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SeReNe: Sensitivity based Regularization of
Neurons for Structured Sparsity in Neural Networks

Enzo Tartaglione Member, IEEE, Andrea Bragagnolo, Francesco Odierna,
Attilio Fiandrotti, Senior Member, IEEE, and Marco Grangetto, Senior Member, IEEE

Abstract—Deep neural networks include millions of learnable
parameters, making their deployment over resource-constrained
devices problematic. SeReNe (Sensitivity-based Regularization
of Neurons) is a method for learning sparse topologies with a
structure, exploiting neural sensitivity as a regularizer. We define
the sensitivity of a neuron as the variation of the network output
with respect to the variation of the activity of the neuron. The
lower the sensitivity of a neuron, the less the network output is
perturbed if the neuron output changes. By including the neuron
sensitivity in the cost function as a regularization term, we are
able to prune neurons with low sensitivity. As entire neurons
are pruned rather then single parameters, practical network
footprint reduction becomes possible. Our experimental results
on multiple network architectures and datasets yield competitive
compression ratios with respect to state-of-the-art references.

Index Terms—Sparse networks, regularization, deep networks,
pruning, compression.

I. INTRODUCTION

DEEP Neural Networks (DNNs) can solve extremely chal-
lenging tasks thanks to complex stacks of (convolutional)

layers with thousands of neurons [1]–[3]. Let us define here the
complexity of a neural network as the number of its learnable
parameters: architectures such as AlexNet and VGG have a
complexity in the order of 60 and 130 million parameters
respectively. Similar architectures are challenging to deploy
in scenarios where resources such as the memory or storage
are limited. For example, the 8-layers AlexNet [1] memory
footprint exceeds 240MB of memory, whereas the 19-layers
VGG-Net [2] footprint exceeds 500 MB. The need for compact
DNNs is witnessed also by the fact that the Moving Pictures
Experts Group (MPEG) of ISO has recently broadened its
scope beyond multimedia contents issuing an exploratory
call for proposal to compress neural networks [4]. Multiple
(complementary) approaches are possible to cope with neural
networks memory requirements, inference time and energy
consumption:
• Re-designing the network topology. Moving from one ar-

chitecture to another, possibly forcing a precise neuronal
connectivity, or weight sharing, can reduce the number
of parameters, or the complexity of the network [3], [5].

• Quantization. Representing the parameters (and activa-
tion functions) as fixed-point digits reduces the memory
footprint and speeds up computations [6].
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• Pruning. Deep architectures need to be over-
parametrized [7] to be trained effectively, but redundant
parameters can be pruned at inference time [8]–[12].
The present work falls in this latter category.

Pruning techniques aim at learning sparse topologies by
selectively dropping synapses between neurons (or neurons
altogether when all incoming synapses are dropped). For
example, [10] and [11] apply a regularization function pro-
moting low magnitude weights followed by zero thresholding
or quantization. Such approaches slash the number of non-zero
parameters, allowing to represent the parameters of a layer as
a sparse tensor [13]. These methods aim however at pruning
parameters independently, so the learned topologies lacks a
structure despite sparse. Storing and accessing in memory a
randomly sparse matrix entails significant challenges, so it is
unclear to which extent such methods could be practically
exploited.

This work proposes SeReNe, a method for learning sparse
network topologies with a structure, i.e. with fewer neurons
altogether. In a nutshell, our method drives all the parameters
of a neuron towards zero, allowing to prune entire neurons
from the network.

First, we introduce the notion sensitivity of a neuron as the
variation of the network output with respect to the neuron
activity. The latter is measured as the post-synaptic potential
of the neuron, i.e. the input to the neuron’s activation function.
The underlying intuition is that neurons with low sensitivity
yield little variation in the network output and thus negligible
performance loss if their output changes locally. We also
provide computationally efficient bounds to approximate the
sensitivity.

Second, we design a regularizer that shrinks all parameters
of low sensitivity neurons, paving the way to their removal.
Indeed, when the sensitivity of a neuron approaches zero, the
neuron no longer emits signals and is ready to be pruned.

Third, we propose an iterative two-steps procedure to prune
parameters belonging to low sensitivity neurons. Through a
cross-validation strategy, we ensure controlled (or even no)
performance loss with respect to the original architecture.

Our method allows to learn network topologies which are
not only sparse, i.e. with few non-zero parameters, but with
fewer neurons (fewer filters for convolutional layers). As a
side benefit, smaller and denser architectures may also speedup
network execution thanks to a better use of cache locality and
memory access pattern.

We experimentally show that SeReNe outperforms state-of-
the-art references over multiple learning tasks and network
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architectures. We observe the benefit of structured sparsity
when storing the neural network topology and parameters
using the Open Neural Network eXchange format [14], with a
reduction of the memory footprint.

The rest of the paper is structured as follows. In Sec. II
we review the relevant literature in neural network pruning;
Sec. III provides the definition of sensitivity and practical
bounds for its computation and a parameter update rule to
“drive” the parameters of low-sensitivity neurons towards zero
is presented; Sec. IV presents a practical procedure to prune a
network with our scheme and in Sec. V all the empirical results
are shown. Finally, in Sec. VI, the conclusions are drawn.

II. RELATED WORK

Approaches towards compact neural networks represen-
tations can be categorized in three major groups: altering
the network structure, quantizing the parameters and pruning
weights. In this section, we review works based on a pruning
approach that are most relevant to our work.

In their seminal paper [8], LeCun et al. proposed to remove
unimportant weights from a network, measuring the impor-
tance of each single weight as the increment on the train error
when the weight is set to zero. Unfortunately, the complexity
of such method would become computationally unbearable in
the case of deep topologies with millions of parameters. Due to
the scale and the resources required to train and deploy modern
deep neural networks, sparse architectures and compression
techniques have gained much interest in the deep learning
community. Several successful approaches to this problem
have been proposed [15]–[18]. While a more in depth analysis
on the topic has been published by Gale et al. [19], in the rest
of this section we provide a summary of the main techniques
used to prune deep architectures.

Evolutionary algorithms. Multi-objective sparse feature
learning has been proposed by Gong et al. [20]: with their
evolutionary algorithm, they were able to find a good compro-
mise between sparsity and learning error, at the cost, however,
of high computational cost. Similar drawbacks can be found in
the work by Lin et al., where convolutional layers are pruned
using the artificial bee colony optimization algorithm (dubbed
as ABCPruner) [21].

Dropout. Dropout aims at preventing a network from
over-fitting by randomly dropping some neurons at learning
time [22]. Despite dropout tackles a different problem, it
has inspired some techniques aiming at sparsifying deep
architectures. Kingma et al. [9] have shown that dropout can be
seen as a special case of Bayesian regularization. Furthermore,
they derive a variational method that allows to use dropout
rates adaptively to the data. Molchanov et al. [23] exploited
such variational dropout to sparsify both fully-connected and
convolutional layers. In particular, the parameters having high
dropout rate are always ignored and they can be removed from
the network. Even if this technique obtains good performance,
it is quite complex and it is reported to behave inconsistently
when applied to deep architectures [19]. Furthermore, this
technique relies on the belief that the Bernoulli probability
distribution (to be used with the dropout) is a good varia-
tional approximation for the posterior. Another dropout-based

approach is Targeted Dropout [24]: here, fine-tuning the ANN
model is self-reinforcing its sparsity by stochastically drop-
ping connections. They also target structured sparsity without,
however, reaching state-of-the-art performance.

Knowledge distillation. Recently, knowledge distilla-
tion [25], [26] received significant attention. The goal in this
case is to train a student network (typically shallower or in
general having lower complexity) to have the same behavior
(in terms of outputs under certain inputs) as a more complex
teacher [26] (or as an ensemble of models), reducing the
overall computational complexity. Distillation finds application
in reducing the prediction of multiple networks into a single
one, but can not be applied to minimize the number of neurons
for a single network. A recent work is Few Samples Knowledge
Distillation (FSKD) [27], where a small student network is
trained from a larger teacher. In general, in distillation-based
techniques, the architecture to be trained is a-priori known,
and kept static through all the learning process: in this work,
we aim at providing an algorithm which automatically shrinks
the deep model’s size with minimal overhead introduced.

Few-shot pruning. Another approach relies on defin-
ing the importance of each connection and later remove
parameters deemed unnecessary. A recent work by Fran-
kle and Carbin [12] proposed the lottery ticket hypothesis,
which is having a large impact on the research community.
They claim that from an ANN, early in the training, it is
possible to extract a sparse sub-network, using a one-shot or
iterative fashion: such sparse network, when re-trained, can
match the accuracy of the original model. This technique has
multiple requirements, like having the history of the training
process in order to detect the “lottery winning parameters”,
and it is not able to self-tune an automatic thresholding mech-
anism. Lots of efforts are devoted towards making pruning
mechanisms more efficient: for example, Wang et al. show
that some sparsity is achievable pruning weights at the very
beginning of the training process [28], or Lee et al., with their
“SNIP”, are able to prune weights in a one-shot fashion [29].
However, these approaches achieve limited sparsity: iterative
pruning-based strategy, when compared to one-shot or few-
shot approaches, are able to achieve a higher sparsity [30].

Regularization-based pruning. Finally, regularization-
based approaches rely on a regularization term (designed to
enhance sparsity) to be minimized besides the loss function
at training time. Louizos et al. propose an `0 regularization
to prune the network parameters during training [31]. Such
a technique penalizes non-zero value of a parameter vector,
promoting sparse solutions. As a drawback, it requires solving
a complex optimization problem, besides the loss minimization
strategy and other regularization terms. Han et al. propose a
multi-step process in which the least relevant parameters are
defined, minimizing a target loss function [11]. In particular,
it relies on a thresholding heuristics, where all the less im-
portant connections are pruned. In [10], a similar approach
was followed, introducing a novel regularization term that
measures the “sensitivity” of the output wrt. the variation
of the parameters. While this technique achieves top-notch
sparsity even in deep convolutional architectures, such sparsity
is not structured, i.e. the resulting topology includes large
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Fig. 1: Representation of the neuron xn,i with activation
function gn,i.

numbers of neurons with at least one non-zero parameter.
Such unstructured sparsity bloats the practically attainable
network footprint and leads to irregular memory accesses,
jeopardizing execution speedups. In this work we aim at
overcoming the above limitations proposing a regularization
method that produces a structured sparsification, focusing on
removing entire neurons instead of single parameters. We
also leverage our recent research showing that post-synaptic
potential regularization is able to boost generalization over
other regularizers [32].

III. SENSITIVITY-BASED REGULARIZATION FOR NEURONS

In this section, we first formulate the sensitivity of a network
with respect to the post-synaptic potential of a neuron. Then,
we derive a general parameter update rule which relies on the
proposed sensitivity term. As reference scenario, a multi-class
classification problem with C labels is considered; however,
our strategy can be extended to other learning tasks, e.g.
regression, in a straightforward way.

A. Preliminaries and Definitions

Let a feed-forward, a-cyclic, multi-layer artificial neural
network be composed of N − 1 hidden layers. We identify
with n = 0 the input layer and n = N the output layer, other
n values indicate the hidden layers. For the i-th neuron of the
n-th layer xn,i, we define:

• yn,i as its output,
• yn−1 as its input vector,
• θn,i as its own parameters: wn,i the weights and bn,i the

bias,

as illustrated in Fig. 1. Each neuron has its own activation
function gn,i(·) to be applied after some affine function fn,i(·)
which can be for example convolution or dot product. Hence,
the output of a neuron is given by

yn,i = gn,i[pn,i], (1)

where pn,i is the post-synaptic potential of xn,i defined as:

pn,i = fn,i(θn,i,yn−1). (2)

B. Neuron Sensitivity

Here we introduce the definition of neuron sensitivity. We
recall that we aim at pruning entire neurons rather than
single parameters to achieve structured sparsity. Let us we
assume that our method is applied to a pre-trained network. To
estimate the relevance of neuron xn,i for the task upon which
the network was trained, we evaluate the neuron contribution
to the network output yN . To this end, we first provide an
intuition on how small variations of the post-synaptic potential
pn,i of neuron xn,i affect the k-th output of the network yN,k.
By a Taylor series expansion, for small variations of pn,i, let
us express the variation of yN,k as

∆yN,k ≈ ∆pn,i
∂yN,k

∂pn,i
(3)

where yN,k indicates the k-th output for the output layer. In the
case ∆yN,k → 0,∀k, for small variations of pn,i, yN,k does
not change. Such condition allows to drive the post-synaptic
potential pn,i to zero without affecting the network output yN,k

(and, for instance, its performance). Otherwise, if ∆yN,k 6= 0,
any variation of pn,i might alter the network output, possibly
impairing its performance. We can now properly quantify the
effect of small changes to the network output by defining the
neuron sensitivity.

Definition 1: The sensitivity of the network output yN with
respect to the post-synaptic potential pn,i of neuron xn,i is:

Sn,i(yN , pn,i) =
1

C

C∑
k=1

∣∣∣∣∂yN,k

∂pn,i

∣∣∣∣ (4)

where yN ∈ RC and Sn,i ∈ [0; +∞). Intuitively, the higher
Sn,i, the higher the fluctuation of yN for small variations of
pn,i.

Before moving on, we would like to clarify our choice of
leveraging the post-synaptic potential pn,i rather than the neu-
ron output yn,i in the equation above. In order to understand
our choice, we re-write (4) using the chain rule:

Sn,i(yN , pn,i) =
1

C

C∑
k=1

∣∣∣∣∂yN,k

∂yn,i
· ∂yn,i
∂pn,i

∣∣∣∣ . (5)

Without loss of generality, let us assume ∂yN,k

∂yn,i
6= 0

and gn,i corresponds to the well known ReLU activation
function. Under the hypothesis that pn,i < 0, ∂yn,i

∂pn,i
= 0

for the considered ReLU activation. Had we written (4) as
a function of the neuron output yn,i, the vanishing gradient
∂yn,i

∂pn,i
= 0 would have prevented us from estimating the neuron

sensitivity. The above consideration applies beyond ReLU to
any activation function except for the identity function, for
which yn,i = pn,i.

C. Bounds on Neuron Sensitivity

Here we provide two computationally-efficient bounds to
the sensitivity function above that can be practically exploited.
Popular frameworks for DNN training rely on differentiation
frameworks such as autograd, for automatic variable differen-
tiation along computational graphs. Such frameworks take as
input some objective function J and automatically compute all
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the gradients along the computational graph. In order to get
Sn,i as an outcome from the differentiation engine, we define

Sn,i(yN , pn,i) =
∂J

∂pn,i
(6)

where J is a proper function. In Appendix A we show that
such function turns to be:

J =
1

C

C∑
k=1

∫ ∣∣∣∣∂yN,k

∂pn,i

∣∣∣∣ dpn,i (7)

Therefore, computing the sensitivity in (4) requires C calls
to the differentiation engine. In the following with some
little algebra we derive a lower and upper bound to Def. 1
that we show to be particularly useful from a computational
perspective.
Let the objective function to differentiate be

J l =
1

C

C∑
k=1

yN,k. (8)

The automatic differentiation engine called on Sl will return

∂J l

∂pn,i
=

1

C

C∑
k=1

∂yN,k

∂pn,i
(9)

According to the triangular inequality, a lower bound to the
sensitivity in (4) can be computed as

Sl
n,i =

1

C

∣∣∣∣∣
C∑

k=1

∂yN,k

∂pn,i

∣∣∣∣∣ ≤ 1

C

C∑
k=1

∣∣∣∣∂yN,k

∂pn,i

∣∣∣∣ (10)

Sl
n,i can be conveniently evaluated differentiating over (8)

(and taking the absolute value) with a single call to the
differentiation engine. As shown in (10), this gives us a lower
bound estimation over the neuron sensitivity.
In order to estimate an upper bound to Sn,i, we rewrite (4) as

Sn,i =
1

C

C∑
k=1

∣∣∣∣∣ ∂yN,k

∂yN−1
·

N−1∏
l=n+1

∂yl

∂yl−1
· δn,i

∂yn,k
∂pn,i

∣∣∣∣∣ (11)

However, ∀k we have in common the term

Γn,i =

N−1∏
l=n+1

∂yl

∂yl−1
· δn,i

∂yn,i
∂pn,i

≤
N−1∏
l=n+1

∣∣∣∣ ∂yl

∂yl−1

∣∣∣∣ · δn,i ∣∣∣∣∂yn,i∂pn,i

∣∣∣∣ = Γu
n,i (12)

where δn,i is a one-hot vector selecting the i-th neuron at the
n-th layer and | · | is an element-wise operator. Hence, we
rewrite (11) as

Su
n,i =

1

C

(
C∑

k=1

∣∣∣∣ ∂yN,k

∂yN−1

∣∣∣∣
)
· Γu

n,i ≥ Sn,i. (13)

Thus, we have shown that Su
n,i is an upper bound to the sensi-

tivity in (4). Upper and lower bounds are here obtained for two
main reasons: computational efficiency and relaxing/tightening
conditions on the sensitivity itself. We will see in Sec. V-A
a typical population distribution of the sensitivities on a pre-
trained network, comparing (4), (10) and (13).

In the following, we exploit the formulation of the the
Sensitivity function (4) and its two bounds (10), (13) to define
a parameter update rule.

D. Parameters Update Rule

Now we show how the proposed sensitivity definition can be
exploited to promote neuron sparsification. As hinted before, if
the sensitivity Sn,i of neuron xn,i is small, i.e Sn,i → 0, then
neuron xn,i yields a small contribution to the i-th network
output yN,i and its parameters may be moved towards zero
with little perturbation to the network output. To this end, we
define the insensitivity function Sn,i as

Sn,i = max{0, 1− Sn,i} = (1− Sn,i) ·Θ (1− Sn,i) (14)

where Θ(·) is the one-step function. The higher the insensitiv-
ity of neuron xn,i (i.e., Sn,i → 1 or equivalently Sn,i → 0),
the less the neuron affects the network output. Therefore, if
Sn,i → 1, then neuron xn,i contributes little to the network
output and its parameters wn,i,j can be driven towards zero
without significantly perturbing the network output. Using
the insensitivity definition in (14), we propose the following
update rule:

wt+1
n,i,j = wt

n,i,j − η
∂L

wt
n,i,j

− λwt
n,i,jSn,i (15)

where
• the first contribution term is the classical minimization of

a loss function L, ensuring that the network still solves
the target task, e.g. classification;

• the second one represents a penalty applied to the pa-
rameter wn,i,j belonging to the neuron xn,i which is
proportional to the insensitivity of the output to its
variations.

Finally, since
∂pn,i
∂yn−1,j

= wn,i,j (16)

we rewrite (15) as

wt+1
n,i,j = wt

n,i,j − η
∂L

wt
n,i,j

− λṠn,i,j (17)

where

Ṡn,i,j =

[
wn,i,j −

sign(wn,i,j)

C

C∑
k=1

∣∣∣∣ ∂yN,k

∂yn−1,j

∣∣∣∣
]
·Θ (1− Sn,i)

(18)
A step-by-step derivation is provided in Appendix D. From
(18) we can better understand the effect of the proposed
penalty term: as expected by our discussion above, Ṡn,i,j

is inversely proportional to the impact on the output for
variations of the input for the neuron xn,i.

E. Local neuron sensitivity-based regularization

We propose now an approximate formulation of the sensi-
tivity function in (4) based only on the post-synaptic potential
and output of a neuron that we will refer to as the local sen-
sitivity. Let us recall that for each neuron xn,i the sensitivity
provided by Definition 1 measures the overall impact of a
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Fig. 2: High-level view of the SeReNe procedure.

given neuron xn,i on the network output taking into account
all the following neurons involved in the computation.

Definition 2: The local neuron sensitivity of the output yn,i
with respect to the post-synaptic potential pn,i of the neuron
xn,i is defined as:

S̃n,i =

∣∣∣∣∂yn,i∂pn,i

∣∣∣∣ (19)

In the case of ReLU-activated networks, it simply reads

S̃n,i = Θ(pn,i) (20)

Under this setting, the update rule (17) simplifies to

wt+1
n,i,j = wt

n,i,j − η
∂L

wt
n,i,j

− λwt
n,i,jΘ(−pn,i), (21)

i.e., the penalty is applied only in case the neuron stays off.
While local sensitivity is a looser approximation of (1), it is
far less complex to compute especially for ReLU-activated
neurons.

IV. THE SERENE PROCEDURE

This section introduces a practical procedure to prune neu-
rons from a neural network N leveraging the sensitivity-based
regularizer introduced above.

Let us assume N has been preliminary trained at some task
over the dataset D achieving performance (e.g., classification
accuracy) A. We do not put any constraint over the actual
training method, training set or network architecture. Alg. 1
summarizes the procedure in pseudo-code. In a nutshell, the
procedure consists in iteratively looping over the Regulariza-
tion and Thresholding procedures.

At the beginning of the loop, dataset D is split into disjoint
subset V (used for validation purposes) and U (to update the

network). At line 5, the regularization procedure (summarized
in Alg. 2) trains N over D according to (15) driving towards
zero parameters of neurons with low sensitivity. The loop
ends if the performance of the regularized network falls below
threshold A. Otherwise, the thresholding procedure sets to zero
parameters below threshold T and prunes neurons such that
all parameters are equal to zero. The output of the procedure
is the pruned network, i.e. with fewer neurons, N ?. The
Regularization and Thresholding procedures are detailed in the
following. A graphical high-level representation of SeReNe is
also displayed in Fig. 2.

Algorithm 1 The SeReNe procedure
Input: Trained network N , dataset D,
Target performance A, PWE, TWT
Output: Pruned network N ?

1: procedure SERENE(N , D,A, PWE, TWT )
2: N ? ← N
3: while true do
4: U, V ← RANDOMSPLIT(D)
5: N ← REGULARIZATION(N , U, V, PWE)
6: if PERFORMANCE(N , V ) < A then
7: break
8: N ? ← N
9: N ← THRESHOLDING(N , V, TWT )

return N ?

A. Regularization

This procedure takes in input a network N and returns a
regularized network according to the update rule (15). Namely,
the procedure iteratively trains N on U and validates it on V
for multiple epochs. Let N r represent the best regularized
network found at a given time according to the loss function.
For each iteration, the procedure operates as follows.

First (line 5), N is trained for one epoch over U : the results
is a regularized network according to (15).

Second (line 6), this network is validated on V . If the
loss is lower than the loss of N r over V , then N takes
the place of N r (line 7). If N r is not updated for PWE
(Plateau Waiting Epochs) epochs, we assume we have reached
a performance plateau. In this case, the procedure ends and
returns the sensitivity-regularized network N r.

Algorithm 2 The regularization procedure
Input: Model N , data sets V and U, PWE
Output: The sensitivity-regularized network N r

1: procedure REGULARIZATION(N , U, V, PWE)
2: N r ← N . N r is best regularized network on V
3: epochs← 0
4: while epochs < PWE do
5: N ← TRAIN(N , U) . 1 train epoch on U
6: epochs+ +
7: if LOSS(N , V ) < LOSS(N r, V ) then
8: N r ← N
9: epochs← 0

return N r
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B. Thresholding

The thresholding procedure is where the parameters of
neurons with low sensitivity are thresholded to zero. Namely,
parameters whose absolute value is below threshold T are
pruned as

wn,i,j =

{
wn,i,j |wn,i,j | > T
0 otherwise.

(22)

The pruning threshold T is selected so that the performance
(or, in other words, the loss on V ) worsens at most of a relative
value we call thresholding worsening tolerance (TWT ) we
provide as hyper-parameter. We expect the loss function to be
locally a smooth, monotone function of T , for small values
of T . The threshold T can be found using linear search-
based heuristics. We can however reduce this using a bisection
approach, converging to the optimal T value in log-time steps.
Because of the stochasticity introduced by mini-batch based
optimizers, parameters pruned during a thresholding iteration
may be reintroduced by the following regularization iteration.
In order to overcome this effect, we enforce that pruned
parameters can no longer be updated during the following
regularizations (we term this behavior as parameter pinning).
To this end, the update rule (15) is modified as follows:

wt+1
n,i,j =

{
wt

n,i,j − η ∂L
wt

n,i,j
− λwt

n,i,jSn,i wt
n,i,j 6= 0

0 wt
n,i,j = 0

(23)
We have noticed that without parameter pinning, the com-
pression of the network may remain low because the noisy
gradient estimates in a mini-batch that keep reintroducing
previously pruned parameters. On the contrary, by adding (23)
a lower number of epochs are sufficient to achieve much higher
compression.

V. RESULTS

In this section we experiment with our proposed neuron
pruning method comparing the four sensitivity formulations
we introduced in the previous section:
• SeReNe (exact) - the exact formulation in (4);
• SeReNe (LB) - the lower bound in (10);
• SeReNe (UB) - the upper bound in (13);
• SeReNe (local) - the local version in (19);
• `2 + pruning - is a baseline reference where we replace

our sensitivity-based regularization term with a standard
`2 term (all the rest of the framework is identical).

We experiment over different combinations of architectures
and datasets commonly used as benchmarks in the relevant
literature:
• LeNet-300 on MNIST (Table I and Table II),
• LeNet-5 on MNIST (Table III),
• LeNet-5 on Fashion-MNIST (Table IV),
• VGG-16 on CIFAR-10 (Table V and Table VI),
• ResNet-32 on CIFAR-10 (Table VII),
• AlexNet on CIFAR-100 (Table VIII),
• ResNet-101 on ImageNet (Table IX).

Notice that the VGG-16, AlexNet and ResNet-32 architectures
are modified to fit the target classification task (CIFAR-10 and

Fig. 3: Population of sensitivities S and relative lower Sl and
upper Su bounds for a LeNet-5 architecture pre-trained on
MNIST. Vertical bars indicate relative mean values.

CIFAR-100). The validation set (V ) size for all experiments
is 10% of the training set.

The pruning performance is evaluated according to multiple
metrics.
• The compression ratio as the ratio between the number

of parameters in the original network and the number of
remaining parameters after pruning (the higher the better).

• The number of remaining neurons (or filters for convo-
lutional layers) after pruning.

• The size of the networks when stored on disk in the pop-
ular ONNX format [14] (.onnx column). ONNX files
are then lossless compressed using the LempelZivMarkov
algorithm (LZMA) [35] (.7z column).

In our experiments, we compare with all available references
for each combination of architecture and dataset. For this rea-
son, the reference set may vary from experiment to experiment.
Our algorithms are implemented in Python, using PyTorch 1.5,
and simulations are run on a RTX2080 NVIDIA GPU with
8GB of memory.1

A. Preliminary experiment

To start with, we plot the sensitivity distribution for a
LeNet-5 network trained on the MNIST dataset (SGD with
learning rate η = 0.1 weight-decay 10−4). This network will
also be used as baseline in Sec. V-C. Fig. 3 shows SeReNe
(exact) (red), SeReNe (LB) (green) and SeReNe (UB) (blue);
the vertical bars represent the mean values. As expected,
SeReNe (LB) and SeReNe (UB) under-estimate and over-
estimate SeReNe (exact), respectively. Interestingly, SeReNe
(UB) sensitivity values lie in the range [10−4; 10−2] while
both for SeReNe (exact) and SeReNE (LB) show a longer trail
towards smaller figures, whereas all distributions look similar.
In the following, we will experimentally evaluate the three
sensitivity formulations in terms of pruning effectiveness.

1The source code is available at https://github.com/EIDOSlab/SeReNe.git
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TABLE I: LeNet-300 trained on MNIST (1.65% error rate).

Approach
Remaining parameters (%) Compr. Remaining Network size [kB] Training time Top-1
FC1 FC2 FC3 ratio neurons .onnx .7z (s/epoch) (%)

Baseline 100 100 100 1x [300]-[100]-[10] 1043 → 933 3.65 1.44
Han et al. [11] 8 9 26 12.2x - - - 1.6

Tartaglione et al. [10] 2.25 11.93 69.3 27.87x [251]-[88]-[10] - - 1.65
`2+pruning 2.44 15.76 68.50 23.26x [212]-[82]-[10] 723 → 64 3.65 1.66

SeReNe (exact) 1.42 9.54 60.9 42.55x [159]-[75]-[10] 538 → 46 13.25 1.64
SeReNe (UB) 22.45 60.81 87.75 3.71x [295]-[92]-[10] 1016 → 324 5.13 1.67
SeReNe (LB) 1.51 10.05 60.53 39.79x [164]-[78]-[10] 557 → 55 4.88 1.65

SeReNe (local) 3.85 32.53 73.49 13.81x [251]-[86]-[10] 859 → 119 3.83 1.64

TABLE II: LeNet-300 trained on MNIST (1.95% error rate).

Approach
Remaining parameters (%) Compr. Remaining Network size [kB] Training time Top-1
FC1 FC2 FC3 ratio neurons .onnx .7z (s/epoch) (%)

Baseline 100 100 100 1x [300]-[100]-[10] 1043 → 933 3.65 1.44
Sparse VD [23] - - - 68x - - - 1.92

SWS [33] - - - 23x - - - 1.94
Tartaglione et al. [10] 0.93 1.12 5.9 103x [179]-[88]-[10] - - 1.95

DNS [34] 1.8 1.8 5.5 56x - - - 1.99
`2+pruning 1.22 8.77 61.10 41.95x [167]-[76]-[10] 566 → 42 3.65 1.97

SeReNe (exact) 0.76 5.85 49.77 66.28x [148]-[70]-[10] 498 → 38 13.25 1.93
SeReNe (UB) 13.67 50.76 84.47 5.47x [293]-[91]-[10] 1008 → 240 5.13 1.95
SeReNe (LB) 0.75 5.79 49.3 66.41x [146]-[70]-[10] 492 → 37 4.88 1.95

SeReNe (local) 1.7 19.94 63.59 25.07x [192]-[83]-[10] 656 → 70 3.83 1.93

B. LeNet300 on MNIST

As a first experiment, we prune a LeNet-300 architecture,
which consists of three fully-connected layers with 300, 100
and 10 neurons, respectively trained over the MNIST dataset.
We pre-trained LeNet-300 via SGD with learning rate η = 0.1
and PWE = 20 epochs with λ = 10−5, TWT = 0.3 for
SeReNe (exact), SeReNe (LB) SeReNe (UB) and λ = 10−5,
TWT = 1 for SeReNe (local). The related literature reports
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Fig. 4: Parameters distribution in FC1 of LeNet-300 trained on
MNIST from Han et al. [11] (top) and he proposed SeReNe
(bottom). In black the remaining parameters.

mainly i) results for classification errors around 1.65% (Ta-
ble I) and ii) results for errors in the order of 1.95% (Table II).
For this reason, we trained for about 1k epochs to achieve
1.95% error rate and for additional 2k epochs to score a 1.65%
error rate.

SeReNe outperforms the other methods leads both in terms
of compression ratio and number of pruned neurons. SeReNe
(exact) achieves a compression ratio of 42.55× and the number
of remaining neurons in the hidden layers drops from 300 to
159 and from 100 to 75 respectively. SeReNe (LB) enjoys
comparable performance with respect to SeReNe (exact) de-
spite lower computational cost (see below).
For the 1.95% error band (Tab. II), SeReNe (LB) performs is
more effective at pruning parameters than SeReNe (exact),
allowing lower error. In this case, SeReNe (LB) achieves
comparable compression to other state-of-the-art approaches,
except for Tartaglione et al. [10]. In this case, however, when
we compare the final architecture, we see that [10] prunes
less neurons than SeReNe, despite a higher compression
ratio. Evidently, [10] enhances unstructured sparsity, while
SeReNe exploits structured sparsity, resulting in more entirely-
removed neurons. Serene (LB) prunes more parameters than
SeReNe (UB), we hypothesize because (13) overestimates the
sensitivity of the parameters and prevents them to be pruned.
On the other side, SeReNe (LB) underestimates the sensitivity,
however small λ values sets this off. SeReNe (local) prunes
less parameters than the other SeReNe formulations as it
relies on a locally computed sensitivity formulation despite
lower complexity. Concerning training time (second column
from the right), SeReNe (local) is fastest and introduces very
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TABLE III: LeNet-5 trained on MNIST.

Approach
Remaining parameters (%) Compr.

Neurons
Network size [kB] Top-1

Conv1 Conv2 FC1 FC2 ratio .onnx .7z (%)

Baseline 100 100 100 100 1x [20]-[50]-[500]-[10] 1686 → 1510 0.68
Sparse VD [23] 33 2 0.2 5 280x - - 0.75
Han et al. [11] 66 12 8 19 11.9x - - 0.77

SWS [33] - - - - 162x - - 0.97
Tartaglione et al. [10] 67.6 11.8 0.9 31.0 51.1x [20]-[48]-[344]-[10] - 0.78

DNS [34] 14 3 0.7 4 111x - - 0.91
`2+pruning 60.20 7.37 0.61 22.14 72.3 [19]-[37]-[214]-[10] 577 → 46 0.8

SeReNe (LB) 33.75 3.25 0.27 10.22 177.05x [11]-[26]-[113]-[10] 208 → 19 0.8

TABLE IV: LeNet-5 trained on Fashion-MNIST.

Approach
Remaining parameters (%) Compr.

Neurons
Network size [kB] Top-1

Conv1 Conv2 FC1 FC2 ratio .onnx .7z (%)

Baseline 100 100 100 100 1x [20]-[50]-[500]-[10] 1686 → 1510 8.1
Sparse VD [23] - - - - 6.98x - - 8.53

Tartaglione et al. [10] 76.2 32.56 6.5 44.02 11.74x [20]-[47]-[470]-[10] - 8.5
`2+pruning 85.80 34.13 4.57 55.24 14.36x [20]-[50]-[500]-[10] 1496 → 197 8.44

SeReNe (LB) 85.71 32.14 3.63 52.03 17.04x [20]-[49]-[449]-[10] 1494 → 46 8.47

little computational overhead, SeReNe (UB) and SeReNe (LB)
have comparable training times and the slowest is the SeReNe
(exact), approximately 2.7x slower than its boundaries.
In the light of the good trade-off between ability to prune
neurons, error rate and training time of SeReNe (LB), in the
following we will restrict our experiments to this sensitivity
formulation.

Fig. 4 (bottom) shows the location of the parameters not
pruned by SeReNe (exact) in LeNet300 first fully-connected
layer (black dots). For comparison, we report the equivalent
image from Fig. 4 of [11] (top). Our method yields completely
blank columns in the matrix that can be represented in memory
as uninterrupted sequences of zeroes. When stored on disk,
LZMA compression (.7z column) is particularly effective at
encoding long sequences of the same symbol, which explains
the 10x compression rate it achieves (from 538 to 46 kB) over
the .onnx file.

Finally, we perform an ablation study to assess the impact
of a simpler `2-only regularization, i.e. classical weight decay,
in place of our sensitivity-based regularizer. Towards this end,
we retrain LeNet-300 with λ = 0 and a weight-decay set
to 10−4 in its place (line `2+pruning in the tables above).
We point out in (15) that the sensitivity can be interpreted
as a weighting factor for the `2-regularization. Using weight-
decay is equivalent to assuming all the parameters have the
same sensitivity. For this experiment, we used η = 0.1,
PWE = 5 and TWT = 0 (TWT > 0 significantly and
uncontrollably worsens the performance). Table I shows that
such method is less effective at pruning neurons than SeReNe
(LB), which removes 15% more neurons. Similar conclusions
can be drawn also if higher error is tolerated, as in Table II.
The `2+pruning has been performed for comparison in all
following experiments in the paper yielding the same results.

C. LeNet5 on MNIST

Next, we repeat the previous experiment over the LeNet-
5 [36] architecture, preliminarily trained as for the LeNet-
300 above, yet with SGD with learning rate η = 0.1 and
PWE = 20 epochs. We experiment with SeReNe (LB) with
parameters (λ = 10−4, TWT = 1.45). For this architecture,
our method requires about 500 epochs to achieve the same
error range as other state of the art references. According to
Table III, SeReNe (LB) approaches the classification accuracy
of its competitors outperforms the considered references in
terms of compression ratio and pruned neurons.
In this case, the benefits coming from the structured spar-
sity are evident: the uncompressed network storage footprint
decreases from 1686 kB to 208 kB (-90%), which after
lossless compression further decreases to 19 kB with a 0.12%
performance drop only.

D. LeNet5 on Fashion-MNIST

Then, we experiment with the same LeNet-5 architecture
on the Fashion-MNIST [37] dataset. Fashion-MNIST has the
same size of the MNIST dataset, yet it contains natural images
of dresses, shoes, etc. and so it is harder to classify than
MNIST since the images are not sparse as MNIST digits. In
this experiment we used SGD with learning rate η = 0.1 and
PWE = 20 epochs. For SeReNe (LB) we used λ = 10−5

and TWT = 1 for about 2k epochs.
Unsurprisingly, the average compression ratio is lower than for
MNIST: since the classification problem is much harder than
MNIST (Sec. V-C), more complexity is required and SeReNe,
in order not to degrade the Top-1 performance, is not pruning
as much as it did for the MNIST experiment. Most importantly,
the SeReNe (LB) compressed network is 46 kB only, despite
the higher number of pruned parameters.
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TABLE V: VGG-like architecture with 1 fully connected layer (VGG-1) trained on CIFAR-10.

Approach
Remaining parameters (%) [neurons] Compr. Network size [MB] Top-1

Conv1 Conv2 Conv3 Conv4 Conv5 FC1 ratio .onnx .7z (%)

Baseline 100 100 100 100 100 - 1x 57.57 → 51.51 7.36
[64] [128] [256] [512] [512] [10]
[64] [128] [256] [512] [512]

[256] [512] [512]
`2+pruning 11.86 15.07 6.59 0.36 0.11 66.70 88.84x 13.58 → 1.14 7.79

[23] [126] [250] [406] [60] [10]
[64] [123] [251] [108] [81]

[250] [128] [398]
SeReNe (LB) 10.18 11.68 4.73 0.20 0.05 61.11 124.82x 11.56 → 0.97 7.8

[23] [126] [250] [382] [65] [10]
[64] [123] [251] [93] [76]

[250] [136] [373]

TABLE VI: VGG-like architecture with 2 fully connected layers (VGG-2) trained on CIFAR-10.

Approach
Remaining parameters (%) [neurons] Compr. Network size [MB] Top-1

Conv1 Conv2 Conv3 Conv4 Conv5 FC1 FC2 ratio .onnx .7z (%)

Baseline 100 100 100 100 100 100 100 1x 58.61 → 52.44 6.16
[64] [128] [256] [512] [512] [512] [10]
[64] [128] [256] [512] [512]

[256] [512] [512]
Sparse-VD [23] - - - - - - - 48x - 7.3
`2+pruning 27.62 30.74 13.67 0.88 0.24 1.88 70.78 40.96x 34.42 → 2.86 7.21

[44] [126] [247] [498] [409] [367] [10]
[60] [120] [247] [463] [417]

[243] [79] [461]
SeReNe (LB) 25.9 26.38 9.75 0.48 0.15 1.24 70 57.99x 29.41 → 2.47 7.25

[44] [126] [247] [498] [354] [367] [10]
[60] [120] [247] [433] [366]

[243] [65] [459]

TABLE VII: ResNet-32 trained on CIFAR-10.

Approach
Remaining parameters (%) [neurons] Compr. Network size [MB] Top-1

Conv1 Block1 Block2 Block3 FC1 ratio .onnx .7z (%)

Baseline 100 100 100 100 100 1x 1.84 → 1.63 7.36
[64] [160] [320] [640] [10]

Sparse VD [23] - - - - - 2.5x - 8.16
`2+pruning 65.97 33.30 33.41 26.32 88.75 3.51x 1.82 → 0.54 8.08

[14] [157] [319] [633] [10]
SeReNe (LB) 60.19 24.52 24.14 17.84 81.88 5.03x 0.87 → 0.37 8.09

[12] [93] [203] [364] [10]

E. VGG on CIFAR-10.

Next, we experiment with two popular implementations of
the VGG architecture [2]. We recall that VGG consists in
13 convolutional layers arranged in 5 groups of, respectively,
2, 2, 3, 3, 3 layers, with 64, 128, 256, 512, 512 filters per
layer respectively. VGG-1 is a VGG implementation popular in
CIFAR-10 experiments that includes only one fully-connected
layer as output layer and is pre-trained on ImageNet.2 VGG-
2 [23] is similar to VGG-1 but includes one hidden fully
connected layer with 512 neurons before the output layer.
We experiment over the CIFAR-10 dataset, which consists of

2https://github.com/kuangliu/pytorch-cifar

50k 32 × 32, RGB images for training and 10k for testing,
distributed in 10 classes. For both VGG-1 and VGG-2 we
have used SGD with learning rate η = 0.01 and PWE = 20
epochs. For the SeReNe (LB), we used λ = 10−6 and TWT =
1.5. Both architectures were pruned for approximately 1k
epochs and Tables V and VI detail the pruned topologies.
For each architecture, we detail the number of surviving filters
(convolutional layers) or neurons (fully connected layers)
for each layer within square brackets. The tables show that
SeReNe introduces a significantly structured sparsity for both
VGG-1 and VGG-2 and outperforms Sparse-VD [23] in terms
of compression ratio. We are able to prune a significant number
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of filters also in the convolutional layers; as an example, the
3 layers in block Conv4 are reduced to [382]-[93]-[136] for
VGG-1 and [498]-[433]-[65] for VGG-2. This has a positive
impact on the networks footprint: VGG-1 memory footprint
drops from 57.57 MB to 11.56 MB for the pruned network,
while the 7zip compressed representation is 0.97 MB only.
For VGG-2, the memory foot print drops from 58.61 MB to
29.41 MB, while the compressed file representation amounts
to 2.47 MB.

F. ResNet-32 on CIFAR-10

We then evaluate SeReNe over the ResNet-32 architec-
ture [3] trained on the CIFAR-10 dataset using SGD with
learning rate η = 0.001, momentum 0.9, λ = 10−5, TWT =
0 and PWE = 10. Table VII shows the resulting architecture.
Due to the number of layers, we represent the network
architecture in five different blocks: the first correspond to
the first convolutional layer that takes in input the original
input image, the last represent the fully-connected output layer.
The other three blocks in the middle represent the rest of the
network, based on the number of output channels of each
layer: block1 contains all the layers with an output of 16
channels, block2 contains all the layers with an output of 32
channels and block3 collects the layers with an output of 64
channels.
ResNet is an already optimized architecture and so it is more
challenging to prune compared to, e.g, VGG. Nevertheless,
SeReNe is still able to prune about 40% of the neurons and
70% of the parameters over the original ResNet-32. This is
reflected on the size of the network, which drops from 1.84
MB (1.63 MB compressed) to 0.87 MB (0.57MB compressed).

G. AlexNet on CIFAR-100

Next, we up-scale in the output dimensionality of the
learning problem, i.e. in the number of classes C, testing the
proposed method on an AlexNet-like network over the CIFAR-
100 dataset. Such dataset consists of 32 × 32 RGB images
divided in 100 classes (50k training images, 10k test images).
In this experiment we use SGD with learning rate η = 0.1
and PWE = 20 epochs. Concerning SeReNe (LB), we used
λ = 10−5 and TWT = 1.5 and the pruning process lasted
300 epochs.
Table VIII shows compression ratios in excess of 179x,
whereas the network size drops from 92.31 MB to 43.80 MB
and further to 2.47 MB after compression.
With respect to CIFAR-10, we hypothesize that the larger
number of target classes to discriminate prevents pruning
neurons in the convolutional layers, yet it allows to prune a
significant number of neurons from the hidden fully connected
layers. Contrarily from the previous experiments, the top-5 and
the top-1 errors improve with respect to the baseline.

H. ResNet-101 on ImageNet

As a last experiment, we test SeReNe on ResNet-101 trained
over ImageNet (ILSVRC-2012), using the pre-trained network

provided by the torchvision library.3

Due to the long training time, we employed a batch-wise
heuristic such that, instead of waiting for a performance
plateau, the pruning step is taken every time a fifth of the train
set (around 7.9k iterations) has been processed. We trained
the network using SGD with a learning rate η = 0.001 and
momentum 0.9; for SeReNe (LB) we used λ = 10−6 and
TWT = 0.
Table IX shows the result of the pruning procedure with the
layers grouped in blocks similarly as for the ResNet-32 ex-
periment. Despite the complexity of the classification problem
(1000 classes) that makes challenging pruning entire neurons,
we prune around 86% of the parameters and obtain a network
that is smaller in size, especially when compressed, going
from 156.67 MB to only 27.84 MB. Comparing SeReNe (LB)
to `2+pruning we observe a boost in the performance when
using SeReNe, but not as wide as in previous results. If the
classification task to solve is complex (as for ImageNet),
necessarily the sensitivity of many neurons will be high
(because we need more neurons to solve the task). If many
neurons will have a comparable sensitivity, then for those
SeReNes regularization naturally reduces to `2 regularization.
This is one of the major benefits of SeReNe, which self-tunes
the penalty to the neurons according to the models complexity
and the complexity to solve the target task.

I. Experiments on mobile devices

As a last experiment, we benchmark some of the architec-
tures pruned with SeReNe on an a Huawei P20 smartphone
equipped with 4x2.36 GHz Cortex-A73 + 4x1.84GHz Cortex-
A53 processors and 4GB RAM, running Android 8.1 “Oreo”.
Table X shows the the inference time for ResNet-32, VGG-
16 and AlexNet (all figures are obtained averaging 1,000
inferences on the device). SeReNe-pruned architectures show
consistently lower inference time in the light of the fewer
neurons in the pruned network, with a top speedup for VGG-
16 in excess of a 2x factor. These results do not account
for strategies commonly employed to boost inference speed,
like parameters quantization or custom libraries for sparse
tensors processing. We hypothesize that such strategies, being
orthogonal to neuron pruning, would further boost inference
time.

VI. CONCLUSIONS

In this work we have proposed a sensitivity-driven neural
regularization technique. The effect of this regularizer is to
penalize all the parameters belonging to a neuron whose
output is not influential in the output of the network. We
have learned that the evaluation of the sensitivity at the
neuron level (SeReNe) is extremely important in order to
promote a structured sparsity in the network, being able to
obtain a smaller network with minimal performance loss.
Our experiments show that the SeReNe strikes a favorable
trade-off between ability to prune neurons and computational
cost, while controlling the impairment in classification per-
formance. For all the tested architectures and datasets, our

3https://pytorch.org/docs/stable/torchvision/models.html
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TABLE VIII: AlexNet trained on CIFAR-100.

Approach
Remaining parameters (%) [neurons] Compr. Network size [MB] Top-1 Top-5

Conv1 Conv2 Conv3 Conv4 Conv5 FC1 FC2 FC3 ratio .onnx .7z (%) (%)

Baseline 100 100 100 100 100 100 100 100 1x 92.31 → 79.27 45.58 20.09
[64] [192] [384] [256] [256] [4096] [4096] [100]

Sparse VD [23] - - - - - - - - 26.45x - 49.62 20.93
`2+pruning 75.00 21.95 5.21 3.65 5.59 0.62 0.17 6.44 114.45x 60.88 → 3.56 46.43 19.91

[64] [192] [384] [256] [256] [4094] [2180] [100]
SeReNe (LB) 79.05 20.33 5.72 3.33 2.23 0.18 0.04 2.77 179.52x 43.80 → 2.47 44.99 17.88

[64] [191] [384] [256] [256] [3322] [1310] [100]

TABLE IX: ResNet-101 trained on ImageNet.

Approach
Remaining parameters (%) [neurons] Compr. Network size [kB] Top-1 Top-5

Conv1 Block1 Block2 Block3 Block4 FC1 ratio .onnx .7z (%) (%)

Baseline 100 100 100 100 100 100 1x 174.49 → 156.67 22.63 6.44
[64] [1408] [3584] [36352] [11264] [1000]

Sparse VD [23] - - - - - - 2.48x - 35.76 13.45
`2+pruning 53.12 25.42 25.57 13.71 17.74 51.94 5.75x 172.94 → 32.93 28.33 9.18

[49] [1241] [3280] [33278] [11250] [1000]
SeReNe (LB) 55.36 24.27 23.79 11.24 14.81 40.82 6.94x 172.15 → 27.84 28.41 9.45

[49] [1197] [3142] [31948] [11249] [1000]

TABLE X: Inference measures on Huawei P20.

Architecture Approach Inference time [ms]

ResNet-32 Baseline 32.12± 3.62
SeReNe (LB) 24.83± 3.59

VGG-16 (VGG-1) Baseline 204.21± 6.05
SeReNe (LB) 98.67± 8.71

AlexNet Baseline 131.41 ± 11.04
SeReNe (LB) 75.27± 8.70

sensitivity-based approach proved to introduce a structured
sparsity while achieving state-of-the-art compression ratios.
Furthermore, the designed sparsifying algorithm, making use
of cross-validation, guarantees minimal (or no) performance
loss, which can be tuned by the user via an hyper-parameter
(TWT). Future work includes deployment on physical embed-
ded devices making use of deep network as well as using
a quantization-based regularization jointly with the neuron
sensitivity to further compress deep networks.

ACKNOWLEDGEMENT

This research was partially funded by Sisvel Technology,
Turin, Italy. This work has received funding from the European
Unions Horizon 2020 research and innovation programme
under grant agreement No 825111, DeepHealth Project.

APPENDIX A
J MADE EXPLICIT

In order to compute S given (5), we can proceed directly.
However, this is problematic as it requires C different calls for
the differentiation engine. Given (4), we can inspect whether
we can reduce the computation by defining an overall objective

function which, when differentiated, yields S as a result. We
name it J :

J =

∫
Sn,idpn,i =

∫
1

C

C∑
k=1

∣∣∣∣∂yN,k

∂pn,i

∣∣∣∣ dpn,i =

=
1

C

∫ C∑
k=1

∂yN,k

∂pn,i
sign

(
∂yN,k

∂pn,i

)
dpn,i. (24)

Here we can use Fubini-Tonelli’s theorem:

J =
1

C

C∑
k=1

∫
∂yN,k

∂pn,i
sign

(
∂yN,k

∂pn,i

)
dpn,i

=
1

C

C∑
k=1

yN,k sign

(
∂yN,k

∂pn,i

)
. (25)

Unfortunately, we have no efficient way to compute
sign

(
∂yN,k

∂pn,i

)
and the only certain way is to compute ∂yN,k

∂pn,i

directly, ∀ C.

APPENDIX B
LENET300 WITH SIGMOID ACTIVATION ON MNIST

APPENDIX C
EXPLICIT DERIVATION FOR SERENE REGULARIZATION

FUNCTION

Here we focus on the update rule (15): we aim at minimizing
the overall objective function

O = ηL+ λR, (26)

where

R =

∫
wn,i,jS̄n,idwn,i,j . (27)
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Here on we will drop the subscripts n, i, j. Let us consider
the formulation of the sensitivity in (4): (27) becomes

R =

∫
w · S̄ ·Θ

(
S̄
)
· dw (28)

where Θ(·) is the one-step function and

S̄ = 1− 1

C

C∑
k=1

∣∣∣∣∂yN,k

∂p

∣∣∣∣ . (29)

We can re-write (28) as

R =

∫
w

[
1− 1

C

C∑
k=1

∣∣∣∣∂yN,k

∂p

∣∣∣∣
]

Θ
(
S̄
)
dw

=

∫
w ·Θ

(
S̄
)
· dw −

∫
w · 1

C

C∑
k=1

∣∣∣∣∂yN,k

∂p

∣∣∣∣ ·Θ (S̄) · dw
=
w2

2
·Θ
(
S̄
)
−
∫
w · 1

C

C∑
k=1

∣∣∣∣∂yN,k

∂p

∣∣∣∣ ·Θ (S̄) · dw. (30)

Let us define

JR = −
∫
w · 1

C

C∑
k=1

∣∣∣∣∂yN,k

∂p

∣∣∣∣ ·Θ (S̄) · dw. (31)

Considering that w is k-independent and that 1
C is a constant,

we can write

JR = − 1

C

∫ C∑
k=1

w

∣∣∣∣∂yN,k

∂p

∣∣∣∣ ·Θ (S̄) · dw. (32)

Here we are allowed to apply Fubini-Tonelli’s theorem, swap-
ping sum and integral:

JR = − 1

C

C∑
k=1

∫
w

∣∣∣∣∂yN,k

∂p

∣∣∣∣ ·Θ (S̄) · dw
= − 1

C

C∑
k=1

∫
w
∂yN,k

∂p
· sign

(
∂yN,k

∂p

)
·Θ
(
S̄
)
· dw.

(33)

Now integrating by parts:

JR = − 1

C

C∑
k=1

∫
w
∂yN,k

∂p
· sign

(
∂yN,k

∂p

)
·Θ
(
S̄
)
· dw

= − 1

C

C∑
k=1

{
w2

2

∂yN,k

∂p
· sign

(
∂yN,k

∂p

)
·Θ
(
S̄
)

+

+

∫
w2

2
· ∂
∂w

∂yN,k

∂p
· sign

(
∂yN,k

∂p

)
·Θ
(
S̄
)
· dw

}
.

(34)

According to the derivative chain rule, we can re-write (34)
as

JR =− 1

C

C∑
k=1

{
w2

2

∂yN,k

∂p
· sign

(
∂yN,k

∂p

)
·Θ
(
S̄
)

+

+

∫
w2

2
· ∂

2yN,k

∂p2
· ∂p
∂w
· sign

(
∂yN,k

∂p

)
·Θ
(
S̄
)
· dw

}
.

(35)

Applying infinite steps of integration by parts we have in the
end

JR =
1

C
Θ
(
S̄
) C∑
k=1

sign

(
∂yN,k

∂p

)[
−w

2

2

∂yN,k

∂p
+

+

∞∑
i=1

(−1)i+1 wi+2

(i+ 2)!

∂i+1yN,k

∂pi+1

∂ip

∂wi

]
. (36)

Hence, the overall minimized R function is

R =Θ
(
S̄
){w2

2
+

1

C

C∑
k=1

sign

(
∂yN,k

∂p

)[
−w

2

2

∂yN,k

∂p
+

+

∞∑
i=1

(−1)i+1 wi+2

(i+ 2)!

∂i+1yN,k

∂pi+1

∂ip

∂wi

]}
. (37)

APPENDIX D
DERIVATION OF (17)

Let us recall the formulation in (15). According to (14), we
can re-write it as

wt+1
n,i,j = wt

n,i,j−η
∂L

wt
n,i,j

−λwn,i,j(1−Sn,i)Θ(1−Sn,i). (38)

Given the definition of Sn,i in (4), we can write

wt+1
n,i,j =wt

n,i,j − η
∂L

wt
n,i,j

+

− λwn,i,jΘ(1− Sn,i)

(
1− 1

C

C∑
k=1

∣∣∣∣∂yN,k

∂pn,i

∣∣∣∣
)
.

(39)

We can multiply the insensitivity by the term wn,i,j :

wt+1
n,i,j =wt

n,i,j − η
∂L

wt
n,i,j

+

− λΘ(1− Sn,i)

(
wn,i,j −

1

C

C∑
k=1

∣∣∣∣∂yN,k

∂pn,i

∣∣∣∣ · wn,i,j

)
.

(40)

Finally here, observing (16), we find back (17).

APPENDIX E
LENET300 WITH SIGMOID ACTIVATION ON MNIST

Finally, we repeat the experiment in Sec. V-B yet replacing
the ReLU activations with sigmoids in the hidden layers. We
optimize a pre-trained LeNet300 using SGD with learning rate
η = 0.1, PWE = 20 epochs, TWT = 0 for target Top-1
errors of 1.7% (Table XI) and 1.95% (Table XII).
SeReNe achieves a sparser (and smaller) architecture than
`2 + pruning for both error rates. Interestingly, for the 1.7%
error rate, `2 + pruning is not able to prune any neuron,
whereas SeReNe prunes 85 neurons from FC1, with a 10
times higher compression ratio. This reflects in the compressed
model size: while `2 + pruning squeezes the architecture to
536kB, SeReNe compresses it to 75kB only.
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TABLE XI: LeNet-300 trained on MNIST (sigmoid activation, 1.7% error rate).

Approach
Remaining parameters (%) Compr. Remaining Model size [kB] Top-1
FC1 FC2 FC3 ratio neurons .onnx .7z (%)

Baseline 100 100 100 1x [300]-[100]-[10] 1043 → 963 1.72
`2 + pruning 46.27 82.87 97.90 1.97x [300]-[100]-[10] 1043 → 536 1.75

SeReNe 2.44 16.73 85.30 22.31x [215]-[100]-[10] 749 → 75 1.72

TABLE XII: LeNet-300 trained on MNIST (sigmoid activation, 1.95% error rate).

Approach
Remaining parameters (%) Compr. Remaining Model size [kB] Top-1
FC1 FC2 FC3 ratio neurons .onnx .7z (%)

Baseline 100 100 100 1x [300]-[100]-[10] 1043 → 963 1.72
`2 + pruning 4.32 30.53 90.80 12.92x [290]-[100]-[10] 1008 → 112 1.98

SeReNe 1.15 9.32 76.00 40.66x [179]-[99]-[10] 624 → 45 1.95
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