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Abstract. Debris flows are dangerous natural processes that cause extensive damages to 

infrastructures and urbanized areas and can lead to loss of human lives. Their unpredictability, 

their extremely high motion and their magnitude are the main causes of these harms. Mitigation 

measures are fundamental for reducing the associated risk and protecting infrastructures in 

mountainous areas. Their design is still an open issue: there are many formulations to evaluating 

impact pressure. Moreover, the uncertainties in the determination of flow characteristics 

(velocity and thickness) are significantly high and difficult to quantify. In the European Union, 

the design of any type of structures involved in rock mechanics field must comply with EN-1997 

Geotechnical Design (CEN 2004) (EC7). For debris flow countermeasures, EC7 requirements 

are very difficult to apply in practice since partial safety factors are not provided for these 

phenomena. However, the basic philosophy of reliability-based design (RBD), as defined in 

EN1990 (CEN 2002) may be a suitable and complementary approach to provide geotechnical 

structures with a uniform probability of failure. Reliability Based Design (RBD) can provide 

additional insights to EC7 design and can be applied when partial factors have still to be proposed 

(by EC7) to cover uncertainties of less common parameters, as in case of debris flow 

countermeasures. This paper presents an analysis of the advantages and limitations on the 

applicability of RBD approach to debris flow countermeasures, by using the first-order reliability 

method (FORM). In particular, data availability, the possibilities for analysing data in a statistical 

framework and the choice of performance function are the main limitation of the method, which 

force to make assumptions regarding statistical distribution of the considered parameters. A 

sensitivity analyses, comparing different equations, commonly used for debris flow impact 

pressure estimation, were performed for quantifying the effect of the selected performance 

function on the RBD results. 

1.  Introduction 

The unpredictability, the total absence of premonitory signals, the high velocities and the long travel 

distances make debris flow one of the most destructive gravitational movements on Earth. Moreover, 

the climate change will increase in the next future the frequency and the magnitude of these phenomena 

increasing the associated risk of economic damages and loss of human lives. As a result, it is crucial to 

strengthen the prevention design of debris-flow disasters. 

Many mitigation strategies have been developed in recent years and both active and passive measures 

are used to change the vulnerability of debris flow basins and to protect infrastructures in mountainous 
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areas. Although passive measures (hazard mapping and correct land-use planning) are more advisable 

than active ones (protection structures), the latter are often essential in order to reduce risk [1]. 

Each countermeasure has its own peculiarity, in terms of components, drainage capacity and 

construction methodology. From the point of view of their design requirements, they must be able to 

counteract the impact forces of the flow by dissipating totally (in case of rigid structures) or partially (in 

case of filtering or cable/net structures) its kinetic energy and by retaining the flowing material. 

However, the engineering design of debris-flow barriers is still challenged and practice-based in current 

stage. There are few specific national standards that provide guidance for the reliable design of these 

types of countermeasures. For instance, the Geotechnical Engineering Office of the Government of 

Hong Kong introduced the first technical basis for the design of standardized debris-resisting barrier 

modules [2]. In 2011, the Austrian Standard Rule [3] (included in [4]) provided loading scenarios for 

debris flow protection structures, specifically giving information on limit state design and failure mode 

for check dams, as well as partial safety factors for structural (STR) and geotechnical (GEO) limit state 

actions.  

Hong Kong and Austrian standards provide a great contribution, but the recent reports of structures 

destroyed by debris flow [5-7] rise many doubts on their efficiency and leave many unsolved open 

questions. No information about the probability of failure is provided since uncertainties regarding all 

debris flow phases are difficult to quantify [1, 8]. Moreover, many formulations were developed for 

evaluating debris flow impact pressure on structures [9], but none of them is universally recognized.  

In the European Union, the design of any type of structures involved in rock mechanics field must 

comply with EN-1997 Geotechnical Design [10]. The design of debris flow countermeasure is only dealt 

with in passing in EC7 code. Its requirements are very difficult to apply in practice since partial safety 

factors are not provided for these phenomena. Some authors [11-17] have highlighted how applying the 

same partial safety factors in problems with different levels of uncertainty may not result in the same 

target failure probability. However, the basic philosophy of reliability-based design (RBD), as defined 

in EN1990 ([18]) may be a suitable and complementary approach to provide geotechnical structures 

with a uniform probability of failure [16]. 

Reliability Based Design (RBD) can provide additional insights to EC7 design and can be applied 

when partial factors have still to be proposed (by EC7) to cover uncertainties of less common parameters 

[12] as in case of debris flow countermeasures. Moreover, as stated by [11], reliability calculations 

provide a means of evaluating the combined effects of uncertainties, and a means of distinguishing 

between conditions where uncertainties are very high (evaluation of debris flow impact pressure is a 

clear example).  

This paper presents an analysis of the advantages and limitations on the applicability of RBD 

approach to debris flow countermeasures, by using the first-order reliability method (FORM). In 

particular, data availability, the possibilities for analyzing data in a statistical framework and the choice 

of performance function are the main limitation of the method, which force to make assumptions 

regarding statistical distribution of the considered parameters.  

A sensitivity analyses, comparing different equations, commonly used for debris flow impact 

pressure estimation, were performed for quantifying the effect of the selected performance function on 

the RBD results. 

2.  FORM procedures 

In RBD methods, the probability of failure can be expressed using the following equation: 

𝑃𝑓 ≈ 1 − Φ(β) = Φ(−β)     (1) 

where Φ is the normal cumulative probability function and β is the reliability index [19]. The 

evaluation of β allows to define the coordinates of the most probable failure point that is called the 

design point, x*. It physically denotes the tangency of the expanding dispersion ellipsoid with the failure 

domain surface (figure 1). 
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Figure 1. Illustration of the reliability index in a plane with two negatively correlated 

random variables (modified after [9]). 
 

The most consistent RBD approach is based on FORM, in which β is given by the following equation: 

β = min
𝑥𝜖𝑓

√𝑛⃗ 𝑇[𝑅]−1𝑛⃗     (2) 

where n⃗  is a dimensionless vector defined as n⃗  = (x-μN)/σN, x is a vector representing the set of 

random variables, μN and σN are the vectors of normal mean and normal standard deviation evaluated 

using [20] equations, R is the correlation matrix, and f is the failure domain. 

Equation 2 allows taking into account the non-normal distribution of leading variable in debris flow 

phenomena [9]. Moreover, it can be easily solved in an Excel spreadsheet [21]: for each value of ni 

trialed by the Excel Solver, a short and simple Excel VBA code automates the computation of xi from 

ni, for use in the constraint performance function g(x) = 0, via xi=F-1Φ[(ni)], where Φ is the standard 

normal distribution and F is the original non-normal distribution.  
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Moreover, the β definition allows back calculating the partial safety factors useful for LSD approach 

by fixing characteristic values for the random variables and by assessing the design point coordinates 

(see figure 1). 

FORM approach requires the introduction of a performance function g(x) = 0 that, according to LSD 

principles, reflects the difference between resistances and the effects of actions. 

In this study, three equations were used: 

𝑔(𝑥) = 𝑅 − 𝜌𝛼𝑣𝑓
2ℎ𝑓𝐵    (3) 

𝑔(𝑥) = 𝑅 − 𝜌𝑔𝑘ℎ𝑓
2 𝐵    (4) 

𝑔(𝑥) = 𝑅 − 𝜌ℎ𝑓𝐵(𝛼𝑣𝑓
2 + 𝑔𝑘ℎ𝑓)    (5) 

where R is barrier resistance in N, ρ is flow density in kg/m3, B is channel width in m, hf is the flow 

thickness in m, vf is the flow velocity in m/s, g is the gravity equal to 9.81 m/s2, α and k are respectively 

the dynamic and the static coefficient. For a detailed explanation of the available debris flow impact 

models, refer to [16]. 

For what it concerns variable statistical distributions, in a previous work [9] the authors have 

demonstrated that hf, vf and α can be approximated using a GEV (generalized extreme value) 

distribution, while R can be simulated using normal distribution and k with a lognormal distribution. 

The GEV distribution has been frequently used to model flood event frequencies: since, channelized 

debris flows have many analogies with flood processes, it could be also possible to assume probabilistic 

extreme distributions for debris flows. Further analyses should be done by increasing the processes 

datasets for confirming or refusing this assumption. However, the fact that laboratory data and field data 

follow the same statistical model, namely the GEV distribution, for all the considered variables [9] 

support and strengthen this hypothesis.  

3.  RBD and EC7 

Partial safety factors (γ in figure 1) are applied to characteristic parameter values in Limit State 

Design (LSD) approaches for addressing uncertainties and providing designs with a uniform probability 

of failure. The LSD is at the basis of the EC7.  In order to verify that the design resistance is greater than 

the effect of action, three different design approaches, described in detail in Section 2.4.7.3.4 of EC7 

[10], are used. This approach is consolidated in civil engineering but its efficacy in the geotechnical 

field has raised many doubts [16, 21-23] since the variability of the considered materials is extremely 

high and no information on the probability of failure of the designed structures is provided. Moreover, 

as stated above, many geotechnical problems, such as rockfalls and debris flows, are not adequately 

treated and the application of the same partial safety factors in problems with different levels of 

uncertainty may not result in the same target failure probability [12, 24]. 

These EC7 limitations support the need of an RBD analysis for certain complex geotechnical 

applications, including the design of debris flow protection structures. The reliability index provide 

design with the same probability of failure that remains independent from the problem type and the level 

of parametric uncertainties.  

On the other hand, the limited dataset for performing reliable statistical analyses may reduce the 

diffusion of an RBD approach. This is especially true in the case of debris flow, for which databases for 

the main parameters involved (velocity, vf, thickness, hf, and the dynamic coefficient, α) are difficult to 

obtain. 

4.  RBD of debris flow barriers 

In this section, an RBD approach is presented considering EN1990 Annex C Table C1. The table 

proposes a list of reliability index values, β, as a function of probability of failure, Pf. Using those values, 

a RBD approach is here proposed, based on a hypothetical barrier designed for protecting from debris 

flow events. 

The considered variables are listed in table 1. 
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Table 1. Input variable values used in the RBD approach.  

Variable Mean value Standard deviation 

Density, 𝞺 [kg/m3] 2155 [-] 
Barrier width, B [m] 36 [-] 
Flow velocity, vf [m/s] 10 3 
Flow height, hf [m] 1.6 1.3 
Dynamic coefficient, 𝞪 [-] 1.36 1.24 
Static coefficient, k [-] 3.52 2.47 

 

Flow density was assumed to be constant and was represented by a mean value for the solid and fluid 

components. Even if correlation between variables were demonstrated [9] in this example the leading 

diagonal terms and the off-diagonal terms of correlation matrix [R] were considered respectively equal 

to 1 and 0. 

Considering the β values listed in Table C1 (EN1990 Annex C), design points for each variable were 

identified and their distance from the corresponding mean was evaluated (table 2). 

Table 2. Design parameters evaluated for a reliability-based design approach as a function of 

reliability index values proposed in EN 1990 Annex C Table C1 considering three different 

performance function (The asterisk symbols (*) represents the design parameters obtained after FORM 

computational approach). 

β  
[-] 

Pf 
[%] 

Equation 3 Equation 4 Equation 5 
R* 
[N] 

vf* 
[m/s] 

α*  
[-] 

hf* 
[m] 

R* 
[N] 

k*  
[-] 

hf* 
[m] 

R* 
[N] 

vf* 
[m/s] 

α*  
[-] 

hf* 
[m] 

k* 
[-] 

1.28 1E-
01 

5.7E+
07 12.2 2.22 2.2 2.6E+

07 4.34 2.8 7.0E+
07 11.8 2.06 2.5 3.22 

2.32 1E-
02 

1.6E+
08 14.2 3.29 3.1 9.0E+

07 6.47 4.3 1.9E+
08 13.7 2.99 3.5 3.46 

3.09 1E-
03 

3.2E+
08 15.6 4.28 4.0 2.1E+

08 8.99 5.6 3.6E+
08 15.0 3.87 4.5 3.64 

3.72 1E-
04 

5.4E+
08 16.6 5.24 4.8 4.1E+

08 11.90 6.8 6.0E+
08 16.1 4.72 5.4 3.79 

4.27 1E-
05 

8.2E+
08 17.3 6.20 5.6 6.1E+

08 14.21 7.5 9.0E+
08 16.9 5.58 6.3 3.87 

4.75 1E-
06 

1.2E+
09 18.0 7.15 6.5 1.2E+

09 19.64 8.9 1.3E+
09 17.5 6.40 7.3 4.12 

5.2 1E-
07 

1.6E+
09 18.5 8.12 7.3 1.8E+

09 24.84 9.9 1.7E+
09 18.0 7.23 8.2 4.32 

 

RBD results are directly correlated with the partial safety factor concept introduced in EC7. Partial 

safety factor can be directly calculated from the coordinates of the design point, x*: in fact, knowing the 

probability distribution of variables, characteristic values can be back-calculated assuming the ith-

percentile of the probability distribution. Consequently, the partial safety factor is the ratio between the 

characteristic value and the design parameter value.  

Figure 2 shows flow barrier partial safety factor trends γ for each parameter as a function of the 

probability of failure, Pf. Partial safety factors were calculated considering the 90th percentiles.  
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Figure 2. Partial safety factor dependence on resistance (a), thickness (b), velocity (c), and dynamic 

and static coefficient (d) as a function of probability of failure considering as performance function 

respectively equation 3 (black squares), 4 (light grey triangles) and 5 (dark grey diamonds). 

 

As expected, partial safety factors increase as the requested probability of failure decrease for all the 

considered variable, except for resistance and static coefficient k, where they remain constant, 

independently from probability of failure. Moreover, partial factors are not sensibly sensitive to the 

impact model used as a performance function.  

Even though the velocity and dynamic coefficient partial safety factors are different, their trend is 

the same. In fact, those two figures suggest that characteristic values for vf and α should be increased 

and that α should be increased more than vf.  

5.  Conclusions 

EC7 is the referencing standard for civil engineering geotechnical design, including complex 

geotechnical problems, such as the design of debris flow protection barriers. However, the mandatory 

requirements of LSD approach are not completely applicable to this type of geotechnical problem, since 

the probability of failure should be used as an indicator for evaluating structure residual risk. 

In lieu of LSD philosophy, RBD approach has been demonstrated suitable for facing the design of 

debris flow barriers. Its main limitations are the data availability and the possibilities for analysing data 

in a statistical framework. However, experimental test and numerical models for forecasting propagation 

characteristics might be useful for overcoming these limitations.  

Moreover, the RBD approach allows back-calculated partial safety factors to be applied in the LSD 

method proposed by EC7. These partial safety factors have the advantage that they are associated with 

a known target failure probability. The results of sensitivity analysis by changing performance function 

do not highlight relevant differences in partial safety factor trends (see figure 2).  
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In conclusion, the RBD method provides insights into EC7 design for debris flow countermeasures 

and is a useful design approach for protection structures based on determining an associated probability 

of failure. 
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