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ABSTRACT 22 

Here we present MORPHEUS, a new Fiji/ImageJ2 plugin for the automated evaluation of cell 23 

morphometry from images acquired by fluorescence microscopy. MORPHEUS works with sampling 24 

distributions to learn—in an unsupervised manner and by a nonparametric approach—how to 25 

recognize the cells suitable for subsequent analysis. Afterwards, the algorithm performs the 26 

evaluation of the most relevant cell-shape descriptors over the full set of detected cells. Optionally, 27 

also the extraction of nucleus features and a double-scale analysis of orientation can be performed. 28 

The whole algorithm is implemented as a one-click procedure, thus minimizing the user’s 29 

intervention. By reducing biases and errors of human origin, MORPHEUS is intended to be a useful 30 

tool to enhance reproducibility in bioimage analysis. 31 

 32 

INTRODUCTION 33 

Cell morphometry can be defined as the quantitative description of cells’ shape, which may 34 

not be separated from the inference of important information about their functional state. This 35 

shape–function paradigm aims to correlate cell morphology to biological processes such as 36 

proliferation, differentiation, migration, growth dynamics, adhesion to particular substrates or 37 

transition from physiology to pathology (Lepekhin et al., 2001; Ruffinatti et al., 2013; Yang et al., 38 

2015; Lyons et al., 2016). Although many shape descriptors have been proposed over the years, no 39 

general rules about their usage currently exist since their suitability depends on the particular 40 

experimental aim (Chen et al., 2012; Lobo et al., 2015). More generally, cell morphometry lacks 41 

standardized protocols for the comparison of studies from independent laboratories. Specifically, 42 

when cells are manually selected, a heavy operator-dependent bias is introduced, impairing 43 

procedure reproducibility (Chen et al., 2016; Van Valen et al., 2016). In addition, since many samples 44 

are needed for reaching a good statistical power, human errors unavoidably arise because of the 45 

repetitiveness of such a time-consuming task. 46 



In order to solve most of the aforementioned problems, we developed a new plug-in for Fiji 47 

(ImageJ2) (https://imagej.net/ImageJ2/; https://fiji.sc/) called MORPHEUS (Multipametric 48 

Morphometric Analysis of EUcaryotic cellS). It combines within a single structured pipeline the 49 

evaluation of the most relevant cell-shape descriptors, the extraction of nucleus features and an 50 

advanced analysis of orientation. The procedure we propose is highly automated and adaptive since 51 

the full algorithm is indeed implemented in a one-click and user-friendly fashion. MORPHEUS is 52 

freely available for download at https://sourceforge.net/projects/morpheus-for-fiji/, together with 53 

the same sets of test images used in Supplementary Materials for experimental validation (see 54 

below). 55 

 56 

METHODS 57 

Sample Preparation 58 

The following recommendations are made in order to generate MORPHEUS-compliant 59 

images. 60 

1. Cells stained for some cytoplasmic element (e.g. phalloidin for cytoskeleton) need to 61 

be acquired by fluorescence microscopy. Cells stained for nuclei (e.g. through 4′,6-62 

diamidino-2-phenylindole aka DAPI) are optional but not sufficient alone. 63 

2. Images should be of good quality. If the Signal-to-Noise Ratio (SNR) is too low (i.e. 64 

less than 10), the segmentation process will possibly fail (see Section 1.2 in 65 

Supplementary Materials for an operational definition of SNR). 66 

3. Both 8 and 16-bit gray scale images can be used, but MORPHEUS segmentation 67 

procedure always assumes light objects (fluorescence signal) on dark background. 68 

Different color lookup tables (LUTs) are not suitable for MORPHEUS. 69 

4. Moderate and homogeneous plating densities are required. In particular, they ought 70 

to be low enough to provide a majority of isolated cells compared to cell clusters. It 71 

https://imagej.net/ImageJ2/
https://fiji.sc/
https://sourceforge.net/projects/morpheus-for-fiji/


is warmly suggested to ensure even distribution of adherent cells by repetitive 72 

pipetting. 73 

5. Since all cell clusters are automatically excluded by the pipeline, images are not to 74 

contain many pronounced cell elongations leading to cell-cell contacts (i.e. neuron 75 

networks analysis or quantitative assays of dendritic branching and arborization). 76 

Other platforms are specifically tailored for this aim (Ventimiglia et al., 1995; Wu et 77 

al., 2004). 78 

6. The number of cells per field should be large enough to produce low-skewness 79 

sampling distributions for the statistics of interest (see below), otherwise MORPHEUS 80 

will undergo an inaccurate learning step. Hence, the use of high magnification 81 

objectives, leading to less than 10-15 cells per field, is discouraged. 82 

The above limits are not expected to prevent the use of MORPHEUS in a great variety of 83 

morphometric analysis contexts. 84 

Algorithm Flow 85 

Preliminary Steps 86 

MORPHEUS can be easily integrated into Fiji Plugins menu by copying Morpheus_.ijm file into 87 

the appropriate directory. When launched, a dialog window allows the user to set few basic 88 

parameters (Figure 1a), among which an anti-spot noise threshold ε and a tolerance value 𝑇 (the 89 

larger 𝑇 , the more inclusive the cell selection will be). After pressing OK button, no further 90 

intervention is required by the user. As a preliminary task, MORPHEUS scans the input folder 91 

searching for the images to be analyzed and then it performs a segmentation in five steps: contrast 92 

enhancement, background subtraction, smoothing, thresholding and binarization (Figure 1b). 93 

Please refer to Supplementary Materials for more details about the segmentation algorithm and the 94 

other options of the starting dialog window. 95 



Unsupervised Learning Step 96 

As Fiji Analyze Particles function selects the objects to be measured primarily on the basis of 97 

their area (𝐴) and their circularity (𝐶), a suitable range for these two parameters can be defined to 98 

discriminate the objects of interest (i.e. the isolated cells) from the other entities detected by the 99 

segmentation (i.e. small debris and big cell-clusters). MORPHEUS fulfils this task by analyzing the 100 

distributions of the two random variables 𝐴 and 𝐶 over the entire population and learning from the 101 

dataset the interval within which most of the isolated cells are likely to fall. 102 

Even under controlled plating conditions, the overall distribution of 𝐴  is not easily 103 

predictable from a theoretical point of view. This is due both to the intrinsic biological variability 104 

among cells and, as already mentioned, to the presence of different subpopulations of objects 105 

within the same cell culture: spot noise, cellular and extracellular-matrix debris (corresponding to 106 

the high frequencies near the origin of the histogram of areas), isolated cells (the central body of 107 

the distribution) and cell clusters of two or more cells (the heavy right tail of the distribution; Figure 108 

1d). 109 

First, spot noise is removed by imposing a threshold ε at the beginning of the algorithm (a 110 

justification for the default value ε=200 pixel2 is provided in Supplementary Materials), then Analyze 111 

Particles function evaluates 𝐴 and 𝐶 for all the segmented objects that are larger than ε (Figure 1c). 112 

To cope with presence of sparse cell clusters, central tendency for 𝐴 should be measured by an 113 

estimator robust to outliers—the median being the simplest one—that can be thought to be more 114 

representative of the single cell then the cell clusters (Figure 1d). Clearly, this is true only under the 115 

initial hypothesis of low-density plating (point 4 of Sample Preparation section), meaning that the 116 

majority of cells are indeed isolated cells. After the computation of the object median area 𝑀𝐴,𝑖 for 117 

each sample image (𝑖 = 1, 2, … , 𝑚), the sampling distribution of the sample medians can be drawn 118 

(Figure 1e). This distribution, albeit not normal, is generally far less skewed than that of the starting 119 



population, provided the sample size is large enough (i.e. at least 10—25 objects per image, 120 

depending on the dispersion of the overall population, as detailed in Statistical Validation section 121 

of the Supplementary Materials). By explicitly drawing such a sampling distribution from the 122 

experimental data, both the mean and the dispersion of the random variable 𝑀𝐴 can be evaluated 123 

in a direct way, thus providing a reliable estimate of the population median area together with its 124 

accuracy or standard error (SE). This procedure leads to the definition of a ‘characteristic’ or ‘typical’ 125 

single cell area (𝑀̅𝐴) and its uncertainty (SE𝑀̅). Starting from these assumptions, 126 

𝐴ℎ𝑖𝑔ℎ = 2 ∙ (𝑀̅𝐴 + 𝑇 ∙ SE𝑀̅) 127 

is a conservative estimate for the predicted typical size of a two-cell cluster. In other words, if an 128 

object has 𝐴 > 𝐴ℎ𝑖𝑔ℎ , it can be legitimately suspected to be a complex of two (or more) cells. 129 

According to a log-symmetric criterion, the lower bound can be defined as 130 

𝐴𝑙𝑜𝑤 =
1

2
∙ (𝑀̅𝐴 − 𝑇 ∙ SE𝑀̅) 131 

and all the objects below this limit will be discarded as cell debris (or residual spot noise). Depending 132 

on the tolerance value 𝑇 selected from the main window of MORPHEUS, the width of [𝐴𝑙𝑜𝑤, 𝐴ℎ𝑖𝑔ℎ] 133 

range can be changed, allowing for a more permissive (𝑇 →  6) or more strict (𝑇 →  1) approach to 134 

cell selection. 135 

As for the area, also the circularity generally exhibits a complex distribution, possibly made 136 

of several subpopulations, since cell clusters can originate very low 𝐶 values, while debris and spot 137 

noise typically have 𝐶 values very close to 1. Even in this case, MORPHEUS’ approach is based on 138 

sampling distributions, albeit with some important difference compared to area determination. The 139 

multiplicative factor 2, used to predict the expected size of a two-cell cluster, is clearly meaningless 140 

when dealing with circularity and there are no other obvious multiplicative factors able to predict 141 

the value of 𝐶 for those objects differing from an isolated cell. For this reason, a more conservative 142 

approach is adopted, the only aim being that of trimming the outliers. By evaluating circularity 143 



extreme values for each of the 𝑚  sample images, MORPHEUS can draw the two sampling 144 

distributions of sample minimum ( min𝐶 ) and sample maximum ( max𝐶) . Again, these two 145 

distributions can be conveniently described by their mean (min̅̅ ̅̅ ̅
𝐶, max̅̅ ̅̅ ̅̅ 𝐶) and related SEs. Finally, by 146 

tuning the 𝑇 parameter, it can be set the range of circularity values to which single cells are actually 147 

supposed to belong, namely: 148 

𝐶𝑙𝑜𝑤 = min̅̅ ̅̅ ̅
𝐶 + (𝜏 − 𝑇) ∙ SEmin̅̅ ̅̅ ̅ , 149 

𝐶ℎ𝑖𝑔ℎ = max̅̅ ̅̅ ̅̅ 𝐶 − (𝜏 − 𝑇) ∙ SEmax̅̅ ̅̅ ̅̅  , 150 

Where the constant 𝜏 = 6 corresponds to the highest confidence level the user can choose for 151 

parameter estimation in the current implementation of MORPHEUS (see details in Section 1.1 of the 152 

Supplementary Materials). 153 

Once esteemed, [𝐴𝑙𝑜𝑤, 𝐴ℎ𝑖𝑔ℎ] and [𝐶𝑙𝑜𝑤, 𝐶ℎ𝑖𝑔ℎ] intervals are fed as constraints to Analyze 154 

Particles for a second run of the function over the whole dataset (Figure 1f). In other words, they 155 

are used to define a sort of bivariate confidence interval for the area and the circularity of the true 156 

isolated cell, but with no reference to any underlying distribution parameter. MORPHEUS represents 157 

indeed a completely nonparametric approach to cell morphometry, since no normality assumption 158 

is made for any of the distributions considered. Importantly, the anti-spot threshold value ε and the 159 

tolerance discrete level 𝑇  are the only two parameters the user has to choose, thus maximally 160 

reducing the arbitrariness of the procedure and all the ensuing possible biases. In particular, the 161 

effects produced by different choices of the tolerance level have been examined and reported in 162 

Table SM3 of Supplementary Materials (Experimental Validation – Tolerance Effect section). 163 

Morphometry and Orientation Analysis 164 

Using the (𝐴, 𝐶)-bivariate confidence interval as a filter, MORPHEUS can recognize isolated 165 

cells in each sample image (Figure 1g). Here the algorithm forks (Figure 1h): the first branch—always 166 



performed—is dedicated to cell morphometry, while the second one—optional—is devoted to 167 

orientation analysis. For the morphometric task, the idea is to use a wide descriptor spectrum to 168 

capture as many features as possible, preferring to reduce the dimensionality of the problem during 169 

the follow-up analysis rather than to choose a particular descriptor ‘a priori’ (see Figure 1i-j and 170 

Experimental Validation – Morphometry section in Supplementary Materials). In particular, 12 171 

different shape descriptors are evaluated for each detected cell, encompassing all those indexes 172 

natively provided by Fiji/ImageJ through the Set Measurements function (i.e. area, perimeter, best 173 

fitting ellipse (BFE) major axis, BFE minor axis, BFE aspect ratio, BFE angle, circularity, roundness, 174 

solidity, Feret’s diameter, Feret’s angle, and minimum caliper diameter, as detailed in Section 1.3 of 175 

the Supplementary Materials). 176 

For the second task, MORPHEUS leans on OrientationJ, a well-established Fiji/ImageJ plugin 177 

for orientation and isotropy characterization (Rezakhaniha et al., 2012; Püspöki et al., 2016). 178 

MORPHEUS checks for OrientationJ (version ≥ 2.0.2) and, if present, OrientationJ Distribution 179 

function is called for an automated directional analysis of the whole dataset over two distinct scales: 180 

cytoskeleton and whole-cell (Figure 1k). The analysis is performed locally by means of a sliding 181 

Gaussian window with an arbitrary radius 𝜎 that is meant to be as close as possible to the structure 182 

of interest, namely 𝜎 = 1 pixel for fine structure (cytoskeleton) analysis and 183 

𝜎 = √
𝑀̅𝐴

𝜋
 , 184 

for the whole-cell level, taking advantage of the ‘typical cell area’ as estimated in the initial learning 185 

step. For both the levels of analysis, MORPHEUS returns different outputs of both qualitative and 186 

quantitative nature. In particular, two colormaps are saved carrying the directional information 187 

according to a Hue-Saturation-Brightness (HSB) color model, where hue encodes for the local 188 

dominant orientation, saturation encodes for the coherency and brightness is based on the gray 189 



levels of the input image (Figure 1l). In addition, a set of coherency-weighted orientation histograms 190 

are collected and then assembled into a single heatmap (Figure 1m). 191 

MORPHEUS Log 192 

With the aim of being as compliant as possible with the reproducibility standards in 193 

bioinformatics (see e.g. Sandve et al., 2013), MORPHEUS prints an onscreen log at runtime and saves 194 

a copy of it in the output directory. Both the onscreen log and log file contain all the information 195 

needed to reproduce that particular analysis at a later time (see Supplementary Materials for 196 

details). 197 

 198 

RESULTS 199 

To have a thorough experimental validation of MORPHEUS, the interested reader can refer 200 

to the Experimental Validation section of the Supplementary Materials, in which a detailed analysis 201 

of a prototypical MORPHEUS output is presented applying the algorithm to four different original 202 

datasets of fluorescent cell samples. 203 

 204 

DISCUSSION 205 

Replication of experimental results at all scales of biological sciences is a pillar of scientific 206 

method. However, the crisis of reproducibility or replication crisis has been largely debated on both 207 

generalist and more specialized journals in the last years (Aleksandra et al., 2018; An, 2018; Baker, 208 

2016; Begley & Ellis, 2012; Coiera et al., 2018; Fanelli, 2018; França & Monserrat, 2018; Samsa & 209 

Samsa, 2019; Sandve et al., 2013). Different and variable factors contribute for this deep limitation 210 

in modern wet biology as well as bioinformatics fields: among them, low statistical power, poor 211 

analytic approaches and a lack of standardization in experimental protocols are unfortunately quite 212 

usual in preclinical and clinical research papers. 213 



According to such an increasing requirement for quality assessment and robustness, 214 

MORPHEUS is a promising proposal for the standardization of cell morphometric analysis. 215 

Importantly, the automation descending from the adaptive nature of the algorithm eliminates the 216 

user-bias factor and translates into a reproducibility-oriented approach to cell morphometry. This 217 

is intended to avoid all those human errors typically arising from a repetitive and time-consuming 218 

task, as well as the systematic bias and arbitrariness introduced by the experimenter whenever a 219 

threshold needs to be chosen or several objects are to be recognized by sight. A general outcome 220 

of the algorithm presented in this paper lies in the intriguing inversion of the usual time spent by 221 

the operator to obtain the final results. Indeed, in the canonical ‘manual’ approach most of the time 222 

is dedicated to the morphometric analysis of any single frame, leading to a significant limitation in 223 

the number of processed images. Otherwise, since MORPHEUS dramatically speeds up the analysis 224 

(virtually instant output), the operator will hopefully devote most of the experimental effort in 225 

image acquisition, thus increasing the quality and the statistical power of the work. 226 

 227 
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