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A B S T R A C T   

Melting temperature (TM) is a crucial physical property of solids and plays an important role for the charac-
terization of materials, allowing us to understand their behavior at non-ambient conditions. The present 
investigation aims i) to provide a physically sound basis to the estimation of TM through a “critical temperature” 
(TC), which signals the onset of thermodynamic instability due to a change of the isothermal bulk modulus from 
positive to negative at a given PC-VC-TC point, such that (∂P/∂V)VC,TC = -(∂2F/∂V2) VC,TC = 0; ii) to discuss the case 
of periclase (MgO), for which accurate melting temperature observations as a function of pressure are available. 
Using first principles calculations, quasi-harmonic approximation and anharmonic correction, we model the 
Helmholtz potential, i.e. F(V,T), and determine pressure thereby. A comparison between measured and predicted 
TM values as a function of pressure shows achievement of an average discrepancy of ~2.9%, in the range 0–25 
GPa and 3000–5000 K.   

1. Introduction 

The melting temperature (TM) of a solid is a fundamental physical 
property, which plays a relevant role in developing phase diagrams, 
understanding the behavior of many materials at non-ambient condi-
tions and designing possible applications. In particular, we are inter-
ested in minerals that are involved in natural reactions occurring at 
high-pressure and high-temperature conditions. In this view, we focus 
on solids with a crystal structure, and henceforth we shall use the term 
“solids” to mean “crystal solids”. Notwithstanding the vastly recognized 
relevance of predicting TMs, melting temperature modelling still re-
mains a challenging task [1]. 

The main difficulty lies in the intrinsic complexity to model melts’ 
Gibbs energy, on the one hand, and in the non-trivial definition of a 
reliable phenomenological principle underlying the change of state from 
solid to liquid, on the other hand. 

Several authors have proposed principles that underpin the collapse 
of a crystal, thereby developing approaches that relate melting to the 
appearance of particular trends, which involve one or more macro-
scopic, or microscopic, observables of the solid phase. 

Lindemann [2] hypothesized melting to occur when neighboring 
atoms’ oscillations around average positions become larger than 

inter-atomic distances. Such a principle was revised by Gilvarry [3], who 
adapted it to the case of the atomic vibrations inferred from the 
Debye-Waller factors measured in diffraction experiments. Ross [4] 
generalized the Lindemnn melting law by elucidating its links to sta-
tistical mechanics; Kuramoto [5], recalling the Ross’s principle, refor-
mulated the theory of melting using statistical thermodynamics and 
seeking conditions of equilibrium between solid and melt by modelling 
their partition functions. 

Stacey and Irvine [6] derived an equation for melting from the 
Clausius-Clapeyron relationship, thus providing a general thermody-
namic basis to the phenomenological Lindemann’s law. 

Herzfeld and Goeppert Mayer [7] related the occurrence of melting 
to thermo-elastic anomalies revealed by the appearance of a minimum 
in the P–V curve. Born [8] generalized the correlation between break-
down of a crystal and its elastic behavior, associating melting with the 
occurrence of elastic shear modulus tending to zero. Ida [9] and Boyer 
[10] contributed to shedding light on the mechanisms underlying the 
change of state from solid to liquid and produced two papers that share 
the same title: “Theory of melting based on lattice instability”. The 
former discussed the role of anharmonic effects in causing breakdown of 
a crystal. The latter provided a thorough survey about the relation be-
tween melting and thermo-elastic instability, gathering into a coherent 
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synthesis the contributions of earlier authors who shared the opinion 
that the change of state from solid to liquid is to be associated with the 
occurrence of anomalies affecting the P–V curve. In particular, Boyer 
[10] described the equation of state of a solid in terms of  

P(V,T) = Pst(V) + Pth(V,T)                                                                      

Where the subscripts st (“static”) and th (“thermal”) account for con-
tributions to pressure from lattice + zero-point energy (independent of 
T) and vibrational energy (dependent on T), respectively. If at a “crit-
ical” temperature, TC, there occurs that Pst (VC,TC) = -Pth(VC,TC), then 
the solid undergoes thermo-elastic instability, which is a prologue to a 
breakdown of the system. 

The occurrence of thermo-elastic instability as a sign heralding a 
change of state has recently been re-examined by Owens [11] in the case 
of alkali halides, using the Debye approximation. The cross-over tem-
perature between Pst and Pth has been interpreted by the quoted author 
as an approximation of TM that is underestimated by about 6% with 
respect to the observations. Digilov and Abramovich [12], coupling the 
Debye model with statistical thermodynamics, were able to correlate the 
appearance of thermo-elastic instability to a “critical” value of the 
thermal pressure, i.e. Pth = K0 (eδ)− 1, where K0 and δ are bulk modulus at 
0 K and Grüneisen parameter, respectively. 

In this light, the present work aims to discuss the relation between 
melting temperature as a function of pressure, TM(P), and the appear-
ance of thermodynamic instability, caused by the violation of funda-
mental relationships involving thermodynamic potentials. In particular, 
we focus on the P–V-T (pressure-temperature-volume) equilibrium sur-
face, whose P is obtained by the Helmholtz potential as a function of V 
and T, to estimate TM(P) via a “critical temperature”, TC(P). The latter 
will be introduced in the ensuing section and portends the occurrence of 
instability, a prologue to the breakdown of the crystal structure. We 
model the thermodynamic potentials using ab-initio calculations, quasi- 
harmonic lattice dynamics and an anharmonic correction. We compare 
the obtained results with experimental data, in the case of MgO (peri-
clase). The choice of such a mineral was dictated by the following rea-
sons: i) comparatively simple structure, which allows us to focus on 
methodological aspects; ii) amply investigated and measured TM(P) 
curve, which makes it possible to reliably compare predictions with 
experimental results; iii) relevance of MgO in providing a structure 
model, of interest both to Earth Sciences and Material Sciences. Previous 
investigations about MgO melting are reported by Refs. [13,14], who 
used molecular dynamics and semi-empirical potentials to model TM, 
and by Ref. [15], who employed molecular dynamics in combination 
with DFT-theory to reproduce the melting slope. 

2. Theoretical 

2.1. Thermodynamic instability 

Let a system be at equilibrium with a thermo-barostat, at P-T. We 
split the system into two sub-systems [16], whose volumes (V1 and V2) 
and entropies (S1 and S2) are such that V1 = V × ξ, V2 = V × (1-ξ) and S1 
= S × ξ, S2 = S × (1-ξ), 0 ≤ ξ ≤ 1. We shift one sub-system off equi-
librium with respect to the other, in terms of V1 = V/2 + δV versus V2 =

V/2 - δV, and T1 = T+ δT versus T2 = T-δT, thus preserving the total 
volume and temperature, i.e. 

δVtotal = δV1 + δV2 = 0 (1.a)  

δTtotal = δT1 + δT2 = 0. (1.b) 

Using F1(V1,T1), F2(V2,T2) and F (T,V) to address the Helmholtz en-
ergy of either sub-system and of the total system, respectively, one has 
that 
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Moreover, any generic change of a V-T system, i.e. (V0,T0)→(V0+ΔV, 
T0+ΔT), entails a variation in entropy given by 

ΔS= S(V0 +ΔV, T0 +ΔT) − S(V0, T0)= −

(
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If the constraints provided by (1.a) and (1.b) are fulfilled, then from 
(3.a) it follows that  

δStotal = δS1 + δS2 = 0,                                                                (3.b) 

i.e. the entropy of the total system is preserved. In this view, any shift 
of the two sub-systems, (V1,T1,S1) and (V2,T2,S2), according to (1.a-b) 
leads to an off-equilibrium condition such that the total system evolves 
towards equilibrium via an irreversible transformation driven by a 
decrease of Helmholtz energy and Internal energy. Let us now focus on 
the case of the Helmholtz energy and ξ = 0.5. Then 
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We sum (4.a) and (4.b), i.e. δF = δF1 + δF2, and write δF as  

δF = δ1F + δ2F,                                                                                   

Where δ1F and δ2F represent the first and second order contributions, 
respectively, in δT and δV. We readily observe that at  

δ1F = 0,                                                                                              

Whereas  

δ2F > 0.                                                                                              

The second inequality is required for equilibrium to occur at a 
minimum of F, in the case of an irreversible transformation such that 
δVtotal = 0 and δTtotal = 0, i.e. (1.a) and (1.b). 

Hence, δ2F must be a positive definite, homogenous quadratic form 
in δV and δT [17], i.e. 
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δ2F ∝
(
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T
δV2 + 4

(
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δVδT +

(
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)

V
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Eq. (5) is associated with the symmetric matrix 

M =

(
A C
C B

)

(6)  

where A = (∂2F/∂V2)T, B = (∂2F/∂T2)V, C = 2 (∂2F/∂T∂V). For δ2F > 0 to 
hold, the eigenvalues of the matrix (6), λ1 and λ1, must be both positive. 
Such a requirement implies further restraints in terms of  

Tr(M) = λ1 + λ2 > 0                                                                    (7.a) 

and  

Det(M) = λ1 × λ2 > 0.                                                                  (7.b) 

Solving the secular equation for the determination of the eigenvalues 
of matrix (6) and taking into account the restraints of (7.a) and (7.b), one 
readily finds out a set of inequalities involving A-B-C and providing 
fundamental thermodynamic relationships. Let us leave algebraic de-
tails aside and focus our attention on trivial cases only, exploiting the 
fact that Eq. (5) must hold for any δV and δT value. It follows then:  

• δV ∕= 0 and δT = 0 implies KT > 0 (KT = isothermal bulk modulus);  
• δV = 0 and δT ∕= 0 implies CV/T > 0 (CV = isochoric specific heat). 

The same argument may be used for Internal energy, U(V,S), under 
an off-equilibrium shift provided by δV and δS. In so doing, we obtain 
that.  

• δV ∕= 0 and δS = 0 implies KS > 0 (KS = adiabatic bulk modulus);  
• δV = 0 and δS ∕= 0 implies CV > 0 (CV = isochoric specific heat). 

Any change as a function of P-T of one of the observables mentioned 
above (i.e. KS, KT, CV; for simplicity, X) from positive to negative, implies 
a transition from thermodynamic stability to thermodynamic instability. 
Moreover, there must exist a thermodynamic state, Λ0, corresponding to 
“critical” pressure-volume-temperature values, (PC,VC,TC), implying X 
(Λ0) = 0. We chose KT as thermodynamic key observable to reveal 
appearance of instability, i.e. we seek those P-T ranges in which KT ≤ 0. 
We propose to use TC to estimate TM, in combination with  

KT > 0 for V < VC (T = TC);                                                                   

KT = 0 for V = VC (T = TC);                                                                   

KT < 0 for V > VC (T = TC).                                                                  

Fig. 1 visually elucidates this principle in the P–V space, at a given 
temperature. Minima of a P–V isotherm depict a phenomenology in 
which the volume increases, until achievement of a size where the onset 
of a loss of stability is triggered and the pristine phase cannot exist any 
longer. This behavior is coherent with the trend commonly exhibited by 
a solid upon approaching melting in experiments. 

Note that due care is required in using TC as an estimate of TM, at least 
in two respects: 1) it does not point univocally to a change of state from 
solid to liquid. For instance, TC might be related to a pre-melting change 
of state into a glass [18,19], or to a phase transition [20]; 2) TC is 
associated with to the solid phase only, thus expressing its intrinsic 
instability, and no comparison is made between solid and melt Gibbs 
energies. All this prompts the need of a careful comparison between 
predictions and observations to assess the actual efficacy of TC as an 
estimate of TM, and to point out limitations, restrictions and drawbacks 
of such possible a usage. 

A parallelism can be observed between (PC,VC,TC)s and critical points 
of a crystal electron density, ρ, i.e. points at which where ∇ρ = 0. The 
coalescence of a pair of critical points produces a new critical point, (xC, 

yC,zC), where the ρ′s Hessian matrix is singular, and heralds, by virtue of 
the catastrophe theory, a transformation to a more stable phase/state 
[21,22]. The kinship between (PC,VC,TC) and (xC,yC,zC) is disclosed by 
analyzing the behavior of the Helmholtz function versus V around (PC, 
VC,TC) and observing its analogy to the classical Thom’s functions that 
describe the occurrence of a catastrophe, as shown by Fig. 2, which 
represents the case of MgO (periclase) before, during and after melting, 
at P = room pressure (here treated as P = 0, on account of the low 
compressibility of MgO). The catastrophe predicted by the Helmholtz 

Fig. 1. An example of the critical point topology (PC-VC-TC), in the P–V space. 
Along a given TC-isotherm, we distinguish two regions: 1) thermodynamic 
stability range, where P decreases upon increasing V (i.e. KT > 0); 2) thermo-
dynamic instability range, where P increases upon increasing V (i.e. KT > 0). At 
PC-VC-TC we have KT = 0; a.u. = arbitrary units. 

Fig. 2. F(V,T) around VC at TC. The trend of a fold-type function, heralding a 
catastrophe according to the Thom’s theory, is displayed. ΔF = F(V,T)-F(VC,T). 
Solid line = 2900 K; dashed line = 3114 K; dash-dot line = 3300 K. 

M. Merli and A. Pavese                                                                                                                                                                                                                        



Calphad 73 (2021) 102259

4

energy is of fold-type, i.e. reducible to the Thom’s function (“unfolding”) 
shown below  

f(ξ) = 1/3ξ3 + vξ                                                                             (8) 

Where f(ξ) is the difference between the Helmholtz free energy along the 
reaction V-path and its value at (PC = room pressure, VC,TC); ξ = V-VC; v 
is a control parameter dependent on T. In Fig. 2 the cases (i) v >
0 (equivalent to T < TC, T = 2900 K, for instance), (ii) v = 0 (T = TC, TC =

3114 K, i.e. melting temperature predicted by the anharmonic model, 
see below) and (iii) v < 0 (equivalent to T > TC, T = 3300 K, for instance) 
are displayed, respectively. In particular, in the case (i), f(ξ) exhibits two 
critical points at V = 21.27 Å3 (in the stable region, V < VC) and V =
23.17 Å 3 (in the unstable region, V > VC), which have second de-
rivatives of opposite signs. In the case (ii), the two critical points 
mentioned above coalesce into one at VC = 22.18 Å3, giving rise to a 
horizontal inflection (second derivative of F versus V equal to zero) at ξ 
= 0, i.e. V = VC, that announces MgO melting. In the case (iii), no critical 
points appear in f(ξ) and the system becomes stable at P > 1.3 GPa. 

For the sake of completeness, we underscore that full coherence with 
the Thom’s theory is achieved if one uses F(V,TC)norm in place of F(V,TC), 
where the former is defined by 

F(V, TC)norm =F(V, TC) + PCV,

TC and PC behaving as control parameters. Note that 
(

∂Fnorm

∂V

)

V=VC ,T=TC

=

(
∂2Fnorm

∂V2

)

V=VC ,T=TC

= 0,

which does provide the fundamental condition for the occurrence at (PC, 
VC,TC) of a critical point triggering instability in the context of the ca-
tastrophe theory. 

2.2. Negative compressibility paradox 

Negative linear compressibility has long attracted attention [23] and 
does not violate thermodynamics, as volume reduction takes place in 
combination with expansion along a given direction [24]. Conversely, 
negative volume compressibility of an unconstrained solid violates 
thermodynamic fundamental relationships, indeed, and leads to a 
behavior against common observations. Let us recall that the definition 
of the thermal/adiabatic bulk modulus by means of the elastic constant 
tensor, i.e. 

KT,S =
∑3

j,i=1
CT,S

iijj . (9) 

KT,S < 0 entails that one is able to choose a strain tensor of type 
(η1,η2,η3,0,0,0) that progressively lowers the deformation energy of a 
crystal, so that the more deformed the system the more stable it be-
comes. All this is in conflict with an elastic regime and promotes a 
plastic-type deformation stabilizing a progressively ever more strained 
structure. 

If we analyze the Gibbs potential of a system as a function of V-T, i.e. 
G (P(V,T),T), at isothermal conditions, we have that 

∂G(P(V,T),T)
∂V

=
∂F(V,T)

∂V
+

∂
∂V

(PV)= − P+P+V
(

∂P
∂V

)

T
= − KT (10) 

In the case of an isothermal change from V0 to V1, then 

ΔG=

∫V1

V0

− KT dV, (11)  

which, if KT < 0, would entail a decrease of the system’s Gibbs energy 
under a reduction of volume (V0>V1). In light of this, such a crystal 
would monotonically increase its stability with shrinking, notwith-
standing overwhelming repulsive forces due to a shortening of the inter- 

atomic distances. 

2.3. Modelling 

We explore the P–V-T space by modelling F(V,T), from which we 
calculate pressure as 

P= −

(
∂F
∂V

)

T
, (12)  

and determine thereby the instability ranges (KT ≤ 0), with the related 
critical points (PC,VC,TC), whereat 
(

∂P
∂V

)

VC ,TC

= 0,

i.e. KT = 0. 
We preliminarily investigated the degree of intrinsic anharmonicity 

that affects MgO. The exploration of the vibration frequencies as a 
function of volume did not reveal occurrence of soft-modes, which 
announce instability driven by a very large anharmonic contribution 
due to a subset of phonons. Three vibrational modes were studied, at the 
largest volume explored in the present work, by shifting the atoms ac-
cording to the related eigenvectors around the equilibrium positions and 
calculating the resulting lattice energy. 

Fig. 3 shows, by way of example, the case of F1u for MgO, at the zone 
center. The anharmonic contributions become non-negligible for 
vibrational amplitudes associated with quantum levels of the harmonic 
oscillator above ̃n12. Tests show that the partition function of the related 
anharmonic oscillator achieves convergence for n > 50–60, at temper-
atures close to those of room pressure melting. All this indicates that we 
must include somehow anharmonicity in modelling the Helmholtz 
function. 

We used the approach by Oganov and Dorogokupets [25], who ex-
press the Helmholtz function as follows: 

F(V,T)=Elatt +FQH(V,T) + ΔFA(V,T) (12.a) 

Fig. 3. MgO (periclase). ΔE = lattice energy difference between configurations 
with atoms shifted according to an eigenvector (F1u) from their crystallo-
graphic positions and atoms at their crystallographic positions, with respect to 
the oscillation amplitude. The latter is expressed in (hν/K)1/2 unit, where ν =
harmonic frequency; K = force constant. Squares and dotted line: anharmonic 
model. Triangles and full line: harmonic model. 
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where: QH = Quasi Harmonic model, inclusive of the zero-point energy; 
ΔFA = anharmonic contribution; Elatt = lattice energy. ΔFA, in turn, is 
modelled as 

ΔFth,A ≈
3
2

R a natoms T2 (12.b)  

where natoms is the number of atoms per formula unit, and a is a function 
of the volume, i.e. 

a(V,V0)= a0

(
V
V0

)m

(12.c)  

where the subscript 0 indicates a reference state (here, V0 = equilibrium 
volume at 300 K and room pressure, i.e., V0 = 18.86 Å3, by harmonic 
approximation; a0 = 1.427 10− 5 K− 1 and m = 6.090; the latter two from 
Table IV of [25]). 

2.4. Computational 

Energy of MgO was determined using static and vibrational contri-
butions. The calculations were performed by the CRYSTAL17-code that 
exploits “Linear Combinations of Atomic Orbitals” [26,27]. We used a 
hybrid functional, with Hartree-Fock/DFT rate of 0.25, WCGGA ex-
change functional and LYP correlation functional, following Wu and 
Cohen [28]. The hybridization rate was chosen to reproduce unit cell 
volume, bulk modulus and electronic energy gap, at room conditions. 
The following tolerances that control the accuracy of the self-consistent 
cycles’ integrals were used: 10− 8 for coulomb overlap; 10− 8 for coulomb 
penetration; 10− 8 for exchange overlap; 10− 8 for exchange 
pseudo-overlap in direct space and 10− 16 for exchange pseudo-overlap 
in reciprocal space; 10− 10 a.u. Threshold for SCF-cycles’ convergence. 
The shrinking factors of the reciprocal space (Monkhorst net [29]) and 
of the secondary reciprocal space net (Gilat net [30]) were set at 6 and 
12, respectively. The Mg basis set from Causà et al. [31] was extended by 
the addition of diffuse sp and d shells (85-11G* contraction). Oxygen 
was modelled by means of the O8-411 basis sets of Towler et al. [32,33]. 
The outer shells’ coefficients were optimized by means of the “billy” 
utility by Towler [34]. The eigenvalue level shifting technique was not 
used. All the coulomb and exchange bi-electronic integrals have been 
evaluated exactly (keyword NOBIPOLA). The convergence acceleration 
method of Anderson [35] was employed. Lattice dynamics calculations 
were carried out using a 3 × 3 × 3 supercell, which allowed us to sample 
27 K-points [36]. The size of the supercell was chosen exploring how it 
affects specific heat at constant volume (CV) and entropy (S). In so doing, 
we observed that passing from 3 × 3 × 3 to 4 × 4 × 4 supercells changes 

CV and S within 1%, at room conditions, and within 0.5%, on average in 
the ranges 0–2000 K. In Fig. 4 the phonon dispersion relations of MgO 
calculated by CRYSTAL17 (keyword BANDS) and spanning 64 k-points 
along each path in the reciprocal space, are displayed. Such results 
agree, for instance, with those of https://materialsproject. 
org/materials/mp-1265/#phonon-dispersion. See Ref. [37], for details 
about calculations. 

The static E(V)-curve of MgO was obtained by exploring the V-range 
[-1.5%,25%], around the room pressure volume. Cell expansion and 
shrinking are modelled by applying a nominal negative, or positive, 
pressure, Pnom, and modifying then lattice parameters and atomic po-
sitions up to achievement of equilibrium between Plat and Pnom. In the 
present case, due to the high-symmetry phase with atoms in special 
positions, each V-point was modelled by a simple variation of the cell 
edge. For each V-point, the vibrational energy was determined by 
combining atomic vibration frequencies of a harmonic model with 
standard statistical mechanics’ formalism, including zero-point vibra-
tion. In doing so, we obtained 145 (T,V)-points, and the ab initio quasi- 
harmonic Helmholtz energy was calculated accordingly. FQH(V,T) was 
then modelled by a V-T expansion, as follows (MATLAB® [38]): 

F(V,T)=
∑n

j=0

∑m

k=0
pj,kTjVk (13)  

where n and m in our analysis range from 3 up to 5 and m+n ≤ 5. The 
choice of this interpolation scheme is dictated by merely numerical 
reasons, provided by: i) achievement of R and R2 < 0.9999, MSSE <10− 8 

and RMSE <10− 4; ii) t-test statistic of the regression coefficients; iii) 
convergence of the T and V series. In the present work, we adopted a n =
5 and m = 3 polynomial, thus treating a system with 127 independent 
“observables”, with standardization (by centring and scaling: 
<T>~1788 and σ~1048 K, for T; <V> ~141.4 and σ~11.28 Bohr3, for 
V) of the dependent variables. The fitting’s parameters are reported in 
Table 1. 

To corroborate the validity of the developed model, we compare its 
predictions with experimental V-T (room pressure), V–P (room tem-
perature) and V–P (along isotherms) curves. In Fig. 5, the equilibrium 
volumes calculate by F (T,V) are compared with high-temperature 
experimental data from Ref. [39]: a full agreement is apparent be-
tween predictions and measurements. 

In Fig. 6 our volume data at 300 and 1100 K are compared with those 
by Ref. [40], while in Fig. 7 the comparison is between our data at 1000, 
2000 and 3000 K and those by Wu [41], over a P-range of 0–40 GPa. 
Given that such a pressure range is larger than the one we explored, we 
used an extrapolation of our calculations, which are restricted to 0–7 
GPa. 

Fig. 4. MgO phonon-dispersion curve.  
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In the comparisons above, V has been corrected in terms of V300/Vexp 
(see Ref. [41]) where V300 is the volume predicted by FQH at T = 300 K, 
whereas Vexp is the experimental volume at room conditions. Eventually, 
for the sake of comparison, we report that at room temperature a F–V 
interpolation (0–7 GPa) by the second order Birch-Murnghan expansion 
provides for MgO the following results: K0 = 170.7 GPa and V0 = 18.9 
Å3, to be compared with the following observed figures: K0 = 162.8 GPa 
[42] and V0 = 18.7 Å3 [43]. 

3. Results and discussion 

In order to determine the melting curve for MgO, we explored the V- 
T space along isotherms, to find out critical points (PC,VC,TC) at which 
pressure changes its trend with volume from monotonically decreasing 
into monotonically increasing, i.e. (∂2F/∂V2)VC,TC = 0 at PC = -(∂F/∂V)VC, 

TC. 
In Fig. 8, P–V isothermal curves calculated at different temperatures 

are displayed, by way of example. The location of the related (PC,VC,TC) 

Table 1 
Regression parameters of polynomial fitting of the ab-initio modelled FQH (T,V) 
and related statistical figures of merit.  

Polynomial fit (Eq. (13)) 

R 1.0000  
R2 1.0000  
adjR2 1.0000  
MSSE 4.1017e-09  
RMSE 6.8433e-05  
SSE 5.9475E-07  
MAE 4.9229e-05  

Parameter Value Std. Err. 
p00 − 275.20583 7.22E-06 
p10 − 0.044810989 1.51E-05 
p01 0.002323113 1.18E-05 
p20 − 0.00539901 1.20E-05 
p11 − 0.00256122 9.97E-06 
p02 0.00154408 4.94E-06 
p30 0.00094786 1.79E-05 
p21 0.00006008 1.38E-05 
p12 − 0.00010691 8.30E-06 
p03 − 0.00050399 5.99E-06 
p40 − 0.00058922 4.44E-06 
p31 0.00004876 3.72E-06 
p22 0.00001205 3.69E-06 
p13 − 0.00010252 4.00E-06 
p50 0.00022646 5.31E-06 
p41 − 0.00004114 4.37E-06 
p32 − 0.00001191 4.26E-06 
p23 − 0.00000665 4.52E-06  

Fig. 5. Comparison between volume values from present work (open squares) 
and those by Fiquet et al. (1999) [39] (solid circles with experimental 
error bars). 

Fig. 6. Comparison between volume data of present work (squares) and those 
from Fei (1999) [40] (circles). Solid squares = 300 K, open squares = 1100 K; 
open circles = 300 K, solid circles = 1100 K. 

Fig. 7. Comparison between volume data of present work and those from Wu 
[41] (solid circles). Solid line = data from Wu, 1000 K; dashed line = data from 
Wu, 2000 K; dash-dotted line = data from Wu, 3000 K; squares = this work, 
1000 K; circles = this work, 2000 K; triangles = this work, 3000 K. 
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points is provided by the isotherms’ minima (see Fig. 1). 
The physically sound (PC,VC,TC) points, whereby the melting P-T 

curve is predicted, are recognized as the “first” critical points found 
expanding the volume (i.e. those with the smallest volume) with respect 
to its room temperature value (predicted by harmonic calculation), 
along the isotherm at T = TC and under the restraints:  

PC > 0;                                                                                                 

KT > 0 for V < VC;                                                                                 

KT = 0 for V = VC;                                                                                 

KT < 0 for V > VC                                                                                

Given that from Fig. 1 we have.  

i) (∂P/∂V)T > 0, V > VC and T = TC, and  
ii) (∂P/∂V)T < 0, V < VC and T = TC, 

it follows  

P(VC ± δV,TC) = PC+ΔP(VC ± δV,TC),                                                   

Where  

ΔP(VC ± δV,TC) = Plat(VC ± δV,TC) + Pvib(VC ± δV,TC) - PC,                    

ΔP(VC ± δV,TC) ≥ 0, 
and, at the critical point, it holds:  

Plat(VC,TC) + Pvib(VC,TC) = PC.                                                               

Melting at ambient pressure requires PC = 0 (we neglect the actual 
room pressure, as it is irrelevant in the present context), i.e.  

Plat(VC,TC) + Pvib(VC,TC) = 0,                                                                 

corresponding to the very condition posed by Owens [11] and Boyer 
[10], and that can be fulfilled by virtue of the opposite signs exhibited by 
the static and thermal pressure components. 

Moreover, it is trivial to observe that  

(∂Plat/∂V)T > -(∂Pvib/∂V)T, V > VC and T = TC,                                          

and  

(∂Plat/∂V)T < -(∂Pvib,QH/∂V)T, V < VC and T = TC.                                      

Namely, the change of the inequality between the derivatives in 
volume of static and thermal pressure components underlies the onset of 
instability. 

In Fig. 9, KT is displayed as a function of P, so that one can easily 
appreciate the effect of pressure on TC, under the requirement of having 
positive pressure values, for the related (PC,VC,TC) point to make phys-
ical sense. Note that such KT values have been determined by Eq. (13), 
and in this light they are reliable for revealing a change in sign of the 
bulk modulus (position of the minimum of the P–V curve), rather than 
for predicting its absolute value (P–V curvature value). For instance, the 
isotherm at 3000 K yields KT = 0 at a negative pressure value. Such a 
critical point, which does exist in barely mathematical terms, is not 
physically acceptable, in keeping with the fact that the system does not 
melt at 3000 K. Conversely, the isotherm at 3500 K provides KT = 0 at a 
positive P figure, thus modelling the occurrence of a (PC-VC-TC) point 
that we can relate to melting, at physically possible conditions. 

Fig. 10 illustrates a comparison between the melting P-T curves 
modelled in the present work (quasi-harmonic and anharmonic models) 
and experimental data [43,46]. In Table 2, we report the coefficients of 
two parametrizations of TC(P), relying on 100 melting points predicted 
by the anharmonic model up to ~25 GPa, using a 6th order polynomial 
and the Simon equation. 

Extrapolations of the melting temperature to P above those explored 
by calculations, give results in agreement with observations. 

At 135 (about the earth’s core-mantle boundary pressure) and 320 
GPa (about the supposed pressure in the earth’s core) we predict TC ~ 
8050 and ~9750 K, respectively, to be compared with ~7900 and 
~9340 K, from experiments [43,47]. Both theoretical curves of Fig. 10 
have trends close to one another, with the anharmonic model giving a 
TC(P) systematically smaller than the harmonic one of ~2%, on average. 
Such a difference achieves its maximum at about 2.5 GPa, ~2.5%, and 
progressively decreases with pressure, thus suggesting that the two 

Fig. 8. MgO (periclase). Some isothermal P–V curves that show how we locate 
the related critical points. Each isotherm provides TC, and its minimum allows 
one to determine the critical point. Anharmonic model. Solid line: 3000 K; 
dashed line: 3500 K; dash-dotted line: 4000 K. 

Fig. 9. MgO (periclase). The KT trend is shown along three isotherms, as a 
function of pressure. KT = 0 allows one to detect the transition from a stability 
to instability. P > 0 is required to have a physically consistent description. 
Anharmonic model. Symbols as in Fig. 8. 
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models near one another in the high pressure regime. This is in keeping 
with [48], who claim a significant reduction of the anharmonic contri-
bution at high pressure, in many minerals. The quasi-harmonic model 
yields an overestimation of TM(P) of about 2.7% at room pressure (i.e., 
TC~3183 K, versus TM 3098 K from measurements [46]), which in-
creases by 0.19% GPa− 1 with pressure, leading to an average disagree-
ment of ~5.1%. The anharmonic model yields a discrepancy of about 
0.5% at room pressure (TC~3114 K), whereas the average mismatch is of 
~2.9%, with an increase of disagreement of 0.14% GPa− 1. In general, 
the anharmonic correction shifts predictions closer to the experimental 
values with respect to the harmonic approximation. 

The better ability of the anharmonic model to reproduce observa-
tions than the harmonic one is analyzed by cross-validation statistics 
(see Table 3), and quantified through the Normalized Residuals Squared, 
plotted in Fig. 11 (see Appendix for further details). Quasi-harmonic and 
anharmonic models near one another if we take into account the 
experimental uncertainties, using the following ratio: δ = (TC,theo-TM, 

obs)/σexperimental uncertainty. Average δ-figures are 1.76 and 0.97, for quasi- 
harmonic and anharmonic models, respectively. This indicates that 
quasi-harmonic and anharmonic models provide physical descriptions 
that agree on average with observations within experimental un-
certainties (i.e. deviation < 3σexperimental uncertainty), though they still 
yield different trends, as discussed above. As we stated, KT ≤ 0, i.e. 
occurrence of a range such that at (PC-VC-TC) we have KT = 0, KT < 0 for 
V > VC and KT > 0 for V < VC, does imply instability but does not 
univocally mean melting. 

Yet, we believe an important contribution in elucidating the inter-
pretation of TC may be provided by the following aspect. In the present 
case, quasi-harmonic and anharmonic models yield TC(P) curves that 
trend close to one another. The anharmonic contribution consists in a 
shift, which looks like a correction, of the quasi-harmonic model that 
fails to provide stability leading to KT ≤ 0. This is associated with the 
implication that the atoms can no longer preserve their equilibrium 
positions around which they vibrate, according to either harmonic or 
anharmonic oscillators. Such a behavior portends an atomic migration, 
even predicted by the harmonic regime, though it underestimates and 
curbs oscillations, thus engendering a breakdown, which develops into a 
deep structural reconstruction, or reorganization. A different situation is 
observable in the case of the soft-mode driven distorsive transition from 
α-quartz to β-quartz. In such a case, we were not able to detect 
appearance of any KT-anomaly using the quasi-harmonic approxima-
tion, though KT → 0 upon approaching the transition temperature is 
experimentally observable [19] and theoretically predictable by taking 
into account anharmonicity through a precise modelling of the anhar-
monic potential function and using variational calculus [49]. 

Eventually, it is important to point out the link between the lattice 
instability conditions and the Gibbs energy difference of melt versus 
solid. Let us assume that at T0 and P0 the solid starts melting, so that 
solid and melt co-exist at equilibrium. Any isobaric shift at a higher 

Fig. 10. MgO (periclase): P-T curve of melting. Solid line: quasi-harmonic 
model; dashed line: anharmonic model; open circles: experimental data from 
Ref. [43]; experimental value at room pressure by Ref. [46]. 

Table 2 
Regression parameters of least-squares fitting and related statistical figures of 
merit. T(P) melting functions from anharmonic model (temperature range: 
3000–6000 K; number of points: 100).  

Polynomial fit * 

R 1.0000  
R2 1.0000  
adjR2 1.0000  
MSSE 119.7077  
RMSE 0.1094  
SSE 10.9411  
MAE 0.2840  

Parameter Value Std. Err. 
c0 3122.4109 0.21 
c1 136.6462 0.17 
c2 − 0.8769 0.05 
c3 − 0.1498 0.01 
c4 7.6061E-04 6.58E-04 
c5 − 1.5489E-04 6.55E-06 
c6 1.1862E-06 5.95E-08 
Simon equation ** 
R 0.9961  
R2 0.9923  
adjR2 0.9872  
MSSE 7854.3788  
RMSE 62.6673  
SSE 88.6249  
MAE 50.5539  
Parameter Value Std. Err. 
T0 3096.066888 .24 
A 5.0936 2.49 
C 3.3797 0.76 

* polynomial function in P. 
TM(P) = c0 + c1P + c2P2 + c3P3 + c4P4+ c5P5 + c6P6 

** Simon equation 

TM(P) = T0⋅
(

P
A

)1
C
,

where: T0 = melting temperature at room pressure; A,C = phenomenological 
parameters. 

Table 3 
Statistical figures of merit to compare quasi-harmonic and anharmonic models. 
See Appendix about the used acronyms.   

Quasi-Harmonic model Anharmonic model 

R 0.9605 0.9840 
R2 0.9226 0.9683 
MSSE 39414.9 16151.5 
RMSE 171.93 110.06 
SSE 198.53 127.09 
MAE 246.51 166.37 
F-test 71.56 (5.99) 183.27 (5.99) 
KL 321.16 140.08 
MLT (Crit. Val.) 3.48 (5.99) 1.18 (5.99) 
PRESS 669555.4 204034.1 
MEP 83694.4 25504.3 
predR2 0.7810 0.9333 
AIC 86.35 79.22  
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temperature, T0+δT, leads into the stability field of melt. At (P0,T0+δT), 
this implies that 

ΔG=

∫T0+δT

T0

(
− S(T)melt

+ S(T)solid)dT =

∫T0+δT

T0

ΔS(T) dT < 0,

and from the inequality above it descends that ΔS(T) < 0. At (P0,T0), it 
holds: S (T0)melt = S (T0)solid. 

Entropy, in turn, can be expressed by C(T)P, i.e. 

ΔS(T)=
∫T

T0

− C(T ′

)
melt
P + C(T ′

)
solid
P

T ′ dT ′ (14.a) 

From (14.a), it follows 

C(T)solid
P < C(T)melt

P .

Let us recall that 

Csolid
P =Csolid

V + α2KT TV, (14.b)  

where α is the volume thermal expansion. The sign of α2KTTV depends 
on KT’s. If KT < 0 at T > T0, then 

C(T)solid
P < C(T)solid

V .

At very high temperature, the heat capacity at constant volume of a 
solid takes a flat trend and approaches its largest value, C(T0)

solid
V . If K 

(T0)T = 0, therefore it ensues C(T0)
solid
V = C(T0)

solid
P . From observations 

[44,45], C(T)melt
P changes little with temperature and is larger (10–30%) 

than C(T0)
solid
P . If T > T0 and K(T)T < 0, the following inequality must 

hold 

C(T)melt
P >C(T0)

solid
V > C(T0)

solid
V + α2KT TV = C(T)solid

P . (15) 

Equ.(15) shows that KT < 0 is energetically associated with both 
thermodynamic instability and appearance of conditions entailing (14. 
a). 

4. Conclusions 

Melting temperature is here associated with the occurrence of the 
violation of fundamental thermodynamic relationships, thus causing a 
deep instability. We explore the case of non-positive isothermal bulk 
modulus, KT ≤ 0, predicted by both quasi-harmonic and anharmonic 
models. In particular, KT = 0 at (PC-VC-TC) signals the onset of a struc-
tural breakdown. In the case of MgO (periclase), we correlate (PC-VC-TC) 
with melting, and detect the appearance of instability due to the 
occurrence of a minimum in the P–V TC-isothermal curve, so that:  

(∂P/∂V)T > 0, KT < 0, V > VC, T = TC                                                      

(∂P/∂V)T < 0, KT > 0, V < VC, T = TC,                                                     

(∂P/∂V)T = 0, KT = 0, V = VC, T = TC.                                                    

(PC-VC-TC) is used as an estimate of melting temperature, as a func-
tion of pressure. Ab-initio calculations were carried out to determine 
lattice and vibrational components of the free energy, and hence P. Both 
quasi-harmonic and anharmonic models predict melting, by means of 
the critical points introduced above. In comparing our predictions with 
observations for MgO, we conclude that:  

1) the quasi-harmonic model overestimates the TM(P) curve and the 
discrepancy between theoretical data versus observations increases 
with temperature, from ~2.7 (room pressure, experimental: ~3098 
K) up to ~9% (experimental: P ~25 GPa and T ~5000 K), with an 
average of 5.1%;  

2) the introduction of the anharmonic correction yields an agreement 
between calculations and experimental data within 3%, on average 
(at room pressure, TC ~ 3114 K with a discrepancy ~ 0.5%);  

3) quasi-harmonic and anharmonic models share similar sensitivities to 
pressure, in terms of mismatch between predicted versus observed 
melting temperature, the former yielding 0.19% and the latter 0.14% 
GPa− 1. 

Altogether, the estimate of TM via TC is satisfactory, for periclase. 
Although TC is associated with a fully established violation of funda-
mental thermodynamic inequalities, yet it cannot be univocally related 
to the occurrence of melting. However, given that such a violation is 
predicted by quasi-harmonic and anharmonic models alike, this suggests 
a deep loss of stability that implies a full structure readjustment, 
compatible with melting. A different case is provided by those trans-
formations driven by soft modes that yield a relevant anharmonic 
contribution (for instance, α-β quartz transition) and do cause thermo- 
elastic anomalies, which are not necessarily seen by a quasi-harmonic 
model. We underscore that further tests are required to provide a solid 
statistical basis that accounts for structural and chemical diversity be-
tween solids to substantiate the principle presented above. In particular, 
MgO does not present i) crystallographic degrees of freedom, other than 
the lattice edge, and exhibits ii) a quasi-ionic bonding. As to i), the 
absence of an atomic relaxation likely makes the system prone to a sharp 
response, in terms of loss of stability upon of heating. We reasonably 
expect more complex to model solids whose atoms relax along degrees of 
freedom, at high pressure and temperature. In this view, a further aspect 
that require attention is the role played by the glass transition, associ-
ated with a loss of stability of the ordered phase and whose T-range 
changes from substance to substance [48,49]. As to ii), we observed, in 
our experience, that ionic systems are better modelled than covalent 
ones by the computational techniques here employed. In this light, we 
believe efforts are to be paid to achieve a comparable degree of agree-
ment between predictions and observations in the case of more complex 
bonding. All this is related to and hopefully scaled down by a progressive 
enhancement in the capacity of computational modelling. Notwith-
standing the cautions at i) and ii), yet it is worth noting once more that 
KT < 0 is laced with a very general condition of stability via Gibbs energy 

Fig. 11. MgO (periclase): Normalized residuals squared in estimating melting 
temperature via TC. Full circles: TC,theo determined using the quasi-harmonic 
model; Empty circles: TC,theo determined using the anharmonic model. 
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in favor of a “new phase” with respect to the pristine solid one, and the 
failure of the harmonic model in providing stability to the original 
crystal structure suggests, in our opinion, to assign the “new phase” to 
the liquid state. 
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Appendix 

Some cross-validation statistic markers are used for a comparison 
between the melting curves foreseen by quasi-harmonic and anharmonic 
models. Acronyms are reported below: 

R = coefficient of correlation. 
R2 = coefficient of determination 
adjR2 = R2 adjusted for the numbers of predictors. 
MSSE = Error Mean Squared. 
RMSE = Root Mean Squared Error. 
SSE = Standard Error of Regression Estimates. 
MAE = Mean Absolute Error. 
F-test = Model F-test (» 1; the highest F is, the better the reliability of 

the model). 
KL = Kullbak-Leibner divergence (a measure of how observations 

data set is different from the calculated one). 
PRESS = Prediction Error Sum of Squares (The smaller PRESS is, the 

better the predictability of the model). 
MEP = Mean Error of Prediction (The smaller MEP is, the better the 

predictability of the model). 
MLT = Modified Levene Test for Constant Variance (must be below 

the Critical Value). 
predR2 = R2 prediction (predictive power of the model). 
AIC = Akayke Information Criteria (The best model shows the lowest 

value of AIC). 
NRS = Normalized Residuals Squared, i.e., the residuals ei normal-

ized by an estimated value of their standard error ei/(eTe)1/2. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.calphad.2021.102259. 
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[14] L. Vočadlo, G.D. Price, The melting of MgO — computer calculations via molecular 
dynamics, Phys. Chem. Miner. 23 (1996) 42–49, https://doi.org/10.1007/ 
BF00202992. 

[15] P. Tangney, S. Scandolo, Melting slope of MgO from molecular dynamics and 
density functional theory, J. Chem. Phys. 131 (2009) 124510, https://doi.org/ 
10.1063/1.3238548. 

[16] H.B. Callen, Thermodynamics, John Wiley & Sons Inc, 1960. 
[17] D.C. Wallace, Thermodynamics of Crystals, John Wiley & Sons Inc, 1972. 
[18] M.A. Bouhifd, G. Gruener, B.O. Mysen, P. Richet, Premelting and calcium mobility 

in gehlenite (Ca2Al2SiO7) and pseudowollastonite (CaSiO3), Phys. Chem. Miner. 
29 (2002) 655–662, https://doi.org/10.1007/s00269-002-0276-0. 

[19] P. Richet, J. Ingrin, B.O. Mysen, P. Courtial, P. Gillet, Premelting effects in 
minerals: an experimental stud, Earth Planet Sci. Lett. 121 (1994) 589–600, 
https://doi.org/10.1016/0012-821X(94)90093-0, 3–4. 

[20] R.J. Angel, ⋅ M. Alvaro, ⋅ R. Miletich, F. Nestola, A simple and generalised P–T–V 
EoS for continuous phase transitions, implemented in EosFit and applied to quartz, 
Contrib. Mineral. Petrol. 172 (2017) 1–15, https://doi.org/10.1007/s00410-017- 
1349-x. 

[21] M. Merli, A. Pavese, Electron-density critical points analysis and catastrophe 
theory to forecast structure instability in periodic solids, Acta Crystallogr. A74 
(2018) 102–111, https://doi.org/10.1107/S2053273317018381. 

[22] T. Poston, I. Stewart, Catastrophe Theory and its Applications, Series: Dover Books 
on Mathematics, Dover Publications, 1996, ISBN 9780486692715. 

[23] R. Lakes, K.W. Wojciechowski, Negative compressibility, negative Poisson’s ratio, 
and stability, Phys. Status Solidi 245 (2008) 545–551, https://doi.org/10.1002/ 
pssb.200777708. 

[24] A.B. Cairns, A.L. Goodwin, Negative linear compressibility, Phys. Chem. Chem. 
Phys. 17 (2015) 20449–20465, https://doi.org/10.1039/C5CP00442J. 

[25] A.R. Oganov, P.I. Dorogokupets, All-electron and pseudopotential study of MgO: 
equation of state, anharmonicity, and stability, Phys. Rev. B 67 (2003) 224110, 
https://doi.org/10.1103/PhysRevB.67.224110. 

[26] R. Dovesi, A. Erba, R. Orlando, C.M. Zicovich-Wilson, B. Civalleri, L. Maschio, 
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