.3), we obtain:

1
2
(1− g(x + a) + 1− g(x− a)) = 1− 1

2
(g(x + a) + g(x− a)) ≥ 1− g(x)

It follows that g(x + a) + g(x− a) ≤ 2g(x) and so, by (5.3),

g(x + a) + g(x− a) = 2g(x), x ∈ H. (5.4)

Note that, by Lemma 4.5, g is continuous on H. Since any continuous function which
satisfies identity (5.4) is affine, we have g(x) = g(0) + 〈h, x〉 for some h ∈ H. It follows
that g is constant.

6 Open questions

Problem 1. It is not known, even in finite dimension and for strong Feller Gaussian
Ornstein-Uhlenbeck semigroups Pt, if the hypothesis

sup{Re(λ) : λ ∈ σ(A)} ≤ 0

implies that all PHFs for Pt are constant (compare with Theorems 4.1 and 5.1).
A partial positive answer can be given in R2, see [8], and more generally in Rn,

assuming in addition that the dimension of the Jordan part of A corresponding to
eigenvalues in the imaginary axis is at most two. This condition is equivalent to the
recurrence of a strong Feller Gaussian Ornstein-Uhlenbeck process Xt in Rn, see [13], [16]
and [33]. Remark that for recurrent processes with strong Feller transition semigroups all
positive harmonic functions, or even more generally all excessive functions, are constant,
see [4].

We also mention the following related result, which has been recently proved in [18].
Let L be the Ornstein-Uhlenbeck operator on Rn,

Lu(x) =
1
2
Tr (QD2u(x)) + 〈Ax,Du(x)〉, x ∈ Rn,

where Q and A are real n×n matrices and Q is symmetric and nonnegative definite. As-
sume that L is hypoelliptic (or equivalently that the corresponding Ornstein-Uhlenbeck
semigroup Pt is strong Feller, see for instance [20]). In [18] it is shown that if 0 is the
only eigenvalue of A and if in addition the matrix Q is degenerate, then any nonnegative
classical solution to Lu(x) = 0, x ∈ Rn, is constant on Rn.

Problem 2. Given a generalised Mehler semigroup St, acting on Bb(H), it is an open
problem to find conditions on the drift operator A and on the exponent ψ in order to
construct a càdlàg Markov process Yt with values in H, having St as the associated
Markov semigroup. In [17] such a process is constructed only on an enlarged Hilbert
space E, containing H.
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