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Abstract: Malignant melanoma represents the most fatal skin cancer due to its aggressive biological
behavior and high metastatic potential. Treatment strategies for advanced disease have dramatically
changed over the last years due to the introduction of BRAF/MEK inhibitors and immunotherapy.
However, many patients either display primary (i.e., innate) or eventually develop secondary (i.e.,
acquired) resistance to systemic treatments. Treatment resistance depends on multiple mechanisms
driven by a set of rewiring processes, which involve cancer metabolism, epigenetic, gene expression,
and interactions within the tumor microenvironment. Prognostic and predictive biomarkers are
needed to guide patients’ selection and treatment decisions. Indeed, there are no recognized clinical
or biological characteristics that identify which patients will benefit more from available treatments,
but several biomarkers have been studied with promising preliminary results. In this review, we will
summarize novel tumor metabolic pathways and tumor-host metabolic crosstalk mechanisms leading
to melanoma progression and drug resistance, with an overview on their translational potential as
novel therapeutic targets.

Keywords: melanoma; metabolic reprogramming; immunometabolism; soluble factors; tumor
microenvironment; targeted therapy; immunotherapy

1. Introduction

Cutaneous melanoma represents 5.6% of all new cancer cases in the United States
(US) [1]. According to the Surveillance, Epidemiology, and End Results (SEER) database,
the 5-year relative survival rate for patients with cutaneous melanoma (all stages) exceeds
93%, ranging from 99% for localized and early-stage disease to less than 30% for metastatic
disease [1]. Over the last years, the prognosis of patients with advanced/metastatic
melanoma has significantly improved with the introduction of novel therapeutic strategies.
These include drugs targeting the mitogen activated protein-kinase (MAPK) pathway,
namely, BRAF and MEK inhibitors, in patients with BRAF mutant melanoma (i.e., approxi-
mately 50% of patients with cutaneous melanoma) [2,3]. To date, three different targeted
therapies against BRAF and MEK have been approved for the treatment of advanced
unresectable/metastatic melanoma, namely, vemurafenib plus cobimetinib, dabrafenib
plus trametinib, and encorafenib plus binimetinib [2–4]. The combination of dabrafenib
and trametinib has recently demonstrated to provide sustained relapse-free survival im-
provement as an adjuvant treatment for resected stage III melanoma, thus, being approved
in this therapeutic setting [5].

Another therapeutic strategy consists of the use of monoclonal antibodies targeting
immune checkpoint molecules, such as the anti-cytotoxic T-lymphocyte antigen 4 (CTLA-4)
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antibody, ipilimumab, and the anti-programmed cell death 1 (PD-1) antibodies, nivolumab
and pembrolizumab [6–9]. Given the survival advantages with a more favorable toxicity
profile, anti-PD1 treatment has become the standard first line immunotherapy strategy,
while anti-CTLA-4 is commonly used in further lines of treatment in case of disease pro-
gression on previous anti-PD1 therapy. The combination of ipilimumab plus nivolumab
has demonstrated to provide further improvements in survival outcomes, also in chal-
lenging subpopulations of patients (e.g., patients with brain metastases), however, with a
higher rate of immune-related adverse events [8]. Anti-PD1 treatment has recently become
standard of care in the adjuvant setting for patients with resected stage III (pembrolizumab
or nivolumab) or stage IV melanoma with no evidence of disease (nivolumab) [10,11].

Despite the undoubted therapeutic advances, the majority of patients with metastatic
melanoma will still die from their disease, either because of primary (i.e., innate) or sec-
ondary (i.e., acquired/adaptive) resistance mechanisms (Figure 1) [12–14]. Several different
predictive and prognostic biomarkers have been investigated to improve patients’ selec-
tion and risk stratification, however, with disappointing and inconsistent results [15–18].
Intense research is, therefore, required to understand the biologic and molecular features of
aggressive melanoma and the mechanisms underlying treatment resistance [13] to increase
therapeutic possibilities.
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Figure 1. Role of the mitogen activated protein kinase (MAPK) pathway in melanoma cells and targets of BRAF and MEK
inhibitors. In normal cells, external growth stimuli trigger receptor tyrosine kinase (RTK), activating the MAPK pathway
kinase cascade. In BRAF-driven melanoma, mutant BRAF (BRAF V600E) can start signaling independently of growth
factor signal to hyperactivate cellular growth. BRAF mutated melanoma responds to BRAF/MEK inhibitors-targeted
therapy. However, various intrinsic or adaptive resistance mechanisms attenuate response to targeted BRAF inactivation,
deregulating signaling and rewiring cell metabolism.

Metabolic rewiring (i.e., glycolysis and/or oxidative phosphorylation OXPHOS path-
ways) in melanoma, and the metabolic crosstalk between melanoma cells and the com-
ponents of the tumor microenvironment (TME), represent an intriguing field of research
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due to the role of metabolic process in supporting tumor survival and progression but also
drug resistance [19–23] (Figure 1).

In this review, we explore the symbiotic relationship between melanoma and im-
mune/stromal cells, focusing on metabolic plasticity of melanoma and immune cells
within the TME and metabolic soluble factors that promote melanoma aggressiveness
and immune evasion. We also discuss the ongoing clinical trials and future potential
combination strategies exploiting metabolic players in cutaneous melanoma to further
improve therapeutic outcomes.

2. Tumor Metabolic Plasticity Driving Melanoma Progression and Resistance

Metabolic reprogramming has been widely accepted as one of the hallmarks of can-
cer [19,24]. Tumor cells must adapt their metabolic needs to support sustained proliferation,
growth, and metastatic potential [25]. To achieve this, cancer cells usually switch from a
mitochondrial oxidative metabolism to a glycolysis-based metabolism, a process known
as the “Warburg effect”. In 1920, Otto Warburg first defined this metabolic feature of
tumors, which showed high rates of glucose uptake and lactate secretion, even in the
presence of oxygen (i.e., aerobic glycolysis) [23,26,27]. This paradigm has slightly changed
since it is now recognized that several tumors use OXPHOS, rather than glycolysis, as
the preferential method for energy production [28,29]. Several intrinsic factors in tumor
cells, mainly driven by oncogenes activation and tumor suppressor genes inactivation,
together with the hypoxic condition and nutrients competition within the TME, drive the
acquisition of such metabolic pathways (Figure 2) [24,30]. The BRAF oncogene has emerged
as a critical regulator of these processes in melanoma cells, underlying the importance of
metabolic rewiring in the pathogenesis and treatment of metastatic melanoma. In the early
phase of its development, melanoma is characterized by a glycolytic metabolism [31–33].
BRAF mutations lead to MAPK pathway hyperactivation and subsequent stimulation of
transcription factors such as MYC and hypoxia inducible factor-1α (HIF-1α), which are
key regulators of glycolysis, inducing transcription of several genes involved in glucose
metabolism (i.e., glucose transporter 1 (GLUT1), hexokinase (HK2), and lactate dehydro-
genase (LDH)) [31,34]. In parallel, BRAF mutations actively inhibit OXPHOS, repressing
expression of microphthalmia-associated transcription factor (MITF) and its target peroxi-
some proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), a key regulator
of mitochondrial functions [35–37]. Treatment with BRAF and MEK inhibitors rapidly
and significantly reduces the addiction of melanoma cells to glycolytic processes [31,38].
However, increasing evidence has demonstrated that melanoma is a highly heterogeneous
tumor, and subsets of melanoma possess an oxidative metabolism, correlating with poorer
survival, progression, and metastasis [21,22,37,39]. Higher OXPHOS is driven by elevated
expression of PGC-1α. These tumors show an improved tolerance to the detrimental
effects of reactive oxygen species (ROS), indicating their increased ability to survive under
conditions of oxidative stress [39]. It is, therefore, clear that both glycolysis and OXPHOS
play a significant role in metabolic reprogramming of melanoma cells, and that there is
a dynamic switch and plasticity between these two metabolic phenotypes [21,28,40]. In
addition, some melanomas show a “hybrid” glycolysis/OXPHOS metabolic phenotype,
meaning that tumor cells have the flexibility to use different energy sources and nutrients
to adapt their growth according to different TME conditions [33,39,41].

Metabolic plasticity is essential during the onset of resistance to BRAF inhibitors. In
resistant patients there is a switch from glycolysis to a mitochondrial metabolism [34,42,43].
One hypothesis to explain this phenomenon is that this metabolic oxidative profile pre-
exists in some cell clones, and that treatment leads to the selection of these cell clones.
Another possibility is that tumor cells acquire resistance as a consequence of treatment,
following drug exposure. The main molecular player of this metabolic phenotype is the reac-
tivation of the MITF/PCG-1α axis, driving increased mitochondrial content, mitochondrial
activity, and mitochondrial oxidative capacity [37,39]. This adaptive metabolic program lim-
its the efficacy of BRAF inhibitors and is responsible for adaptive resistance [37,39,43–45].



Biomedicines 2021, 9, 607 4 of 23

Overall, it is clear that metabolic plasticity confers to melanoma cells a significant advan-
tage to adapt their growth to different environmental conditions and to increase their
survival, even under drug-imposed selective pressures.
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Figure 2. Key intrinsic and extrinsic factors contributing to metabolic reprogramming in metastatic melanoma (MM) cells.
The oncogenic BRAF mutated molecular pathway, leading to the overactivation of MAPK, drives metabolic reprogramming
in melanoma cells, promoting glucose metabolism (intrinsic factors). However, some melanomas rely on oxidative
phosphorylation (OXPHOS), suggesting a metabolic plasticity that supports melanoma progression and resistance to drugs.
During the onset of BRAF resistance, prolonged inhibition of BRAF/MEK decreases glycolysis, leading to a dependence
on mitochondrial metabolism. Metabolic rewiring of MM cells is also regulated by several extrinsic factors, such as
the availability of nutrients, hypoxic conditions, and acidity of the TME, as well as the interplay with stromal/immune
cells within the TME. The progressive metabolic reprogramming in melanoma is accompanied by a drastic increase in
tumor aggressiveness.

3. Metabolic Exchanges within the TME: Soluble Factors

Metabolic conditions in the TME are influenced by many factors, including oxygen lev-
els, gradients of nutrients, soluble molecules, tissue vascularization, interactions between
tumor and stromal/immune cells, and systemic metabolism (Figure 2). Recent detailed
reviews summarized this complex network of metabolic crosstalk within the TME [46–50].
Here, we discuss the main players of this complex network, focusing on melanoma–TME
metabolic crosstalk.

3.1. Lactate Shuttling in Cancer Cell Metabolism

The concept describing lactate as solely a hypoxic waste product has changed in the
last decades. It is clear that lactate is both a potent fuel and a critical signaling molecule, and
it is constantly being produced and circulated throughout the body, even in the presence
of adequate O2 levels [51]. For these reasons, it is widely accepted that lactate is a key
intermediate metabolite in cellular metabolism. The “lactate shuttle hypothesis”, originally
introduced by George Brooks in 1986 [52], describes how in normal physiology, as well
as in pathophysiology, lactate shuttling between and among cells satisfies at least three
purposes for lactate: (i) a major energy source, (ii) the major gluconeogenic precursor
in Cori cycle, and (iii) a signaling molecule with autocrine, paracrine, and endocrine-
like properties [51]. Exchanges between lactate “producer” and “consumer” exist within
cell “intracellular lactate shuttle” and among cells, tissues, and organs “cell–cell lactate
shuttle” [53]. Lactate can be exported or up-taken across biological membranes through
monocarboxylate transporters (MCTs). Importantly, MCTs are bidirectional, allowing for
tissues to switch between lactate release and uptake depending on changes in concentration
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and pH. Usually, MCT1 is typically expressed in cells importing lactate, while MCT4 is
expressed in cells exporting lactate [54].

Tumor mass, as previously discussed, is characterized by a metabolic plasticity and het-
erogeneity among tumor cells; moreover, different tumor types rely on multiple metabolic
pathways. Lactate is an essential metabolite present in the TME and can be shuttled
to and from cancer cells and is highly correlated with cancer aggressiveness and poor
survival [55–57]. The traditional “Warburg Effect” describes glycolytic tumors relying
highly on glucose uptake (via GLUTs transporters) with subsequent lactate exportation (via
MCT4) in normoxia. In this context, other cancer cells within the tumor mass and/or tumor
stromal cells can then take up lactate (via MCT1) to fuel their oxidative metabolism and ac-
tivate signaling [57,58]. Increasing knowledge on cancer metabolism supports the idea that
lactate production, “lactagenesis”, is the purpose of the Warburg Effect. As discussed by
San-Millan and Brooks in 2017, lactagenesis is a highly orchestrated effort from oncogenes
and tumor suppressor mutations for continuous glucose utilization to produce lactate,
involving five major steps: (i) increased glucose uptake through upregulation of GLUT
transporter expression; (ii) upregulation of glycolytic enzyme expression; (iii) decreased
mitochondrial respiration; (iv) increased lactate production, accumulation, and release; and
(v) upregulation of MCT expression for further lactate shuttling and promotion of carcino-
genesis [57]. Secreted lactate is necessary for supporting angiogenesis, immune escape, cell
migration, metastasis, and metabolic self-sufficiency of cancer cells [57,59]. On the contrary,
in the “Reverse Warburg Effect” theory, lactate is produced by glycolytic stromal cells and
utilized by cancer cells, via the tricarboxylic acid (TCA) cycle and OXPHOS, as a major
source of energy. Overall, lactate plays a critical role in several aspects of tumor biology,
including in melanoma, as reviewed in the next sections.

3.2. The Role of Lactate: TME Acidification

The acidification of microenvironment is a hallmark of melanoma altering metabolic
adaptation, proliferation, survival, migration, and invasion [44]. The upregulation of gly-
colysis in melanoma leads to protons and LDH-dependent lactate generation [60]. Protons,
as lactate, are transported out of cancer cells through MCT4 [54,60]. Hypoxia, resulting
also both both tumor and endothelial cells’ high oxygen consumption, sustains acidosis
through the upregulation of the glycolytic pathway, mostly linked to the stabilization of
HIF-1α [60,61]. Over-expression of GLUT1 and MCT4 are significantly correlated with
progression from primary tumor to lymph node metastasis in a cohort of patient-derived
melanoma samples, suggesting that the Warburg phenotype, lactate and protons secretion,
drastically alters the melanoma microenvironment, facilitating angiogenesis, promoting
melanoma metastasis, and suppressing the immune system [62,63].

In order to promote melanoma invasiveness and metastasization, lactate can con-
tribute to tumor escape from immune responses by altering cytotoxic T lymphocytes
(CTLs) metabolism and function [64,65], as summarized in Figure 3. High levels of lactate
are associated with a significant decrease of CD8+ T and natural killer (NK) cell number and
activity, both in vitro and in vivo [66]. Furthermore, lactate can also induce macrophage
phenotype plasticity, promoting pro-tumoral M2-like features [62,67]. In addition, it pre-
vents the maturation of dendritic cells (DCs), resulting in increased immunosuppressive
IL-10 cytokine levels in the TME [62].

Melanoma microenvironment acidification hampers immunotherapy response [44].
LDH serum level is a well-known prognostic factor in melanoma, and it also affects re-
sponse, progression-free survival (PFS), and overall survival (OS) of melanoma patients
treated with immune-checkpoint inhibitors [68]. Therefore, the efficacy of immunotherapy
could be improved by counteracting microenvironment acidification and lactate extracellu-
lar accumulation, as suggested by recent studies [68–70].
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Figure 3. Soluble factors and immunometabolic interplay within the TME. Melanoma is usually surrounded by a wide array
of stromal cells (CAFs) and infiltrating immune cells of both innate and acquired immunity, such as MDSCs, MO-TAMs,
DCs, NK cells, and T lymphocytes. They form complex interactions and exchange of soluble factors with melanoma cells
that modulate metabolic plasticity of cellular components and support tumor growth by creating a tolerogenic environment
that enables cancers to evade immune surveillance and destruction, as detailed in the text. MO-TAM: tumor-associated
macrophages; DC: dentric cell; CTL: cytotoxic T lymphocytes; NK: natural killer cell; Treg: T-regulatory lymphocyte; MDSC:
myeloid-derived suppressive cells; CAF: cancer-associated fibroblasts.

3.3. The Reverse Warburg Effect: Melanoma Cells and Fibroblasts Crosstalk

Metabolic reprogramming involves not only cancer cells but also cellular components
of the TME, namely, cancer-associated fibroblasts (CAFs), the most abundant pro-tumoral
population within tumor stroma [41,46,71]. The progressive acidification of TME and
hypoxic conditions modify the metabolic interactions between cancer cells and stroma.
CAFs are reprogrammed toward a glycolytic phenotype upon interaction with cancer cells,
an effect called “Reverse Warburg”, Figure 3 [72–74]. ROS produced by cancer cells further
stimulate CAFs glucose upload and lactate secretion via MCT4 [75,76]. In turn, lactate and
metabolites secreted by CAFs can be taken up by tumor cells via MCT1 to feed into the
TCA cycle for OXPHOS-mediated energy production [77]. This Reverse Warburg effect
was initially reported in a variety of cancers, including prostate and breast [46,74], and
has been confirmed also in melanoma [21,39,78]. Increasing evidence has highlighted the
contribution of CAFs to disease progression, metastasis, and drug resistance in melanoma,
via both direct cell–cell interaction and chemical interplay (CAF’s secretome) to distant
cells [79–81]. CAFs-tumor crosstalk is mediated by secretion of extracellular vesicles
(EVs), such as exosomes, important factors in pre-metastatic niche formation [82]. The
composition of exosomes is complex and not fully elucidated; however, it includes proteins,
lipids, metabolites, nucleic acids, and microRNA, which can be trafficked in circulation
and internalized by recipient cells to exert their effect [46,83]. Understanding the metabolic
interplay between CAFs and other stromal cells with melanoma can determine drivers
of cancer progression and potentially lead to the discovery of prognostic and predictive
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cancer biomarkers and novel anti-cancer therapies. Moreover, these findings highlight
that melanoma cells can shift from glycolysis to OXPHOS and vice versa, depending on
the TME conditions and interaction with microenvironmental populations, and prompt
further research to develop more effective glycolysis and/or OXPHOS inhibitors that can
be associated with conventional therapies.

4. Immunometabolic Interplay within the TME

Immune cells, together with stromal cells, are critical components of the TME. There
is growing interest in studying the dynamic metabolic interactions occurring between
melanoma cells and the immune cells, as summarized in Figure 3, to discover potential
novel targets to combine with immunotherapy. Additionally, immune cells undergo
different metabolic reprogramming mechanisms and adapt their metabolic pathways to
external conditions and upon interaction with cancer cells [49,84,85]. For example, M1
anti-inflammatory macrophages exhibit a glycolytic phenotype, while tumor associated
macrophages (TAMs) or M2-like macrophages cells utilize OXPHOS as their main source
of adenosine triphosphate (ATP), and neutrophils prevalently use glycolysis [84,85]; on the
contrary, DCs extensively rely on OXPHOS to produce ATP, to switch toward a glucose
metabolism upon activation [62]. T cells possess metabolic plasticity depending on their
activation state and the subclass of T cells to which they belong: activated effector T cells
adopt a glycolytic phenotype [77], T regulatory cells (Tregs) are highly oxidative cells, while
regulatory T helper-17 (Th17) cells depend on glycolysis [84–86].

The crosstalk between these immune cell populations and cancer cells can impact and
deregulate metabolic pathways affecting immune responses and creating an immunosup-
pressive TME. In addition, the availability of nutrients within the TME and the presence
of soluble metabolites and enzymes secreted by both tumor and immune cells in the
extracellular environment can alter the phenotype and the functionality of immune cells.

4.1. Nutrient Availability and Metabolic Competition between Tumor and Immune Cells

The nutrient competition among cells within the TME can influence tumor cell growth,
survival, and aggressive features. At the same time, the abundance or the deprivation
of glucose, lactate, glutamine, amino acids, fatty acids, and other metabolites, as well
as growth factors, significantly affect immune cell functions, leading to cancer progres-
sion [87]. The most evident and studied effect of nutrient competition within the TME
is on T cell functions [88]. Cancer cells can evade the immune system by triggering T
cell dysfunction, a condition called exhaustion, or by activating immune checkpoints that
inhibit T cell function. Tumors can dampen T cell function by competing for glucose [89,90].
Different papers have revealed that aerobic glycolysis in tumors results in a glucose-poor
microenvironment causing T cell exhaustion, demonstrating that metabolic competition,
as a distinct mechanism, can lead to T cell hyporesponsiveness. In 2015, Chang et al.
demonstrated that glucose consumption by glycolytic tumors can metabolically restrict
T cells, which completely depend on aerobic glycolysis to exert effector activities [91,92],
directly dampening their effector function and allowing tumor progression [93]. Moreover,
tumor-derived lactate can also suppress T cell function by blocking lactate export [64],
which disrupts their ability to maintain aerobic glycolysis. As a mechanism of adaptation
in a glucose-poor microenvironment, T cells preferentially differentiate into Treg lympho-
cytes, probably because their oxidative phenotype is metabolically suited to survive in this
environment [94].

It has been described that the competition for glucose can affect tumor infiltrating
lymphocytes (TILs) activity in melanoma. Glucose deprivation increases secretion of
transforming growth factor-β (TGF-β), decreasing concentration of interferon-γ (IFN-γ),
which is essential for cytotoxic activity of T cells and to inhibit growth of murine B16
melanomas [95,96]. Interestingly, IFN-γ translation can be inhibited by the glycolytic
enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) when it is not engaged
in glycolysis, highlighting the importance of glucose metabolism for maintenance of T
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cell function [93]. Recently, a connection between the expression of PD-L1 and PD-1
and glucose metabolism has been evidenced in melanoma and in other solid tumors.
Immune-checkpoint molecule expression not only suppresses T cell function but also
enhances aerobic glycolysis in cancer cells, further limiting the availability of glucose for T
cells, increasing their dysfunctions [97]. Increasing data suggest that checkpoint blockade
antibodies, affecting glucose metabolism, might be more effective against tumors with
higher glycolytic flux [88,92]. For these reasons, the glycolytic rate of a tumor could be used
as a prognostic/predictive tool to determine the efficacy of these treatments. Therefore,
glucose metabolism through the glycolytic pathway is central in shaping T cell responses
and is emerging as an ideal target to improve the efficacy of cancer immunotherapy [92]. In
addition, it has been shown that enhancing fatty acid (FA) catabolism in conditions of low
O2 and glucose improves TILs’ ability to kill cancer cells and that the use of peroxisome
proliferator-activated receptor (PPAR)-alpha agonist enhances the therapeutic effect of
PD-1 blockade in melanoma [98].

Similar to glucose metabolism, amino acid metabolism can play a regulatory role in T
cell activation. For example, tumor indoleamine 2,3-dioxygenase (IDO), an enzyme that
converts tryptophan to kynurenine, has been shown to deplete the essential amino acid,
tryptophan, in the microenvironment, resulting in T cell inhibition [99], as detailed later in
this review.

4.2. Adenosine Metabolism: A Critical Immunosuppressive Metabolite

A major feature of melanoma cells is their ability to escape the immune surveillance.
Adenosine (ADO) is one of the main metabolites present in the TME that generates immuno-
suppressive conditions [100–102]. Metabolic stress and cell damage caused by hypoxia
and inflammation lead to an enhanced hydrolysis of ATP into ADO through the enzymatic
activity of two cell-surface ectonucleotidases, CD39 and CD73 [103–106]. Either produced
by tumor cells and/or by immune suppressive cells, ADO accumulates in tumor tissues
where it suppresses T effector cell functions, reducing their proliferation, cytotoxic activity,
and pro-inflammatory cytokine secretion, including IFN-γ, tumor necrosis factor (TNF)-β,
and IL-2, by binding to purinergic receptors A2aR and, partially, A2bR [101,107–112]. These
receptors are Gs-coupled receptors that, by increasing intracellular cyclic AMP (cAMP)
levels, mediate the immune suppressive effects of ADO, facilitating tumor progression.
In addition, A2aR stimulation reduces the expression of CD25 and CD40 ligand (CD40L)
and increases the expression of PD-1 and CTLA-4 on T cells [113]. ADO also promotes
immunosuppression by increasing IL-10 secretion and expression of immunosuppressive
proteins, such as IDO, TGF-β, and arginase-2, promoting peripheral tolerance by inducing
T-cell anergy and also metabolic dysregulation [112,114–116].

By inducing a dysfunction in the immune responses, the CD39/CD73/ADO axis is
apparently relevant for melanogenesis [117–120]. ADO interferes with signals mediated
by IL-2 receptor and exerts a direct anti-proliferative effect on naive CD4+T and CD8+T
cells in melanoma TME [108]. Therefore, ADO has been suggested as a key player for
melanoma cells escaping from adaptive immune control (Figure 3) [121]. Immune and
melanoma cells express both CD73 and ADO receptors. A2aR expression in human
melanoma cell lines was originally reported by Merighi et al. This study demonstrated
that ADO enhances melanoma cell proliferation through A2aR activation [122]. The first
evidence of the role of A2aR in vivo in the control of melanoma growth has been reported
by Ohta et al., showing that 60% of A2aR deficient mice completely rejected established
immunogenic tumors by anti-tumor CD8+T cells [107]. These results were confirmed some
years later by Waickman et al. using a different disease model (i.e., lymphoma), suggesting
that A2aR is an attractive target for tumor immunotherapy that synergizes with other
immunomodulatory approaches [123,124].

Recent findings have demonstrated that the activation of the MAPK pathway leads
to CD73 over-expression on the surface of melanoma cells, thus, promoting an invasive
phenotype. Conversely, CD73 reduction is followed by blocking the BRAF/MEK signal-
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ing [125–127]. Moreover, recent studies have also demonstrated that Treg and myeloid-
derived suppressor cells (MDSCs) lead to the up-regulation of CD73/CD39 expression in
both primary melanoma and lymph nodes, therefore, enhancing an immunosuppressive
function [128,129]. In addition, high basal levels of soluble CD73 have been associated with
low response rates in melanoma patients receiving immunotherapy, suggesting that CD73
potentially represents a prognostic biomarker of survival during treatment [130].

Overall, these findings provide the rationale for future therapeutic strategies mostly
aimed at inhibiting CD73 signaling and A2aR blocking, in combination with targeted
therapies and/or immunotherapy [102,112,124].

4.3. Indoleamine-2,3-dioxygenase (IDO)-Kynurenine Metabolism

Another critical player in driving immune tolerance is IDO enzyme [131–134]. To-
gether with extrinsic suppression of CD8+ T effector cells by Tregs and engagement of
the inhibitory receptor PD-1 by the ligand PD-L1, the deregulation of IDO represents a
key mechanism promoting immunosuppression in melanoma (Figure 3) [135,136]. IDO
is a cytosolic, heme-dependent enzyme responsible for the rate-limiting step of de novo
nicotinamide adenine dinucleotide (NAD) synthesis from tryptophan in extrahepatic tis-
sues. By catalyzing the initial and rate-limiting step of tryptophan degradation, IDO
reduces the local tryptophan concentration and produces immune modulatory trypto-
phan metabolites [137,138]. In particular, cells expressing IDO produce the tryptophan
catabolite kynurenine, which regulates immune functions by interacting with the aryl
hydrocarbon receptor (AhR) expressed by T cells, Tregs, and DCs [139]. Kynurenine was
recently shown to favor immunosuppression in the TME, leading to induction of T-cell
anergy, apoptosis, increased conversion of naïve CD4+ T cells into Tregs, and polarization
of DCs and macrophages toward an immunosuppressive phenotype [131,134,140–143].
Expression and activity of IDO on tumor and immune cells can be modulated by several
signaling systems, including the engagement of toll-like receptors (TLRs), tumor necrosis
factor superfamily members (TNFRs), interferon beta receptor (IFNBR), interferon gamma
receptor (IFNGR), and transforming growth factor beta receptors (TGFBRs), which are able
to induce or maintain IDO expression. NF-KB activation is a central downstream signal of
these pathways regulating IDO expression [144].

Increased expression of IDO was associated with poor survival outcomes in patients
with ovarian, lung, colorectal, and breast cancer; brain tumors; and melanoma [140,145–148].
Melanoma cells can express IDO and directly mediate T cell and NK cell cytotoxicity [149].
Spranger et al. demonstrated that IDO expression, together with PD-L1, is mediated by
signals, such as IFN-γ, derived from TILs within the TME [135]. In melanoma patients and
in mouse models, IDO is expressed by antigen processing cells (APCs) in tumor draining
lymph nodes [150,151]. In a cohort of patients with early stage (i.e., stage I–II) melanoma,
IDO expression in the sentinel lymph node was an independent negative prognostic factor
for PFS and OS [152], as well as its expression in primary melanoma [148]. Moreover, a pos-
itive correlation between the high expression of IDO and clinical response to anti-CTLA-4
therapy in melanoma has been reported [153].

According to its role in driving immunosuppression, IDO has become a valid target in
cancer therapy over the last years [154,155]. Competitive inhibitors of IDO are currently
being tested in clinical trials in patients with solid cancer, including melanoma, with
the aim of enhancing the efficacy of conventional chemotherapy, vaccines, or checkpoint
inhibitors [156]. Several IDO1 inhibitors have been developed and are currently under
clinical development [157,158]. Moreno et al. demonstrated that targeting IDO with the
competitive inhibitor 1-methyl-tryptophan (1-MT) retards the proliferation of melanoma
cells in vitro [159,160]. Although monotherapy with 1-MT has little effect on the growth
of subcutaneous melanoma B16-F10 tumors, 1-MT sensitizes the tumors to chemotherapy
and whole-body radiation [161]. While promising, additional exploration is required to
further define how IDO mediates immunosuppression in melanoma and whether or not
1-MT can be combined with currently approved therapies. To date, the most advanced
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IDO inhibitor is epacadostat, a highly specific IDO1 inhibitor, which has already been
tested in several clinical trials [162,163]. However, data of epacadostat in combination
with immunotherapy in patients with melanoma have failed to demonstrate a significant
survival benefit (see further) [164]. A better understanding of IDO biology could lead
to contrast the compensatory mechanisms unleashed in the tumor cell by blocking IDO.
Clinical trials with a translational background can help improve the dynamic changes
of tumor metabolic mechanisms during treatment. However, IDO1 pathway remains a
relevant target to block in order to improve the efficacy of cancer immunotherapy.

4.4. Metabolic Enzymes/Cytokines: The Role of Nicotinamide Phosphoribosyltransferase (NAMPT)

NAD is an essential cofactor for redox reactions and the substrate for NAD-consuming
enzymes, including sirtuins, activating genetic and epigenetic pathways [165,166]. Dys-
regulation of NAD levels is a contributing factor in the pathogenesis of several diseases,
including cancer [167–169]. Given that NAD-dependent processes catabolize the molecule,
permanent NAD synthesis is required in actively proliferating cells. For this reason, cancer
metabolism rewiring is often accompanied by the upregulation of NAMPT, the key-limiting
enzyme that catalyzes the first reversible step in NAD biosynthesis from nicotinamide
(Nam) [165,168,170–172]. NAMPT is highly regulated at transcriptional levels; for example,
the oncogene c-MYC regulates the expression of NAMPT, enhancing glycolysis and lactate
production, leading to the Warburg effect [34,173,174]. Intriguingly, NAMPT has a second
life outside the cell creating immune suppressive and pro-tumor conditions [175–178].
Extracellular (e)NAMPT levels are increased in many tumors, suggesting that the molecule
is a novel player in tumor–host interactions. It binds TLR4, recently identified as a recep-
tor [179,180], on tumor or immune cells and activates several signaling pathways [166,181].
For these reasons, NAMPT was the first NAD-biosynthetic enzyme (NBE) for which a clear
potential as a therapeutic target in both solid and hematologic tumors was demonstrated.
NAMPT-specific inhibitors reduce NAD levels by inhibiting energy metabolism pathways,
such as glycolysis, TCA, and OXPHOS, contributing to the suppression of cancer cell
proliferation [178,181,182]. Unfortunately, the NAMPT inhibitors (NAMPTi) FK866 and
GMX-1778 both failed in clinical trials [182], likely because they were used in unselected
patients, suggesting that it is very important to select tumors addicted to NAMPT activity.

In the last 10 years, increasing evidence has supported a driving role of NAMPT
in melanoma progression and drug resistance [45]. NAMPT was first identified as over-
expressed in melanoma lesions compared to benign lesions at the transcriptional and
protein levels [183–185].

Audrito et al. extensively demonstrated the driver role of the NAMPT/NAD axis
in the acquisition of resistance to BRAF inhibitors: (i) NAMPT appeared to be the master
regulator of NAD biosynthesis in resistant melanoma cells, a key element involved in
metabolic reprogramming [45,186]; (ii) melanoma patients, including those resistant to
BRAF inhibitors, showed increased tissue and serum expression of NAMPT as compared
to healthy controls or to patients with localized disease. Furthermore, patients with high
eNAMPT levels have an overall reduced survival [186,187]; (iii) NAMPT over-expression
recapitulates BRAF inhibitors resistance phenotype plasticity [188], data confirmed also by
Ohanna et al. [189]; (iv) NAMPT targeting leads to NAD and ATP depletion, decreasing
cell survival and reduced tumor growth in vitro and in melanoma xenografts in immuno-
compromised mice [186]. The over-expression of NAMPT is associated with the oncogenic
activation of MAPK pathways due to BRAF mutations. Several transcription factors acti-
vated by this oncogenic signaling (including MYC, STAT3 and 5, NK-kB, and others) can
bind NAMPT promoter and induce its transcription [173,186,189]. Overall, these data con-
firm that NAMPT plays a central role in the phenotypic plasticity of melanoma, becoming
a novel therapeutic target in the clinical setting.

The role of eNAMPT in melanoma TME remains an open issue in this field. eNAMPT
can act on tumor cells activating signaling pathways that support their proliferation, in-
cluding MAPK, AKT, NF-kB, as shown in [190]. Paracrine effects of eNAMPT on stromal
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and immune cells were described in other tumor models. For example, eNAMPT is able
to polarize macrophages in M2-like type in chronic lymphocytic leukemia [191,192] and
forces the mobilization of immature MDSC and enhances their production of suppressive
nitric oxide in fibrosarcoma and breast carcinoma mouse models [193]. A recent paper high-
lights NAMPT as a critical molecule in priming pro-tumor functions of tumor-associated
neutrophils (TANs) in melanoma [194], including tumorigenic conversion of TANs and
their pro-angiogenic switch [194]. Lastly, a recent paper first provided evidence for a direct
functional correlation in liver cancer between the expression of PD-L1 and NAD-NAMPT
axis, suggesting an association between NAMPT expression and an immune escape sig-
nature [195]. NAMPT could become a predictive marker of anti-PD-L1 therapy, and this
would be an important finding if confirmed also in melanoma, thinking to combination
therapy with NAMPT inhibitor and/or blocking antibody [175,196,197] with targeted
and immunotherapy.

5. Therapeutic Perspectives: Targeting Melanoma Metabolism

To date, several metabolic targets have been investigated in advanced/metastatic
melanoma, most of which are in combination with standard therapeutic strategies, with
the aim to avoid or delay the onset of resistance mechanisms to immunotherapy and
targeted therapies. However, despite some promising preclinical results, the efforts to
target metabolic pathways for the treatment of melanoma are still in a preliminary phase
and have not modified the available treatment strategies.

5.1. Immunotherapy and Metabolic Targets

There is a strong link between cancer cell metabolism and T cell functions, as previ-
ously discussed. Several metabolic alterations and adaptive mechanisms lead to T cell
differentiation, proliferation, and tumor-promoting phenotypes. For these reasons, in-
creased attention is focused on the combination of immune checkpoint inhibitors with
agents targeting metabolic reprogramming [88].

CTLA-4 signaling inhibits glycolysis, preventing activation and differentiation of
naive CD8+ T cells [198]. PD-1/PD-L1 signaling has important metabolic effects on T cells,
leading to impaired mechanisms of energy generation and macromolecules synthesis, and
reduced cytokine secretion through the inhibition of glycolysis and upregulation of FA
oxidation [93]. PD-L1 signaling has direct metabolic effects on cancer cells: in response
to anti-PD-L1 agents, glucose uptake and lactate extrusion are decreased, suggesting that
altered PD-L1 expression directly impairs T-cell metabolism, along with favoring cancer cell
metabolic reprogramming. As a consequence, treatment with anti-PD1/PD-L1 antibodies
succeeds in restoring the metabolic balance in favor of T cells [88,92], as previously men-
tioned. Moreover, immune checkpoint molecule expression largely depends on the TME
metabolic conditions and, specifically, on extracellular adenosine levels, tissue hypoxia, and
T cells metabolic stress [199]. This evidence suggests that immunotherapy has the potential
ability to differentially target cancer and T cells through shared metabolic requirements.

Focusing on the CD73-adenosine axis, two different therapeutic strategies have been
investigated in melanoma, namely, small molecule inhibitors and monoclonal antibodies.
Combining CD73 inhibitors with both anti-CTLA-4 and anti-PD1 antibodies significantly
increased the effect of immunotherapy through an increased frequency of tumor-infiltrating
CD8+ T cells, suppressed Treg accumulation within tumor tissues in murine melanoma
models, and enhanced T cell responses [200,201]. This effect was more pronounced in
tumors with high expression levels of CD73, suggesting that CD73 could be used as a po-
tential biomarker to select patients who are more likely to benefit from combination therapy.
However, these findings should still be verified and confirmed in the clinical setting.

In addition, as previously discussed, targeting IDO could also be a novel therapeutic
strategy in combination with immunotherapy. The largest phase III trial to date evaluating
the IDO inhibitor, epacadostat, in combination with the anti-PD1 antibody, pembrolizumab,
in advanced melanoma patients, was the ECHO-301/KEYNOTE-252 [163]. This double-
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blind trial randomized over 700 patients with unresectable or metastatic melanoma in a
1:1 ratio to receive pembrolizumab in combination with epacadostat or placebo. Despite
the promising preclinical findings and early-stage data from the phase I/II trial ECHO-
202/KEYNOTE-037, the final results of the phase III trial did not show any survival
benefit in patients treated with the combination therapy as compared to pembrolizumab
alone [163,164]. These disappointing results suggest that some points still need to be
elucidated, mainly, which is the best clinical setting for IDO1 inhibition to be used.

5.2. Targeted Therapy and Metabolic Targets

As discussed before, BRAF oncogene plays a key role in the metabolic reprogramming
of melanoma cells. Moreover, metabolic adaptation both occurs in response to MAPK
pathway inhibition and also contributes to resistance mechanisms during treatment with
BRAF and MEK inhibitors [202].

The combination of BRAF and MEK inhibitors with drugs targeting OXPHOS is a
promising strategy to enhance the effect of MAPK pathway inhibition and overcome drug
resistance [43,203–205]. Several drugs increase the efficacy of MAPK inhibitors to induce
cell death in melanoma by acting on mitochondrial bioenergetics of tumor cells. Non-
steroidal anti-inflammatory drugs (NSAID), diclofenac and lumiracoxib, increased the
anti-glycolytic impact of BRAF inhibitors and prevented RAF-inhibitor induced metabolic
reprogramming towards OXPHOS, thus, leading to an enhanced sensitivity of melanoma
cells to BRAF inhibitors and delayed onset of treatment resistance [206]. Gamitrinib, an
inhibitor of heat shock protein (HSP)90, represents another possible strategy to overcome
drug resistance to MAPK inhibitors [203] and has also shown activity in NRAS mutant
melanoma in combination with 6-thio-2′-deoxyguanosine [207]. Phenformin and met-
formin, biguanides used in the treatment of type 2 diabetes, have shown antitumor activity
in vitro and in vivo. The use of phenformin has shown not only to enhance the therapeutic
effect of BRAF inhibitors [208] but also to inhibit MDSC activity and increase the efficacy of
anti-PD1 in melanoma [209]. Benserazide, an inhibitor of the M2 splice isoform of pyruvate
kinase (PK2M), which is a key enzyme for generating pyruvate and ATP in the glycolytic
pathway, leads to the inhibition of aerobic glycolysis and concurrent upregulation of OX-
PHOS. Since PK2M activity and aerobic glycolysis are upregulated in BRAF inhibitors
resistant melanoma cells, treatment with benserazide results in a heightened sensitivity
to suppressed PK2M expression both in vitro and in vivo, with potential therapeutic ap-
plications [210]. Recently, the glutamine pathway also emerged as a possible metabolic
reprogramming strategy in melanoma resistant to targeted therapies [211]. In fact, BRAF-
inhibitors-resistant melanoma cells increase uptake of glutamine and show overexpression
of glutaminase (GLS). The mechanisms that drive this switch from glucose utilization to
glutamine remain unclear, but treatment with GLS inhibitors re-sensitizes resistant cells to
BRAF inhibitors [211] and also to the chemotherapeutic drug temozolomide (TMZ) [212].
Consistently, high-OXPHOS melanoma could be supported by glutamine and fatty acid
oxidation via PGC-1α axis, as demonstrated also in other cancer types [213]. Preclinical
evidence has shown that the inhibition of mTORC1/2 can decrease PGC-1α expression and
inhibit OXPHOS. Moreover, resistance to MAPK inhibitors can be overcome by mTORC1/2
through the nuclear exclusion of MITF, and this combination has a synergistic effect only
in the OXPHOS-high phenotype of melanomas [205].

Metabolic reprogramming represents an intriguing target also in uveal melanoma.
Unlike its cutaneous counterpart, uveal melanoma has not gained any therapeutic benefit
over the last years, and the median survival for patients with metastatic disease is less than
12 months [214]. More than 90% of uveal melanomas show monosomy of chromosome 3, a
genetic feature typically associated with metastasis and poor prognosis [215]. Molecular
studies have shown that elevated levels of non-mutant succinate dehydrogenase A (SDHA),
a fundamental link between the TCA and OXPHOS, are the core of a distinct metabolic
program that finally leads to increased biologic aggressiveness and resistance to OXPHOS
inhibition [216]. Uveal melanomas frequently show guanine nucleotide-binding protein
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G(q) GNAQ and GNA11 mutations, which enhance MEK-ERK1/2 signaling. Adaptive
upregulation of OXPHOS has been described as a mechanism of resistance during treat-
ment with MEK inhibitors in combination with CDK4/6 inhibitors. The addition of the
OXPHOS inhibitor, IACS-010759, to CDK4/6 plus MEK inhibitors decreased cell growth
and enhanced apoptosis, suggesting that direct OXPHOS inhibition could be an approach
to optimize targeted therapy treatment in uveal melanoma [217]. In this setting, targeting
the metabolic substrates and OXPHOS is an appealing therapeutic strategy since targeted
therapies and immunotherapy have led to disappointing results in uveal melanoma.

6. Conclusions

Melanoma is a metabolic heterogeneous disease with the ability to adapt its metabolism
in order to utilize a variety of fuels for energy production, facilitating tumor progression
and metastasis. The significance of metabolic rewiring in melanoma is supported by grow-
ing evidence of the impact, in terms of increased efficacy, of therapeutic strategies targeting
metabolic molecules in combination with standard therapies. Increasing data support the
notion that metabolic phenotypes of melanoma cells depend on the contribution from
both tumor intrinsic factors and extrinsic factors deriving from the TME conditions. The
complex interplay between tumor metabolism and the immune system emerges as the most
important aspect, as highlighted also by the numerous ongoing clinical trials specifically fo-
cused on the combination of agents targeting metabolic pathways altered in melanoma and
immunotherapy (Table 1). Overall, available evidence suggests that targeting metabolic
rewiring mechanisms and the metabolic crosstalk within TME represents one of the most
promising and novel therapeutic strategies to overcome drug resistance or to increase ther-
apeutic efficacy of standard treatments in specific subsets of melanoma. Prospective trials
with a strong background derived from translational studies exploring both circulating
and tissue metabolic biomarkers will lead to the discovery of better and more effective
therapeutic combinations for the treatment of metastatic melanoma patients.

Table 1. Overview of the main active and recently concluded clinical trials of drugs targeting tumor metabolism in
melanoma (source: clinicaltrials.gov; accessed on 17 April 2021).

Trial Name,
NCT Number Phase Condition(s) Drug(s) Metabolic Target(s) Objective(s) Status

NCT03207867 II Advanced solid tumors
DLBCL

NIR178
Spartalizumab

(PDR001)
ADO

ORR, DCR, DOR
PFS
AEs
PK

Changes in the
immune infiltrate

Presence of
PDR001 Ab

Active, recruiting

NCT03047928 I/II Advanced melanoma

PD-L1/IDO
peptide
vaccine

Nivolumab

PD-L1-IDO

AEs
Treatment-related

immune
responses

ORR
OS, PFS

Active, recruiting

NCT04007588 II Resectable stage III/IV
melanoma

Linrodostat
(BMS986205)
Nivolumab
Ipilimumab

IDO

mPCR
RFS, OS

Changes in the
immune infiltrate

AEs

Withdrawn (slow
accrual)

NCT02073123 I/II Advanced melanoma

Indoximod
Nivolumab

Pembrolizumab
Ipilimumab

IDO

AEs
ORR, DCR

Mechanisms of ac-
tivity/resistance
to IDO/CTLA-4
inhibitor therapy

OS, PFS

Completed

clinicaltrials.gov
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Table 1. Cont.

Trial Name,
NCT Number Phase Condition(s) Drug(s) Metabolic Target(s) Objective(s) Status

ECHO-208,
NCT03347123 I/II Advanced solid tumors

Epacadostat
Nivolumab
Ipilimumab
Lirilumab

IDO
KIR2DL1/2L3

AEs
ORR, DOR

PFS
Completed

NCT04148937 I Advanced solid tumors LY3475070
Pembrolizumab CD73

DLT
PK

ORR, DOR
PFS

Active, recruiting

PANAMA,
NCT02702492 I Advanced solid tumors

NHL

KPT-9274
Niacin ER

Nivolumab

PAK4
NAMPT MTD Active, recruiting

Abbreviations: Ab, antibodies; ADO, adenosine; AEs, adverse events; CTLA-d1, cytotoxic T lymphocyte Antigen 4; DCR, disease control
rate; DLBCL, diffuse large B cell lymphoma; DLT, dose-limiting toxicity; DOR, duration of response; ER, extended release; IDO, indoleamine
2,3-dioxygenase; KIR2DL1/2L3, killer-cell immunoglobulin like receptor; mPCR, major pathologic response; MTD, maximum tolerated
dose; NAMPT, nicotinamide phopshorybosiltransferase; NHL, non-Hodgkin lymphoma; ORR, objective response rate; OS, overall survival;
PD-L1, programmed cell death ligand 1; PK, pharmacokinetics; PFS, progression-free survival; RFS, relapse-free survival.
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