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Abstract

COVID-19 infection caused by SARS-CoV-2 pathogen has been a catastrophic

pandemic outbreak all over the world, with exponential increasing of confirmed

cases and, unfortunately, deaths. In this work we propose an AI-powered pipeline,

based on the deep-learning paradigm, for automated COVID-19 detection and le-

sion categorization from CT scans. We first propose a new segmentation module

aimed at automatically identifying lung parenchyma and lobes. Next, we combine

the segmentation network with classification networks for COVID-19 identifica-

tion and lesion categorization. We compare the model’s classification results with

those obtained by three expert radiologists on a dataset of 166 CT scans. Results

showed a sensitivity of 90.3% and a specificity of 93.5% for COVID-19 detection,

at least on par with those yielded by the expert radiologists, and an average lesion

categorization accuracy of about 84%. Moreover, a significant role is played by

prior lung and lobe segmentation, that allowed us to enhance classification per-

formance by over 6 percent points. The interpretation of the trained AI models

reveals that the most significant areas for supporting the decision on COVID-19

identification are consistent with the lesions clinically associated to the virus,

i.e., crazy paving, consolidation and ground glass. This means that the artifi-

cial models are able to discriminate a positive patient from a negative one (both

controls and patients with interstitial pneumonia tested negative to COVID) by

evaluating the presence of those lesions into CT scans. Finally, the AI models

are integrated into a user-friendly GUI to support AI explainability for radi-

ologists, which is publicly available at http: // perceivelab. com/ covid-ai .
The whole AI system is unique since, to the best of our knowledge, it is the
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first AI-based software, publicly available, that attempts to explain to radiolo-

gists what information is used by AI methods for making decisions and that

proactively involves them in the decision loop to further improve the COVID-19

understanding.

1. Introduction

At the end of 2019 in Wuhan (China) several cases of an atypical pneumo-
nia, particularly resistant to the traditional pharmacological treatments, were
observed. In early 2020, the COVID-19 virus [1] has been identified as the
responsible pathogen for the unusual pneumonia. From that time, COVID-19
has spread all around the world hitting, to date about 155 million of people
(with about 3.5M deaths), stressing significantly healthcare systems in several
countries. Since the beginning, it has been noted that 20% of infected sub-
jects appear to progress to severe disease, including pneumonia and respiratory
failure and in around 2% of cases death [2]. Currently, the standard diagno-
sis of COVID-19 is de facto based on a biomolecular test through Real-Time
Polimerase Chain Reaction (RT-PCR) test [3, 4]. However, although widely
used, this biomolecular method is time-consuming requiring up to several hours
for being processed.

Recent studies have outlined the e↵ectiveness of radiology imaging through
chest X-ray and mainly Computed Tomography (CT) given the pulmonary in-
volvement in subjects a↵ected by the infection [5, 6]. Given the extension of the
infection and the number of cases that daily emerge worldwide and that call for
fast, robust and medically sustainable diagnosis, CT scan appears to be suitable
for a robust-scale screening, given the higher resolution w.r.t. X-Ray. In this
scenario, artificial intelligence may play a fundamental role to make the whole
diagnosis process automatic, reducing, at the same time, the e↵orts required by
radiologists for visual inspection [7].

In this paper, thus, we present an AI-based system to achieve both COVID-

19 identification and lesion categorization (ground glass, crazy paving and con-
solidation) that are instrumental to evaluate lung damages and the prognosis
assessment. Our method relies only on radiological image data avoiding the
use of additional clinical data in order to create AI models that are useful
for large-scale and fast screening with all the subsequent benefits for a favor-
able outcome. More specifically, we propose an innovative automated pipeline
consisting of 1) lung/lobe segmentation, 2) COVID-19 identification and inter-
pretation and 3) lesion categorization. We tested the AI-empowered software
pipeline on multiple CT scans, both publicly released and collected at the Spal-
lanzani Institute in Italy, and showed that: 1) our segmentation networks is
able to e↵ectively extract lung parenchyma and lobes from CT scans, outper-
forming state of the art models; 2) the COVID-19 identification module yields
better accuracy (as well as specificity and sensitivity) than expert radiologists.
Furthermore, when attempting to interpret the decisions made by the proposed
AI model, we found that it learned automatically, and without any supervision,
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the CT scan features corresponding to the three most common lesions spotted
in the COVID-19 pneumonia, i.e., consolidation, ground glass and crazy paving,
demonstrating its reliability in supporting the diagnosis by using only radiolog-
ical images. Finally, we integrate the tested AI models into a user-friendly GUI
to support further AI explainability for radiologists, which is publicly available
at http://perceivelab.com/covid-ai. The GUI processes entire CT scans
and reports if the patient is likely to be a↵ected by COVID-19, showing, at the
same time, the scan slices that supported the decision.

To sum up, the main contributions of this paper are the following:

• We propose a novel lung-lobe segmentation network outperforming state-
of-the-art models;

• We employ the segmentation network to drive a classification network that
first identifies CT scans of COVID-19 patients, and, afterwards, automat-
ically categorizes specific lesions;

• We then provide interpretation of the decisions made by the employed
models and discover that, indeed, the proposed approach focuses on spe-
cific COVID-19 lesions for distinguishing whether a CT scan is related to
positive patients or not;

• We finally integrate the whole AI pipeline into a web platform to ease
use for radiologists, supporting them in their investigation on COVID-19
disease. To the best of our knowledge, this is the first publicly available
platform that o↵ers COVID-19 diagnosis services based on CT scans with
explainability capabilities. The free availability to the general public for
such an important task, while the pandemic is still in full e↵ect, is, in our
opinion, an invaluable aid to the medical community.

2. Related Work

The COVID-19 epidemic caught the scientific community flat-footed and in
response a high volume of research has been dedicated at all possible levels. In
particular, since the beginning of the epidemic, AI models have been employed
for disease spread monitoring [8, 9, 10], for disease progression [11] and prognosis
[12], for predicting mental health ailments inflicted upon healthcare workers [13]
and for drug repurposing [14, 15] and discovery [16].

However, the lion’s share in employing AI models for the fight against
COVID-19 belongs to the processing of X-rays and CT scans with the pur-
pose of detecting the presence of COVID-19 or not. In fact, recent scientific
literature has demonstrated the high discriminative and predictive capability
of deep learning methods in the analysis of COVID-19 related radiological
images[17, 18]. The key radiological techniques for COVID-19 induced pneu-
monia diagnosis and progression estimation are based on the analysis of CT
and X-ray images of the chest, on which deep learning methodologies have been
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widely used with good results for segmentation, predictive analysis, and discrim-
ination of patterns [19, 20, 21]. If, on one hand, X-Ray represents a cheaper
and most e↵ective solution for large scale screening of COVID-19 disease, on
the other hand, its low resolution has led AI models to show lower accuracy
compared to those obtained with CT data.

For the above reasons, CT scan has become the gold standard for investiga-
tion on lung diseases. In particular, deep learning, mainly in the form of Deep
Convolutional Neural Networks (DCNN), has been largely applied to lung dis-
ease analysis from CT scans images, for evaluating progression in response to
specific treatment (for instance immunotherapy, chemotherapy, radiotherapy)
[22, 23], but also for interstitial lung pattern analysis [24, 25] and on segmenta-
tion and discrimination of lung pleural tissues and lymph-nodes [26, 27]. This
latter aspect is particularly relevant for COVID-19 features and makes artifi-
cial intelligence an extremely powerful tool for supporting early diagnosis of
COVID-19 and disease progression quantification. As a consequence, several
recent works have reported using AI models for automated categorization of
CT scans [21] and also on COVID-19 [28, 29, 30] but without being able to
distinguish between the various types of COVID-19 lesions.

3. Explainable AI for COVID-19 data understanding

The proposed AI system aims at 1) extracting lung and lobes from chest
CT data, 2) categorizing CT scans as either COVID-19 positive or COVID-19
negative; 3) identifying and localizing typical COVID-19 lung lesions (consoli-
dation, crazy paving and ground glass); and 4) explaining eventually what CT
slices it based its own decisions.

3.1. AI Model for Lung Segmentation

Our lung-lobe segmentation model is based on the Tiramisu network [31],
a fully-convolutional DenseNet [32] in a U-Net architecture [33]. The model
consists in two data paths: the downsampling one, that aims at extracting
features and the upsampling one that aims at generating the output images
(masks). Skip connections (i.e., connections starting from a preceding layer in
the network’s pipeline to another one found later bypassing intermediate layers)
aim at propagating high-resolution details by sharing feature maps between the
two paths.

In this work, our segmentation model follows the Tiramisu architecture, but
with two main di↵erences:

• Instead of processing each single scan individually, convolutional LSTMs [34]
are employed at the network’s bottleneck layer to exploit the spatial axial
correlation of consecutive scan slices.

• In the downsampling and upsampling paths, we add residual squeeze-and-
excitation layers [35], in order to emphasize relevant features and improve
the representational power of the model.
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Figure 1: The proposed segmentation architecture, consisting of a downsampling path (top)
and an upsampling path (bottom), interconnected by skip connections and by the bottleneck
layer.

Before discussing the properties and advantages of the above modifications,
we first introduce the overall architecture, shown in Fig. 1.

The input to the model is a sequence of 3 consecutive slices – suitably re-
sized to 224⇥224 – of a CT scan, which are processed individually and com-
bined through a convolutional LSTM layer. Each slice is initially processed
with a standard convolutional layer to expand the feature dimensions. The
resulting feature maps then go through the downsampling path of the model
(the encoder) consisting of five sequences of dense blocks, residual squeeze-
and-excitation layers and transition-down layers based on max-pooling. In the
encoder, the feature maps at the output of each residual squeeze-and-excitation
layer are concatenated with the input features of the preceding dense block, in
order to encourage feature reuse and improve their generalizability. At the end
of the downsampling path, the bottleneck of the model consists of a dense block
followed by a convolutional LSTM. The following upsampling path is symmetric
to the downsampling one, but it features: 1) skip connections from the down-
sampling path for concatenating feature maps at the corresponding layers of
the upsampling path; 2) transition-up layers implemented through transposed
convolutions. Finally, a convolutional layer provides a 6-channel segmentation
map, representing, respectively, the log-likelihoods of the lobes (5 channels, one
for each lobe) and non-lung (1 channel) pixels.

In the following, we review the novel characteristics of the proposed archi-
tecture.

Residual squeeze-and-excitation layers. Explicitly modeling interdepen-
dencies between feature channels has demonstrated to enhance performance of
deep architectures; squeeze-and-excitation layers [35] instead aim to select in-
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Figure 2: Example of lung and lobes segmentation.

formative features and to suppress the less useful ones. In particular, a set
of input features of size C ⇥ H ⇥W is squeezed through average-pooling to a
C ⇥ 1 ⇥ 1 vector, representing global feature statistics. The “excitation” op-
erator is a fully-connected non-linear layer that translates the squeezed vector
into channel-specific weights that are applied to the corresponding input feature
maps.

Convolutional LSTM. We adopt a recurrent architecture to process the out-
put of the bottleneck layer, in order to exploit the spatial axial correlation
between subsequent slices and enhance the final segmentation by integrating
3D information in the model. Convolutional LSTMs [34] are commonly used
to capture spatio-temporal correlations in visual data (for example, in videos),
by extending traditional LSTMs using convolutions in both the input-to-state

and the state-to-state transitions. Employing recurrent convolutional layers al-
lows the model to take into account the context of the currently-processed slice,
while keeping the sequentiality and without the need to process the entire set
of slices in a single step through channel-wise concatenation, which increases
feature sizes and loses information on axial distance.

Fig. 2 shows an example of automated lung and lobe segmentation from
a CT scan by employing the proposed segmentation network. The proposed
segmentation network is first executed on the whole CT scan for segmenting
only lung (and lobes); the segmented CT scan is then passed to the downstream
classification modules for COVID-19 identification and lesion categorization.

3.2. Automated COVID-19 Diagnosis: CT classification

After parenchima lung segmentation (through the segmentation model pre-
sented in Sect. 3.1) a deep classification model analyzes slice by slice each seg-
mented CT scan, and decides whether a single slice contains evidence of the
COVID-19 disease. Note that slice-based COVID-19 classification is only the
initial step towards the final prediction, which takes into account all per-slice
predictions, and assigns the “positive” label in presence of a certain number of
slices (10% of the total) that the model has identified as COVID-19 positive.
Hence, COVID-19 assessment is actually carried out per patient, by combining
per-slice predictions.

At this stage, the system does not carry out any identification and local-
ization of COVID-19 lesions, but it just identifies all slices where patterns of
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Figure 3: Overview of the COVID-19 detection approach for CT scan classification as
either COVID-19 positive or negative.

interest may be found and according to them, makes a guess on the presence
or not of COVID-19 induced infection. An overview of this model is shown in
Fig. 3: first the segmentation network, described in the previous section, iden-
tifies lung areas from CT scan, then a deep classifier (a DenseNet model in the
201 configuration [32]) processes the segmented lung areas to identify if the slice
shows signs of COVID-19 virus.

Once the COVID-19 identification model is trained, we attempt to under-
stand what features it employs to discriminate between positive and negative
cases. Thus, to interpret the decisions made by the trained model we compute
class-discriminative localization maps that attempt to provide visual explana-
tions of the most significant input features for each class. To accomplish this we
employ GradCAM [36] combined to VarGrad [37]. More specifically, GradCAM
is a technique to produce such interpretability maps by investigating output
gradient with respect to feature map activations. More specifically, GradCAM
generates class-discriminative localization map for any class c by first comput-
ing the gradient of the score for class c, sc, w.r.t feature activation maps Ak of
a given convolutional layer. Such gradients are then global-average-pooled to
obtain the activation importance weights w, i.e.:

w
c
k =

X

i

X

j

@y
c

@A
k
ij

(1)

Afterwards, the saliency map S
c, that provides an overview of the activation

importance for the class c, is computed through a weighted combination of
activation maps, i.e.:
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Figure 4: Overview of COVID-19 lesion categorization approach.
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c = ReLU
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VarGrad is a technique used in combination to GradGAM and consists in
performing multiple activation map estimates by adding, each time, Gaussian
noise to the input data and then aggregating the estimates by computing the
variance of the set.

3.3. COVID-19 lesion identification and categorization

An additional deep network activates only if the previous system identifies a
COVID-19 positive CT scan. In that case, it works on the subset of slices iden-
tified as COVID-19 positives by the first AI system with the goal to localize and
identify specific lesions (consolidation, crazy paving and ground glass). More
specifically, the lesion identification system works on segmented lobes to seek
COVID-19 specific patterns. The subsystem for lesion categorization employs
the knowledge already learned by the COVID-19 detection module (shown in
Fig. 3) and refines it for specific lesion categorization. An overview of the whole
system is given in Fig. 4.

3.4. A Web-based Interface for Explaining AI decisions to Radiologists

In order to explain to radiologists, the decisions made by a “black-box”
AI system, we integrated the inference pipeline for COVID-19 detection into a
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Figure 5: The main page of the AI-empowered web GUI for explainable AI. The user is
presented with a list of the CT scan classifications reporting the models’ prediction.

web-based application. The application was designed to streamline the whole
inference process with just a few clicks and visualize the results with a variable
grade of detail (Fig. 5). If the radiologists desire to see which CT slices were
classified as positive or negative, they can click on “Show slices” where a detailed
list of slices and their categorization is showed (Fig. 6).

Because the models may not achieve perfect accuracy, a single slice inspec-
tion screen is provided, where radiologists can inspect more closely the result of
the classification. It also features a restricted set of image manipulation tools
(move, contrast, zoom) for aiding the user to make a correct diagnosis (Fig. 7).

The AI-empowered web system integrates also a relevance feedback mecha-
nism where radiologists can correct the predicted outputs, and the AI module
exploits such a feedback to improve its future assessments. Indeed, both at the
CT scan level and at the CT slice level, radiologists can correct models’ predic-
tion. The AI methods will then use the correct labels to enhance their future
assessments.

4. Results and Discussion

4.1. Dataset and annotations

Data. Our dataset contains overall 166 CT scans: 72 of COVID-19 posi-
tive patients (positivity confirmed both by a molecular — reverse transcrip-
tase–polymerase chain reaction for SARS-coronavirus RNA from nasopharyn-
geal aspirates — and an IgG or IgM antibody test) and 94 of COVID-19 negative
subjects (35 patients with interstitial pneumonia but tested negative to COVID-
19 and 59 controls).
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Figure 6: The summarized classification result showing the CT slices that the neural network
classified as positive or negative.

Figure 7: The slice inspection screen. In this screen the user can inspect each single slice and
the AI models’ decisions.
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CT scans Annotated slices

Ground glass Crazy paving Consolidation Total

Positives 72 1,035 757 598 2,390
Negatives 94 – – – 2,988

Table 1: CT Dataset for training and testing the deep models.

CT scans were performed on a multi-detector row helical CT system scanner 6

using 120 kV pp, 250 mA, pitch of 1.375, gantry rotation time of 0,6 s and time
of scan 5,7 s. The non-contrast scans were reconstructed with slice thicknesses
of 0.625 mm and spacing of 0.625 mm with high-resolution lung algorithm.
The images obtained on lung (window width, 1,000–1,500 H; level, –700 H)
and mediastinal (window width, 350 H; level, 35–40 H) settings were reviewed
on a picture archiving and communication system workstation7. For training
the lung/lobe segmentation model we adopted a combination of the LIDC [38],
LTRC8 and [39] datasets, for a total of 300 CT scans.
Annotations. We perform both COVID-19 identification and lesion catego-
rization, thus the annotations are di↵erent according to the task. For COVID-
19 identification, ground truth consists of the results of the molecular and an
IgG/IgM antibody test. Among the set of 166 CT scans, we used 95 scans (36
positives and 59 negatives) for training, 9 scans for validation (5 positives and
4 negatives) and 62 scans (31 positives and 31 negatives) for test. To compare
the AI performance to the human one, the test set of 62 CT scans was provided
to three expert radiologists for blind evaluation.
For lesion categorization, instead, CT scans of positive patients were also an-
notated by three expert radiologists (through consensus) who selected a subset
of slices and annotated them with the type (Consolidation, Ground Glass and
Crazy Paving) and the location (left/right/central and posterior/anterior) of
the lesion. In total, about 2,400 slices were annotated with COVID-19 lesions
and about 3,000 slices of negative patients with no lesion. Tab. 1 provides an
overview of all the CT scans and lesion annotations in our dataset.
As for lung segmentation, annotations on lung/lobe areas were done manually
by the same three expert radiologists who carried out lesion categorization.

4.2. Training Procedure

COVID-19 Identification Model. The COVID-19 detection network is a
DenseNet201, which was used pretrained on the ImageNet dataset [40]. The
original classification layers in DenseNet201 were replaced by a 2-output linear
layer for the COVID-19 positive/negative classification. Given the class imbal-
ance in the training set, we used the weighted binary cross-entropy (defined

6Bright Speed, General Electric Medical Systems, Milwaukee, WI
7Impax ver. 6.6.0.145, AGFA Gevaert SpA, Mortsel, Belgium
8https://ltrcpublic.com/

11



in 3) as training loss and RT-PCR virology test as training/test labels. The
weighted binary cross-entropy loss for a sample classified as x with target label
y is then calculated as:

WBCE = �w [y · log x+ (1� y) · log(1� x)] (3)

where w is defined as the ratio of the number negative samples to the total
number of samples if the label is positive and vice versa. This way the loss re-
sults higher when misclassifying a sample that belongs to the less frequent class.
It is important to highlight that splitting refers to the entire CT scan and not to
the single slices: we made sure that full CT scans were not assigned in di↵erent
splits to avoid any bias in the performance analysis. This is to avoid the deep
models overfit the data by learning spurious information from each CT scan,
thus invalidating the training procedure, thus enforcing robustness to the whole
approach. Moreover, for the COVID-19 detection task, we operate at the CT
level by processing and categorizing each single slice. To make a decision for the
whole scan, we perform voting: if 10% of total slices is marked as positive then
the whole exam is considered as a COVID-19 positive, otherwise as COVID-19
negative. The choice of the voting threshold was selected according to the best
operating point in the ROC curve.

COVID-19 lesion categorization model. The lesion categorization deep
network is also a DenseNet201 model where classification layers were replaced
by a 4-output linear layer (ground glass, consolidation, crazy paving, negative).
The lesion categorization model processes lobe segments (extracted by our seg-
mentation model) with the goal to identify specific lesions. Our dataset contains
2,488 annotated slices; in each slice multiple lesion annotations with relative lo-
cation (in lobes) are available. Thus, after segmenting lobes from these images
we obtained 5,264 lobe images. We did the same on CT slices of negative pa-
tients (among the 2,950 available as shown in Tab. 1) and selected 5,264 lobe
images without lesions. Thus, in total, the the entire set consisted of 10,528
images. We also discarded the images for which lobe segmentation produced
small regions indicating a failure in the segmentation process. We used a fixed
test split consisting of 195 images with consolidation, 354 with crazy paving,
314 with ground glass and 800 images with no lesion. The remaining images
were split into training and validation sets with the ratio 80/20. Given the class
imbalance in the training set, we employed weighted cross-entropy as training
loss. The weighted cross-entropy loss for a sample classified as x with target
label y is calculated as:

WCE = �w

CX
y · log(x) (4)

where C is the set of all classes. The weight w for each class c is defined as:

wc =
N �Nc

N
(5)
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where N is the total number of samples and Nc is the number of samples
that have label c.

Since the model is the same as the COVID identification network, i.e.,
DenseNet201, we started from the network trained on the COVID-identification
task and fine-tune it on the categorization task to limit overfitting given the
small scale of our dataset.

For both the detection network and the lesion categorization network, we
used the following hyperparameters: batch-size = 12, learning rate = 1e-04,
ADAM back-propagation optimizer with beta values 0.9 and 0.999, eps = 1e-08
and weight decay = 0 and the back-propagation method was used to update
the models’ parameters during training. Detection and categorization networks
were trained for 20 epochs. In both cases, performance are reported at the
highest validation accuracy.

Lung/lobe segmentation model. For lung/lobe segmentation, input images
were normalized to zero mean and unitary standard deviation, with statistics
computed on the employed dataset. In all the experiments for our segmentation
model, input size was set to 224 ⇥ 224, initial learning rate to 0.0001, weight
decay to 0.0001 and batch size to 2, with RMSProp as optimizer. When C-
LSTMs were employed, recurrent states were initialized to zero and the size of
the input sequences to the C-LSTM layers was set to 3. Each training was car-
ried out for 50 epochs. All experiments have been executed using the HPC4AI
infrastructure [41].

4.3. Performance Evaluation

In this section report the performance of the proposed model for lung/lobe
segmentation, COVID-19 identification and lesion categorization.

4.3.1. Lobe segmentation

Our segmentation model is based on the Tiramisu model [31] with the intro-
duction of squeeze-and-excitation blocks and of a convolutional LSTM (either
unidirectional or bidirectional) after the bottleneck layer. In order to under-
stand the contribution of each module, we first performed ablation studies by
testing the segmentation performance of our model using di↵erent architecture
configurations:

• Baseline: the vanilla Tiramisu model described in [31];

• Res-SE: residual squeeze-and-Excitation module are integrated in each
dense block of the Tiramisu architecture;

• C-LSTM: a unidirectional convolutional LSTM is added after the bottle-
neck layer of the Tiramisu architecture;

• Res-SE + C-LSTM: variant of the Tiramisu architecture that includes
both residual squeeze-and-Excitation at each dense layer and a unidirec-
tional convolutional LSTM after the bottleneck layer.
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Model Lung segmentation Lobe segmentation

Baseline Tiramisu [31] 89.41± 0.45 77.97 ± 0.31
Baseline + Res-SE 91.78± 0.52 80.12 ± 0.28
Baseline + C-LSTM 91.49± 0.57 79.47 ± 0.38

Baseline + Res-SE + C-LSTM 94.01 ± 0.52 83.05 ± 0.27

Table 2: Ablation studies of our segmentation network in terms of dice score. Best results
are shown in bold. Note: we did not compute confidence intervals on these scores as they are
obtained from a very large set of CT voxels.

We also compared the performance against the U-Net architecture proposed
in [39] that is largely adopted for lung/lobe segmentation.

All architectures were trained for 50 epochs by splitting the employed lung
datasets into a training, validation and test splits using the 70/10/20 rule. Re-
sults in terms of Dice score coe�cient (DSC) are given in Tab. 2. It has to noted
that unlike [39], we computed DSC on all frames, not only on the lung slices.
The highest performance is obtained with the Res-SE + C-LSTM configura-
tion, i.e., when adding squeeze-and-excitation and the unidirectional C-LSTM
at the bottleneck layer of the Tiramisu architecture. This results in an ac-
curacy improvement of over 4 percent points over the baseline. In particular,
adding squeeze-and-excitation leads to a 2 percent point improvement over the
baseline. Segmentation results are computed using data augmentation obtained
by applying random a�ne transformations (rotation, translation, scaling and
shearing) to input images. The segmentation network is then applied to our
COVID-19 dataset for prior segmentation without any additional fine-tuning to
demonstrate also its generalization capabilities.

4.3.2. COVID-19 diagnosis

We here report the results for COVID-19 diagnosis, i.e., classification be-
tween positive and negative cases. In this analysis, we compare model results
to those yielded by three experts with di↵erent degree of expertise:

1. Radiologist 1: a physician expert in thoracic radiology (⇠30 years of ex-
perience) with over 30,000 examined CT scans;

2. Radiologist 2: a physician expert in thoracic radiology (⇠10 years of ex-
perience) with over 9,000 examined CT scans;

3. Radiologist 3: a resident student in thoracic radiology (⇠3 years of expe-
rience) with about 2,000 examined CT scans.

It should be noted that the gold standard employed in the evaluation is
provided by molecular and antibody tests, hence radiologists’ assessments are
not the reference for performance comparison.

We also assess the role of prior segmentation on the performance. This means
that in the pipelines showed in Figures 3 and 4 we removed the segmentation
modules and performed classification using the whole CT slices using also infor-
mation outside the lung areas. Results for COVID-19 detection are measured
in terms of sensitivity, specificity and AUC, and are given in Tables 3, 4 and
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Sensitivity C.I. (95%)

Radiologist 1 83.9 [71.8 – 91.9]
Radiologist 2 87.1 [75.6 – 94.3]
Radiologist 3 80.6 [68.2 – 89.5]

AI Model without lung segmentation 83.9 [71.8 – 91.9]
AI Model with lung segmentation 90.3 [79.5 – 96.5]

Table 3: Sensitivity (in percentage together with 95% confidence interval) comparison between
manual readings of expert radiologists and the AI model for COVID-19 detection without lung
segmentation and AI model with segmentation.

Specificity C.I. (95%)

Radiologist 1 87.1 [75.6 – 94.3]
Radiologist 2 87.1 [75.6 – 94.3]
Radiologist 3 90.3 [79.5 – 96.5]

AI Model without lung segmentation 87.1 [75.6 – 94.3]
AI Model with lung segmentation 93.5 [83.5 – 98.5]

Table 4: Specificity (in percentage together with 95% confidence interval) comparison between
manual readings of expert radiologists and the AI model for COVID-19 detection without lung
segmentation and AI model with segmentation.

5. Note that the AUC is a reliable metric in our scenario, since we explicitly
defined the test set to be balanced among classes. More recent techniques [42]
may be suitable when this assumption does not hold, as is often the case for
new or rare diseases.

Our results show that the AI model with lung segmentation achieves higher
performance than expert radiologists. However, given the relatively small scale
of our dataset, statistical analysis carried out with the Chi-squared test does
not show any significant di↵erence between AI models and radiologists.
Furthermore, performing lung segmentation improves by about 6 percent points
both the sensitivity and the specificity, demonstrating its e↵ectiveness.

AUC C.I. (95%)

Radiologist 1 0.83 [0.72 – 0.93]
Radiologist 2 0.87 [0.78 – 0.96]
Radiologist 3 0.80 [0.69 – 0.91]

AI Model without lung segmentation 0.94 [0.87 – 1.00]
AI Model with lung segmentation 0.95 [0.89 – 1.00]

Table 5: AUC (together with 95% confidence interval) comparison between manual readings
of expert radiologists and the AI model for COVID-19 detection without lung segmentation
and AI model with segmentation.
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In addition, we also measure how the sensitivity of the COVID-19 identifica-
tion changes w.r.t. the level of disease severity. In particular, we categorize the
31 positive cases into three classes according to the percentage of the a↵ected
lung area: low severity (11 cases), medium severity (11 cases), high severity (9
cases). Results are reported in Table 6 that shows how our AI-based method
seems to be yielding better assessment than the domain experts, especially at
the beginning of the disease (low severity). This is important as an earlier
disease detection may lead to a more favourable outcome. In case of high sever-
ity, two out of three radiologists showed di�culties in correctly identifying the
COVID-19, mainly because when the a↵ected lung area is significant, the typical
COVID patterns are less visible. However, even in this case, our deep learning
model was able to discriminate robustly COVID cases.

Low Severity Medium severity High severity

Radiologist 1 72.7 (50.6–88.5) 100.0 (90.9–70.6) 77.8 (54.7–92.6)
Radiologist 2 72.7 (50.6–88.5) 90.9 (70.6–100.0) 100.0 (81.5–100.0)
Radiologist 3 63.6 (42.3–81.3) 100 (90.9–70.6) 77.8 (54.7–92.6)

Modelwo segmentation 72.7 (50.6–88.5) 90.9 (70.6–100.0) 88.9 (67.0–99.2)
Modelw segmentation 81.8 (59.6–94.9) 90.9 (70.6–100.0) 100.0 (81.5–100.0 )

Table 6: Sensitivity (in percentage) changes w.r.t. disease severity. From the 31 test CTs for
positive patients: 11 are with low severity, 11 with medium severity, and 9 with high severity.
Values in parentheses indicate 95% confidence intervals (CI).

As a backbone model for COVID-19 identification, we employ DenseNet201
since it yields the best performance when compared to other state of the art
models, as shown in Table 7. In all tested cases, we use upstream segmentation
through the model described in Sect. 3.1. Voting threshold was set to 10% on
all cases.

In order to enhance trust in the devised AI models, we analyzed what fea-
tures these methods employ for making the COVID-19 diagnosis decision. This
is done by investigating which artificial neurons fire the most, and then pro-
jecting this information to the input images. To accomplish this we combined
GradCAM [36] with VarGrad [37]9 and, Fig. 8 shows some examples of the
saliency maps generated by interpreting the proposed AI COVID-19 classifica-
tion network. It is interesting to note that the most significant activation areas
correspond to the three most common lesion types, i.e., ground glass, consolida-
tion and crazy paving. This is remarkable as the model has indeed learned the
COVID-19 peculiar patterns without any information on the type of lesions (to
this end, we recall that for COVID-19 identification we only provide, at training
times, the labels “positive” or “negative”, while no information on the type of
lesions is given).

9https://captum.ai/
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Model Variant Sensitivity (CI) Specificity (CI) Accuracy (CI)

AlexNet – 71.0 (57.9–81.6) 90.3 (79.5–96.5) 80.7 (68.3–89.5)

ResNet

18 71.0 (57.9–81.6) 93.5 (83.5–98.5) 82.3 (70.1–90.7)
34 80.7 (68.3–89.5) 90.3 (79.5–96.5) 85.5 (73.7–93.1)
50 83.9 (71.9–91.9) 90.3 (79.5–96.5) 87.1 (75.6–94.3)
101 77.4 (64.7–89.9) 87.1 (75.6–94.3) 82.3 (70.1–90.7)
152 77.4 (64.7–89.9) 90.3 (79.5–96.5) 83.9 (71.9–91.9)

DenseNet
121 77.4 (64.7–89.9) 93.5 (83.5–98.5) 85.5 (73.7–93.1)
169 67.9 (83.5–98.5) 93.5 (83.5–98.5) 81.4 (68.7–90.2)
201 90.3 (79.5–96.5) 93.5 (83.5–98.5) 91.9 (81.5–97.5)

SqueezeNet – 66.7 (54.5–78.9) 93.5 (83.5–98.5) 81.4 (68.7–90.2)

ResNeXt – 77.4 (64.7–86.9) 90.3 (79.5–96.5) 83.9 (71.9–91.9)

Table 7: COVID-19 classification accuracy (in percentage) by several state of the art models.
Values in parentheses indicate 95% confidence intervals (CI).

Figure 8: Lung salient areas identified automatically by the AI model for CT COVID-19
identification.
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4.3.3. COVID-19 lesion categorization

For COVID-19 lesion categorization we used mean (and per-class) classifica-
tion accuracy over all lesion types and per lesion that are provided, respectively,
in Table 8. Note that no comparison with radiologists is carried out in this case,
since ground-truth labels on lesion types are provided by radiologists themselves,
hence they are the reference used to evaluate model accuracy.

Model no segm Model w segm

Consolidation 77.8% (69.9–84.1) 97.9% (93.6–99.8)

Ground glass 18.6% (14.1–24.1) 41.3% (35.1–47.7)

Crazy Paving 57.1% (49.4–64.4) 98.3% (94.8–99.8)

Negative 99.3% (98.6–99.7) 99.9% (99.5–100)

Average 63.2% 84.4%

Table 8: Per-class accuracy for lesion categorization between manual readings of expert radiol-
ogists and the AI model without lung segmentation and AI model with segmentation. Values
in parentheses indicate 95% confidence intervals (CI).

Mean lesion categorization accuracy reaches, when operating at the lobe
level, about 84% of performance. The lowest performance is obtained on ground
glass, because ground glass opacities are specific CT findings that can appear
also in normal patients with respiratory artifact. Operating at the level of
single lobes yields a performance enhancement of over 21 percent points, and,
also in this case, radiologists did not have to perform any lobe segmentation
annotation, reducing significantly their e↵orts to build AI models. The most
significant improvement when using lobe segmentation w.r.t. no segmentation
is obtained on the Crazy Paving class, i.e., 98.3% against 57.1%.

4.4. Discussion

Although COVID-19 diagnosis from CT scans may seem an easy task for
experienced radiologists, our results show that this is not always the case: in
this scenario, the approach we propose has demonstrated its capability to carry
out the same task with an accuracy that is at least on par with, or even higher
than, human experts, thus showing the potential impact that these techniques
may have in supporting physicians in decision making. Artificial intelligence,
in particular, is able to accurately identify not only if a CT scan belongs to a
positive patient, but also the type of lung lesions, in particular the smaller and
less defined ones (as those highlighted in Fig. 8). As shown, the combination of
segmentation and classification techniques provides a significant improvement
in the sensitivity and specificity of the proposed method.

Of course, although the results presented in this work are very promising
in the direction of establishing a clinical practice that is supported by artificial
intelligence models, there is still room for improvement. One of the limitations
of our work is represented by the relatively low number of samples available
for the experiments. In order to mitigate the impact of this issue, we carried
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out confidence level analysis to demonstrate the statistical significance of our
results. Moreover, the employed dataset consists of images taken by the same
CT scanner, not tested in multiple scanning settings. This could a↵ect the
generalization of the method on images taken by other CT scanner models;
however, this issue can be tackled by domain adaptation techniques for the
medical imaging domain, which is an active research topic [43, 44, 45].

Finally, one of the key features of our approach is the integration of explain-
ability functionalities that may help physicians in understanding the reasons
underlying a model’s decision, increasing in turn, the trust that experts have
in AI–enabled methods. Future developments in this regard should explore, in
addition to model explainability, also causability features in order to evaluate
the quality of the explanations provided [46, 47].

5. Conclusions

In this work we have presented an AI-based pipeline for automated lung
segmentation, COVID-19 detection and COVID-19 lesion categorization from
CT scans. Results showed a sensitivity of 90.3% and a specificity of 93.5%
for COVID-19 detection and average lesion categorization accuracy of about
84%. Results also show that a significant role is played by prior lung and lobe
segmentation, that allowed us to enhance diagnosis performance of about 6
percent points.

The AI models are then integrated into a user-friendly GUI to support AI ex-
plainability for radiologists, which is publicly available at http://perceivelab.
com/covid-ai. To the best of our knowledge, this is the first AI-based soft-
ware, publicly available, that attempts to explain radiologists what information
is used by AI methods for making decisions and that proactively involves in the
loop to further improve the COVID-19 understanding.

The results obtained both for COVID-19 identification and lesion categoriza-
tion pave the way to further improvements, driven towards the implementation
of an advanced COVID-19 CT/RX diagnostic pipeline, that is interpretable,
robust and able to provide not only disease identification and di↵erential diag-
nosis, but also the risk of disease progression.
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