
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-021-06002-w

1 3

A parameter‑less algorithm for tensor co‑clustering

Elena Battaglia1 · Ruggero G. Pensa1 

Received: 28 February 2020 / Revised: 14 February 2021 / Accepted: 14 May 2021
© The Author(s) 2021

Abstract
The majority of the data produced by human activities and modern cyber-physical systems
involve complex relations among their features. Such relations can be often represented
by means of tensors, which can be viewed as generalization of matrices and, as such, can
be analyzed by using higher-order extensions of existing machine learning methods, such
as clustering and co-clustering. Tensor co-clustering, in particular, has been proven useful
in many applications, due to its ability of coping with n-modal data and sparsity. How-
ever, setting up a co-clustering algorithm properly requires the specification of the desired
number of clusters for each mode as input parameters. This choice is already difficult in
relatively easy settings, like flat clustering on data matrices, but on tensors it could be
even more frustrating. To face this issue, we propose a new tensor co-clustering algorithm
that does not require the number of desired co-clusters as input, as it optimizes an objec-
tive function based on a measure of association across discrete random variables (called
Goodman and Kruskal’s � ) that is not affected by their cardinality. We introduce differ-
ent optimization schemes and show their theoretical and empirical convergence properties.
Additionally, we show the effectiveness of our algorithm on both synthetic and real-world
datasets, also in comparison with state-of-the-art co-clustering methods based on tensor
factorization and latent block models.

Keywords  Clustering · Higher-order data · Unsupervised learning

1  Introduction

The increasing complexity of the data produced by humans and cyber-physical systems
requires more sophisticated machine learning algorithms able to handle it and take advan-
tage of the manifold of the variable space. This phenomenon also affects data structures
that, on the one hand, should adapt to large datasets and, on the other hand, should be able

Editor: Petra Kralj Novak, Tomislav Šmuc.

 *	 Ruggero G. Pensa
	 ruggero.pensa@unito.it

	 Elena Battaglia
	 elena.battaglia@unito.it

1	 Department of Computer Science, University of Turin, Turin, Italy

http://orcid.org/0000-0001-5145-3438
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06002-w&domain=pdf

	 Machine Learning

1 3

to represent complex relations among data instances. A clear example of such evolution is
certainly constituted by tensors, which have gained much attention in the last twenty years.

Tensors are widely used mathematical objects that well represent complex infor-
mation such as gene expression data (Zhao and Zaki 2005), social networks (Hong and
Jung 2018), heterogenous information networks (Ermis et al. 2015; Yu et al. 2019), time-
evolving data (Araujo et al. 2018), behavioral patterns (He et al. 2018), and multi-lingual
text corpora (Papalexakis and Dogruöz 2015). In general, every n-ary relation can be eas-
ily represented as a tensor. From the algebraic point of view, in fact, they can be seen as
multimodal generalizations of matrices and, as such, can be processed with mathematical
and computational methods that generalize those usually employed to analyze data matri-
ces, e.g., non-negative factorization (Shashua and Hazan 2005), singular value decom-
position (Zhang and Golub 2001), itemset and association rule mining (Cerf et al. 2009;
Nguyen et al. 2011; Cerf et al. 2013), clustering and co-clustering (Banerjee et al. 2007;
Wu et al. 2016).

Clustering, in particular, is by far one of the most popular unsupervised machine learn-
ing techniques since it allows analysts to obtain an overview of the intrinsic similarity
structures of the data with relatively little background knowledge about them. However,
with the availability of high-dimensional heterogenous data, co-clustering has gained pop-
ularity, since it provides a simultaneous partitioning of each mode (rows and columns of
the matrix, in the two-dimensional case). In practice, it copes with the curse of dimension-
ality problem by performing clustering on the main dimension (data objects or instances)
while applying dimensionality reduction on the other dimension (features). Despite its
proven usefulness, the correct application of tensor co-clustering is limited by the fact that
it requires the specification of a congruent number of clusters for each mode, while, in real-
istic analysis scenarios, the actual number of clusters is unknown. Furthermore, matrix/ten-
sor (co-)clustering is often based on a preliminary tensor factorization step that, in its turn,
requires further input parameters (e.g., the number of latent factors within each mode). As
a consequence, it is merely impossible to explore all combinations of parameter values in
order to identify the best clustering results.

The main reason for this problem is that most clustering algorithms (and tensor fac-
torization approaches) optimize objective functions that strongly depend on the number of
clusters (or factors). Hence, two solutions with two different numbers of clusters can not
be compared directly. Although this considerably reduces the size of the search space, it
prevents the discovery of a better partitioning once a wrong number of clusters is selected.
In this paper, which extends our previous work (Battaglia and Pensa 2019), we address this
limitation by proposing a new tensor co-clustering algorithm that optimizes a new class
of objective functions that can be viewed as n-modal extensions of an association meas-
ure called Goodman-Kruskal’s � (Goodman and Kruskal 1954), whose local optima do
not depend on the number of clusters. We model our tensor co-clustering approach as a
multi-objective optimization problem and discuss, both theoretically and experimentally,
the convergence properties of our extensions and of the related optimization schemes.
Additionally, we conduct a thorough experimental validation showing that our algorithms
provide accurate clustering results in each mode of the tensor. Compared with state-of-the-
art techniques that require the desired number of clusters in each mode as input parameters,
it achieves similar or better results at the price of a reasonable increase of the running time.
Additionally, it is also effective in clustering real-world datasets.

In summary, the main contributions of this paper are as follows: (1) we define a new
class of objective functions for n-mode tensor co-clustering, based on Goodman-Kruskal’s
� association measure, which do not require the number of clusters as input parameter;

Machine Learning	

1 3

(2) we propose several variants of a multi-objective optimization algorithm, based on sto-
chastic local search, and study their convergence properties showing that they support the
rapid convergence towards a local optimum; (3) we show the effectiveness of our method
experimentally on both synthetic and real-world data, also in comparison with state-of-the-
art competitors.

The remainder of the paper is organized as follows: the related works are analyzed in
Sect. 2; the generalization of the Goodman-Kruskal’s � association measure is presented
in Sect.3 while the variants of the optimization algorithms are described in Sect. 4; Sect. 5
provides the report of our experiments; finally, we draw some conclusions in Sect. 6.

2 � Related work

Analyzing multi-way data (or n-way tensors) has attracted a lot of attention due to their
intrinsic complexity and richness. Hence, to deal with this complexity, in the last two
decades, many ad hoc methods and extensions of 2-way matrix methods have been pro-
posed, many of which are tensor decomposition models and algorithms (Kolda and Bader
2009). As an example, both singular value decomposition (Zhang and Golub 2001) and
non-negative matrix factorization (Shashua and Hazan 2005) have been extended to work
with high-order tensor data. Furthermore, knowledge discovery and exploratory data min-
ing techniques, including closed itemset mining (Cerf et al. 2009, 2013) and association
rule discovery (Nguyen et al. 2011), have been successfully applied to n-way data as well.

The problem of clustering and co-clustering of higher-order data has also been exten-
sively addressed. Co-clustering has been developed as a matrix method and studied in
many different application contexts including text mining (Dhillon et al. 2003; Pensa et al.
2014), gene expression analysis (Cho et al. 2004) and graph mining (Chakrabarti et al.
2004) and has been naturally extended to tensors for its ability of handling n-modal high-
dimensional data well. Banerjee et al. (2007) perform clustering using a relation graph
model that describes all the known relations between the modes of a tensor. Their tensor
clustering formulation captures the maximal information in the relation graph by exploit-
ing a family of loss functions known as Bregman divergences. They also present several
structurally different multi-way clustering schemes involving a scalable algorithm based on
alternate minimization. Instead, Zhou et al. (2009) use tensor-based latent factor analysis
to address co-clustering in the context of web usage mining. Their algorithm is executed
via the well-known multi-way decomposition algorithm called CANDECOMP/PARA-
FAC (Harshman 1970).

Papalexakis et al. (2013) formulate co-clustering as a constrained multi-linear decom-
position with sparse latent factors. They propose a basic multi-way co-clustering algorithm
exploiting multi-linearity using Lasso-type coordinate updates. Additionally, they propose
a line search optimization approach based on iterative majorization and polynomial fitting.
Zhang et al. (2013) propose an extension of the tri-factor non-negative matrix factorization
model (Ding et al. 2006) to a tensor decomposition model performing adaptive dimension-
ality reduction by integrating the subspace identification and the (hard or soft) clustering
process into a single process. Their algorithm computes two basis matrices representing
the common characteristics of the samples and one 3-D tensor denoting the peculiarities of
the samples. The model can be used to perform dimensional reduction as well. Instead, Wu

	 Machine Learning

1 3

et al. (2016) introduce a spectral co-clustering method based on a new random walk model
for nonnegative square tensors.

Other more recent approaches (Boutalbi et al. 2019a, b) rely on an extension of the latent
block model. In these works, co-clustering for sparse tensor data is viewed as a multi-way
clustering model where each slice of the third mode of the tensor represents a relation between
two sets. Finally, Wang and Zeng (2019) present a co-clustering approach for tensors by using
a least-square estimation procedure for identifying n-way block structure that applies to binary,
continuous, and hybrid data instances.

Differently from all these approaches, our tensor co-clustering algorithm is not based
on any factorization method or block model hypothesis. Instead, it optimizes an extension
of a measure of association whose effectiveness has been proven in matrix (2-way) cluster-
ing (Huang et al. 2012) and co-clustering (Ienco et al. 2013), and that naturally helps discover
the correct number of clusters in tensors with arbitrary shape and density. It is worth noting, in
fact, that the co-clustering performances of all the methods mentioned in this section strongly
rely on the correct choice of the number of clusters/factors/blocks, which limits their applica-
tion in realistic data analysis scenarios.

3 � An association measure for tensor co‑clustering

In this section, we introduce the objective function optimized by our tensor co-clustering algo-
rithm (presented in the next section). It consists in an association measure, called Goodman
and Kruskal’s � (Goodman and Kruskal 1954), that evaluates the dependence between two
discrete variables and has been used to assess the quality of 2-way co-clustering (Robardet and
Feschet 2001) with good partitioning results. We generalize its definition to a n-mode tensor
setting.

3.1 � Goodman and Kruskal � and its generalization

Goodman and Kruskal’s � (Goodman and Kruskal 1954) is an association measure that esti-
mates the strength of the link between two discrete variables X and Y according to the propor-
tional reduction of the error in predicting one of them knowing the other. In more details, let
x1,… , xm be the values that variable X can assume, with probability pX(1),… , pX(m) and let
y1,… , yn be the possible values Y can assume, with probability pY (1),… , pY (n) . The error in
predicting X can be evaluated as the probability that two different observations from the mar-
ginal distribution of X fall in different categories:

Similarly, the error in predicting X knowing that Y has value yj is

and the expected value of the error in predicting X knowing Y is

eX =

m∑

i=1

pX(i)(1 − pX(i)) = 1 −

m∑

i=1

pX(i)
2.

eX|Y=yj =

m∑

i=1

pX|Y=yj (i|j)(1 − pX|Y=yj (i|j)) = 1 −

m∑

i=1

pX|Y=yj (i|j)
2

Machine Learning	

1 3

Then the Goodman and Kruskall �X|Y measure of association is defined as

Conversely, the proportional reduction of the error in predicting Y while X is known is

In order to use this measure for the evaluation of a tensor co-clustering, we need to extend
it so that � can evaluate the association of n distinct discrete variables. Let X1,… ,Xn be
discrete variables such that Xi can assume mi distinct values (for simplicity, we will denote
the possible values as 1,… ,mi ), for i = 1,… , n . Let pXi

(k) be the probability that Xi = k ,
for k = 1,… ,mi , for i = 1,… , n . Reasoning as in the two-dimensional case, we can define
the reduction in the error in predicting Xi while (Xj)j≠i are all known as

for all i ≤ n . When n = 2 , the measure coincides with Goodman-Kruskal’s �.
Notice that, in the n-dimensional case as well as in the 2-dimensional case, the error

in predicting Xi knowing the value of the other variables is always positive and smaller
or equal to the error in predicting Xi without any knowledge about the other variables.
It follows that �Xi

 takes values between [0, 1]. It will be 0 if knowledge of prediction of
the other variables is of no help in predicting Xi , while it will be 1 if knowledge of the
values assumed by variables (Xj)j≠i completely specifies Xi.

3.2 � Tensor co‑clustering with Goodman‑Kruskal’s �

Let X ∈ ℝ
m1×⋯×mn

+ be a tensor with n modes and non-negative values. Let us denote with
xk1…kn

 the generic element of X  , where ki = 1,… ,mi for each mode i = 1,… , n . A co-
clustering P of X is a collection of n partitions {Pi}i=1,…,n , where Pi = ∪

ci
j=1

Ci
j
 is a parti-

tion of the elements on the i-th mode of X in ci groups, with ci ≤ mi for each i = 1,… , n .
Each co-clustering P can be associated to a tensor TP ∈ ℝ

c1×⋯×cn
+  , whose generic ele-

ment is

�[eX|Y] =

n∑

j=1

eX|Y=yjpY (j)

=

n∑

j=1

(1 −

m∑

i=1

pX|Y=yj (i|j)
2)pY (j) = 1 −

m∑

i=1

n∑

j=1

pX,Y (i, j)
2

pY (j)
.

�X�Y =
eX − �[eX�Y]

eX
=

∑m

i=1

∑n

j=1

pX,Y (i,j)
2

pY (j)
−
∑m

i=1
pX(i)

2

1 −
∑m

i=1
pX(i)

2
.

�Y�X =
eY − �[eY�X]

eY
=

∑n

i=1

∑m

j=1

pX,Y (i,j)
2

pX (i)
−
∑n

j=1
pY (j)

2

1 −
∑n

j=1
pY (j)

2
.

(1)

�Xi
= �Xi�(Xj)j≠i

=
eXi

− �[eXi�(Xj)j≠i
]

eXi

=

∑m1

k1=1
⋯

∑mn

kn=1

pX1,…,Xn
(k1,…kn)

2

p(Xj)j≠i ((kj)j≠i)
−
∑mi

ki=1
pXi

(ki)
2

1 −
∑mi

ki=1
pXi

(ki)
2

,

	 Machine Learning

1 3

Consider now n discrete variables X1,… ,Xn , where each Xi takes values in {Ci
1
,…Ci

ci
} .

We can look at TP as the contingency n-modal table that empirically estimates the joint
distribution of X1,… ,Xn : the entry tk1…kn

 represents the absolute frequency of the event
({X1 = C1

k1
} ∩⋯ ∩ {Xn = Cn

kn
}) and the frequency of Xi = Ci

k
 is the marginal frequency

obtained by summing all entries tk1…ki−1kki+1…kn
 , with k1,… , ki−1, ki+1,… , kn varying trough

all possible values and the i-th index ki fixed to k. In the same way, we can compute the
frequency of the event ({Xi = Ci

k
} ∩ {Xj = C

j

h
}) as the sum of all elements tk1…kn

 of TP hav-
ing ki = k and kj = h . More in general, we can compute the marginal joint distribution of
d < n variables as the sum of all the entries of TP having the indices corresponding to the d
variables fixed to the values we are considering. For instance, given TP ∈ ℝ

4×3×5×2
+

 , the
absolute frequency of the event ({X1 = 3} ∩ {X3 = 4}) is

From now on, we will use the newly introduced notation t�
�
 to denote the sum of all ele-

ments of a tensor having the modes in the upper vector � (in the example (1, 3)) fixed to the
values of the lower vector � (in the example (3,4)). A formal definition of the scalar t�

�
 can

result clunky: given a tensor T ∈ ℝ
m1×⋯×mn

+ and two vectors �,� ∈ ℝ+
d , with dimension

d ≤ n , such that vj ≤ n , vi < vj if i < j and wi ≤ mvi
 for each i, j = 1,… , d , we will use the

following notation

where �̄ is the vector of dimension r = n − d containing all the integers i ≤ n that are not in
� and ei = wi if i ∈ � while ei = ki otherwise.

Summarizing, given a tensor X with n modes and a co-clustering P over X  , we obtain a
tensor TP that represents the empirical frequency of n discrete variables X1,… ,Xn each of
them with ci possible values (where ci is the number of clusters in the partition on the i-th
mode of X  ). Therefore, we can derive from TP the probability distributions of variables
X1,… ,Xn and substitute them in Eq. 1: in this way we associate to each co-clustering P over
X a vector �P = (�P

X1

,… , �P
Xn
) that can be used to evaluate the quality of the co-clustering. In

particular, for any i, j ≤ n and any ki = 1,… , ci:

where T is the sum of all entries of TP . It follows that

(2)
ti1…in

=
∑

k1∈C
1

i1

∑

k2∈C
2

i2

⋯

∑

kn∈C
n
in

xk1…kn
.

t
(1,3)

(3,4)
=

3∑

k2=1

2∑

k4=1

t3,k2,4,k4 .

t�
�
=

mv̄1∑

kv̄1
=1

⋯

mv̄r∑

kv̄r=1

te1…en

pX1…Xn
(k1,… , kn) =

tk1…kn

T
, pXi

(k1) =
t
(i)

(ki)

T
, p(Xj)j≠i

((kj)j≠i) =

t
(j)j≠i

(kj)j≠i

T
,

Machine Learning	

1 3

for each i = 1,… , n . The overall co-clustering schema is depicted in Fig. 1.
It is worth pointing out that the procedure just described makes sense when the ten-

sor X itself can be interpreted as a contingency tensor; the main assumption of our
method is that the quantity

tk1…kn

T
 , where tk1…kn

 is the entry of TP given by the sum of all
the entries of X belonging to the same co-cluster, should be interpreted as a probability.
This has to be true for each possible co-clustering P of X  , even for the discrete co-clus-
tering (the co-clustering containing only singletons), whose contingency tensor TP is X  .
Typical tensors of this kind are those in which the n modes represent different variables,
each element on a mode is a possible scenario (or value that the variable can assume),
and each entry of the tensor is the count of the occurrences of the intersection of n sce-
narios. For instance, a words-documents matrix or an authors-words-conferences tensor
are suitable choices. However, tensors of non-negative real numbers, in which all the
entries represent homogeneous measurements of the same quantity under different sce-
narios, can also fit.

Suppose now we have two different partitions P and Q on the same tensor X  , corre-
sponding to two different vectors �P, �Q ∈ [0, 1]n . There is no obvious order relation in
[0, 1]n , so it is not immediately clear which one between �P and �Q is “better” than the
other.

In Ienco et al. (2013), the authors, in order to compare partitions, adopt a domi-
nance-based approach that induce a partial-order over ℝn . They introduce the notion of

(3)
�
P
Xi
=

∑c1
k1=1

⋯

∑cn
kn=1

t2
k1…kn

t
(j)j≠i

(kj)j≠i
⋅T
−
∑ci

ki=1

�
t
(i)

(ki)

�2

T2

1 −
∑ci

ki=1

�
t
(i)

(ki)

�2

T2

Fig. 1   An example of tensor co-clustering with the related contingency tensor and the associated Goodman-
Kruskal’s � measures

	 Machine Learning

1 3

Pareto-dominance for partitions and state that an optimal solution for the co-clustering
problem is one that is not-dominated by any other solution. We formally define these
concepts, in our tensor co-clustering framework, below.

Definition 1  (Pareto dominance) Let X be a n-modal tensor and let P and Q be two parti-
tions on X  . We say that partition P dominates partition Q , in symbols P ≻ Q , if �P

Xi
≥ �

Q

Xi

for each i = 1,… n and there exists j such that 𝜏P
Xj
> 𝜏

Q

Xj
.

Pareto dominance relation induces a partial order relation over the set ℙ(X) of all parti-
tions on X  . It means that, given two partitions P and Q , we can always say whether P
dominates Q or not, but it is possible that P  Q and Q  P . As a consequence, it is not
guaranteed that a unique maximum (with respect to relation ⪰ ) does exist in ℙ(X).

Definition 2  (Pareto optimal partition) We say that a partition P on tensor X is a Pareto-
optimal partition if P is not dominated by any other partition. In symbols, P is an optimal
partition if P ⊀ Q for any Q ∈ ℙ(T).

4 � A stochastic local search approach to tensor co‑clustering

Our co-clustering approach can be formulated as a multi-objective optimization problem:
given a tensor X with n modes and dimension mi on mode i, an optimal co-clustering P for
X is one that is not dominated by any other co-clustering Q for X  . Since we do not fix the
number of clusters, the space of possible solutions is huge (for example, given a very small
tensor of dimension 10 × 10 × 10 , the number of possible partitions is 1.56 × 1015 ): it is
clear that a systematic exploration of all possible solutions is not feasible for a generic ten-
sor X  . For this reason we need to find a heuristic that allows us to reach a “good” partition
of X  , i.e. a partition P with high values of �P

Xk
 for all modes k. With this aim, we propose a

stochastic local search approach to solve the maximization problem.

Machine Learning	

1 3

4.1 � Tensor co‑clustering algorithm

Algorithm 1: τTCC(X ,Niter)
Input: A tensor X with n modes and shape m1 × · · · ×mn, the maximum number of

iterations Niter

Result: P1, . . . ,Pn

1 Initialize P1, . . . ,Pn with discrete partitions;
2 i ← 0;
3 m ← maxj=1,...,n(mj);
4 iter whithout moves ← 0 ;
5 while i ≤ Niter & iter whithout moves < m do
6 moves in iteration ← 0;
7 for k = 1 to n do
8 if iter whithout moves < t then
9 Randomly choose Ck

b in Pk ;
10 Randomly choose x in Ck

b ;
11 else
12 x ← next(x, k) //Select the element following the one selected at

iteration i− 1 on mode k;
13 Ck

b ← Cluster of x;
14 end
15 for Cj

k in Pk ∪ ∅ do
16 Qj

k ← (Pk \ Ck
b , C

k
j) Ck

b \ {x}, Ck
j ∪ {x} ;

17 Qj ← (P1,P2, . . . ,Pk−1,Qk,Pk+1, . . . ,Pn);
18 Compute contingency tensor T j associated to partition Qj ;
19 Compute τQj using Equation (3) or Equation (4) //see section 4.2;
20 end
21 e ← SelectBestPartition(k, b, (τQj)j=1,...,|Pk∪∅|);
22 Pk ← Qe

k;
23 if e! = b then
24 moves in iteration ← moves in iteration + 1;
25 end
26 if moves in iteration > 0 then
27 iter whithout moves ← iter whithout moves + 1;
28 i ← i + 1;
29 end

Algorithm 1 provides the general sketch of our tensor co-clustering algorithm, called �TCC​
. It repeatedly considers one mode by one, sequentially, and tries to improve the quality of
the co-clustering by moving one single element from its original cluster to another cluster
on the same mode. We will present in the following paragraphs different ways to measure
the improvement in the quality of the partition at each iteration (function SelectBestParti-
tion in Algorithm 1), but all the different approaches we will consider can be plugged in
the general framework described in Algorithm 1 and explained below.

The partitions on each mode are initialized with the discrete partitions (each element
stays in a cluster on its own). At each iteration i, fixed the k-th mode, the algorithm ran-
domly selects one cluster Ck

b
 and one element x ∈ Ck

b
 . Then it tries to move x in every

other cluster Ck
e
 and in the empty cluster Ck

e
= � : among them, it selects the one that most

improves the quality of the partition, according to the criterion chosen to measure it (see

	 Machine Learning

1 3

Sect. 4.2). Of course, if there is not any move that increases the quality of the partition, the
selected object is left in the original cluster Ck

b
 . When all the n modes have been consid-

ered, the i-th iteration of the algorithm is concluded. These operations are repeated until
a stopping condition is met; we decide to stop the algorithm when no further moves are
possible. Because of the stochasticity in the choice of the element to move at each iteration,
we cannot be sure that all moves have been tried even if the algorithm has been stuck in the
same solution for several iterations. For this reason, when the number of iterations without
moves exceeds a given threshold (we set this threshold equal to the dimensionality of the
largest mode), we change the object selection strategy and we select, sequentially, all the
objects on all the modes. If all objects have been tried but no move is possible, the algo-
rithm ends. Nonetheless, we also include a parameter Niter to control the maximum number
of iterations.

At the end of each iteration, one of the following possible moves has been done on
mode k:

–	 an object x has been moved from cluster Ck
b
 to a pre-existing cluster Ck

e
 : in this case the

final number of clusters on mode k remains the same (let us call it ck ) if Ck
b
 is non-empty

after the move. If Ck
b
 is empty after the move, it will be deleted and the final number of

clusters will be ck − 1;
–	 an object x has been moved from cluster Ck

b
 to a new cluster Ck

e
= � : the final number

of clusters on mode k will be ck + 1 (the useless case when x is moved from Ck
b
= {x} to

Ck
e
= � is not considered);

–	 no move has been performed and the number of clusters remains ck.

Thus, during the iterative process, the updating procedure is able to increase or decrease
the number of clusters at any time. This is due to the fact that, contrary to other measures,
such as the loss in mutual information (Dhillon et al. 2003), � measure has an upper limit
which does not depend on the number of co-clusters and thus enables the comparison of
co-clustering solutions of different cardinalities.

4.2 � Neighboring partition selection criteria

As seen above, our co-clustering framework tries to move one element in one fixed mode
from its original cluster to another cluster which maximizes the quality improvement of the
tensor partition. Since we need to optimize the set {�P

Xk
}n
k=1

 of n objective functions (one for
each mode of the tensor), we can define different ways to measure this increase, corre-
sponding to different ways to implement function SelectBestPartition in Algorithm 1. Sup-
pose the algorithm is performing step i of the algorithm: during this step, it considers the
k-th mode of the tensor and selects an object x in cluster Ck

b
 . Function SelectBestPartition

takes a set of candidate co-clusterings and their respective values of � as input, and has to
decide which of them is the best one. In the following, we provide the details of different
selection strategies.

4.2.1 � Alternating optimization of �Xk

Since all the candidate co-clusterings differ only in the partition on the k-th mode, we can
look at the k-th partitions only and select the one with highest value of �k . In case of ties,
the partition with the highest average � is selected. The move is made only if �Qe

Xk
≥ �

Qb

Xk
 ,

Machine Learning	

1 3

where Qe and Qb are the co-clusterings having x ∈ Ck
e
 and x ∈ Ck

b
 respectively (in the k-th

partition), while the partitions on all the other modes of the tensor are the same. We call
this strategy SelectBestPartitionALT (see Algorithm 2).

Algorithm 2: SelectBestPartitionALT (k, b, (τQj)j=1,...,c)
Input: The mode k of the tensor, the original cluster b of the selected object,

(τQj)j = 1, ..., c where each τQj is a n-dimensional vector (τ
Qj
1 , . . . , τ

Qj
n)

Result: e index of the selected partition among the c proposed
1 BestPartitions ← argmaxj=1,...,c(τ

Qj

k);
2 if |BestPartitions| > 1 then
3 Randomly select an index m in set BestPartitions;
4 e ← m;
5 maxτ ← avg(τQm);
6 for h in BestPartitions \ {m} do
7 if avg(τQh) > maxτ then
8 e ← h;
9 maxτ ← avg(τQh);

10 end
11 end
12 else
13 e ← the only index in BestPartitions;
14 end

The idea behind this selection strategy is that the alternating optimization of the sin-
gle components �Xk

 should lead to a final vector (�X1
,… , �Xn

) with high values in each
component.

However, this optimization strategy has a drawback: since the choice of the best move
on mode k is done by looking only at the partition on the k-th mode, it is possible that, after
the move, the overall quality of the co-clustering decreases. In Fig. 2 we propose a toy
example to better explain this concept. Suppose we are applying our algorithm to a 2-way
tensor (a matrix), having on the X mode all the clients of a shop and on the Y mode all the
products sold. Each entry of the matrix represents the quantity of each product bought by
each customer.

There are three well separated co-clusters in X: the first co-cluster consists of costumers
who buy product 1, 2 and 3, the second co-cluster represents costumers who buy products
4 and 5, and last co-cluster includes customers who buy product 6.

After some iterations, the algorithm finds five clusters on the X axis and three on the
Y axis, with the contingency matrix T of Fig. 2a. Then it selects the last row and tries to
move it. There are five possible moves, as shown in Fig. 2b. �X has the highest value for
e = 0 and, according to Algorithm 2, the last row goes in the first cluster, even if it is clear
that the row is ‘more similar’ to those in clusters 3 and 4. Furthermore, after this move the
algorithm will necessarily end with the partition having contingency table Tfinal in Fig. 2c,
while it is evident that a “more desirable” co-clustering of X is Tcorrect in Fig. 2c. This intui-
tive assessment is also confirmed by the fact that the average � measured on Tcorrect (0.771)
is higher than the one measured on Tfinal (0.713).

The reason of this behavior is that the algorithm decides where to move the selected row
by looking only at the value of �X . A more suitable choice would have been to move the last
row in cluster 2 or 3, but this means that the algorithm has to look at �Y as well. Further-
more, we need a way to decide which combination of �X and �Y is preferable. In the following

	 Machine Learning

1 3

subsections we will present some alternative optimization methods, with the aim of mitigating
the issue illustrated above.

4.2.2 � Optimization of avg(�)

A way to compare real-valued vectors is to use a scalarization function ℝn
⟶ ℝ and to

exploit the natural order in ℝ . Here, we use a function that maps each vector � = (�X1
,… , �Xn

)
into a weighted sum avg(�) =

∑n

i=1
wi�Xi

 , with fixed wi =
1

n
 . Thus we can map the set ℙ(X) of

all the partitions over tensor X in ℝ , with the function avg◦� ∶ ℙ(X)
�

�����→ ℝ
n

avg
������������→ ℝ (where ◦ is

the composition operator). As a consequence, ℙ(X) inherits the total-order structure of (ℝ,≤)
and it is always possible to decide which partition, among a finite set, is the best one.

The above consideration gives us a criterion to select a partition among the set of candi-
dates proposed at each step of the algorithm: the best co-clustering Q is the one with the high-
est avg◦�(Q) . This means that the selected element x on mode k is moved from its original
cluster Ck

b
 to the cluster Ck

e
 which maximizes avg(�) . If there are several clusters Ck

e1
,… ,Ck

er

which maximize avg(�) , the arrival cluster is randomly selected among them. The move will
be executed only if avg(𝜏e) > avg(𝜏b) . We call this strategy SelectBestPartitionAVG (see
Algorithm 3).

X =




2 1 2 0 0 0
2 2 1 0 0 0
2 2 2 0 0 1
0 0 0 2 1 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 2
1 0 0 0 0 2




−→ T =





16 0 1
0 5 0
0 0 1
0 0 2
1 0 2





(a)

Ce τX τY avg(τ)
C0 0.710 0.671 0.690
C1 0.591 0.604 0.597
C2 0.655 0.782 0.718
C3 0.692 0.775 0.733
C4 0.618 0.792 0.705

(b)

Tfinal =
17 0 6
0 5 0 , Tcorrect =




16 0 1
0 5 0
1 0 5



 .

(c)

Fig. 2   A 2-way tensor to be partitioned and the related contingency matrix obtained by Algorithm 2 after
some iterations a. Rows 1, 2, and 3 are in the first cluster; rows 4 and 5 in the second cluster; all the other
rows form singleton clusters. Columns 1, 2, and 3 are in the first cluster; columns 4 and 5 are in the second
cluster; column 6 forms a singleton cluster. In b, the table reports the values of � when moving the last
row of X in any row cluster Ce of T. The final contingency tables are shown in (c): Tfinal is the contingency
matrix obtained with Algorithm 2, Tcorrect is a more desirable final result

Machine Learning	

1 3

Algorithm 3: SelectBestPartitionAV G(k, b, (τQj)j=1,...,c)
Input: The mode k of the tensor, the original cluster b of the selected object,

(τQj)j = 1, ..., c where each τQj is a n-dimensional vector (τ
Qj
1 , . . . , τ

Qj
n)

Result: e index of the selected partition among the c proposed
1 BestPartitions ← argmaxj=1,...,c(avg(τQj));
2 if |BestPartitions| > 1 then
3 Randomly select an index m in set BestPartitions;
4 e ← m;
5 end

This strategy has many theoretical advantages over the previous one: it works with a unique
objective function and each solution is necessarily better than the previous solutions. Never-
theless, there is a disadvantage with this approach: by looking only at the partitions that
increase the objective function avg(�) we are reducing the search space. Therefore, there is a
greater risk to getting stuck in a poor-quality local optimal solution. In fact, if there is no move
that improves avg(�) , the algorithm ends with a sub-optimal partition P , while with the alter-
nating optimization strategy we would have been able to move from P and continue with the
optimization, potentially reaching a final result with greater avg(�) . Furthermore, as we will
show experimentally in Sect. 5, when an object on mode k is moved, usually the increase of
�Xk

 is compensated by a decrease of (some of) the other �Xj
 , for j ≠ k : this could be a serious

issue when the number of modes n is elevated, because the decrease of
∑

j≠k �Xj
 is often greater

than the increase of the single �Xk
 , and the algorithm remains stuck in the initial discrete solu-

tion. Finally, this method is computationally more expensive than the previous one, because it
requires the computation of all �Xj

 , while the alternating optimization strategy requires the
computation of �Xk

 only.

4.2.3 � Aggregate optimization of �Xk |(Xj)j≠k + �(Xj)j≠k |Xk

Algorithm 2 maximizes only �Xk
 when moving an object on mode k, ignoring all other �Xi

( i ≠ k ). Instead, Algorithm 3 looks at the whole vector �P and choose the partition which
maximizes avg(�) . Here we propose an alternative method that stays in the between: it is an
alternating maximization of the single �Xk

 , according to the mode k considered at the moment,
but it adds a term �(Xj)j≠k|Xk

 to the objective function. This addend takes into account the aggre-
gate modification of the other components of � induced by the move on k-th mode. In more
details, in Sect. 3.1 we have generalized the Goodman and Kruskal’s � measure to n modes as
the reduction of the error in predicting one variable when all the other variables are known;
we can also define another generalization, i.e. the reduction of the error in predicting the joint
value of all the other variables when Xk is known. Reasoning as in Sect. 3.1, we have that

(4)

�(Xj)j≠k�Xk
=

e(Xj)j≠k
− �[e(Xj)j≠k�Xk

]

e(Xj)j≠k

=

∑c1
h1=1

⋯

∑cn
hn=1

t2
h1…hn

t
(k)

(hk)
⋅T

−
∑c1

h1=1
⋯

∑ck−1
hk−1=1

∑hk+1
hk+1=1

⋯

∑cn
hn=1

t
(j)j≠k

(hj)j≠k

∑c1
h1=1

⋯

∑ck−1
hk−1=1

∑ck+1
hk+1=1

⋯

∑cn
hn=1

t
(j)j≠k

(hj)j≠k

.

	 Machine Learning

1 3

The best partition among those considered by this strategy is the one with highest value of
�Xk|(Xj)j≠k

+ �(Xj)j≠k|Xk
 . Again, the move is performed only if

�
Qe

Xk|(Xj)j≠k
+ �

Qe

(Xj)j≠k|Xk

≥ �
Qb

Xk|(Xj)j≠k
+ �

Qb

(Xj)j≠k|Xk

 (in case of ties we look at the best �Xk|(Xj)j≠k
 ). In

this way, we require that the best partition among the neighboring ones is one that increases
�Xi

 with a decay of the quality of the partitions on the other modes that, overall, is less
important than the improvement on mode k. We call this aggregate-based strategy
SelectBestPartitionAGG (see Algorithm 4).

Algorithm 4: SelectBestPartitionAGG(k, b, (τQj)j=1,...,c)
Input: The mode k of the tensor, The original cluster b of the selected object,

(τQj)j = 1, ..., c where each τQj is a two-dimensional vector
(τ

Qj

k , τ
Qj

(Xi)i=k|Xk
)

Result: e index of the selected partition among the c proposed
1 BestPartitions ← argmaxj=1,...,c(τQj);
2 if |BestPartitions| > 1 then
3 Randomly select an index m in set BestPartitions;
4 e ← m;
5 maxτ ← τQm

k ;
6 for h in BestPartitions \ {m} do
7 if τ

Qh
k > maxτ then

8 e ← h;
9 maxτ ← τ

Qh
k ;

10 end
11 end
12 else
13 e ← the only index in BestPartitions;
14 end

4.2.4 � Alternative alternating optimization of �Xk

All the three methods proposed above perform a move only when the respective objective
function ( �Xk

 in Algorithm 2, avg(�) Algorithm 3 or �Xk|(Xj)j≠k
+ �(Xj)j≠k|Xk

 in Algorithm 4)
increases its value. If there is no move able to increase the value of the objective function, no
move is done. Here we propose a slightly different strategy for the alternating optimization of
� . Suppose we are considering partition P and we want to move an object on mode k: we con-
sider only those moves that improve (or at least do not worsen) �Xk

 and, among them, we
choose the one with the greatest value of avg(�) . Notice that we do not require to increase the
value of avg(�) with respect to partition P : we perform the move if there is any improvement
(even little) of �Xk

 (as in Algorithm 2) and we choose the cluster with the highest avg(�) . Ties
are solved in favor of the partition with the highest �Xk

 . This method is called
SelectBestPartitionALT2 , and is sketched in Algorithm 5. As we will show in Sect. 5, this
method usually achieves better results than the others and still exhibits a good convergence
behavior.

Machine Learning	

1 3

Algorithm 5: SelectBestPartitionALT2(k, b, (τQj)j=1,...,c)
Input: The mode k of the tensor, the initial cluster b of the selected object,

(τQj)j = 1, ..., c where each τQj is a n-dimensional vector (τ
Qj
1 , . . . , τ

Qj
n)

Result: e index of the selected partition among the c proposed
1 P ← {j|τQj

k ≥ τ
Qb
k)};

2 BestPartitions ← argmaxj=1,...,c(avg(τQj)j∈P);
3 if |BestPartitions| > 1 then
4 Randomly select an index m in set BestPartitions;
5 e ← m;
6 maxτ ← τQm

k ;
7 for h in BestPartitions \ {m} do
8 if τ

Qh
k > maxτ then

9 e ← h;
10 maxτ ← τ

Qh
k ;

11 end
12 end
13 else
14 e ← the only index in BestPartitions;
15 end

4.2.5 � Alternative aggregate optimization of �Xk |(Xj)j≠k + �(Xj)j≠k |Xk

Finally, we propose a criterion (named SelectBestPartitionAGG2 ) based on the same selec-
tion strategy as the previous one, but applied to function �Xk|(Xj)j≠k

+ �(Xj)j≠k|Xk
 . More in

details, the algorithm considers only the moves which improve �Xk
 and, among them,

chooses the one with highest value of �Xk|(Xj)j≠k
+ �(Xj)j≠k|Xk

 . The strategy is described in
Algorithm 6.

	 Machine Learning

1 3

Algorithm 6: SelectBestPartitionAGG2(k, b, (τQj)j=1,...,c)
Input: The mode k of the tensor, the initial cluster b of the selected object,

(τQj)j = 1, ..., c where each τQj is a two-dimensional vector
(τ

Qj

k , τ
Qj

(Xi)i=k|Xk
)

Result: e index of the selected partition among the c proposed
1 P ← {j|τQj

k ≥ τ
Qb
k)};

2 BestPartitions ← argmaxj=1,...,c(sum(τQj)j∈P);
3 if |BestPartitions| > 1 then
4 Randomly select an index m in set BestPartitions;
5 e ← m;
6 maxτ ← τQm

k ;
7 for h in BestPartitions \ {m} do
8 if τ

Qh
k > maxτ then

9 e ← h;
10 maxτ ← τ

Qh
k ;

11 end
12 end
13 else
14 e ← the only index in BestPartitions;
15 end

In the remainder of the paper, we refer to the five selection strategies as ALT (for Algo-
rithm 2), AVG (for Algorithm 3), AGG​ (for Algorithm 4), ALT2 (for Algorithm 5), and
AGG2 (for Algorithm 6).

4.3 � Local convergence of �TCC​

A partition P is locally optimal with respect to a set of neighboring solutions N(P) if P is
not dominated by any other solution Q ∈ N(P) . In Ienco et al. (2013) the authors show that
their matrix co-clustering algorithm based on the multi-objective optimization of � con-
verges to a Pareto local optimum, with respect to the following neighboring function

Although the same property holds for �TCC as well, here we prove a slightly stronger local
convergence property for three strategies, namely ALT, AVG and ALT2.

Theorem 1  If �TCC (with selection strategy ALT, AVG or ALT2) ends within t < Niter
iterations, then it returns a Pareto local optimum with respect to the following neighboring
function

which considers, as neighboring partitions of P , all those differing from P in the cluster
assignment of a unique element x in a unique mode k.

Nk,b,x ∶ P ⟼ {Q =(Q1,… ,Qn)|Qj = Pj,∀j ≠ k, and ∃e ≠ b s.t.

Qk = (Pk ⧵ {C
k
b
,Ck

e
}) ∪ (Ck

b
⧵ {x}) ∪ (Ck

e
∪ {x})}.

N ∶ P ⟼ {Q =(Q1,… ,Qn)|∃k∃!x on mode k s.t. Qj = Pj,∀j ≠ k and

Qk = (Pk ⧵ {C
k
b
,Ck

e
}) ∪ (Ck

b
⧵ {x}) ∪ (Ck

e
∪ {x})}

Machine Learning	

1 3

Proof  We demonstrate the property for every selection strategy.

–	 AVG. When the algorithm ends in less than Niter iterations, all objects on all modes
have been considered for a move, but no move has been actually performed: this means
that any co-clustering Q obtainable by moving one single element in one single mode
has avg(�Q) ≤ avg(�P) . This implies that P is not dominated by Q , for any Q ∈ N(P) ,
i.e., it is a Pareto local optimum w.r.t. N

–	 ALT. Let Q ∈ N(P) . Q differs from P in the cluster assignment of a unique element x
on mode k. Object x has been selected by the algorithm in one of the last maxi=1,…,n(mi)
iterations, but no move has been done: it means that either 𝜏P

k
> 𝜏

Q

k
 or �P

k
= �

Q

k
 and

avg(�P) ≥ avg(�Q) (because ties are solved in favor of the partition with highest
avg(�) ). In both cases P ⊀ Q . Thus P is a Pareto local optimum w.r.t. N .

–	 ALT2. The proof is identical to the ALT case.	� ◻

While the convergence to a local optimum w.r.t. neighboring function Nk,b,x is always
guaranteed, the convergence w.r.t. neighboring function N can be proved only when the
algorithm ends within t < Niter iterations. As a rule of thumb, we suggest to set Niter equal
to ten times the sum of the dimensions on all the modes of the tensor. According to our
experiments this is a “safe” threshold: although there is no theoretical prove that the algo-
rithm will reach the convergence within this number of iterations, it always happens in our
exeriments and with a large margin of tolerance (see Sect. 5.2).

4.4 � Optimized computation of �

In step 19 of Algorithm ,1 fixed a mode k, the following quantities are computed:

where ck is the number of clusters on mode k (including the empty set) and Qe is the co-
clustering obtained by moving an object x from cluster Ck

b
 to cluster Ck

e
 .

A way to compute these quantities is to fix an arrival cluster Ck
e
 , move x in Ck

e
 obtaining

partition Qe , compute the contingency tensor Te associated to that partition (using Eq. 2)
and compute vector �e associated to tensor Te (using Eq. 3 for strategies ALT, ALT2, and
AVG and, additionally, Eq. 4 for AGG​ and AGG2). By repeating these steps for every
e ∈ {1,… , ck} , we obtain a matrix V = (�Xj

(Te))ej of shape ck × n . If the variant of the
algorithm is AGG​ or AGG2, matrix V has shape ck × 2 , because instead of computing all
the �Xj

 we only compute �Xk
 and �(Xj)j≠k|Xk

 , where k is the mode considered at that moment.
Then we pass matrix V as input to one of the variants of function SelectBestPartition,
which determines where to move x. In order to obtain V in a more efficient way, we can
reduce the amount of calculations by only computing the variation of �e from one step to
another. We take advantage of the fact that a large part in the � formula remains the same
when moving a single element from a cluster to another. Hence, an important part of the
computation of � can be saved.

Imagine that x has been selected in cluster C1

b
 and that we want to move it in cluster

C1
e
 (for simplicity we consider x on the first mode, but all the computations below are

analogous on any other mode k). Object x is a row on the first mode (let’s say the j-th
row) of tensor X and so x can be expressed as a tensor M ∈ ℝ

m2×⋯×mn

+ with n − 1 modes,
whose generic entry is �k2…kn

= xjk2…kn
 . We will denote with M the sum of all elements

�
Qe

Xj
for each j = 1,… n, for each e = 1,… ck

	 Machine Learning

1 3

of M . Let T and �(T) be the tensor and the measure associated to the initial co-clus-
tering and S and �(S) the tensor and the measure associated to the final co-clustering
obtained after the move. Tensor S differs from T only in those entries having index
k1 ∈ {b, e} . In particular, for each ki = 1,… , ci and i = 2,… , n:

Replacing these values in Eq. 1, we can compute the variation of �X1
 moving object x from

cluster C1

b
 to cluster C1

e
 as:

where �1 = 1 −
∑

k1

�
t
(1)

(k1)

�2

T2
 and �1 = 1 −

∑
k1,…,kn

t2
k1…kn

T⋅t
(2…n)

(k2…kn)

 only depend on T and then can

be computed once (before choosing b and e). Thanks to this approach, instead of comput-
ing mi times �Xi

 with complexity O(m1 ⋅ m2 ⋅… ⋅ mn) , we compute ��Xi
(T, x, b, e, k = i) with

a complexity in O(m1 ⋅ m2 ⋅… ⋅ mi−1 ⋅ mi+1 ⋅… ⋅ mn) in the worst case with the discrete
partition. Computing �i is in O(m1 ⋅ m2 ⋅… ⋅ mn) , while �i is in O(mi) , and both operations
are executed only once for each mode in each iteration.

In a similar way, we can compute the variation of �Xj
 for any j ≠ 1 (this computation

is needed only when variants AVG and ALT2 are used):

where �j = 1 −
∑

kj

�
t
(j)

(kj)

�2

T2
 only depends on T and can be computed once for all e. Conse-

quently, instead of computing mi times �Xj
 in Algorithm 1 with a complexity in

O(m1 ⋅ m2 ⋅… ⋅ mn) , we compute ��Xj
(T, x, b, e, k = i) with a complexity in

O(m1 ⋅ m2 ⋅… ⋅ mi−1 ⋅ mi+1 ⋅… ⋅ mn) in the worst case with the discrete partition. Comput-
ing �j is in O(mj) and is done only once for each mode in each iteration.

Similarly, when using variants AGG​ and AGG2, instead of calculating �(Xj)j≠k|Xk

entirely, we can compute:

sbk2…kn
= tbk2…kn

− �k2…kn

sek2…kn
= tek2…kn

+ �k2…kn

sk1k2…kn
= tk1k2…kn

, if k1 ∉ {b, e}.

��X1
(T, x, b, e, k = 1) = �X1

(T) − �X1
(S)

=

�1

�
2M

T2
(M + t

(1)

(e)
− t

(1)

(b)
)

�
−�1

�
2

T

∑
k2,…,kn

�k2…kn
(�k2…kn

+tek2…kn
−tbk2…kn

)

t
(2…n)

(k2…kn)

�

�
2

1
−�1

�
2M

T2
(M + t

(1)

(e)
− t

(1)

(b)
)

� .

��Xj
(T, x, b, e, k = 1) = �Xj

(T) − �Xj
(S)

=
1

�jT

∑

k2…kn

(t2
ek2…kn

t
(i)i≠j

(ki)i≠j,k1=e

−
(tek2…kn

+ �k2…kn
)2

t
(i)i≠j

(ki)i≠j,k1=e
+ �

(i)i≠j−1

(ki)i≠j

+
t2
bk2…kn

t
(i)i≠j

(ki)i≠j,k1=b

−
(tbk2…kn

− �k2…kn
)2

t
(i)i≠j

(ki)i≠j,k1=b
− �

(i)i≠j−1

(ki)i≠j

)

Machine Learning	

1 3

where �j≠1 = 1 −
∑

k2…kn

�
t
(j)j≠1

(kj)j≠1

�2

T2
 only depends on T and can be computed once for all e.

Thus, instead of computing mi times �(Xj)j≠k|Xk
 with a complexity in O(m1 ⋅ m2 ⋅… ⋅ mn) , we

compute ��(Xj)j≠k|Xk
(T, x, b, e, k = i) with a complexity in

O(m1 ⋅ m2 ⋅… ⋅ mi−1 ⋅ mi+1 ⋅… ⋅ mn) in the worst case with the discrete partition. Comput-
ing �j≠i is in O(m1 ⋅ ⋯ ⋅ mi−1 ⋅ mi+1 ⋅ ⋯ ⋅ mn) and is done only once for each mode in each
iteration.

Hence, at each iteration and for each mode k, instead of computing matrix V = (�Xj
(Te))ej

with computational complexity O((maxi mi) ⋅ m1 ⋅ m2 ⋅… ⋅ mn) for each �Xj
 , we can equiva-

lently compute matrix �� = (��Xj
(T, x, e, k))ej with computational complexity

O(m1 ⋅ m2 ⋅… ⋅ mn) for each �Xj
.

Based on the above considerations, for a generic square tensor with n modes, each con-
sisting of m dimensions, the overall complexity is in O(Inmn) for strategies ALT, AGG​
and AGG2 and in O(In2mn) for strategies AVG and ALT2, where I is the number of itera-
tions. This difference is due to the fact that the first group of strategies require the compu-
tation of just a fixed number of � ’s for each mode (one in the ALT case, two in the AGG​
and AGG2 cases), independently of the number of modes n, while ALT2 and AVG require
the computation of all the n � ’s for each mode. The computational complexity of the two
groups of methods differs by a factor of O(n): this could be a discriminant factor in the
choice of the method only for tensors with a large number of modes.

5 � Experiments

In this section, we report the results of the experiments we conducted to evaluate the per-
formance of our tensor co-clustering algorithm. The section is organized as follows: first,
we describe both the synthetic and real-world datasets used in our experiments; second, we
compare the different variants of our algorithm by also analyzing their convergence behav-
ior; third, we report the quantitative results of the comparative analysis between our algo-
rithm and some state-of-the-art competitors; finally, we provide some qualitative insights
on the co-clusters obtained in one specific case.

5.1 � Datasets

The synthetic data we use to assess the quality of the clustering performance are boolean
tensors with n modes, created as follows. We fix the dimensions m1,… ,mn of the tensor

��(Xj)j≠k|Xk
(T, x, b, e, k = 1) = �(Xj)j≠k|Xk

(T) − �(Xj)j≠k|Xk
(S)

=
1

�j≠kT

∑

k2…kn

(t2
ek2…kn

t
(1)
e

−
(tek2…kn

+ �k2…kn
)2

t
(1)
e +M

+
t2
bk2…kn

t
(1)

b

−
(tbk2…kn

− �k2…kn
)2

t
(1)

b
−M

)

	 Machine Learning

1 3

and the number of embedded clusters c1,… , cn on each mode. Then, we first construct
a block tensor of dimensions m1 × m2 ×⋯ × mn with c1 × c2 ×… cn blocks. The blocks
are created so that there are “perfect” clusters in each mode, i.e., all rows on each mode
belonging to the same cluster are identical, while rows in different clusters are different.
Then we add noise to the “perfect” tensor, by randomly selecting some element tk1…kn

 , with
ki ∈ {1,… ,mi} , for each i ∈ {1,… , n} , and changing its value (from 0 to 1 or vice versa).
The amount of noise is controlled by a parameter � ∈ [0, 1] , indicating the fraction of ele-
ments of the original tensor we change. We generate tensors of different number of modes,
size, number of clusters and value of noise ( � = 0.05 to 0.3 with a step of 0.05).

We also apply the algorithms to three real-world datasets (see Table1). The first dataset
is the “four-area” DBLP dataset1. It is a bibliographic information network extracted from
DBLP data, downloaded in the year 2008. The dataset includes all papers published in
twenty representative conferences of four research areas (database, data mining, machine
learning and information retrieval), five in each area. Each element of the dataset corre-
sponds to a paper and contains the following information: authors, venue and terms in the
title. The original dataset contains 14376 papers, 14475 authors and 13571 terms. Part of
the authors (4057) are labeled in four classes, roughly corresponding to the four research
areas. We select only these authors and their papers and perform stemming and stop-words
removal on the terms by using the functions provided by the NLTK Python library2 (in par-
ticular, we use the Porter stemmer). We obtain a dataset with 14328 papers, from which we
create a ( 6044 × 4057 × 20)-dimensional tensor, highly sparse (99.98% of entries are equal
to zero); the generic entry tijk of the tensor counts the number of times term i was used by
author j in conference k.

The second dataset is the “hetrec2011-movielens-2k” dataset3 published by Canta-
dor et al. (2011). It is an extension of MovieLens10M dataset, published by GroupLeans
research group4. It links the movies of MovieLens dataset with their corresponding web
pages at the Internet Movie Database (IMDb5) and the Rotten Tomatoes movie review sys-
tems6. From the original dataset, only those users with both rating and tagging information
are retained, for a total of 2113 users, 10197 movies (classified in 20 overlapping genres)
and 13222 tags. Then, we select the users that have tagged at least two different movies, the

Table 1   Dataset characteristics

Dataset # Modes Tensor shape Main mode # Classes
on main
mode

DBLP 3 6044 × 4057 × 20 authors (4057) 4
MovieLens1 3 215 × 181 × 142 movies (181) 3
MovieLens2 3 74 × 145 × 115 movies (145) 3
YelpTOR 3 628 × 178 × 458 restaurants (628) 3
YelpPHG 3 237 × 95 × 544 restaurants (237) 3

1  http://​web.​cs.​ucla.​edu/​~yzsun/​data/​DBLP_​four_​area.​zip
2  https://​www.​nltk.​org/
3  https://​group​lens.​org/​datas​ets/​hetrec-​2011/
4  http://​www.​group​lens.​org
5  http://​www.​imdb.​com
6  http://​www.​rotte​ntoma​toes.​com

http://web.cs.ucla.edu/%7eyzsun/data/DBLP_four_area.zip
https://www.nltk.org/
https://grouplens.org/datasets/hetrec-2011/
http://www.grouplens.org
http://www.imdb.com
http://www.rottentomatoes.com

Machine Learning	

1 3

tags that have been used for at least ten different movies, and the movies that received a tag
from at least five different users. Finally, starting from the remaining data, we create two
different tensors:

–	 MovieLens1: it includes all the movies classified as ‘Animation’, ‘Documentary’, or
‘Horror’. Since we need unique labels to assess the quality of our co-clustering algo-
rithm, we keep only the movies with a unique genre label. At the end we obtain a
( 215 × 181 × 142)-dimensional tensor. The class on the movie mode are quite imbal-
anced: there are only 11 documentaries, while the remaining movies are divided into
Animation (63) and Horror (117).

–	 MovieLens2: it includes all the movies (uniquely) classified as ‘Adventure’(33), ‘Com-
edy’(10), or ‘Drama’(102). The final tensor has dimensions ( 74 × 145 × 115).

The last dataset is a subset of the Yelp dataset7. It is a subset of Yelp’s businesses,
reviews, and user data. Among all available data, we select only the reviews about Italian,
Mexican and Chinese restaurants with at least ten reviews and the users who write at least
five reviews. Finally, we pre-process the text of the remaining reviews by performing both
stemming and stop-word removal and by retaining the words appearing at least 5 times in
at least one category of restaurants, plus the 150 most frequent words (regardless of the
category). At the end, we obtain two different tensors, with restaurants on the first mode,
users on the second mode, and words used in the reviews on the third mode:

–	 yelpTOR: it includes the restaurants of the city of Toronto. The final tensor has shape
(626, 178, 458) and contains 1885 reviews about 234 Italian restaurants, 288 Chinese
restaurants and 104 Mexican restaurants. We consider the type of restaurant (Italian,
Chinese or Mexican), as the labels on the first mode.

–	 yelpPGH: it includes the restaurants of the city of Pittsburgh. The final tensor has shape
(237, 95, 544), containing data about 104 Italian restaurants, 64 Chinese and 63 Mexi-
can restaurants.

5.2 � Comparison of the different variants of �TCC​

In this section we apply the five different versions of �TCC (ALT, AVG, ALT2, AGG​
, AGG2) to synthetic and real-world data with the aim of comparing their overall perfor-
mances and convergence behavior. We first apply the algorithms on synthetic data, vary-
ing the number of modes and the shape of the tensor ( 100 × 100 × 100 , 1000 × 100 × 20 ,
100 × 100 × 100 × 100 , and 1000 × 100 × 20 × 20 ) and the number of embedded clusters
on each mode ((5,5,5), (5,3,2), (10,5,3), and (10,5,3,2)), with a medium level of noise of
0.15. As shown in Fig. 3, the AVG variant of �TCC provides less accurate results than
the other variants: in cubic tensors (tensors with the same dimensionality on all modes)
all the methods achieve similar levels of avg(�) , but AVG requires more iterations. On
asymmetric tensors, AVG ends in a solution with lower average � compared with the one
obtained by the other methods. The algorithms have a similar behavior on real-world ten-
sors (Fig. 4): the one with the overall best results in terms of avg(�) is ALT2, followed
by AGG2 and ALT. It is worth noting that the avg(�) grows even with variants that do

7  https://​www.​yelp.​com/​datas​et

https://www.yelp.com/dataset

	 Machine Learning

1 3

(a) 100X100X100(5, 5, 5) (b) 1000X100X20(5, 5, 5)

(c) 100 X100X100(5, 3, 2) (d) 1000X100X20(5, 3, 2)

(e) 100X100X100(10, 5, 3) (f) 1000 X100X20(10, 5, 3)

(g) 100X100X100X100(10, 5, 3, 2) (h) 1000X100X20X20(10, 5, 3, 2)

Fig. 3   Avg(�) per iteration, for all the �TCC variants, on synthetic data, varying the shape of the tensor and
the number of embedded co-clusters

Machine Learning	

1 3

not optimize it directly. In real-world data, although during the very first iterations avg(�)
decreases, it begins to grow monotonically, with the exception of some small low peaks.
Of course, AVG variant is not affected by this behavior, since it optimizes avg(�) directly.
Moreover, as anticipated in Sect. 4.2, the direct optimization of avg(�) often results in a
relatively poor local optimum. This is because a relaxed constraint on the neighborhood
search allows the algorithm to explore more solution subspaces, thus ending up with a bet-
ter final objective function value.

After these preliminary experiments we conclude that ALT2 seems to be the most effec-
tive method, with ALT2, AGG2 and ALT outperforming the other two variants of algo-
rithm �TCC. We also conduct a Friedman statistical test followed by a Nemenyi post-hoc
test (Demsar 2006) in order to assess whether the differences among the best three variants
are statistically significant. At confidence level � = 0.01 , the null hypothesis of the Fried-
man test (stating that the differences are not statistically significant) can be rejected for
avg(�) values; we then proceed with the post-hoc Nemenyi test. The results show that the

(a) MovieLens1 (b) MovieLens2

(c) YelpTOR (d) YelpPGH

(e) DBLP

Fig. 4   Avg(�) per iteration, for all the �TCC variants, on MovieLens, Yelp and DBLP datasets

	 Machine Learning

1 3

differences between the average rank of ALT2 and those of the other methods are more
than the critical difference CD = 0.19168 at confidence level � = 0.01 . Consequently the
null hypothesis of the Nemenyi test passed, and we can conclude that ALT2 is statistically
better than AGG2 and ALT. Nevertheless, hereinafter, we will consider all the three best
performing variants in our experiments, while we will not report the results for AVG and
AGG​.

5.3 � �TCC against state‑of‑the‑art competitors

In this section, we compare our results with those of other state-of-the-art tensor co-
clustering algorithms, mainly based on CP (Harshman 1970) and Tucker (Tucker 1966)
decomposition. Additionally, we include another very recent approach based on the latent
block model. Hence, we consider the following algorithms:

–	 nnCP. It is the non-negative CP decomposition and can be used to co-cluster a tensor,
as done by Zhou et al. (2009), by assigning each element in each mode to the cluster
corresponding to the latent factor with highest value. The algorithm requires as input
the number r of latent factors: we set r = maxj=1,…n(cj) , where cj is the true number
of classes on the j-th mode of the tensor. Since the CP model represents the tensor as
the sum of r rank-1 decompositions, the number r of latent factors is the same on all
modes. However, the rank r of the decomposition represents the maximum number of
clusters that can be found on each mode of the tensor, thus the fact that we specify the
same number r of latent factors on all the modes does not force the algorithm to iden-
tify exactly r clusters on each mode. This is particularly important when the number of
embedded clusters cj differs along the modes, because the algorithm is allowed to iden-
tify a number of clusters that is less then the maximum number r.

–	 nnCP+kmeans. It combines CP with a post-processing phase in which k-means
is applied on each of the latent factor matrices. Here, we set the rank r to
r = maxj=1,…n(cj) + 1 and the number ki of clusters in each dimension equal to the real
number of classes (according to our experiments, this is the choice that maximizes the
performances of this algorithm).

–	 nnTucker. It is the non-negative Tucker decomposition. Here we set the ranks of the
core tensor equal to (c1,… , cn).

–	 nnT+kmeans. It combines Tucker decomposition with k-means on the latent factor
matrices, similarly as what has been done by Huang et al. (2008) and Cao et al. (2015).

–	 SparseCP. It consists of a CP decomposition with non-negative sparse latent fac-
tors (Papalexakis et al. 2013). We set the rank r of the decomposition equal to the maxi-
mum number of classes on the n modes of the tensor. It also requires one parameter �i
for each mode of the tensor: for the choice of their values we follow the instructions
suggested in the original paper.

–	 TBM. It performs tensor co-clustering via the Tensor Block Model (Wang and Zeng
2019). As parameters, it requires the number of clusters on each mode and a penalty

Machine Learning	

1 3

coefficient � ; the number of clusters is set equal to the correct number of classes, while
� is tuned as suggested in the original paper.

The available codes of SparseCP and TBM only work with 3-way tensors, so we have
to exclude these methods when we perform experiments on tensors with more than three
modes.

To assess the quality of the clustering performances, we consider two measures com-
monly used in the clustering literature: normalized mutual information (NMI) (Strehl and
Ghosh 2002) and adjusted rand index (ARI) (Hubert and Arabie 1985).

All experiments are performed on a server with 32 2.1GHz Intel Xeon Skylake cores,
256GB RAM, Ubuntu 20.04.02 LTS (kernel release: 5.8.0)8. In the following, we first pre-
sent the comparative results obtained on synthetic data, then we report the performances
achieved by our algorithms and the competitors on real-world data.

5.3.1 � Results on synthetic data

We test the performances of �TCC against those of its competitors on synthetic data with
embedded block co-clusters, constructed as described in Sect. 5.1. We consider tensors with
3, 4 and 5 modes, with different shapes ( 100 × 100 × 20 , 100 × 100 × 100 , 1000 × 100 × 20
and 1000 × 500 × 20 for 3-way tensors, 100 × 100 × 100 × 100 and 1000 × 100 × 20 × 20
for 4-way tensors and 100 × 100 × 100 × 100 × 100 and 1000 × 100 × 20 × 20 × 20 for
5-way tensors), different numbers and shapes of block co-clusters (combinations of 2,3,5
and 10 clusters on each mode) and with three levels of noise (0.1, 0.2 and 0.3), for a total of
276 tensors. We run all the experiments ten times and compute the average NMI and ARI.
Figs. 5, 6, 7 and 8 report the results in terms of average NMI of all the experiments. The
results in terms of mean ARI are similar and are presented in the appendix (see Figs. 13,
14, 15 and 16). In these figures we include only the best variant of the algorithm (referred
to as �TCCALT2 ), according to our previous analysis, for sake of clarity. We also omit to
show the standard deviation of the experiments in the plots. However, the results are very
stable: the standard deviation of �TCC ranges from 0 to 0.001, while the algorithms with
the highest variability are nnCP+kmeans and nnT+kmeans, whose standard deviation
ranges from 0 to 0.004. In all the experiments our algorithm achieves quite “perfect” levels
of NMI and ARI (always greater than 0.93), meaning that it is able to identify the correct
co-clusters embedded in the tensors. The shape and the number of modes of the tensor
and the asymmetry in the number of clusters on the different modes do not affect signifi-
cantly the quality of the co-clustering. Furthermore, �TCCALT2 consistently outperforms
SparseCP, TBM, nnTucker and nnCP on synthetic data. Finally, the results of �TCCALT2 are
comparable with those of nnCP+kmeans and nnT+kmeans: only when the number of clus-
ters on the three modes is different, �TCCALT2 ’s results are slightly lower than those of the
kmeans-based algorithms. This is due to the fact that our algorithm fails in identifying the
correct number of clusters in these scenarios: for instance, when the clusters on the three
modes are 10, 5 and 3 respectively, �TCCALT2 identifies 9, 5 and 3 clusters. We don’t have
the same issue with k-means, for which, however, the correct number of clusters is given
as input.

8  The source code of our algorithm and all data used in this paper are available at: https://​github.​com/​elena​
batta​glia/​tensor_​cc

https://github.com/elenabattaglia/tensor_cc
https://github.com/elenabattaglia/tensor_cc

	 Machine Learning

1 3

To further investigate this behavior, we analyze the results of the three variants of �TCC
on synthetic data (the detailed results are reported in the appendix, in Figs. 17, 18, 19 and
20). We find that, while all the variants of our algorithm find the correct clusters when the
number of embedded clusters on all the modes are similar, the results degrade when we
consider different numbers of clusters across the modes. This issue is more pronounced for
ALT and AGG2, while ALT2 is able to find good or perfect clusters even in these scenarios
(in particular, when mi >> ki for all i = 1, 2, 3 , where mi is the dimension of the tensor and
ki the number of clusters on mode i).

(a) 100×100×20 (noise 0.10) (b) 100×100×100 (noise 0.10)

(c) 100×100×20 (noise 0.20) (d) 100×100×100 (noise 0.20)

(e) 100×100×20 (noise 0.30) (f) 100×100×100 (noise 0.30)

Fig. 5   Mean NMI on the three modes varying the number of embedded clusters on synthetic 3-way tensors
with different sizes and levels of noise

Machine Learning	

1 3

5.3.2 � Execution time analysis

In this section, we show the execution times of �TCC on tensors with different number of
modes and shape. We compare the execution times of �TCC with those of its competitors;
for sake of clarity, we exclude from the experiment nnT+kmeans and nnCP+kmeans, since
the execution time of the post-processing K-means algorithm is negligible w.r.t. the execu-
tion time of the decomposition. Firstly, we run the different algorithms on 3-way tensors of
increasing magnitude, starting from a tensor of shape 100 × 100 × 10 and adding from 100
to 900 dimensions to the first mode, until reaching a tensor of shape 1000 × 100 × 10 . Then

(a) 1000×100×20 (noise 0.10) (b) 1000×500×20 (noise 0.10)

(c) 1000×100×20 (noise 0.20) (d) 1000×500×20 (noise 0.20)

(e) 1000×100×20 (noise 0.30) (f) 1000×500×20 (noise 0.30)

Fig. 6   Mean NMI on the three modes varying the number of embedded clusters on synthetic 3-way tensors
with different sizes and levels of noise

	 Machine Learning

1 3

we add from 100 to 900 dimensions to the second mode, until we reach a tensor of shape
1000 × 1000 × 10 . All the tensors have 5 clusters on the larger modes and 2 on the smallest
ones. Figure 9a shows that all the variants of �TCC are slower than their competitors (with
the exception of SparseCP), approximately by a factor of 10. This depends on the fact that
the number of iterations until convergence is higher for �TCC than for the other methods.
However, the trend of the curves are similar for all methods, as expected by looking at the
theoretical complexities reported in Table 2. In the second and third experiments (Figs.9b
and 9c) we start with the same 3-way tensor of shape 100 × 100 × 10 and then we increase

(a) 100×100×100×100 (noise 0.10) (b) 1000×100×20×20 (noise 0.10)

(c) 100×100×100×100 (noise 0.20) (d) 1000×100×20×20 (noise 0.20)

(e) 100×100×100×100 (noise 0.30) (f) 1000×100×20×20 (noise 0.30)

Fig. 7   Mean NMI on the four modes varying the number of embedded clusters on synthetic 4-way tensors
with different sizes and levels of noise

Machine Learning	

1 3

(a) 100×100×100×100×100 (noise 0.10) (b) 1000×100×20×20×20 (noise 0.10)

(c) 100×100×100×100×100 (noise 0.20) (d) 1000×100×20×20×20 (noise 0.20)

(e) 100×100×100×100×100 (noise 0.30) (f) 1000×100×20×20×20 (noise 0.30)

Fig. 8   Mean NMI on the four modes varying the number of embedded clusters on synthetic 4-way tensors
with different sizes and levels of noise

Table 2   Computational
complexities for (hyper)cubic
tensors with n modes and
dimensionality m on each mode.
Where needed, the rank of the
decomposition is r on each mode.
I is the number of iterations

Algorithm Complexity

�TCC_ALT, �TCC_AGG2 Inmn

�TCC_ALT2 In2mn

nnCP, SparseCP Inrmn

nnT, TBM Irmn

	 Machine Learning

1 3

the number of modes. More in detail, in the experiment reported in Fig. 9b a new mode of
dimension 10 is added at each time, while in the experiment reported in Fig. 9c, at each
step, we add a new mode of dimensionality 100. The plots show that the difference in the
execution time between �TCC and the other methods (in particular nnCP) decreases with

(a) 3-way tensors

(b) n-way tensors (c) n-way tensors

Fig. 9   Execution time in seconds of �TCC and its competitors on 3-way tensors with different shapes

Table 3   Results achieved by the co-clustering algorithms on the real-world datasets, in terms of NMI. NMI
is computed for the main mode (authors in DBLP, movies in MovieLens and restaurants in Yelp)

The best results are highlighted in bold

Algorithm NMI

DBLP MovieLens1 MovieLens2 yelpTOR yelpPGH

�TCC
ALT2

0.706 ±0.003 0.659±0.018 0.403 ± 0.063 0.381 ± 0.031 0.373 ± 0.009
�TCC

ALT
0.715 ±0.001 0.579 ± 0.121 0.263 ± 0.099 0.364 ± 0.038 0.352 ± 0.019

�TCC
AGG2

0.749 ±0.006 0.516 ± 0,017 0.382 ± 0.073 0.433 ± 0.023 0.339 ± 0.011
nnTucker 0.782 ± 0.000 0.421± 0.000 0.242 ± 0.000 0.429 ± 0.000 0.275 ± 0.000
nnCP 0.742 ±0.000 0.380 ± 0.000 0.111 ± 0.000 0.425 ± 0.000 0.094 ± 0.000
SparseCP 0.000 ±0.000 0.050± 0.000 0.066 ± 0.000 0.200± 0.000 0.108 ± 0.000
TBM - 0.305 ± 0.000 0.097 ± 0.000 0.014 ± 0.000 0.107 ± 0.000
nnCP+kmeans 0.238 ±0.001 0.307±0.001 0.127 ± 0.061 0.100 ± 0.019 0.081 ± 0.016
nnT+kmeans 0.246 ±0.003 0.376 ±0.002 0.223 ± 0.012 0.088 ± 0.025 0.085 ± 0.028

Machine Learning	

1 3

the number of modes. We can then conclude that the number of modes affect the execution
times of all algorithms to a similar extent.

5.3.3 � Results on real‑world data

As last experiment, we apply our algorithm and its competitors on real-world datasets.
Each algorithm is applied ten times on every dataset and the average results and standard
deviations are presented in Tables 3, 4. Algorithms nnCP, nnTucker and their variant with
k-means are applied with different parameters: we try different ranks of the decomposition
(while k of k-means is fixed to the correct number of classes in the data) and we report
the best result obtained. In this way we are giving a big advantage to our competitors: we
choose the rank of the decomposition and the number of clusters by looking at the actual
number of categories, which are unknown in standard unsupervised settings. Despite this,
�TCC (in all its variants) outperforms the other algorithms on all datasets but one (DBLP)
and has comparable results on another (YelpTOR). As regards DBLP, non-negative Tucker
decomposition (with the number of latent factors set to the correct number of embedded
clusters) achieves the best results. Non-negative CP decomposition obtains results that are

Table 4   Results achieved by the co-clustering algorithms on the real-world datasets, in terms of ARI. ARI
is computed for the main mode (authors in DBLP, movies in MovieLens and restaurants in Yelp)

The best results are highlighted in bold

Algorithm ARI

DBLP MovieLens1 MovieLens2 yelpTOR yelpPGH

�TCC
ALT2

0.728 ±0.003 0.707±0.032 0.506 ± 0.106 0.390 ± 0.038 0.272 ± 0.033
�TCC

ALT
0.730 ±0.003 0.539 ± 0.239 0.306 ± 0.108 0.284 ± 0.061 0.195 ± 0.019

�TCC
AGG2

0.796 ±0.008 0.339 ± 0.037 0.434 ± 0.145 0.458 ± 0.026 0.200 ± 0.023
nnTucker 0.838 ± 0.000 0.538± 0.000 0.17 ± 0.000 0.386± 0.000 0.184 ± 0.000
nnCP 0.804 ±0.000 0.338± 0.000 0.032 ± 0.000 0.367 ± 0.000 0.058 ± 0.000
SparseCP 0.000 ±0.000 0.001± 0.000 0.001 ± 0.000 0.155 ± 0.000 0.041 ± 0.000
TBM - 0.111± 0.000 0.001 ± 0.000 0.004 ± 0.000 0.035 ± 0.000
nnCP+kmeans 0.078 ±0.001 0.206 ±0.001 0.054 ± 0.044 0.001 ± 0.000 0.033 ± 0.012
nnT+kmeans 0.061 ±0.001 0.309 ±0.001 0.087 ± 0.016 0.006 ± 0.007 0.029 ± 0.013

(a) DBLP (b) YelpTOR

Fig. 10   Variation of nnTucker/nnCP results w.r.t. the rank of the decomposition in DBLP and YelpTOR
datasets

	 Machine Learning

1 3

comparable with those of �TCC. However, as said before, by fixing the number of latent
factors equal to the real number of natural clusters we are facilitating our competitors;
when we modify, even if only slightly, the number of latent factors (see Fig.10), the results
get immediately worse than those of �TCC. A similar observation holds for YelpTOR:
Tucker decomposition achieves the best performances (just in terms of NMI, indeed) only
when the number of latent factors equals the number of naturally embedded clusters.

The number of clusters identified by �TCC is usually close to the correct number of
embedded clusters: on average, 5 instead of 4 for DBLP, 5 instead of 3 for MovieLens1, the
correct number 3 for MovieLens2, 5 instead of 3 for YelpPGH. Only YelpTOR presents a
number of clusters (13) that is far from the correct number of classes (3). However, more
than the 85% of the objects are classified in 3 large clusters, while the remaining objects
form very small clusters: we consider these objects as candidate outliers. The same behav-
ior is even more pronounced in DBLP, where four clusters contain the 99.9% of the objects
and only 2 objects stay in the “extra cluster”.

5.4 � Qualitative evaluation of the results

Here, we provide some insights about the quality of the clusters identified by our algo-
rithm. To this purpose, we choose a co-clustering of the MovieLens1 dataset, obtained
with selection strategy AGG2. The results obtained by the other variants of �TCC, how-
ever, are very similar both in the number and in the composition of the identified clusters.

When Algorithm 1 terminates, five clusters of movies are identified, instead of the three
categories (Animation, Horror and Documentary) we consider as labels. The tag clouds in
Fig. 11, illustrate the 30 movies with more tags for each cluster (text size depends on the
actual number of tags): it can be easily observed that the first cluster concerns animated
movies for children, mainly Disney and Pixar movies; the second one is a little cluster
containing animated movies realized with the claymation technique (mainly Wallace and
Gromit saga’s movies or other films by the same director); the third cluster is still a subset
of the animated movies, but it contains anime and animated films from Japan. The fourth
cluster is composed mainly by horror movies and the last one contains only documen-
taries. On the tag mode, our algorithm finds thirteen clusters. Six of them contain more
than 90% of the total tags and only 10 uninformative tags are partitioned in other 7 very

(a) Cluster1 - Cartoons (b) Cluster2 - Wal-
lace&Gromit

(c) Cluster3 - Anime

(d) Cluster4 - Horror (e) Cluster5 - Documentaries

Fig. 11   First 30 movie in each cluster identified by �TCC on dataset MoveiLens1

Machine Learning	

1 3

small clusters, and could be considered as outliers. There is a one-to-one correspondence
between four clusters of movies (Cartoons, Anime, Wallace&Gromit and Documentary)
and four of the tag clusters; cluster Horror, instead, can be put in relation with two different
tag clusters, the first containing names of directors, actors or characters of popular horror
movies, the second composed by adjectives typically used to describe disturbing films. For
more details, see Fig. 12.

In a few cases, the cluster group of a movie does not coincide with the category
label: for instance, Tim Burton’s movies The Nightmare Before Christmas and Corpse
Bride, which are labeled as “Animation” in the original dataset, have been included in
the horror cluster by �TCC algorithm. These movies, indeed, have more similarities
with non-animated horror movies than with cartoons for children, and our co-cluster-
ing algorithm was able to capture that (even if they have been also given tags as “ani-
mated” and “claymation” that are typical of the first two clusters). This is probably
due to the fact that �TCC takes advantage of the tensor structure of the data, having
the opportunity to look at both the tag and user modes when partitioning the movies:
besides being tagged with the same words, similar films are also appreciated by the
same kind of users. Unfortunately, we do not have any latent class information about
the users.

To better understand how much the tensor structure helps to find better clusters on
the main mode, we execute a further experiment: we try �TCC on two 2-way tensors,
T1 having movies and users as modes, and T2 with movies and tags as modes. Each
cell of the matrix counts the number of times a movie has been tagged by a particu-
lar user (in T1) and the number of times a movie received a particular tag (in T2).

(a) Cluster1 - Car-
toons

(b) Cluster2 - Wal-
lace&Gromit

(c) Cluster3 - Anime (d) Cluster4 - Horror
(Adjectives)

(e) Cluster5 - Docu-
mentaries

(f) Cluster6 - Horror
(People)

(g) Cluster7 - Uninfor-
mative

Fig. 12   First 20 tags in each cluster identified by �TCC on dataset MoveiLens1. The last cluster is the union
of 7 little clusters of few tags each

Table 5   Comparison of the results obtained on MovieLens1 dataset with 3D-�TCC (on movie-user-tag ten-
sor), 2D-�TCC

T1
 (on movie-user matrix), 2D-�TCC

T2
 (on movie-tag matrix) and CoStar on both T1 and T2

matrices simultaneously

The best results are highlighted in bold

Algorithm NMI ARI

3D-�TCC​ 0.66 ± 0.02 0.71 ± 0.01
2D-�TCC

T1
0.47 ±0.01 0.29 ±0.01

2D-�TCC
T2

0.36 ±0.02 0.27 ±0.01
CoStar 0.56 ±0.02 0.48 ±0.02

	 Machine Learning

1 3

We apply �TCC algorithm on the two matrices independently and, finally, on the two
matrices simultaneously, using the 2-way co-clustering algorithm for multi-view data
based on the optimization of � (CoStar) proposed by Ienco et al. (2013). The results
are summarized in Table 5: they clearly show that the quality of the results (in terms of
both NMI and ARI) is higher for the 3-way version of the algorithm than for the 2-way
versions. Considering multiple views helps, but not to a great extent, indeed. These
results suggest that movie clustering benefits from the tensorial structure of the data,
drawing information not only from the movie-user or movie-tag relationships but also
from the user-tag relationship.

(a) 100×100×20 (noise 0.10) (b) 100×100×100 (noise 0.10)

(c) 100×100×20 (noise 0.20) (d) 100×100×100 (noise 0.20)

(e) 100 ×100×20 (noise 0.30) (f) 100×100×100 (noise 0.30)

Fig. 13   Mean ARI on the three modes varying the number of embedded clusters on synthetic 3-way tensors
with different sizes and levels of noise

Machine Learning	

1 3

6 � Conclusions

The majority of tensor co-clustering algorithms optimizes objective functions that
strongly depend on the number of co-clusters. This limits the correct application of
such algorithms in realistic unsupervised scenarios. To address this limitation, we have

(a) 1000×100×20 (noise 0.10) (b) 1000×500×20 (noise 0.10)

(c) 1000×100×20 (noise 0.20) (d) 1000×500×20 (noise 0.20)

(e) 1000 ×100×20 (noise 0.30) (f) 1000×500×20 (noise 0.30)

Fig. 14   Mean ARI on the three modes varying the number of embedded clusters on synthetic 3-way tensors
with different sizes and levels of noise

	 Machine Learning

1 3

introduced a new co-clustering algorithm specifically designed for tensors that does not
require the desired number of clusters as input. We have proposed different variants
of the algorithm, showing their theoretical and/or experimental convergence properties.
Our experimental validation has shown that our approach outperforms state-of-the-art
methods for most datasets. Even when our algorithms are not the best ones, we have

(a) 100×100×100×100 (noise 0.10) (b) 1000×100×20×20 (noise 0.10)

(c) 100×100×100×100 (noise 0.20) (d) 1000×100×20×20 (noise 0.20)

(e) 100 ×100×100×100 (noise 0.30) (f) 1000×100×20×20 (noise 0.30)

Fig. 15   Mean ARI on the four modes varying the number of embedded clusters on synthetic 4-way tensors
with different sizes and levels of noise

Machine Learning	

1 3

found that the competitors can not work properly without specifying a correct number
of clusters for each mode of the tensor. As future work, we will design a specific algo-
rithm for sparse tensors with the aim of reducing the overall computational complexity
of the approach. Finally, we will further investigate the ability of our method to identify
candidate outliers as small clusters in the data.

(a) 100×100×100×100×100 (noise 0.10) (b) 1000×100×20×20×20 (noise 0.10)

(c) 100×100×100×100×100 (noise 0.20) (d) 1000×100×20×20×20 (noise 0.20)

(e) 100 ×100×100×100×100 (noise 0.30) (f) 1000×100×20×20×20 (noise 0.30)

Fig. 16   Mean ARI on the four modes varying the number of embedded clusters on synthetic 4-way tensors
with different sizes and levels of noise

	 Machine Learning

1 3

(a) 100×100×20 (noise 0.10) (b) 100×100×100 (noise 0.10)

(c) 100×100×20 (noise 0.20) (d) 100×100×100 (noise 0.20)

(e) 100 ×100×20 (noise 0.30) (f) 100×100×100 (noise 0.30)

Fig. 17   Mean NMI of the variants of �TCC on the three modes varying the number of embedded clusters
on synthetic tensors with different sizes and levels of noise

Machine Learning	

1 3

(a) 1000×100×20 (noise 0.10) (b) 1000×500×20 (noise 0.10)

(c) 1000×100×20 (noise 0.20) (d) 1000×500×20 (noise 0.20)

(e) 1000 ×100×20 (noise 0.30) (f) 1000×500×20 (noise 0.30)

Fig. 18   Mean NMI of the variants of �TCC on the three modes varying the number of embedded clusters
on synthetic tensors with different sizes and levels of noise

	 Machine Learning

1 3

(a) 100×100×100×100 (noise 0.10) (b) 1000×100×20×20 (noise 0.10)

(c) 100×100×100×100 (noise 0.20) (d) 1000×100×20×20 (noise 0.20)

(e) 100 ×100×100×100 (noise 0.30) (f) 1000×100×20×20 (noise 0.30)

Fig. 19   Mean NMI of the variants of �TCC on the four modes varying the number of embedded clusters on
synthetic 4-way tensors with different sizes and levels of noise

Machine Learning	

1 3

Appendix

Additional results

Funding  Open access funding provided by Università degli Studi di Torino within the CRUI-CARE
Agreement.

(a) 100×100×100×100×100 (noise 0.10) (b) 1000×100×20×20×20 (noise 0.10)

(c) 100×100×100×100×100 (noise 0.20) (d) 1000×100×20×20×20 (noise 0.20)

(e) 100×100×100×100×100 (noise 0.30) (f) 1000×100×20×20×20 (noise 0.30)

Fig. 20   Mean NMI of the variants of �TCC on the four modes varying the number of embedded clusters on
synthetic 5-way tensors with different sizes and levels of noise

	 Machine Learning

1 3

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Araujo, M., Ribeiro, P. M. P., & Faloutsos, C. (2018). Tensorcast: Forecasting time-evolving networks with
contextual information. Proceedings of IJCAI, 2018, 5199–5203.

Banerjee, A., Basu, S., & Merugu, S. (2007). Multi-way clustering on relation graphs. Proceedings of SIAM
SDM, 2007, 145–156.

Battaglia, E. & Pensa, R. G. (2019). Parameter-Less Tensor Co-clustering. In: Proceedings of Discovery
Sciences 2019, pp 205-219. Springer

Boutalbi, R., Labiod, L., Nadif, M. (2019a). Co-clustering from tensor data. In: Advances in Knowledge
Discovery and Data Mining - 23rd Pacific-Asia Conference, PAKDD 2019, Macau, China, April 14-17,
2019, Proceedings, Part I, Springer, Lecture Notes in Computer Science, vol 11439, pp 370–383.

Boutalbi, R., Labiod, L., Nadif, M. (2019b). Sparse tensor co-clustering as a tool for document categoriza-
tion. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR 2019, Paris, France, July 21-25, 2019, ACM, pp 1157–1160.

Cantador, I., Brusilovsky, P., Kuflik, T., & (2011) 2nd workshop on information heterogeneity and fusion in
recommender systems (hetrec, . (2011). In: Proceedings of the 5th ACM conference on Recommender
systems (p. 2011). New York, NY, USA, RecSys: ACM.

Cao, X., Wei, X., Han, Y., & Lin, D. (2015). Robust face clustering via tensor decomposition. IEEE Trans
Cybernetics, 45(11), 2546–2557.

Cerf, L., Besson, J., Robardet, C., & Boulicaut, J. (2009). Closed patterns meet n-ary relations. TKDD, 3(1),
3:1-3:36.

Cerf, L., Besson, J., Nguyen, K., & Boulicaut, J. (2013). Closed and noise-tolerant patterns in n-ary rela-
tions. Data Mining and Knowledge Discovery, 26(3), 574–619.

Chakrabarti, D., Papadimitriou, S., Modha, D. S., & Faloutsos, C. (2004). Fully automatic cross-associa-
tions. Proceedings of ACM SIGKDD, 2004, 79–88.

Cho, H., Dhillon, I. S., Guan, Y., & Sra, S. (2004). Minimum sum-squared residue co-clustering of gene
expression data. Proceedings of SIAM SDM, 2004, 114–125.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine
Learning Research, 7, 1–30.

Dhillon, I. S., Mallela, S., & Modha, D. S. (2003). Information-theoretic co-clustering. Proceedings of ACM
SIGKDD, 2003, 89–98.

Ding, C. H. Q., Li, T., Peng, W., & Park, H. (2006). Orthogonal nonnegative matrix t-factorizations for clus-
tering. Proceedings of ACM SIGKDD, 2006, 126–135.

Ermis, B., Acar, E., & Cemgil, A. T. (2015). Link prediction in heterogeneous data via generalized cou-
pled tensor factorization. Data Mining and Knowledge Discovery, 29(1), 203–236.

Goodman, L. A., & Kruskal, W. H. (1954). Measures of association for cross classification. Journal of
the American Statistical Association, 49, 732–764.

Harshman, R.A. (1970). Foundation of the parafac procedure: models and conditions for an“ explana-
tory” multimodal factor analysis. UCLA Working Papers in Phonetics 16:1–84.

He, J., Li, X., Liao, L., & Wang, M. (2018). Inferring continuous latent preference on transition intervals
for next point-of-interest recommendation. Proceesings of ECML PKDD, 2018, 741–756.

Hong, M., & Jung, J. J. (2018). Multi-sided recommendation based on social tensor factorization. Infor-
mation Sciences, 447, 140–156.

Huang, H., Ding, C.H.Q., Luo, D., Li, T. (2008). Simultaneous tensor subspace selection and clustering:
The equivalence of high order svd and k-means clustering. In: Proceedings of the 14th ACM SIGKDD,
pp 327–335.

Huang, W., Pan, Y., & Wu, J. (2012). Goodman-kruskal measure associated clustering for categorical data.
International Journal of Data Mining, Modelling and Management, 4(4), 334–360.

Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218.

http://creativecommons.org/licenses/by/4.0/

Machine Learning	

1 3

Ienco, D., Robardet, C., Pensa, R. G., & Meo, R. (2013). Parameter-less co-clustering for star-structured
heterogeneous data. Data Mining and Knowledge Discovery, 26(2), 217–254.

Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review, 51(3),
455–500.

Nguyen, K., Cerf, L., Plantevit, M., Boulicaut, J. (2011). Multidimensional association rules in boolean
tensors. In: Proceedings of the Eleventh SIAM International Conference on Data Mining, SDM
2011(April), pp. 28–30. (2011). Mesa (pp. 570–581). Arizona: USA, SIAM / Omnipress.

Papalexakis, E.E., Dogruöz, A.S. (2015). Understanding multilingual social networks in online immigrant
communities. In: Proceedings of MWA 2015 (co-located with WWW 2015), pp 865–870.

Papalexakis, E. E., Sidiropoulos, N. D., & Bro, R. (2013). From K-means to higher-way co-clustering: Mul-
tilinear decomposition with sparse latent factors. IEEE Trans Signal Processing, 61(2), 493–506.

Pensa, R. G., Ienco, D., & Meo, R. (2014). Hierarchical co-clustering: off-line and incremental approaches.
Data Mining and Knowledge Discovery, 28(1), 31–64.

Robardet, C., & Feschet, F. (2001). Efficient local search in conceptual clustering. Proceedings of DS, 2001,
323–335.

Shashua, A., Hazan, T. (2005). Non-negative tensor factorization with applications to statistics and com-
puter vision. In: Proceedings of (ICML 2005, pp 792–799.

Strehl, A., & Ghosh, J. (2002). Cluster ensembles - A knowledge reuse framework for combining multiple
partitions. Journal of Machine Learning Research, 3, 583–617.

Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31, 279–311.
Wang, M., & Zeng, Y. (2019). Multiway clustering via tensor block models. Advances in Neural Informa-

tion Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, Neu-
rIPS 2019, 8–14 December 2019 (pp. 713–723). BC, Canada: Vancouver.

Wu, T., Benson, A. R., & Gleich, D. F. (2016). General tensor spectral co-clustering for higher-order data.
Proceedings of NIPS, 2016, 2559–2567.

Yu, K., He, L., Yu, P. S., Zhang, W., & Liu, Y. (2019). Coupled tensor decomposition for user clustering in
mobile internet traffic interaction pattern. IEEE Access, 7, 18113–18124.

Zhang, T., & Golub, G. H. (2001). Rank-one approximation to high order tensors. SIAM Journal on Matrix
Analysis and Applications, 23(2), 534–550.

Zhang, Z., Li, T., & Ding, C. H. Q. (2013). Non-negative tri-factor tensor decomposition with applications.
Knowledge and Information Systems, 34(2), 243–265.

Zhao, L., Zaki, M.J. (2005). Tricluster: An effective algorithm for mining coherent clusters in 3d microarray
data. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, Balti-
more, Maryland, USA, June 14-16, 2005, ACM, pp 694–705.

Zhou, Q., Xu, G., & Zong, Y. (2009). Web co-clustering of usage network using tensor decomposition. Pro-
ceedings of ECBS, 2009, 311–314.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	A parameter-less algorithm for tensor co-clustering
	Abstract
	1 Introduction
	2 Related work
	3 An association measure for tensor co-clustering
	3.1 Goodman and Kruskal and its generalization
	3.2 Tensor co-clustering with Goodman-Kruskal’s

	4 A stochastic local search approach to tensor co-clustering
	4.1 Tensor co-clustering algorithm
	4.2 Neighboring partition selection criteria
	4.2.1 Alternating optimization of
	4.2.2 Optimization of
	4.2.3 Aggregate optimization of
	4.2.4 Alternative alternating optimization of
	4.2.5 Alternative aggregate optimization of

	4.3 Local convergence of TCC​
	4.4 Optimized computation of

	5 Experiments
	5.1 Datasets
	5.2 Comparison of the different variants of TCC​
	5.3 TCC against state-of-the-art competitors
	5.3.1 Results on synthetic data
	5.3.2 Execution time analysis
	5.3.3 Results on real-world data

	5.4 Qualitative evaluation of the results

	6 Conclusions
	References

