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1 Introduction

In the Radial Basis Function (RBF) community the problem of selecting a
good (in some sense) or an optimal value of the shape parameter has been
a great issue for a very long time. It is in fact well-known that in RBF in-
terpolation and collocation methods the choice of the radial basis associated
with its shape parameter significantly influences the obtained results both
in terms of accuracy and stability (see e.g. [14,51]). For many years, people
who actively worked in the field of approximation theory or, more in general,
in numerical analysis carried out ad-hoc choices of the shape parameter or
sometimes even ignored its effect by treating it as a constant (see [15,23] and
references therein). Much more systematic approaches have been suggested
first in statistics literature [50], and later extended to the community of RBF
approximation [13,16,34,36]. Among several techniques proposed to predict an
optimal value, or even an interval [4], of the RBF shape parameter, we focus on
a popular version of cross validation, called Leave-One-Out Cross Validation
(LOOCV). This method was introduced in the context of RBF interpolation
by Rippa [34], but now it is commonly used in several fields of science and
engineering such as numerical analysis, mathematical modeling, optimization
and machine learning (see e.g. [9,10,35,48,49]). However, the use of a standard
LOOCV approach is quite expensive from a computational standpoint. It is
therefore evident the importance of designing methods and algorithms that
allow us to reduce the computational effort. This task can be done by solving
an optimization problem, thus detecting the shape parameter value for which
the interpolation error is the smallest possible. Nevertheless, as we will also
show in our numerical sections, some commonly used minimization algorithms
(see e.g. [49,52]) can sometimes fail and return a locally optimal value that in
practice is rather distant from the true global optimum. This fact motivates
us to enhance the current state of the art.

In this work, in order to find an optimal shape parameter for the RBF in-
terpolation, we propose to use a LOOCV technique combined with univariate
global optimization methods, which in this context requires the computation
of large Lipschitz constants. For this reason, we address our attention on the
construction of new algorithms based on deterministic global optimization
methods by applying efficient local tuning and local improvement techniques
to estimate the local Lipschitz constants and accelerate significantly the search
process (see [28,40,44,45]). In particular, we focus on the Global Optimization
with Pessimistic Improvement (GOPI) and the Global Optimization with Op-
timistic Improvement (GOOI) (see [44,45]). The combination of LOOCV with
these two global optimization methods allows us to get two new algorithms,
named LOOCV-GOPI and LOOCV-GOOI. In our extensive numerical exper-
iments we show the performance of these algorithms, also highlighting their
ability in determining the global minimum of the objective (or cost) function.
Several comparisons with a standard LOOCV method (whose results can be
viewed as the exact solution of our minimization problem) and the LOOCV
method associated with the MATLAB minimization routine fminbnd, called
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LOOCV-min, are also given. Finally, the efficacy of our new LOOCV-GOOI
approach is also pointed out for solving RBF interpolation problems in real-
world applications.

The rest of the paper is organized as follows. In Section 2, the RBF inter-
polation problem is stated as well as several traditional methods for selecting
a good value of the shape parameter of the RBFs are discussed. In Section 3,
a univariate global optimization framework is briefly described. In Section 4,
the proposed methods for selecting the value of the shape parameter using
the global optimization techniques are presented. Section 5 contains results of
numerical experiments on several two-dimensional test problems. In Section 6,
results on two real-life applications using different RBFs are also presented.
Finally, Section 7 concludes the paper.

2 Problem Statement and Traditional Methods

2.1 Radial Basis Function Interpolation

Given a domain Ω ⊆ R
s, a set Xn = {x1, . . . ,xn} ⊆ Ω of n distinct data

points or nodes and the corresponding set Fn = {f(x1), . . . , f(xn)} of data
or function values obtained by possibly sampling any (unknown) function f :
Ω → R, a standard RBF interpolant If : Ω → R is a linear combination of
RBFs of the form

If (x) =
n
∑

i=1

ciφε(||x− xi||2), x ∈ Ω, (1)

where ci, i = 1, ..., n, are unknown real coefficients, ||·||2 denotes the Euclidean
norm, and φ : R≥0 → R is a strictly positive definite RBF depending on a
shape parameter ε > 0 such that

φε(||x− y||2) = φ(ε||x− y||2), ∀x,y ∈ Ω.

For simplicity, from now on we refer to φε as φ. In Table 1 we report a list of
some strictly positive definite RBFs with their smoothness degrees. In partic-
ular, we remark that Gaussian, Inverse MultiQuadric, Inverse Quadratic and
Matérn functions are globally supported and strictly positive definite in R

s for
any s, whereas Wendland functions are compactly supported – with support
[0, 1/ε] – and strictly positive definite in R

s for s ≤ 3 (see [13,51]).
The coefficients c1, . . . , cn in (1) are determined by enforcing the interpo-

lation conditions

If (xi) = f(xi), i = 1, . . . , n. (2)

As a result, solving the interpolation problem (2) results in a symmetric linear
system of equations







φ(||x1 − x1||2) · · · φ(||x1 − xn||2)
...

...
...

φ(||xn − x1||2) · · · φ(||xn − xn||2)













c1
...
cn






=







f1
...
fn






, (3)
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RBF φε(r)

Gaussian C∞ (GA) e−ε2r2

Inverse MultiQuadric C∞ (IMQ) (1 + ε2r2)−1/2

Inverse Quadric C∞ (IQ) (1 + ε2r2)−1

Matérn C6 (M6) e−εr(ε3r3 + 6ε2r2 + 15εr + 15)

Matérn C4 (M4) e−εr(ε2r2 + 3εr + 3)

Matérn C2 (M2) e−εr(εr + 1)

Wendland C6 (W6) (1− εr)8
+
(32ε3r3 + 25ε2r2 + 8εr + 1)

Wendland C4 (W4) (1− εr)6
+
(35ε2r2 + 18εr + 3)

Wendland C2 (W2) (1− εr)4
+
(4εr + 1)

Table 1: Examples of strictly positive definite RBFs with their orders of
smoothness and shape parameter ε > 0; r = || · ||2 is the Euclidean norm
and (·)+ denotes the truncated power function.

or simply

Ac = f , (4)

where c = (c1, . . . , cn)
T , f = (f1, . . . , fn)

T , and the interpolation matrix
A ∈ R

n×n is given by Aki = φ(||xk − xi||2), k, i = 1, . . . , n. Since φ is a
strictly positive function, the associated matrix A is nonsingular and the RBF
interpolation problem is well-posed, hence a solution to the problem exists and
is unique [5,14].

Further, to each strictly positive definite RBF φ we can associate a strictly
positive definite and symmetric kernel Φ : Ω ×Ω → R, i.e.

Φ(x,y) = φ(||x− y||2) ∀x,y ∈ Ω,

whose real Hilbert space NΦ(Ω) is called the native space. So we consider
HΦ(Ω) = span{Φ(·,x), x ∈ Ω}, equipped with the bilinear form (·, ·)HΦ(Ω).
Since HΦ(Ω) is a pre-Hilbert space with reproducing kernel Φ, the native space
NΦ(Ω) of Φ is then its completion with respect to the norm || · ||HΦ(Ω), that
is ||f ||HΦ(Ω) = ||f ||NΦ(Ω), for all f ∈ HΦ(Ω) (cf. [14,51]).

For RBF interpolation, we give a first error estimate in terms of the well-
known power function PΦ,Xn

(see e.g. [14, Theorem 14.2]).

Theorem 1 Let Ω ⊆ R
s, Φ ∈ C(Ω × Ω) be strictly positive definite on R

s,
and suppose that Xn = {x1, . . . ,xn} consists of distinct points. Then for all
f ∈ NΦ(Ω) we have

|f(x)− If (x)| ≤ PΦ,Xn
(x)||f ||NΦ(Ω)

, x ∈ Ω. (5)

To refine this error bound, we define the so-called fill distance

hXn,Ω = sup
x∈Ω

min
xi∈Xn

||x− xi||2,
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which is a common indicator of data distribution and indicates how well the
data fill out the domain Ω. The generic error bound of Theorem 1 can then
be formulated in terms of the fill distance (see [14, Theorem 14.5] for details).

Theorem 2 Let Ω ⊆ R
s be bounded and satisfies an interior cone condition.

Suppose that Φ ∈ C2k(Ω×Ω) is symmetric and strictly positive definite. Then
for all f ∈ NΦ(Ω) there exist constants h0, C > 0 (independent of x, f and
Φ) such that

|f(x)− If (x)| ≤ Chk
Xn,Ω

√

CΦ(x) ‖f‖NΦ(Ω) ,

provided hXn,Ω ≤ h0. Here

CΦ(x) = max
|β|=2k,

max
w,z∈Ω∩B(x,c2hXn,Ω)

∣

∣

∣D
β
2 Φ(w, z)

∣

∣

∣

with B(x, c2hXn,Ω) denoting the ball of radius c2hXn,Ω centred at x and Dβ
2

is the differential operator applied to Φ viewed as a function of the second
variable.

Theorem 2 says that interpolation with a C2k smooth kernel Φ has ap-
proximation order k. Thus, we deduce that: (a) for infinitely smooth strictly
positive definite functions, the approximation order k is arbitrarily high; (b)
for strictly positive definite functions with limited smoothness, the approxima-
tion order is limited by the smoothness of the basis function. For more refined
error estimates, see the book [51].

In the recent paper [54], a problem of approximating the parameters for
a Gaussian random field is considered. Since the problem of approximating
the scale parameters β in the Gaussian random field in case of fixed (or in-
dependently approximated) parameters µ and σ and with the value γ = 2
is similar to finding the shape parameter ε for a Gaussian type RBF, some
results obtained in [54] can be also verified for the present research. In par-
ticular, it has been shown in [54] that approximation of the parameters for
such the model can be very difficult due to computational efforts related to
ill-conditioning of the covariation matrix (similar to the matrix A from (4)). It
has been shown that the condition number of the matrix can be extremely high
and traditional methods for approximating β (e.g., the Maximum Likelihood
Estimates) cannot be used for this reason. However, the paper [54] is concen-
trated at Gaussian functions, so the obtained results cannot be generalized for
different RBFs: for instance, the RBFs with a small smoothness degree (e.g.,
W2 or W4) allow one to generate the matrices with relatively small condition
number (with respect to the Gaussian-type RBF) and can be useful in some
cases. Moreover, the main attention in [54] is paid to computational efforts in
approximation of the parameters instead of methods of approximation of the
scale parameters β, whereas the main aim of the present paper is to propose a
new way of finding a good value of the shape parameter ε. In addition, since
the dimension s of the interpolated function f(x) is considered larger than
1 and the sample size n is not very large, then the condition number of the
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matrix A becomes much smaller than the condition number of the correlation
matrix with d = 1 in [54], which allows us to find an “optimal” value of ε.

2.2 Traditional Methods for Selecting a Good Value of the Shape Parameter

Over the years, several approaches have been proposed to select good, or even
optimal, shape parameters for RBF interpolation and collocation methods.
In the literature, there are many techniques that can guide us in making
a decision regarding this selection. It can be done either by finding a single
shape parameter uniformly across the whole domain or by determining a shape
parameter that varies spatially. Though some work has been carried out in
the latter case (see e.g. [11,13,23,29] and references therein), most strategies
focus on the selection of only one shape parameter associated with the RBF.
Therefore, we move our investigation in this direction, discussing the main
strategies to choose a good value of the shape parameter ε and mentioning
some recent contributions.

The simplest way is to perform a number of experiments by varying the
value of the shape parameter and then to take the best one. This strategy,
known as trial and error, can be used for academic purposes and if one knows
in advance the function f which generates the data so that some interpolation
error can be computed. However, it is evident that in practical situations or
in real-life applications the data function f is not available at all (see e.g. [1,
8,14]).

A further strategy to find ε is to use the power function PΦ,Xn
from (5) as

an indicator. In fact, the error estimate (5) provided in Theorem 1 separates
the interpolation error into a component independent of the function f and
another one depending on it. This means that chosen the scaled basic function
Φ and given the data set Xn we can use the power function to minimize the
error component that turns out to be independent of f . On the one hand, this
technique takes advantage of not depending on the function f , but on the other
one, it cannot be optimal because the second component of the error bound
also depends on the basic function through the native space norm. Possible
modifications and other details on this approach can be found, for instance,
in [15,36].

Another approach for selecting an optimal shape parameter is based on
a cross validation approach. This technique is quite popular in statistics and
uses the given data to predict optimal values of model parameters for data
fitting. Here the basic idea consists in splitting the data points into a training
set and a validation set, computing then the error obtained by gauging the
accuracy of the fit built from the information on the training set at points in
the validation set [13]. A specific case of cross validation is given by LOOCV
[34]. It considers all points in the training set, excepting one that is left out
and in turn is the sole member of the validation set. An optimal value of
the shape parameter is thus selected by minimizing the error for a fit to the
data based on an interpolant for which one of the data points is removed.
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Since the dependence of the data function f is here taken into account, the
LOOCV gives us a better prediction of ε than the previous power function
methods can do. Some changes and applications of LOOCV in the field of
RBF approximation and in the context of PDEs are proposed in [9,10,16,35,
48,49,52]. Moreover, various extensions and generalizations of cross validation,
as well as the connection with the approach of maximum likelihood estimation,
are given in [15,36]. For further details and a more complete overview on this
topic, see the book [13].

2.3 Choosing the RBF Shape Parameter via LOOCV

The accuracy of RBF interpolants highly depends upon the shape parameter ε
of the basis functions, which is responsible for the flatness of the functions. In
particular, for smooth problems the best accuracy is typically achieved when ε
is small, but in such cases the condition number of the linear system becomes
very large. Therefore, in order to get reliable approximation results, we need
to find a technique that allows detecting a suitable value of ε. In fact, since
an RBF interpolation method is based on the solution of a linear system of
the form (3) (or (4)), the selection of ε greatly affects the accuracy of the
interpolant (1).

A good way to select a shape parameter ε is to use the LOOCV by apply-
ing Rippa’s method [34]. This approach is widely used in literature and can
be applied in different fields of machine learning including regression, classifi-
cation, clustering, etc. The idea behind LOOCV is to split the data into two
different sets:

– a training set {f(x1), . . . , f(xk−1), f(xk+1), . . . , f(xn)},
– a validation set consisting of only the single value f(xk) which was left out

when creating the training set.

Now, for a fixed k ∈ {1, . . . , n} and fixed ε, we define the partial RBF inter-
polant

I
[k]
f (x) =

n
∑

i=1, i6=k

c
[k]
i φ(||x− xi||2),

whose coefficients c
[k]
i are determined by interpolating the training data, i.e.

I
[k]
f (xi) = f(xi), i = 1, . . . , k − 1, k + 1, . . . , n.

In order to measure the quality of this attempt, we define the error

ek(ε) = f(xk)− I
[k]
f (xk) (6)

at the one validation point xk not used to determine the interpolant. The
“optimal” value of ε is found as

εopt = argminε||e(ε)||, e = (e1, . . . , en)
T , (7)
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where || · || is any norm used in the minimization problem, for instance, the
∞-norm.

The important aspect is that we can determine the error vector e without
solving n problems, each of size (n − 1) × (n − 1). In fact, instead of (6),
the computation of the error components can be expressed in terms of the
interpolation matrix A in (4), i.e.

ek(ε) =
ck

A−1
kk

, (8)

where ck is the k-th coefficient of the full RBF interpolant If in (1) and A−1
kk is

the kth diagonal element of the inverse of the corresponding n×n interpolation
matrix A [15]. So from (7) and (8) it follows that the LOOCV cost function
to be minimized is

LOOCV(ε) = ||e(ε)||∞ = max
k=1,...,n

∣

∣

∣

∣

ck

A−1
kk

∣

∣

∣

∣

. (9)

3 Univariate Global Optimization

In this work, in order to find a good shape parameter for the RBF interpo-
lation using the LOOCV technique presented in Subsection 2.3, univariate
global optimization methods are used. In order to proceed, let us give a brief
introduction in this field. Let us consider the following univariate global opti-
mization problem:

g∗ = g(x∗) = min g(x), x ∈ D = [a, b] ⊂ R. (10)

The objective function1 g(x) in (10) is supposed to be multiextremal, non-
differentiable, and hard to evaluate even at one point (see, e.g., [2,3,22,24,30,
53]). Moreover, it is supposed to be Lipschitz-continuous over the interval D,
i. e.,

|g(x1)− g(x2)| ≤ L|x1 − x2|, x1, x2 ∈ D, (11)

where L, 0 < L < ∞, is the Lipschitz constant.
There exists a huge number of methods that solve the problem (10)–

(11) (see, e.g., [17,21,26,27,47,55,56]). Among them there are metaheuris-
tic nature-inspired algorithms and deterministic Lipschitz global optimization
algorithms. In particular, in the works [32] and [46], two deterministic algo-
rithms for solving the problem (10)–(11) have been proposed. The first one uses
geometric properties of the Lipschitz condition. It adaptively builds piecewise
linear minorants of the objective function during the search using a priori given
estimate of the Lipschitz constant. The other method is based on stochastic
models using calculation of probabilities of locating global minimizers within

1 In this section, “the objective function” means the function to be optimized, i.e., the
error function in the approximation problem.
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the subintervals of the search space. This algorithm uses adaptive global es-
timates of the Lipschitz constant. These two methods became basic methods
for two classes of univariate Lipschitz global optimization algorithms called
geometric and information global optimization methods, respectively.

It has been shown in [25,40,41] that both geometric and information global
optimization algorithms are more efficient in terms of the number of the objec-
tive function’s evaluations (called trials hereinafter) than popular metaheuris-
tic methods (e.g., Firefly algorithm, Particle Swarm Optimization, Artificial
Bee Colony, Differential Evolution, Simulated Annealing method, etc.) if they
are applied to univariate global optimization problems with large Lipschitz
constants (see also [43] for the comparison on multidimensional test prob-
lems). For this reason, in this paper, only deterministic global optimization
algorithms are considered.

It should be mentioned that there exist efficient univariate global optimiza-
tion methods for smooth objective functions with the Lipschitz first derivative
(see, e.g., [6,19,28,39]). However, since in our framework the function to be
minimized can be non-smooth, then the geometric and information approaches
that do not use derivatives for constructing global optimization methods are
considered in this paper. These frameworks allow one to construct global op-
timization algorithms for continuous functions only under the assumption of
their Lipschitz continuity. Moreover, the Lipschitz condition is used only for
guarantying the global convergence of the methods.

In the recent papers [20,45], several ideas introduced to speed up the global
search have been proposed. First, as it has been shown in [28,42,45], local tun-
ing techniques for estimating local Lipschitz constants significantly accelerate
the search. In Figure 1, an example of the auxiliary function for a Lipschitz
function g(x) over the interval [a, b] constructed by different estimation tech-
niques is presented. Here, the objective function is shown by a solid black line;
the minorant function FG(x) using a global estimate of the Lipschitz con-
stant is shown by a dashed black line and the auxiliary functions FM (x) and
FMA(x) using two different local tuning techniques are also shown by blue and
red solid thin lines. The first local tuning technique called “Maximum” local
tuning (its auxiliary function FM (x) is shown by the blue solid thin line) has
been proposed in [37,38]. It realizes a balancing between the global and the
local information about the behavior of the objective function obtained during
the search using maximum convolution product between them. Another local
tuning technique called “Maximum-Additive” local tuning (its auxiliary func-
tion FMA(x) is shown by the red solid thin line) has been proposed in [45].
It also realizes a smart mixture of the information about the local and global
behavior of the objective function but it uses both the maximum and additive
convolution formulae in order to estimate better the local Lipschitz constants
and to keep theoretical convergence properties of the original “Maximum”
local tuning technique.

It has been also shown in [44,45] that local improvement techniques can
accelerate the global search significantly, as well. These techniques realize an
improvement of the current best obtained value. The main point here is that
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Fig. 1: Auxiliary functions for a Lipschitz function g(x) over [a, b], constructed
by using a global estimate of the Lipschitz constant (black dashed line), “Maxi-
mum” local tuning (blue solid thin line) and “Maximum-Additive” local tuning
(red solid thin line, coincides with the auxiliary function of the “Maximum”
local tuning on the third interval). Trial values are circled.

the local improvement techniques from [45] automatically realize a local be-
havior in the promising subregions of the search domain without the necessity
to stop the global optimization procedure. Moreover, it should be noticed that
all evaluations of the objective function executed during the local phases are
used also in the course of the global search. Two different local improvement
techniques have been introduced in [45]: Pessimistic Local Improvement and
Optimistic Local Improvement. The first one implements the local search pro-
cedures only until a predefined accuracy (which cannot be smaller than the
global search accuracy) is reached. After this the global optimization phase
restarts its work and local and global phases can be repeated many times. In
this way it is guaranteed that the search can stop only after the satisfaction of
the global search stopping condition in order to keep theoretical convergence
to the global minimizers. In the Optimistic Local Improvement strategy, the
search can stop after satisfaction of the local search stopping criterion before
convergence to the global minimizers. This can be reasonable if the computa-



On the Search of the Shape Parameter in RBFs Using Univariate GO Methods 11

tional budget is limited and the best objective function’s value is required as
soon as possible.

4 New Methods and Their Direct Competitors

Let us consider the following univariate optimization problem: it is required
to find the point ε∗ and the corresponding value LOOCV∗, where LOOCV(ε)
is from (9), such that

LOOCV∗ = LOOCV(ε∗) = minLOOCV(ε), ε ∈ D = [0, εmax] ⊂ R, (12)

where εmax is large enough.
In this section, we describe algorithms for solving the problem (12) that

use as a basic step the algorithms from [45] that were modified as follows to
find an optimal shape parameter ε.

General Scheme of the locally-biased versions of the univariate global op-
timization algorithms for the minimization of the error function using
LOOCV:
Step 1. Preliminary Search. A global optimization algorithm belonging to
the General Scheme from [45] is chosen and launched over the interval
[0, εmax], using Nmax

1 maximum number of trials and generating Nmax
1

values εi,1, i = 1, ..., Nmax
1 :

0 = ε1,1 < ε2,1 < ... < εNmax
1 ,1 = εmax.

Step 2. Ill-conditioned region refinement. Since the error function can be
ill-conditioned if ε is close to 0, the algorithm is applied for the same
problem at the search interval [0, ε2,1], using Nmax

2 maximum number
of trials and generating Nmax

2 values εi,2, i = 1, ..., Nmax
2 :

0 < ε1,2 < ε2,2 < ... < εNmax
2 ,2 < ε2,1.

Step 3. Aggregation. Both the sets of trials are unified to one set

0 = ε1 < ε2 < ... < εNmax
2

< ... < εNmax
1 +Nmax

2
= εmax,

where

εi =

{

εi−1,2, if 1 < i ≤ Nmax
2 + 1,

εi−Nmax
2 ,1, if i > Nmax

2 + 1.

Step 4. Restriction of the search interval. The best obtained value εj with
the smallest error, i.e.,

j = argmin
i=1,...,Nmax

1 +Nmax
2

(LOOCV(εi)),

after Nmax
1 +Nmax

2 trials is determined. The subset

εimin, εimin+1, ..., εj , ..., εimax−1, εimax
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is kept, where

imin = max(1, j − dx), imax = min(Nmax
1 +Nmax

2 , j + dx),

where dx, dx ≥ 0, is the number of trials closest to the current min-
imum from the left or from the right taken for the main search step.
If dx = 0, then only the preliminary search and the ill-conditioned re-
gion refinement are performed without the main search step. If dx ≥
Nmax

1 + Nmax
2 , then all trials obtained during the first two steps are

used also in the main search.
Step 5. The Main Search. The global search is performed over the locally
biased interval [εimin, εimax], using all the values εi, i = imin, imin+
1, ..., imax, obtained previously, until a stopping criterion is satisfied.

For each phase of the General Scheme described above, the search stopped
either if the length of the subinterval for the next subdivision became smaller
than δ or if the maximum number of trials (indicated as Nmax

1 , Nmax
2 , and

Nmax for the preliminary search, ill-conditioned region refinement, and the
main search, respectively) was achieved.

The motivation of this procedure is the following. First, as it can be seen,
e.g., from Figures 2–3, the error function has a lot of local minimizers within
very small regions of attraction due to ill-conditioning of the function g(x).
In this case, the global search is not able to investigate well these minimizers
at the initial trials, but it produces several promising values investigating the
trend during the first run over the interval [0, εmax]. Then, as it has been
shown in many papers and books (see e.g. [8,14,15,18] and references therein),
the error function LOOCV(ε) become significantly ill-conditioned with small
values of ε. In this case, it can be reasonable to study better an interval with
small values of ε, than intervals with large values of ε, as it is done during
the second run over the interval [0, ε2,1] that still is reasonably wide. Then,
after Nmax

1 + Nmax
2 preliminary iterations the search in the neighborhood

[εimin, εimax] of the best found value LOOCV(εj) is performed. In this case,
the search interval becomes smaller and the oscillations of the error function
become more evident to the method, allowing so to find a good value of the
shape parameter ε.

Since a concrete implementation of a univariate Lipschitz global optimiza-
tion algorithm is used at each iteration, then the convergence conditions of
the proposed algorithms to the global minimizers coincide with the ones of the
standard geometric and information global optimization algorithms from [45],
if the value dx is large enough, i.e., if the main search interval [εimin, εimax]
contains the global solution ε∗. In particular, if dx ≥ Nmax

1 + Nmax
2 , then

the main search step consists of the application of the global optimization al-
gorithms on the whole search interval [0, εmax] using additional information
obtained from the first two steps and, as a consequence, the convergence of the
biased algorithm to the global minimizer is satisfied. The values of dx smaller
than Nmax

1 +Nmax
2 are used only to accelerate the global search.
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The following two locally-biased global optimization methods (GOPI and
GOOI) were used in our experiments since the performance of their original
not biased versions was one of the best for the problems with large Lipschitz
constants (see [45]). They were combined with the LOOCV technique and were
named:

– LOOCV-GOPI – Information Global Optimization Algorithm with Pes-
simistic Local Improvement.

– LOOCV-GOOI – Information Global Optimization Algorithm with Opti-
mistic Local Improvement.

A standard LOOCV method from [14] using the uniform grid of the val-
ues ε with the stepsize h = εmax/499 and the LOOCV method with the
MATLAB’s minimization procedure fminbnd (called LOOCV-min) were used
for the comparison with the described above global optimization methods.
The procedure fminbnd implements the local search method based on golden-
section search and parabolic interpolation of the objective function. It uses
the parameter tolX (which has been set to 10−15 in our experiments in order
to achieve the machine precision) for the stopping criterion. All other param-
eters of the method were set by their default values. Note that the standard
LOOCV method mentioned above can be viewed as the reference method for
finding the minimum of an error function (12). This observation turns out to
be very important to fully/further esteem numerical and graphical results we
will show in detail in Sections 5–6.

5 Numerical Experiments and Discussion

In this work, information univariate global optimization algorithms from [45]
are used for the global search in all three phases of the General Scheme de-
scribed in the previous section. The value εmax was set equal to 20 in our
experiments. The “Maximum-additive” local tuning with the reliability pa-
rameter r = 2 is used as one of the best techniques for estimating the local
Lipschitz constants. On the first two preliminary phases (over the intervals
[0, εmax] and [0, ε2,1], respectively) the optimistic local improvement is used.
The value δ for the stopping criterion has been set to 0.1 and the values Nmax

1

and Nmax
2 have been set to 12 and 10, respectively. The value dx has been set

to 5 in our experiments. For the main phase, both the pessimistic and opti-
mistic local improvement techniques have been used. The stopping criterion
δ on this phase has been set to 10−2 and 10−3 in order to study if increasing
the accuracy of the global search improves the result significantly. The local
improvement accuracy δLI for the pessimistic local improvement has been set
equal to δ as it is recommended in [45]. The maximum number of trials Nmax

on this phase was set to 5000.
The algorithms have been coded and compiled in MATLAB (R2011b) on

a HP-15-ba090ur machine under the MS Windows 10 operating system.
In the experiments we analyzed the performance of the methods LOOCV,

LOOCV-min, LOOCV-GOPI, and LOOCV-GOOI by using the Gaussian RBF



14 R. Cavoretto et al.

(see Table 1) and considering the following eight test problems/functions taken
from [12,14,31]:

#1 : f1(x1, x2) =
3

4
exp

(

−
(9x1 − 2)2 + (9x2 − 2)2

4

)

+
3

4
exp

(

−
(9x1 + 1)2

49
−

9x2 + 1

10

)

+
1

2
exp

(

−
(9x1 − 7)2 + (9x2 − 3)2

4

)

−
1

5
exp

(

−(9x1 − 4)2 − (9x2 − 7)2
)

,

#2 : f2(x1, x2) = cos (10(x1 + x2)) ,

#3 : f3(x1, x2) = (x1 + x2 − 1)9,

#4 : f4(x1, x2) = exp

(

−
1

4

(

x2
1 + (x2 + 0.9)2

)

)

+ exp

(

−
1

4

(

x2
1 + (x2 − 1.1)2

)

)

+ exp

(

−
1

4

(

(x1 + 0.4)2 + x2
2

)

)

+ exp

(

−
9

25

(

(x1 − 0.2)2 + x2
2

)

)

,

#5 : f5(x1, x2) = exp
(

−
(

x2
1 + (x2 + 1.2)2

))

+ 2 exp
(

−
(

(x1 + 0.4)2 + (x2 − 0.5)2
))

− 2 exp
(

−
(

(x1 + 0.4)2 + (x2 − 1.1)2
))

+ 3 exp
(

−
(

(x1 − 1.2)2 + (x2 − 1.3)2
))

,

#6 : f6(x1, x2) = exp (|x1 − x2|)− 1,

#7 : f7(x1, x2) = sin(x1) + cos(x2),

#8 : f8(x1, x2) = 42
2
∏

i=1

xi(1− xi).

Note that these bivariate functions are commonly used (see e.g. [10,12,31])
in approximation processes to test and validate new methods and algorithms,
then making them usable in the field of applications.

For each test problem, we took n = 289 Halton-type data points that
were generated in the unit square Ω = [0, 1]× [0, 1] by the MATLAB program
haltonseq.m (see [14]). This node distribution is a typical example of uniformly
random or scattered data point set. The results are given in Tables 2–3.

In Table 2, for each test problem, the number of performed trials N ,
the best found value of ε∗ and the respective value of the error-function
LOOCV(ε∗) are presented for all methods (for the basic method LOOCV, only
the values ε∗ and LOOCV(ε∗) are presented since the number of trials for each
test problem was set equal to 500). Table 3 presents for the same algorithms
and test problems the best obtained errors. As it can be seen from Tables 2–3,
the local search method LOOCV-min was not able to find the global minimum
for the problem #5. Moreover, its obtained errors are always the worst ones for
all test problems (except the problems #1 and #6, where they coincide with
the errors obtained by the other methods). It can be seen also that the best er-
ror values have been obtained by the LOOCV-GOPI method with δ = 10−3 for
test problems #1, #4–#8, while the method LOOCV-GOOI was the best one
on the problems #1, #4, #6 and #7. It should be noted that the method with
the pessimistic local improvement (LOOCV-GOPI) executed much more trials,
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than other methods, due to large Lipschitz constants. However, the method
with the optimistic local improvement (LOOCV-GOOI) performs much less
trials obtaining small enough errors (in fact, the errors obtained by the method
LOOCV-GOOI were the best ones for four test problems). It can be seen also
that the number of trials performed by the LOOCV-GOOI method is not
increased significantly if the higher accuracy δ is used.

Figures 2–3 present the graphs of the error functions being the objective
functions for the optimization problems and the best obtained values by the
method LOOCV, LOOCV-min, and LOOCV-GOOI (with δ = 10−3). It can
be seen that the obtained value ε∗ by the method LOOCV-GOOI is always
located at the neighborhood of the global solution of each problem and is much
closer to it than the value obtained by the LOOCV-min method.

Finally, Table 4 presents the execution times for three algorithms LOOCV,
LOOCV-min, and LOOCV-GOOI (with δ = 10−3). Here, for each test problem
the number of performed trials, the execution time for each algorithm and the
execution time per trial, i.e., the execution time divided by the number of trials,
are presented (for the method LOOCV the number of trials is not indicated
since it is equal to 500 for each test problem). As it can be seen from Table 4,
the working time per trial is almost always the smallest for the global search
method. This means that the main impact to the working time is devoted to
computations of the error function and that the internal procedures of the
method are not heavy in terms of temporal resources. It can be seen also that
the total working time of the method LOOCV-GOOI for each test problem
is comparable with the execution time of the method LOOCV-min, while the
execution time of the standard LOOCV method is more than ten times higher.
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#
LOOCV LOOCV-min

LOOCV-GOPI LOOCV-GOOI LOOCV-GOPI LOOCV-GOOI

δ = 10−2 δ = 10−2 δ = 10−3 δ = 10−3

ε∗ LOOCV(ε∗) N ε∗ LOOCV(ε∗) N ε∗ LOOCV(ε∗) N ε∗ LOOCV(ε∗) N ε∗ LOOCV(ε∗) N ε∗ LOOCV(ε∗)

1 6.212 2.23e-03 37 6.213 2.23e-03 57 6.212 2.23e-03 47 6.212 2.23e-03 60 6.213 2.23e-03 55 6.213 2.23e-03
2 2.966 1.98e-04 32 4.085 4.49e-04 47 3.754 2.14e-04 38 3.564 2.52e-04 54 3.753 2.14e-04 54 3.753 2.14e-04
3 2.485 4.38e-04 38 3.051 6.88e-04 51 2.456 5.31e-04 28 3.0906 6.00e-04 141 2.429 5.22e-04 54 2.429 5.23e-04
4 0.521 6.36e-06 40 3.255 5.07e-05 260 0.505 3.11e-06 37 0.505 3.11e-06 2137 0.511 3.05e-06 49 0.511 3.05e-06
5 1.082 8.64e-06 34 4.772 1.05e-03 242 1.029 5.75e-06 35 0.854 7.55e-06 2431 1.027 5.67e-06 43 0.856 7.25e-06
6 7.976 1.07e-01 40 7.943 1.07e-01 67 7.945 1.07e-01 47 7.945 1.07e-01 74 7.943 1.07e-01 59 7.943 1.07e-01
7 2.084 1.36e-05 29 3.284 6.69e-05 417 2.075 1.30e-05 43 1.455 1.75e-05 3743 2.074 1.29e-05 77 2.074 1.29e-05
8 2.124 9.97e-05 34 3.189 2.36e-04 35 2.621 1.49e-04 35 2.621 1.49e-04 202 2.12 9.80e-05 41 2.619 1.48e-04

Table 2: Results on eight test problems for the methods LOOCV, LOOCV-min, LOOCV-GOPI with δ = 10−2, LOOCV-GOOI
with δ = 10−2 and the algorithms LOOCV-GOPI and LOOCV-GOOI with δ = 10−3.

# LOOCV LOOCV-min
LOOCV-GOPI LOOCV-GOOI LOOCV-GOPI LOOCV-GOOI

δ = 10−2 δ = 10−2 δ = 10−3 δ = 10−3

1 2.23e-03 2.23e-03 2.23e-03 2.23e-03 2.23e-03 2.23e-03

2 1.98e-04 4.49e-04 2.14e-04 2.52e-04 2.14e-04 2.14e-04
3 4.38e-04 6.88e-04 5.31e-04 6.00e-04 5.22e-04 5.23e-04
4 6.36e-06 5.07e-05 3.11e-06 3.11e-06 3.05e-06 3.05e-06

5 8.64e-06 1.05e-03 5.75e-06 7.55e-06 5.67e-06 7.25e-06
6 1.07e-01 1.07e-01 1.07e-01 1.07e-01 1.07e-01 1.07e-01

7 1.36e-05 6.69e-05 1.30e-05 1.75e-05 1.29e-05 1.29e-05

8 9.97e-05 2.36e-04 1.49e-04 1.49e-04 9.80e-05 1.48e-04

Table 3: Results on eight test problems for the methods LOOCV, LOOCV-min, LOOCV-GOPI with δ = 10−2, LOOCV-
GOOI with δ = 10−2 and the algorithms LOOCV-GOPI and LOOCV-GOOI with δ = 10−3. Only the best obtained errors
(LOOCV(ε∗)) are presented in this table. The best obtained value for each test problem is bolded.
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#
LOOCV LOOCV-min LOOCV-GOOI

Total Per trial N Total Per trial N Total Per trial
1 40.53552 0.08107 37 3.22887 0.08727 55 3.91932 0.07126
2 39.43944 0.07888 32 2.09048 0.06533 54 3.2435 0.06006
3 36.0497 0.0721 38 2.06889 0.05444 54 2.97745 0.05514
4 34.81647 0.06963 40 2.31993 0.058 49 2.34862 0.04793
5 34.71593 0.06943 34 2.31109 0.06797 43 2.08862 0.04857
6 39.17958 0.07836 40 3.5633 0.08908 59 3.98124 0.06748
7 39.96465 0.07993 29 1.82254 0.06285 77 4.16466 0.05409
8 40.42387 0.08085 34 2.13739 0.06286 41 2.62396 0.064

Table 4: Working times (in seconds) of the methods LOOCV, LOOCV-min,
and LOOCV-GOOI (with δ = 10−3) on eight test problems. For each test
problem, the number of trials, the execution time and the execution time
divided by the number of trials are indicated (for the method LOOCV the
number of trials is not indicated since it is equal to 500 for each test problem).
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Fig. 2: The first four error functions LOOCV(ε) used in the experiments. The best found values by LOOCV, LOOCV-min, and
LOOCV-GOOI (with δ = 10−3) are indicated as “o”, “*”, and “+”, respectively.
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Fig. 3: The last four error functions LOOCV(ε) used in the experiments. The best found values by LOOCV, LOOCV-min, and
LOOCV-GOOI (with δ = 10−3) are indicated as “o”, “*”, and “+”, respectively.
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6 Applications

6.1 Application I: Big Sur Bathymetric Data

In this subsection we consider an application to bathymetric data, known as
Big Sur [7]. The data consist of 64 water temperature measurements taken
from a boat traveling on tracks approximately perpendicular to the shore off
the coast of Big Sur, California. More precisely, this data set lies along five
distinct tracks scaled to the unit square.

The method LOOCV-GOOI with δ = 10−3 has been used as global opti-
mization method and compared with the methods LOOCV and LOOCV-min.
As different types of the RBFs lead to different types of the error-function to
be optimized (which can be much more ill-conditioned for the RBFs with large
orders of smoothness), we used different values of the reliability parameter r of
the method LOOCV-GOOI. In particular, for the GA, IMQ, IQ, M6 and W6
RBFs we used r = 12 for the preliminary search, r = 8 for the ill-conditioned
region refinement, and r = 4 for the main search, for the M4 and W4 RBFs
we used r = 6 for both the preliminary search and the ill-conditioned region
refinement and r = 4 for the main search. Finally, for the M2 and W2 RBFs
we used the value r = 2 for all three stages of the search. The obtained results
are presented in Table 5 and Figures 4–5.

RBF #
LOOCV LOOCV-min

LOOCV-GOOI

δ = 10−3

ε∗ LOOCV(ε∗) N ε∗ LOOCV(ε∗) N ε∗ LOOCV(ε∗)

GA 0.56112 4.75e+00 24 7.59435 9.71e+00 65 0.59199 4.59e+00
IMQ 8.13627 2.65e+00 39 8.13957 2.65e+00 62 8.1397 2.65e+00
IQ 0.16032 4.26e+00 40 5.99119 4.52e+00 47 0.30108 3.01e+00
M6 0.52104 3.17e+00 31 16.00471 6.01e+00 49 0.55084 3.12e+00
M4 0.24048 2.13e+00 33 5.23072 2.97e+00 49 0.24023 2.12e+00
M2 0.04008 8.32e-01 40 0.03869 8.32e-01 61 0.05351 8.32e-01
W6 0.08016 3.49e+00 22 1.92589 8.50e+00 38 0.07003 3.37e+00
W4 0.04008 2.13e+00 40 0.5117 3.44e+00 58 0.04097 2.13e+00
W2 0.52104 8.29e-01 44 0.52415 8.29e-01 55 0.52387 8.29e-01

Table 5: Results on the Big Sur problem using nine different RBFs from Table 1
for the methods LOOCV, LOOCV-min, and LOOCV-GOOI with δ = 10−3.

It can be seen from Table 5 and Figures 4–5 that the method LOOCV-
GOOI performs better than the method LOOCV and the local search method
LOOCV-min on this problem. In particular, it executes a smaller number of
trials with respect to the LOOCVmethod but the obtained error is the smallest
for the GA, IQ, M6, M4, and W6 RBFs, while for the W4 the error obtained
by the LOOCV-GOOI is smaller than the error obtained by the LOOCV-min
and for the remaining RBFs the error is the same for all three methods. Even
though the number of trials executed by the LOOCV-min method is smaller
for all RBFs than the number of trials executed by the LOOCV-GOOI (but
always of the same order) the errors obtained by the LOOCV-GOOI method
are better than the ones obtained by the LOOCV-min.
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Fig. 4: The error functions LOOCV(ε) obtained on the Big Sur problem using the first six RBFs from Table 1. The best found
values by LOOCV, LOOCV-min, and LOOCV-GOOI (with δ = 10−3) are indicated as “o”, “*”, and “+”, respectively.
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Fig. 5: The error functions LOOCV(ε) obtained on the Big Sur problem using the last three RBFs from Table 1. The best
found values by LOOCV, LOOCV-min, and LOOCV-GOOI (with δ = 10−3) are indicated as “o”, “*”, and “+”, respectively.
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Fig. 6: A view of the Maunga Whau (Mt. Eden) volcano in Auckland, NZ.

6.2 Application II: Maunga Whau Volcano Data

In this subsection, we consider an application to Earth’s topography to test our
new algorithms on a set of real world data, i.e., the Maunga Whau volcano data
points, available in [33]. These data represent 5307 elevation measurements
obtained from Maunga Whau (Mt. Eden) in Auckland, New Zealand, sampled
on a 10 m × 10 m grid. A picture of this area is shown in Figure 6.

To analyze the behavior of our global RBF interpolation method combined
with the global optimization routines, we reduce the number of original vol-
cano data points randomly selecting only n = 118 nodes for the interpolation
process. The method LOOCV-GOOI with δ = 10−3 has been used as global
optimization method and compared with the methods LOOCV and LOOCV-
min. The parameters of the methods have been set as previously. The obtained
results are presented in Table 6 and Figures 8–9.

It can be seen from Table 6 and Figures 8–9 that the results are very similar
to those obtained for the Big Sur problem. In particular, the method LOOCV-
GOOI again performs better than the method LOOCV and the local search
method LOOCV-min on this problem: it executes a smaller number of trials
with respect to the LOOCV method but the obtained error is the smallest for
the GA, IMQ, IQ, M4, W6, W4, and W2 RBFs, while for the remaining RBFs
the error is the same for all three methods. Again, even though the number
of trials executed by the LOOCV-min method is smaller for all RBFs than
the number of trials executed by the LOOCV-GOOI (but always of the same
order) the errors obtained by the LOOCV-GOOI method are better than the
ones obtained by the LOOCV-min (for instance, the error obtained by the
LOOCV-GOOI for the W4 RBF is almost ten times smaller than the one
obtained by the LOOCV-min).

In Figure 7, the surfaces of the approximated function are presented using
all 5307 points without interpolation (left) and using the M4-type RBF inter-
polant with the value ε = 0.25074 obtained by the LOOCV-GOOI method are
presented. The surface of the interpolated function has been constructed as
follows. First, the “optimal” value of ε has been taken from the Table 6 and the
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respective type of the RBF has been chosen. Then, the interpolant function
If (x) from (1) has been obtained. Finally, the surface of the interpolant using
the remaining n = 5307 − 118 = 5189 points has been built. It can be seen
that even using only 118 points, the surfaces are qualitatively similar, but, as
it is expected, the higher accuracy can be reached using the higher number of
data points.

RBF #
LOOCV LOOCV-min

LOOCV-GOOI

δ = 10−3

ε∗ LOOCV(ε∗) N ε∗ LOOCV(ε∗) N ε∗ LOOCV(ε∗)

GA 2.20441 5.47e+01 39 9.10103 1.01e+02 65 2.22402 5.35e+01
IMQ 6.17234 1.42e+01 36 6.18574 1.41e+01 59 6.18576 1.41e+01
IQ 4.60922 2.93e+01 28 4.59072 2.90e+01 54 4.59076 2.90e+01
M6 5.09018 1.89e+01 39 5.09485 1.89e+01 57 5.09448 1.89e+01
M4 0.24048 1.13e+01 42 2.08086 1.25e+01 43 0.25074 9.11e+00
M2 1.12224 1.62e+01 25 1.11316 1.62e+01 51 1.11307 1.62e+01
W6 0.64128 2.92e+01 38 6.72209 1.03e+02 43 0.62448 2.91e+01
W4 0.08016 1.26e+01 39 5.36959 1.03e+02 50 0.08803 1.26e+01
W2 0.12024 1.75e+01 39 7.63932 1.03e+02 57 0.12567 1.75e+01

Table 6: Results on the Maunga Whau Volcano problem using nine different
RBFs from Table 1 for the methods LOOCV, LOOCV-min, LOOCV-GOOI
with δ = 10−3.
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Fig. 7: The surface of the Maunga Whau Volcano function using real values
of 5307 data points (left) and using M4-type RBF with the value ε = 0.25074
obtained by the LOOCV-GOOI method with δ = 10−3 and using 118 data
points (right).
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Fig. 8: The error functions LOOCV(ε) obtained on the Maunga Whau Volcano problem using the first six RBFs from Table 1.
The best found values by LOOCV, LOOCV-min and LOOCV-GOOI (with δ = 10−3) are indicated as “o”, “*” and “+”,
respectively.
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Fig. 9: The error functions LOOCV(ε) obtained on the Maunga Whau Volcano problem using the last three RBFs from
Table 1. The best found values by LOOCV, LOOCV-min and LOOCV-GOOI (with δ = 10−3) are indicated as “o”, “*” and
“+”, respectively.
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7 Conclusions and Future Work

In this paper we presented two new algorithms, called LOOCV-GOPI and
LOOCV-GOOI, for fast and accurate detecting optimal shape parameters in
the RBF interpolation. The basic approach consists of combining a LOOCV-
based technique with some efficient univariate global optimization methods.
Numerical results showed a promising performance of our algorithms on test
problems and real-life applications, pointing out their efficacy in finding the
global minimum of the error function. In general, this fact enabled a better
localization of the optimal RBF shape parameter in comparison with existing
optimization routines.

As future work we propose to investigate the problem of finding opti-
mal shape parameters in RBF partition of unity interpolation (see [9]). This
method is based on the solution of a number of local RBF interpolation prob-
lems. So the selection of the local RBF shape parameters turns out to be
a crucial task to achieve accurate approximation results. Another situation
in which the choice of optimal RBF shape parameters is important concerns
the solution of partial differential equations via collocation or pseudo-spectral
RBF methods [14]. It is expected that for each of these applications the ex-
tension of the algorithms discussed in this paper might bring out analogous
improvements as compared with standard optimization routines.
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