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The Extracellular NADome
Modulates Immune Responses
Valentina Audrito†, Vincenzo Gianluca Messana, Lorenzo Brandimarte and Silvia Deaglio*

Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy

The term NADome refers to the intricate network of intracellular and extracellular enzymes
that regulate the synthesis or degradation of nicotinamide adenine dinucleotide (NAD) and
to the receptors that engage it. Traditionally, NAD was linked to intracellular energy
production through shuffling electrons between oxidized and reduced forms. However,
recent data indicate that NAD, along with its biosynthetic and degrading enzymes, has a
life outside of cells, possibly linked to immuno-modulating non-enzymatic activities.
Extracellular NAD can engage puriginergic receptors triggering an inflammatory
response, similar - to a certain extent – to what described for adenosine triphosphate
(ATP). Likewise, NAD biosynthetic and degrading enzymes have been amply reported in
the extracellular space, where they possess both enzymatic and non-enzymatic functions.
Modulation of these enzymes has been described in several acute and chronic conditions,
including obesity, cancer, inflammatory bowel diseases and sepsis. In this review, the role
of the extracellular NADome will be discussed, focusing on its proposed role in
immunomodulation, together with the different strategies for its targeting and their
potential therapeutic impact.
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INTRODUCTION: THE MANY FACES OF NAD, FROM ENERGETIC
FACTOR TO DANGER SIGNAL

NAD is an essential intracellular metabolite with key roles in energy metabolism and electron
transfer (1–7). In addition, NAD is a cofactor for different families of enzymes, including sirtuins
and poly-ADP-ribosyl polymerases (PARPs). NAD can be present outside of cells, with levels
fluctuating widely in response to extracellular signals (8–11). A firm observation is that under steady
state extracellular (e)NAD levels are thousands of times lower (nM) compared to the intracellular
ones (µM-mM) (7, 12–16).

However, during conditions of cellular stress, such as those observed in an inflamed
microenvironment, or during hypoxia, or in conditions of shear stress due to physical distortion,
plasma membrane damage, stress elicited by cytotoxic agents, NAD concentrations may rapidly
spike. This observation, together with the finding that some purinergic receptors are activated by
NAD suggested that eNAD serves as a “danger signal” that alerts the immune system to tissue
damage (8–10, 12, 17–20). According to this view, eNAD could be considered as damage-associated
molecular pattern molecule (DAMP), able to activate the innate immune system, like what has been
org August 2021 | Volume 12 | Article 7047791
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shown for pathogen-associated molecular patterns (PAMPs) (18,
21–24). For example, released eNAD from active neuronal cells
can serve as neurotransmitter and neuromodulator (25–27); or
in a mouse model of inflammation, induced by injection of
polyacrylamide beads, eNAD reached a concentration of 10mM
acting as danger signal (28).

NAD release may occur by several mechanisms involving
active exocytosis, or diffusion through transmembrane
transporters (e.g., pannexin, connexin) in living cells, or
passive leakage across the membrane from necrotic or injured
cells (15, 29–32).

Homeostasis is rapidly restored through a scavenging circuit
operated by nucleotide-catabolizing enzymes that produce the
immunosuppressant adenosine (ADO) and inosine, which can
re-enter the cell, reconstituting the nucleotide pool (5, 33–36).
All these mechanisms of nucleotide/nucleoside release to alert or
switch off the immune system, respectively, are enhanced during
acute and chronic inflammation, including cancer (29, 37, 38).
Even though very unlikely, eNAD synthesis has not been
conclusively ruled out, also in consideration of the presence of
several key NAD biosynthetic enzymes (NBEs) (16, 39).
Frontiers in Immunology | www.frontiersin.org 2
INTRACELLULAR AND EXTRACELLULAR
NAD-METABOLIZING MACHINERY

The biosynthesis of NAD takes place in different locations in the
cell, through one de novo pathway starting from the catabolism
of tryptophan, and via degradation of vitamin B3 precursors. The
latter is considered a salvage pathway that occurs through the
metabolism of three precursors [i.e. nicotinic acid (Na),
nicotinamide (Nam) and nicotinamide riboside (NR)]. In the
majority of tissues, intracellular NAD is generated mostly from
Nam, which is the degradation product of all NAD-consuming
signaling reactions (6, 40–42). Under normal conditions >70% of
the cellular NAD content is stored and is utilized in the
mitochondria primarily for metabolic purposes (16, 43). The
cytosolic and nuclear NAD pools serve primarily to sustain
activity of PARPs and sirtuins, which are NAD-dependent
enzymes with key roles in regulating DNA repair and
epigenetic controlling of gene transcription, respectively
(Figure 1) (7, 44, 45). NAD levels can therefore restrict the
activity of these two classes of NAD-metabolizing enzymes.
Intriguingly, NAD can rapidly shuttle between different cellular
FIGURE 1 | Schematic representation of the NADome. Schematic representation of the network of substrates/ligands, NAD-metabolizing cell surface and
intracellular enzymes and their products in the extracellular and intracellular space. Biological functions regulated by NAD-related enzymes and products are listed.
NAD, nicotinamide adenine dinucleotide; NADP, NAD phosphate; eNAD, extracellular NAD; Nam, nicotinamide; NR, nicotinamide riboside; Na, nicotinic acid;
NAMPT, nicotinamide phosphoribosyltransferase; NAPRT, nicotinate phosphoribosyltransferase; NRK, nicotinamide riboside kinase; ARTs, mono adenosine
diphosphate (ADP)-ribose transferases; PARPs, poly ADP-ribose polymerases; ADPR, ADP ribose; cADPR, cyclic ADP ribose; NAADP, nicotinic acid adenine
dinucleotide phosphate; Ca2+, calcium; NMN, nicotinamide mononucleotide; ADO, adenosine; AMP, adenosine monophosphate; ENPP1; ectonucleotide
pyrophosphatase/phosphodiesterases; TLR4, toll-like receptor 4.
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compartments to reconstitute the pool that allows enzyme
activation, as has recently been shown (46). When in the
extracellular space, eNAD functions are linked to the
modulation of cell surface P2X and P2Y purinergic receptor
families, thereby acting in an apparently enzyme-independent
way and eliciting pro-inflammatory immune responses
(Figure 1). In addition, within the extracellular space, a
complete network of different ectonucleotidases can rapidly
hydrolyze eNAD generating intermediates that modulate
signaling, cell metabolism, adhesion, migration and activate
immunoregulatory circuits (14, 39, 47), as summarized in
Figure 1 . eNAD is degraded by different classes of
ectoenzymes: the NADases CD38 and CD157 (48–50), the
ADP-ribosyltransferases (ARTs) (51), the Ectonucleotide
Pyrophosphatase/Phosphodiesterase 1 (ENPP1) and the ecto-
5′-nucleotidase CD73 (34, 52, 53). NADase, ENPP1 and CD73
can lead to the formation of ADO, a potent natural
immunosuppressive factor mediating the activation of the
inhibitory P1 purinergic receptors (34, 54, 55). In addition,
eNAD can be cleaved to nicotinamide mononucleotide (NMN)
and subsequently dephosphorylated to NR by CD38 and CD73
(53, 56, 57). All these intermediates can enter the cell as NAD
precursors and can be used by NBEs, reconstituting the
intracellular pool (57, 58) (Figure 1).

In the next sections of this review, we will summarize the role
of eNAD, its derived-metabolites and a set of NAD-dependent
enzymes, giving examples of their role in the regulation of
specific immune responses.
eNAD AND PURINERGIC RECEPTORS

The idea of purinergic signaling, i.e., of nucleotides acting as
extracellular signaling molecules, was initially put forward by the
seminal work of Geoff Burnstock in 1972 (59, 60).

Since then, this complex network of receptors has
progressively been unveiled to reveal seven evolutionarily
conserved subtypes of the P2X ion channel receptors and eight
subtypes of the P2Y G protein-coupled receptor, all with roles in
immune cell activation (5, 24, 61). On the contrary, four subtypes
of the ADO P1 receptors on effector T cel ls have
immunosuppressive effects. Shifting the balance from pro-
inflammatory P2R signaling to anti-inflammatory P1R
signaling or vice versa, the purinergic signaling system fine-
tunes immune cell functions (5). eNAD can bind different
subtypes of purinergic P2 receptors as summarized in Figure 2.

For example, eNAD activates human granulocytes by binding
P2Y11 and triggering: (i) overproduction of cyclic (c)AMP,
(ii) activation of protein kinase A, (iii) stimulation of ADP-
ribosyl cyclase and overproduction of cyclic ADP-ribose
(cADPR), a universal calcium (Ca2+) mobilizer, and (iv) influx
of extracellular Ca2+, ultimately causing increased proliferation
and migration (62). eNAD can bind P2Y1 and P2Y11 in human
monocytes activated with lipopolysaccharide (LPS), triggering a
transient rise in intracellular Ca2+, which is caused by a release of
Ca2+ from IP (3)-responsive intracellular stores and an influx of
extracellular Ca2+ (63). eNAD has also been identified as an
Frontiers in Immunology | www.frontiersin.org 3
agonist at P2Y1 receptors in human embryonic kidney (HEK)
cells and mouse colonic muscle (27, 64). Moreover, binding to
postsynaptic P2Y1 receptors, like ATP, eNAD also acts as a
neurotransmitter, released by stimulated terminals of
mammalian central nervous system and peripheral nervous
system neurons (65). In addition, it has been shown that
purinoceptors, including P2X1, P2X4, and P2X7, are engaged
in eNAD-mediated signaling (27, 63, 66). However, more
experimental data should be published to confirm this direct
binding of NAD per se.

eNAD may also engage P2X7R receptors, the main eATP
receptor, extensively studied in the context of inflammation and
immunity (24). P2X7R signaling is a major regulator of the
intensity and duration of inflammatory responses (24, 67, 68).
The receptor/channel is prominently expressed on all cells of
innate and adaptive immunity and aberrant signaling has been
linked to diverse inflammatory and autoimmune diseases, as
recently reviewed in (5, 24). P2X7R signaling mediates NLR
family pyrin domain containing 3 (NLRP3) inflammasome
activation, cytokine, and chemokine release [i.e., interleukin
(IL)-1b, tumor necrosis factor (TNF), IL-6, monocyte
chemoattractant protein-1 (MCP-1/CCL2)], T lymphocyte
survival and differentiation, transcription factor activation, and
cell death (24, 69, 70). At inflammatory sites, P2X7R could also
be bound directly by alternative ligands, including eNAD that
accumulates at sites of inflammation and tissue damage (28). In
murine T lymphocytes, eNAD serves as an ADP-ribose donor to
ADP-ribosylate the P2X7R at arginine 125, close to the ATP-
binding pocket (71). This reaction, catalyzed by the plasma
membrane enzyme ART2.2, causes long-lasting activation of
mouse P2X7R, negatively affecting T-regulatory (Treg) and
natural killer T (NKT) cell survival and arguing in favor of a
direct role of eNAD in the pathophysiological mechanism of
P2X7R activation. The reduction of Treg function via NAD-
induced gating of P2X7 can be employed in vivo as a strategy to
promote the antitumor response of effector T cells. Systemic
injection of NAD results in the selective depletion of Tregs via
NAD-mediated activation of P2X7, which enhances anticancer
immune responses in several mouse tumor models (20, 72).
While highly interesting and potentially relevant for human
immune responses, this mechanism of P2X7R activation via
eNAD is demonstrated only in mouse models: additional
research is needed to determine whether it is relevant for
human immune responses too.
eNAD DEGRADATION-SIGNALING
SYSTEM IN REGULATING IMMUNE
RESPONSES

One of the reasons why eNAD levels are generally low is that
there are several extracellular enzymes that rapidly transform it,
guaranteeing recycling of a high energy molecule through the
generation of products that can be easily up-taken by cells. The
intermediates, however, have a life of their own as signaling
molecules, thereby modulating activity of immune cells.
August 2021 | Volume 12 | Article 704779
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The best-known NAD-degrading/signaling systems rely on the
activity of CD38, an immunomodulatory enzyme (Figure 3).

Human CD38, the main member of the NADase/ADPR
cyclase family that includes also CD157/BST-1, is a surface
glycoprotein characterized by a relatively large extracellular
domain that contains the catalytic site, a single transmembrane
pass, and a short cytoplasmic tail (73, 74). CD38 is a
multifunctional ectoenzyme, involved in the catabolism and
degradation of eNAD (under normal pH) and NAD phosphate
(NADP, under acidic pH), producing ADP ribose (ADPR)
together with signaling metabolites involved in intracellular
Ca2+ mobilization. The main catalytic activity is the NAD
glycohydrolase that generates Nam and ADPR. CD38 can also
act as NAD cyclase, producing cADPR, which is then hydrolyzed
to ADPR. Lastly, in the presence of NADP and Na, under acidic
pH levels, CD38 can generate nicotinic acid adenine dinucleotide
phosphate (NAADP) (49). The finding of an extracellular
enzymatic activity of CD38 leading to the generation of
Frontiers in Immunology | www.frontiersin.org 4
messengers that enter cells to induce intracellular Ca2+ fluxes
remains an unsolved “topological paradox” (49, 75). More recent
data have enriched the picture by showing that CD38 can also be
found in the nucleus and mitochondrial membrane and that a
soluble form of CD38 is most likely present in the cytoplasm,
leading to the hypothesis of a compartmentalized generation of
NAD-derived signaling metabolites (49, 76–78). ADPR, cADPR
and NAADP share the ability to mobilize Ca2+ ions from
intracellular stores: cADPR binds to ryanodine receptors (RyR)
expressed on the endoplasmic reticulum, ADPR binds to
membrane melastatin related transient receptor potential
cation channels TRPM2 (49, 79) and NAADP binds to
receptors expressed by acidic organelles, such as lysosomes,
suggesting a role as Ca2+ messenger in the endocytic pathway
(80). It is therefore likely that during an immune response, NAD,
released outside of cells due to local conditions of inflammation
and cellular damage is converted into Ca2+-active metabolites
through the action of CD38 expressed by activated lymphocytes,
FIGURE 2 | eNAD and purinergic signaling. Pathological or physiological stimuli, including hypoxic and inflammatory conditions, metabolic and cellular stress,
promote the release of NAD from the cell. NAD can then bind to P2X (isoforms P2X1, P2X4, P2X7) and P2Y (isoforms P2Y1, P2Y11), activating several intracellular
signaling and modulating immune responses.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Audrito et al. NAD-Metabolizing Enzymes in Immune Regulation
which in turn contribute to lymphocyte activation through Ca2+

signaling (80–82).
There is a second alternative possibility that is gaining

momentum in the context of tumor immunosuppression.
According to this hypothesis, ADPR could also be short-
circuited to ADO via the action of CD203, which generates
AMP from ADPR and CD73 (53, 83, 84), which cleaves the last
phosphate, generating ADO (49). In this way, CD38 could
contribute to the generation of a tumor-favorable environment,
as recently demonstrated in tumors characterized by a large T
cell infiltrate (85). Therefore, it seems that according to the
environment, CD38 can generate both immune-boosting and
immune-suppressive metabolites, thereby activating or
suppressing immune responses.

These at times opposing roles of CD38 in defining immune
responses are in part confirmed by studies on CD38-deficient
mice. Interestingly, when the animals are kept in clean facilities
without infectious challenges, they grow and develop normally,
without major defects (86). On the other hand, during infections
they show impaired lymphocyte activation and homing and are
ultimately more susceptible to death due to sepsis (87, 88). CD38-
Frontiers in Immunology | www.frontiersin.org 5
deficient animals also show reduced tumor formation, attributed
to the lack CD38-mediated immunosuppression.

In the human system, CD38 is widely expressed on the
surface of immune cells, particularly in conditions of cellular
activation. On the cell surface, CD38 is part of the
immunological synapse, forming lateral associations with
critical receptors on T, B, and myeloid cells, thereby
positioning itself at the center of action (48, 49). In fact, it was
reported that CD38 localizes in close contact with T cell receptor
(TCR), the B cell receptor (BCR), and key chemokine receptors,
among other molecules (89). Perhaps the best understood
function of CD38 is in the regulation of T lymphocyte
functions, where the enzyme works again different ways (90–93).

First, CD38-dependent-Ca2+ signaling directly contributes to
T cell activation, likely providing an essential second signal that
drives gene expression and consequently differentiation,
development, and cytotoxicity (93–95).

As a second level of T cell regulation, the NAD/CD38 axis was
proposed to control T cell metabolic reprogramming needed for
full T lymphocyte activation through the modulation of sirtuin
activity (90, 96). Several studies are shedding light on this
FIGURE 3 | eNAD and enzymatic/functional extracellular machinery in regulating immune responses. Extracellular NAD can also be metabolized by a series of
enzymes of the cell surface that are involved in scavenging of nucleotides. The end product of the reaction, adenosine, can then be internalized and reconverted to
related nucleosides (e.g., ATP or NAD). In particular, CD38 hydrolyzes NAD to generate intermediates (cADPR and ADPR), potent intracellular Ca2+-mobilizing
agents, through binding RyR or TRPM2 receptors. CD38 activation induces migration, proliferation, and modulation of immune responses, specifically T cell
functions, as detailed in the text. In addition, CD38 activity releases nicotinamide (the main NAD precursor) that can be internalized into the cell and, together with a
second precursor nicotinic acid, converted in NAD by NAMPT and NAPRT activities, respectively, increasing intracellular NAD levels and affecting sirtuins and PARPs
(NAD-consuming enzymes) functions. NAMPT and NAPRT can be secreted/released in the extracellular space acting as cytokine-like proteins. Finally, NAD and ATP
can be converted in adenosine. ATP is metabolized by CD39 to AMP that is further hydrolyzed by ecto-5’-nucleotidase/CD73 which promotes the formation of
adenosine. Adenosine then activates adenosine receptors (purinergic receptor P1). The final outcome depends on the relative concentrations of substrates and
products and on the expression of nucleotide-metabolizing ecto-enzymes and NAD-biosynthetic enzymes. NAD, nicotinamide adenine dinucleotide; NADP, NAD
phosphate; NAMPT, nicotinamide phosphoribosyltransferase; NAPRT, nicotinate phosphoribosyltransferase; PARPs, poly ADP-ribose polymerases; ADPR, ADP
ribose; cADPR, cyclic ADP ribose; NAADP, nicotinic acid adenine dinucleotide phosphate; ATP, adenosine triphosphate; AMP, adenosine monophosphate; P1,
adenosine purinergic receptor; RYR, ryanodine receptors; TRPM2, transient receptor potential melastatin-related 2; i, intracellular; e, extracellular.
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molecular circuit as an important metabolic checkpoint
contributing to several aspects of cellular energy metabolisms,
including glycolysis, oxidative phosphorylation (OXPHOS),
glutaminolysis, which are strictly associated with T cell
functional fate (90, 93, 97, 98). According to the models
proposed, expression of CD38 on the cell surface would limit
intracellular NAD levels, negatively impacting on the activities of
the NAD-dependent enzymes SIRT1 and SIRT3, which are
deacetylases with fundamental roles in epigenetic regulation
(93). Lastly, recent data indicate that CD38 is highly expressed
by specific subsets of immunosuppressive tumor infiltrating
lymphocytes, including regulatory T cells and T helper 17 cells
(90, 99–101). Expression of the molecule occurs often in
association with exhaustion markers, such as programmed cell
death protein 1 (PD-1), pointing to an active role of CD38 in
modulating T cell fate toward the generation of an immune
tolerant landscape in tumors, likely through the generation of
ADO (90) (Figure 3).

What remains unclear so far is what are the factors that tip the
balance in favor of Ca2+-active metabolites and hence immune
activation or in favor of ADO and hence immunosuppression (93,
94, 102–104). Therefore, inhibition of CD38 is a valid therapeutic
strategy to reestablish a functional immune surveillance (105),
open the way to combination therapies with immune checkpoint
inhibitors, as discussed in a separate paragraph.
eNAD BIOSYNTHETIC-SIGNALING
SYSTEM IN REGULATING IMMUNE
RESPONSES

Beside NAD-consuming, also NBEs were reported in the
extracellular compartment. The best known and characterized
among them is nicotidamide phosphoribosyltransferase
(NAMPT), which catalyzes the conversion of Nam to NMN in
the presence of phosphoribosyl pyrophosphate (PRPP) and ATP
(7, 44).

The presence of NAMPT in biological fluids is now well
established: however, several years were needed before realizing
that a cytokine promoting B cell differentiation and originally
described in mid-nineties (106), and an extracellular adipokine
called visfatin were in fact the same protein as NAMPT (11, 107,
108). Of note, different cell types, including neutrophils,
monocytes, macrophages, and cancer cells secrete eNAMPT in
the extracellular space in response to inflammation, cellular
stress, infections, and hypoxic conditions, among others. In
human plasma eNAMPT normal levels are in the low
nanomolar range (2-4 ng/ml), but it is over-expressed in
several inflammatory and metabolic disorders, including
cancer, where concentrations can increase 10-20 times (11, 108).

The second NBE dosed in biological fluids is nicotinic acid
phosphoribosyltransferase (NAPRT), which controls the NAD
generation pathway starting from Na. While the NAMPT
pathway is probably the predominant one in most cells and
tissues, considering that all NAD-consuming enzymes generate
Nam, the activity of NAPRT is believed to boost NAD levels in
Frontiers in Immunology | www.frontiersin.org 6
stress conditions (44, 109–111). Information on eNAPRT is far
more limited, even though concentration data indicate again a
physiological level in low nanomolar range (1-2 ng/ml), raising
sometimes dramatically, particularly during sepsis (112).

Whether these enzymes are active in the extracellular
compartment remains uncertain, mainly because of the
absence of detectable PRPP levels, an essential co-factor to
produce NMN and nicotinic acid mononucleotide (NaMN). In
addition, the rest of the enzymatic cascade producing NAD has
never been reported in the extracellular space (109). From data
present in the literature, we can exclude a direct eNAD synthesis
in physiological conditions, but we cannot exclude a site-specific
and transient eNAD synthesis in inflammatory conditions, due
to release of intracellular molecules (ATP, PRPP) and enzymes.
In favor of a compartment-specific function, the active forms
of these enzymes are in a dimeric conformation, but within the
extracellular compartment they should be in a monomeric,
and hence inactive, form (113). Lastly, functional studies have
shown that eNAMPT and eNAPRT, genetically modified to be
enzymatically inactive, retain their pro-inflammatory properties
(112) (Figure 3).

A second area of investigation concerns the mechanisms of
trafficking of these enzymes from the intracellular to the
extracellular space, which appear “non-classical”, as secretion is
unaffected by monensin and brefeldin A, two inhibitors of the
classical endoplasmatic reticulum (ER)–Golgi secretory pathway
(114–117). An interesting finding indicates that NAMPT secretion
could be regulated through SIRT1- and SIRT6-deacetylation,
thereby linking NAD-biosynthetic and -consuming enzymes, and
potentially suggesting eNAMPT secretion as regulatory mechanism
to decrease its intracellular concentrations (118, 119). Recent
evidence showed that eNAMPT is carried in extracellular vesicles
(EVs) through systemic circulation in mice and humans. EV-
contained-eNAMPT is internalized into cells, enhancing NMN
and hence NAD synthesis (120). eNAMPT is actively secreted via
exosomes also from microglia during neuroinflammation due to
ischemic injury (121). These findings support the possibility of
metabolic exchange between tumor/inflammatory and immune
cells and vice versa within the site of inflammation or the tumor
microenvironment (TME), as previously described for other
cytokines and metabolic molecules (122, 123).

The conclusion from these data is that outside of cells it is
unlikely that NAMPT and NAPRT function as NAD-producing
enzymes, raising the alternative possibility that they possess
different functions. In fact, eNAMPT can directly bind Toll-
like receptor 4 (TLR4) (112, 124) and C–C chemokine receptor
type 5 (CCR5) (125), which might explain how the protein is
involved in the activation of an inflammatory signature. The
binding with TLR4 was demonstrated in different cellular
models, leading to activation of specific intracellular signaling
pathways (e.g., STAT3, NF-kB, Akt, P38) within minutes, and
activation of inflammasome in few hours (112, 124).

Less recently, it was reported that eNAMPT can selectively
inhibit infection of monocytes by human immunodeficiency
virus (HIV) and this activity was linked to a direct interaction
with CCR5, shown using surface plasmon resonance (SPR)
(126). More recently, Torretta et al. suggested that eNAMPT
August 2021 | Volume 12 | Article 704779

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Audrito et al. NAD-Metabolizing Enzymes in Immune Regulation
acts as a natural antagonist of CCR5 in cancer cells (125). Within
the cancer microenvironment, eNAMPT seems to contribute to
shape an immunotolerant environment, mostly acting on the
myeloid component. We described a role for eNAMPT in the
differentiation of circulating monocytes from chronic
lymphocytic leukemia (CLL) patients toward tumor-supporting
M2 macrophages (127). Recently, it was demonstrated that
iNAMPT acts also on myeloid-derived suppressor cells
(MDSCs) via a SIRT1/hypoxia-inducible factor (HIF)-1a axis,
promoting their mobilization (128). The activation of these
circuits creates an immunosuppressive and tumor-promoting
microenvironment (Figure 3).

Much less is known on eNAPRT, even though from early
information it seems to possess properties similar to NAMPT
when in extracellular fluids. Managò et al. demonstrated that
eNAPRT binds TLR4 on macrophages triggering NF-kB
activation and pro-inflammatory cytokines secretion (112).
Moreover, eNAPRT shares with eNAMPT the activation of a
transcriptional program, maybe mediated by the induction of
macrophage colony-stimulating factor (M-CFS), to force
monocyte differentiation into macrophages. In turn,
macrophages are a source of eNAMPT and eNAPRT in vivo
(112). Even if several issues remain to be investigated, a
functional role of these enzymes in primary innate immunity
responses is clearly emerging, opening the way to target these
enzymes to modulate inflammation.
IS THE NADome A THERAPEUTIC
TARGET?

Alterations in the NADome have been described in several
human diseases, including inflammatory conditions (gastric
Frontiers in Immunology | www.frontiersin.org 7
and intestinal inflammatory diseases, graft-versus-host disease,
sepsis and multiple organ failure, allergies particularly in the
lungs, atherosclerosis, age-associated insulin resistance,
neuroinflammation/degeneration), autoimmune diseases
(multiple sclerosis, psoriasis, systemic lupus erithematosous),
cardiovascular diseases and cancer (7, 55, 129).

In addition to their role in shaping the immune system and in
creating immunosuppressive conditions, in some instances
NAD-metabolizing enzymes are considered biological
prognostic markers and therapeutic targets. Among them, the
most promising are CD38, CD73 and NAMPT and the disease
setting is cancer (Figure 4).

CD38 is expressed in hematological malignancies, including
acute B lymphoblastic leukemia (B-ALL), acute myeloid
leukemia (AML), mantle cell lymphoma (MCL), CLL, multiple
myeloma (MM) and NK/T cell leukemia (T-ALL) (55, 94, 102,
105, 130–132). The role of CD38 has been widely explored and
defined in CLL and in MM. On CLL B lymphocytes, CD38
associates with the BCR complex [BCR/CD81/CD19/CD21] and
cooperates to amplify the signal transduction driving cell
proliferation (55, 133, 134).

Patients with CLL with a higher proportion of leukemic cells
expressing CD38 ≥30% experience a shorter time to first
treatment and a more aggressive clinical course with inferior
overall survival compared to patients who have <30% of CD38+

CLL cells, thus establishing surface CD38 as a marker of poor
prognosis (135–137).

MM is a plasma cell neoplastic aggressive disease with a median
overall survival of 4.4–7.1 years (138). CD38 is highly and
ubiquitously expressed on MM cells and at low levels on normal
lymphoid and myeloid cells (49, 139). Daratumumab is a first-in-
class anti-CD38 therapeutic monoclonal antibody (mAb) approved
in 2015 for the treatment of relapsed/refractory MM (140).
FIGURE 4 | CD38, CD73 and NAMPT as markers and therapeutic targets in pathological conditions. CD38, CD73 and NAMPT expression levels increase in several
pathological conditions. These molecules become markers of aggressive disease. In the lower part of the cartoon specific pharmacological inhibitors and/or blocking
antibodies, currently in preclinical or clinical trials for each target are listed.
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The documented mechanisms of action include antibody-
dependent cell cytotoxicity (ADCC), complement dependent
cytotoxicity (CDC), antibody-dependent cellular phagocytosis
(ADCP), and inhibition of CD38 enzymatic activities and
induction of apoptosis in a caspase-dependent manner (132,
141, 142). This Ab is now used in combination with other
drugs; however, the density of CD38 molecules on MM cells is a
predictive factor to the efficacy and durability of daratumumab
treatment (143). In CLL, CD38 engagement by daratumumab
modulates BCR signaling and enhances the anti-CLL activity of
ibrutinib, an inhibitor of BCR signaling (144). In addition, CD38 is
highly expressed in different solid tumors (i.e., gliomas, pancreatic
cancer, non-small cell lung cancer, melanoma, hepatocellular
carcinoma), generally associated to increased aggressiveness and
creating a tumor-supportingmicroenvironment (145), providing a
rationale for the expansion of daratumumab’s field of action.

Targeting CD73 to interfere with the degradation of AMP
into ADO, reducing the generation of an immunosuppressed
and pro-angiogenic niche that promotes the onset and
progression of cancer, is an attractive therapeutic option (146).
CD73 expression is higher in the majority of human solid
tumors. Its expression and activity are closely associated with
tumor invasiveness and metastasis (147, 148).

Inhibition of CD73 using either mAb or small molecule
inhibitors such as a,b-methylene-ADP (APCP) have
demonstrated antitumor activities in preclinical tumor mouse
models (148, 149). Furthermore, a number of anti-CD73 mAbs
(MEDI9447, BMS986179, SRF373/NZV930, CPI-006/CPX-006,
IPH5301, TJ004309) and selective inhibitors (LY3475070,
AB680, CB-708) are being tested in early phase clinical trials,
as recently reviewed in (147, 150).

Therefore, combination therapies with CD73 blocking Abs or
small molecule inhibitors and other therapeutic strategies
including immune checkpoint blockade, adoptive T cell
therapy, agonistic immunotherapy, chemotherapy, and
radiation therapy, could have synergic effects in various
cancers boosting immune response to keep the tumor cells in
control, as emerged by recent studies (148, 151).

The first NAMPT inhibitor FK866 (also known as APO866)
was described in 2003 by Hasmann et al. (152) Since that, several
specific NAMPT inhibitors were developed as recently reviewed
in in (7, 153, 154). The rationale was mainly supported by the
over-expression of NAMPT in cancer cells, as extensively
described by us and by several research groups (11, 108, 117,
127, 155–158).

This led to a first wave of molecules that entered clinical trials
for cancer therapy; however, no molecules reported to have
progressed to later stages [www.clinicaltrials.gov (7, 153)].

Toxicity of old inhibitors and rescue mechanisms by the
activation of other NBEs following NAMPT block, have
limited the use of NAMPT inhibitors as single agents.
However, increasing evidence suggests that a better selection of
tumor subtype rely exclusively on NAMPT activity to generate
NAD, as well as novel drugs less toxic, could open a second life
for NAMPT inhibition strategy. Moreover, a combination
between NAMPT inhibitors and selective inhibitors of
Frontiers in Immunology | www.frontiersin.org 8
oncogenic signaling driving cancer progression could be
therapeutically exploited as suggested (11, 117, 159).

An unknown notion is whether these inhibitors could also
affect eNAMPT activity, even if, as mentioned before, the
enzymatic activity of eNAMPT is controversial. Travelli et al.
developed novel inhibitors that can’t cross the plasma membrane
and have more activity to block eNAMPT form, demonstrating
reduced growth of triple negative mammary carcinoma in mice
(160). On the other hand, there is also intense research to
develop a blocking antibody to neutralize eNAMPT and reduce
its “cytokine-like activity” within the TME. The group of Garcia
firstly has devised a polyclonal eNAMPT neutralizing antibody
(pAb) (161). They used this Ab in different models of
inflammation and cancer, including lung injury and prostate
cancer. Recently, in acute respiratory distress syndrome (ARDS)
they demonstrated the highly significant contribution of
endothelial cell (EC)-derived NAMPT to the severity of
inflammatory lung injury in preclinical ARDS models.
Intravenous delivery of either eNAMPT-neutralizing pAb/mAb
significantly attenuated inflammatory lung injury in mouse
model. In vitro studies on EC demonstrated that eNAMPT-
neutralizing antibodies strongly abrogate eNAMPT-induced
TLR4 pathway activation (162). In invasive prostate cancer
(PCa) Sun et al. proved the activity of eNAMPT in supporting
the invasive features of PCa, and the tumor blocking activity of
the anti-eNAMPT neutralizing antibody in a pre-clinical in vivo
model of PCa invasion (163). In parallel, the group of Prof.
Genazzani in Italy is developing a novel monoclonal antibody
(C269) that neutralizes in vitro the cytokine-like action of
eNAMPT and that reduces its serum levels in rodents. This Ab
is able to significantly reduce acute and chronic colitis in two
models of induced-colitis (164), suggesting a role of eNAMPT
in the pathogenesis of inflammatory bowel disease (IBD) and
the therapeutic potential of its neutralization in this pathology.
The general idea of targeting eNAMPT in tumors and
in inflammatory diseases is increasing to counteract the
extracellular functions of this protein, mainly linked to the
activation of TLR4 and modulation of immune responses.
The best option could be to combine i/eNAMPT targeting with
immunomodulatory agents to obtain a tumor growth regression
and a concomitant reversion of immunosuppressive conditions,
acting on the immune system. In support of this, two papers
demonstrated that NAMPT inhibitors enhance the anti-tumor
efficacy of immune checkpoint inhibitors, i.e. antibody against
PD-1 (128, 165).
CONCLUSIONS AND FUTURE
PERSPECTIVES

Since the discovery of the presence of extracellular nucleotides
such as ATP and NAD released from intracellular stores in
conditions of cell stress or inflammation, they are considered
“danger signals” to alert the immune system, participating in the
recruitment, activation, and differentiation of immune cells, and
promoting the production and release of pro-inflammatory
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cytokines. Within the TME, extracellular nucleotides create pro-
tumor conditions acting directly on tumor aggressive features but
also on immune cells promoting a general immunosuppression.

The extracellular machinery that regulates eNAD functions is
complex, as we summarized in this review several eNAD-
metabolizing enzymes rapidly degrade it into metabolites that in
turn can function as signaling messengers or can be internalized
and used to reconstitute the intracellular NAD pool. Directly,
eNAD can bind purinergic receptors and activate signaling. The
effects of eNAD are therefore dependent on the presence of
receptors, metabolizing enzymes and cellular stress conditions
within the microenvironment. Understanding this intricate
machinery remains the most important challenge to develop
therapeutic strategies to modulate expression of these extracellular
nucleotides, relative enzymes, and receptors to re-educate the
immune system in different diseases, including cancer.
Frontiers in Immunology | www.frontiersin.org 9
AUTHOR CONTRIBUTIONS

SD designed and reviewed the work, which was assembled by
VA, with contribution of VM and LB. All authors contributed to
the article and approved the submitted version.
FUNDING

This work was supported by the Ministry of Education
University and Research-MIUR, PRIN Project 2017CBNCYT
and Progetto strategico di Eccellenza Dipartimentale
#D15D18000410001 (the latter awarded to the Dept. of
Medical Sciences, University of Turin) and ITN INTEGRATA
program (grant agreement 813284), and by Associazione Italiana
Ricerca sul Cancro (AIRC), Investigator Grant –IG 2019 #23095.
REFERENCES
1. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the

Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science
(2009) 324(5930):1029–33. doi: 10.1126/science.1160809

2. Bonora M, Patergnani S, Rimessi A, De Marchi E, Suski JM, Bononi A, et al.
ATP Synthesis and Storage. Purinergic Signal (2012) 8(3):343–57.
doi: 10.1007/s11302-012-9305-8

3. Xiao W, Wang RS, Handy DE, Loscalzo J. NAD(H) and NADP(H) Redox
Couples and Cellular Energy Metabolism. Antioxid Redox Signal (2018) 28
(3):251–72. doi: 10.1089/ars.2017.7216

4. Yaku K, Okabe K, Nakagawa T. NAD Metabolism: Implications in
Aging and Longevity. Ageing Res Rev (2018) 47:1–17. doi: 10.1016/j.arr.
2018.05.006

5. Linden J, Koch-Nolte F, Dahl G. Purine Release, Metabolism, and Signaling
in the Inflammatory Response. Annu Rev Immunol (2019) 37:325–47.
doi: 10.1146/annurev-immunol-051116-052406

6. Amjad S, Nisar S, Bhat AA, Shah AR, Frenneaux MP, Fakhro K, et al. Role of
NAD(+) in Regulating Cellular and Metabolic Signaling Pathways. Mol
Metab (2021) 49:101195. doi: 10.1016/j.molmet.2021.101195

7. Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, et al. NAD(+)
Metabolism: Pathophysiologic Mechanisms and Therapeutic Potential.
Signal Transduct Target Ther (2020) 5(1):227. doi: 10.1038/s41392-020-
00311-7

8. Di Virgilio F, Sarti AC, Falzoni S, De Marchi E, Adinolfi E. Extracellular
ATP and P2 Purinergic Signalling in the Tumour Microenvironment. Nat
Rev Cancer (2018) 18(10):601–18. doi: 10.1038/s41568-018-0037-0

9. Haag F, Adriouch S, Brass A, Jung C, Moller S, Scheuplein F, et al.
Extracellular NAD and ATP: Partners in Immune Cell Modulation.
Purinergic Signal (2007) 3(1-2):71–81. doi: 10.1007/s11302-006-9038-7

10. Scheuplein F, Schwarz N, Adriouch S, Krebs C, Bannas P, Rissiek B, et al.
NAD+ and ATP Released From Injured Cells Induce P2X7-Dependent
Shedding of CD62L and Externalization of Phosphatidylserine by Murine T
Cells. J Immunol (2009) 182(5):2898–908. doi: 10.4049/jimmunol.0801711

11. Audrito V, Messana VG, Deaglio S. NAMPT and NAPRT: Two Metabolic
Enzymes With Key Roles in Inflammation. Front Oncol (2020) 10:358.
doi: 10.3389/fonc.2020.00358

12. Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F.
Increased Level of Extracellular ATP at Tumor Sites: In Vivo Imaging With
Plasma Membrane Luciferase. PloS One (2008) 3(7):e2599. doi: 10.1371/
journal.pone.0002599

13. Wilhelm K, Ganesan J, Muller T, Durr C, GrimmM, Beilhack A, et al. Graft-
Versus-Host Disease Is Enhanced by Extracellular ATP Activating P2X7R.
Nat Med (2010) 16(12):1434–8. doi: 10.1038/nm.2242

14. O’Reilly T, Niven DF. Levels of Nicotinamide Adenine Dinucleotide in
Extracellular Body Fluids of Pigs may be Growth-Limiting for Actinobacillus
Pleuropneumoniae and Haemophilus Parasuis. Can J Vet Res (2003) 67
(3):229–31.

15. Billington RA, Bruzzone S, De Flora A, Genazzani AA, Koch-Nolte F, Ziegler
M, et al. Emerging Functions of Extracellular Pyridine Nucleotides.Mol Med
(2006) 12(11-12):324–7. doi: 10.2119/2006-00075.Billington

16. Di Stefano M, Conforti L. Diversification of NAD Biological Role: The
Importance of Location. FEBS J (2013) 280(19):4711–28. doi: 10.1111/
febs.12433

17. Trautmann A. Extracellular ATP in the Immune System: More Than
Just a “Danger Signal”. Sci Signal (2009) 2(56):pe6. doi: 10.1126/scisignal.
256pe6

18. Corriden R, Insel PA. Basal Release of ATP: An Autocrine-Paracrine
Mechanism for Cell Regulation. Sci Signal (2010) 3(104):re1. doi: 10.1126/
scisignal.3104re1

19. Schilling E, Hauschildt S. Extracellular ATP Induces P2X7-Dependent
Nicotinamide Phosphoribosyltransferase Release in LPS-Activated
Human Monocytes. Innate Immun (2012) 18(5):738–44. doi: 10.1177/
1753425912439614

20. Adriouch S, Haag F, Boyer O, Seman M, Koch-Nolte F. Extracellular NAD
(+): A Danger Signal Hindering Regulatory T Cells. Microbes Infect (2012)
14(14):1284–92. doi: 10.1016/j.micinf.2012.05.011

21. Bianchi ME. DAMPs, PAMPs and Alarmins: All We Need to Know About
Danger. J Leukoc Biol (2007) 81(1):1–5. doi: 10.1189/jlb.0306164

22. Venereau E, Ceriotti C, Bianchi ME. DAMPs From Cell Death to New Life.
Front Immunol (2015) 6:422. doi: 10.3389/fimmu.2015.00422

23. Tanaka K, Choi J, Cao Y, Stacey G. Extracellular ATP Acts as a Damage-
Associated Molecular Pattern (DAMP) Signal in Plants. Front Plant Sci
(2014) 5:446. doi: 10.3389/fpls.2014.00446

24. Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S. The P2X7
Receptor in Infection and Inflammation. Immunity (2017) 47(1):15–31.
doi: 10.1016/j.immuni.2017.06.020

25. Smyth LM, Bobalova J, Mendoza MG, Lew C, Mutafova-Yambolieva VN.
Release of Beta-Nicotinamide Adenine Dinucleotide Upon Stimulation of
Postganglionic Nerve Terminals in Blood Vessels and Urinary Bladder. J Biol
Chem (2004) 279(47):48893–903. doi: 10.1074/jbc.M407266200M
407266200[pii

26. Breen LT, Smyth LM, Yamboliev IA, Mutafova-Yambolieva VN. Beta-NAD
Is a Novel Nucleotide Released on Stimulation of Nerve Terminals in
Human Urinary Bladder Detrusor Muscle. Am J Physiol Renal Physiol
(2006) 290(2):F486–95. doi: 10.1152/ajprenal.00314.2005

27. Mutafova-Yambolieva VN, Hwang SJ, Hao X, Chen H, Zhu MX, Wood JD,
et al. Beta-Nicotinamide Adenine Dinucleotide Is an Inhibitory
Neurotransmitter in Visceral Smooth Muscle. Proc Natl Acad Sci USA
(2007) 104(41):16359–64. doi: 10.1073/pnas.0705510104

28. Adriouch S, Hubert S, Pechberty S, Koch-Nolte F, Haag F, Seman M.
NAD(+) Released During Inflammation Participates in T Cell Homeostasis
August 2021 | Volume 12 | Article 704779

https://doi.org/10.1126/science.1160809
https://doi.org/10.1007/s11302-012-9305-8
https://doi.org/10.1089/ars.2017.7216
https://doi.org/10.1016/j.arr.2018.05.006
https://doi.org/10.1016/j.arr.2018.05.006
https://doi.org/10.1146/annurev-immunol-051116-052406
https://doi.org/10.1016/j.molmet.2021.101195
https://doi.org/10.1038/s41392-020-00311-7
https://doi.org/10.1038/s41392-020-00311-7
https://doi.org/10.1038/s41568-018-0037-0
https://doi.org/10.1007/s11302-006-9038-7
https://doi.org/10.4049/jimmunol.0801711
https://doi.org/10.3389/fonc.2020.00358
https://doi.org/10.1371/journal.pone.0002599
https://doi.org/10.1371/journal.pone.0002599
https://doi.org/10.1038/nm.2242
https://doi.org/10.2119/2006-00075.Billington
https://doi.org/10.1111/febs.12433
https://doi.org/10.1111/febs.12433
https://doi.org/10.1126/scisignal.256pe6
https://doi.org/10.1126/scisignal.256pe6
https://doi.org/10.1126/scisignal.3104re1
https://doi.org/10.1126/scisignal.3104re1
https://doi.org/10.1177/1753425912439614
https://doi.org/10.1177/1753425912439614
https://doi.org/10.1016/j.micinf.2012.05.011
https://doi.org/10.1189/jlb.0306164
https://doi.org/10.3389/fimmu.2015.00422
https://doi.org/10.3389/fpls.2014.00446
https://doi.org/10.1016/j.immuni.2017.06.020
https://doi.org/10.1074/jbc.M407266200M407266200[pii
https://doi.org/10.1074/jbc.M407266200M407266200[pii
https://doi.org/10.1152/ajprenal.00314.2005
https://doi.org/10.1073/pnas.0705510104
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Audrito et al. NAD-Metabolizing Enzymes in Immune Regulation
by Inducing ART2-Mediated Death of Naive T Cells In Vivo. J Immunol
(2007) 179(1):186–94. doi: 10.4049/jimmunol.179.1.186

29. Cekic C, Linden J. Purinergic Regulation of the Immune System. Nat Rev
Immunol (2016) 16(3):177–92. doi: 10.1038/nri.2016.4

30. Bruzzone S, Guida L, Zocchi E, Franco L, De Flora A. Connexin 43 Hemi
Channels Mediate Ca2+-Regulated Transmembrane NAD+ Fluxes in Intact
Cells. FASEB J (2001) 15(1):10–2. doi: 10.1096/fj.00-0566fje

31. Hwang SJ, Durnin L, Dwyer L, Rhee PL, Ward SM, Koh SD, et al. Beta-
Nicotinamide Adenine Dinucleotide Is an Enteric Inhibitory Neurotransmitter
in Human and Nonhuman Primate Colons. Gastroenterology (2011) 140
(2):608–17 e6. doi: 10.1053/j.gastro.2010.09.039

32. Mottahedeh J, Haffner MC, Grogan TR, Hashimoto T, Crowell PD, Beltran
H, et al. CD38 is Methylated in Prostate Cancer and Regulates Extracellular
NAD(). Cancer Metab (2018) 6:13. doi: 10.1186/s40170-018-0186-3

33. Sitkovsky MV, Ohta A. The ‘Danger’ Sensors That STOP the Immune
Response: The A2 Adenosine Receptors? Trends Immunol (2005) 26(6):299–
304. doi: 10.1016/j.it.2005.04.004

34. Deaglio S, Robson SC. Ectonucleotidases as Regulators of Purinergic
Signaling in Thrombosis, Inflammation, and Immunity. Adv Pharmacol
(2011) 61:301–32. doi: 10.1016/B978-0-12-385526-8.00010-2

35. Vaisitti T, Audrito V, Serra S, Bologna C, Brusa D, Malavasi F, et al. NAD+-
Metabolizing Ecto-Enzymes Shape Tumor-Host Interactions: The Chronic
Lymphocytic Leukemia Model. FEBS Lett (2011) 585(11):1514–20.
doi: 10.1016/j.febslet.2011.04.036

36. Kazemi MH, Raoofi Mohseni S, Hojjat-Farsangi M, Anvari E, Ghalamfarsa
G, Mohammadi H, et al. Adenosine and Adenosine Receptors in the
Immunopathogenesis and Treatment of Cancer. J Cell Physiol (2018) 233
(3):2032–57. doi: 10.1002/jcp.25873

37. Di Virgilio F. Purines, Purinergic Receptors, and Cancer. Cancer Res (2012)
72(21):5441–7. doi: 10.1158/0008-5472.CAN-12-16000008-5472.CAN-12-
1600[pii

38. Di Virgilio F, Sarti AC, Coutinho-Silva R. Purinergic Signaling, DAMPs, and
Inflammation. Am J Physiol Cell Physiol (2020) 318(5):C832–C5.
doi: 10.1152/ajpcell.00053.2020

39. Gasparrini M, Sorci L, Raffaelli N. Enzymology of Extracellular NAD
Metabolism. Cell Mol Life Sci (2021) 78(7):3317–31. doi: 10.1007/s00018-
020-03742-1

40. Audrito V, Messana VG, Moiso E, Vitale N, Arruga F, Brandimarte L, et al.
NAMPT Over-Expression Recapitulates the BRAF Inhibitor Resistant
Phenotype Plasticity in Melanoma. Cancers (Basel) (2020) 12(12):3855–77.
doi: 10.3390/cancers12123855

41. Houtkooper RH, Canto C, Wanders RJ, Auwerx J. The Secret Life of NAD+:
An Old Metabolite Controlling New Metabolic Signaling Pathways. Endocr
Rev (2010) 31(2):194–223. doi: 10.1210/er.2009-0026

42. Hassinen IE. Signaling and Regulation Through the NAD(+) and NADP(+)
Networks. Antioxid Redox Signal (2019) 30(6):857–74. doi: 10.1089/
ars.2017.7479

43. Nikiforov A, Dolle C, Niere M, Ziegler M. Pathways and Subcellular
Compartmentation of NAD Biosynthesis in Human Cells: From Entry of
Extracellular Precursors to Mitochondrial NAD Generation. J Biol Chem
(2011) 286(24):21767–78. doi: 10.1074/jbc.M110.213298M110.213298[pii

44. Ruggieri S, Orsomando G, Sorci L, Raffaelli N. Regulation of NAD
Biosynthetic Enzymes Modulates NAD-Sensing Processes to Shape
Mammalian Cell Physiology Under Varying Biological Cues. Biochim
Biophys Acta (2015) 1854(9):1138–49. doi: 10.1016/j.bbapap.2015.02.021

45. Canto C, Menzies KJ, Auwerx J. NAD(+) Metabolism and the Control of
Energy Homeostasis: A Balancing Act Between Mitochondria and the
Nucleus. Cell Metab (2015) 22(1):31–53. doi: 10.1016/j.cmet.2015.05.023

46. Grolla AA, Miggiano R, DiMarino D, Bianchi M, Gori A, OrsomandoG, et al.
A Nicotinamide Phosphoribosyltransferase-GAPDH Interaction Sustains the
Stress-Induced NMN/NAD(+) Salvage Pathway in the Nucleus. J Biol Chem
(2020) 295(11):3635–51. doi: 10.1074/jbc.RA119.010571

47. Nikiforov A, Kulikova V, Ziegler M. The Human NAD Metabolome:
Functions, Metabolism and Compartmentalization. Crit Rev Biochem Mol
Biol (2015) 50(4):284–97. doi: 10.3109/10409238.2015.1028612

48. Chini EN. CD38 as a Regulator of Cellular NAD: A Novel Potential
Pharmacological Target for Metabolic Conditions. Curr Pharm Des (2009)
15(1):57–63. doi: 10.2174/138161209787185788
Frontiers in Immunology | www.frontiersin.org 10
49. Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, et al.
Evolution and Function of the ADP Ribosyl Cyclase/CD38 Gene Family in
Physiology and Pathology. Physiol Rev (2008) 88(3):841–86. doi: 10.1152/
physrev.00035.2007

50. Deaglio S, Malavasi F. The CD38/CD157 Mammalian Gene Family: An
Evolutionary Paradigm for Other Leukocyte Surface Enzymes. Purinergic
Signaling (2006) 2:431–41. doi: 10.1007/s11302-006-9002-6

51. SemanM, Adriouch S, Haag F, Koch-Nolte F. Ecto-ADP-Ribosyltransferases
(ARTs): Emerging Actors in Cell Communication and Signaling. Curr Med
Chem (2004) 11(7):857–72. doi: 10.2174/0929867043455611

52. Katada T, Kontani K, Wada T, Hosoda N, Hoshino S, Nishina H. Enzymic
and Signal Transduction Properties of CD38/NADase and PC-1/
Phosphodiesterase. Chem Immunol (2000) 75:60–78. doi: 10.1159/
000058762

53. Garavaglia S, Bruzzone S, Cassani C, Canella L, Allegrone G, Sturla L, et al.
The High-Resolution Crystal Structure of Periplasmic Haemophilus
Influenzae NAD Nucleotidase Reveals a Novel Enzymatic Function of
Human CD73 Related to NAD Metabolism. Biochem J (2012) 441(1):131–
41. doi: 10.1042/BJ20111263

54. Horenstein AL, Chillemi A, Zaccarello G, Bruzzone S, Quarona V, Zito A,
et al. A CD38/CD203a/CD73 Ectoenzymatic Pathway Independent of CD39
Drives a Novel Adenosinergic Loop in Human T Lymphocytes.
Oncoimmunology (2013) 2(9):e26246. doi: 10.4161/onci.26246

55. Vaisitti T, Arruga F, Guerra G, Deaglio S. Ectonucleotidases in Blood
Malignancies: A Tale of Surface Markers and Therapeutic Targets. Front
Immunol (2019) 10:2301. doi: 10.3389/fimmu.2019.02301

56. Kemmer G, Reilly TJ, Schmidt-Brauns J, Zlotnik GW, Green BA, Fiske MJ,
et al. NadN and E (P4) are Essential for Utilization of NAD and
Nicotinamide Mononucleotide But Not Nicotinamide Riboside in
Haemophilus Influenzae. J Bacteriol (2001) 183(13):3974–81. doi: 10.1128/
JB.183.13.3974-3981.2001

57. Grozio A, Sociali G, Sturla L, Caffa I, Soncini D, Salis A, et al. CD73 Protein
as a Source of Extracellular Precursors for Sustained NAD+ Biosynthesis in
FK866-Treated Tumor Cells. J Biol Chem (2013) 288(36):25938–49.
doi: 10.1074/jbc.M113.470435M113.470435

58. Sociali G, Raffaghello L, Magnone M, Zamporlini F, Emionite L, Sturla L,
et al. Antitumor Effect of Combined NAMPT and CD73 Inhibition in an
Ovarian Cancer Model. Oncotarget (2015) 7(3):2968–84. doi: 10.18632/
oncotarget.65026502

59. Burnstock G. Purinergic Nerves. Pharmacol Rev (1972) 24(3):509–81.
60. Burnstock G, Verkhratsky A. Evolutionary Origins of the Purinergic

Signalling System. Acta Physiol (Oxf) (2009) 195(4):415–47. doi: 10.1111/
j.1748-1716.2009.01957.x

61. Burnstock G. Purine and Purinergic Receptors. Brain Neurosci Adv (2018)
2:2398212818817494. doi: 10.1177/2398212818817494

62. Moreschi I, Bruzzone S, Nicholas RA, Fruscione F, Sturla L, Benvenuto F,
et al. Extracellular NAD+ Is an Agonist of the Human P2Y11 Purinergic
Receptor in Human Granulocytes. J Biol Chem (2006) 281(42):31419–29.
doi: 10.1074/jbc.M606625200

63. Klein C, Grahnert A, Abdelrahman A, Muller CE, Hauschildt S. Extracellular
NAD(+) Induces a Rise in [Ca(2+)](i) in Activated Human Monocytes via
Engagement of P2Y(1) and P2Y(11) Receptors. Cell Calcium (2009) 46
(4):263–72. doi: 10.1016/j.ceca.2009.08.004

64. Alefishat E, Alexander SP, Ralevic V. Effects of NAD at Purine Receptors in
Isolated Blood Vessels. Purinergic Signal (2015) 11(1):47–57. doi: 10.1007/
s11302-014-9428-1

65. Durnin L, Hwang SJ, Ward SM, Sanders KM, Mutafova-Yambolieva VN.
Adenosine 5-Diphosphate-Ribose Is a Neural Regulator in Primate and
Murine Large Intestine Along With Beta-NAD(+). J Physiol (2012) 590(Pt
8):1921–41. doi: 10.1113/jphysiol.2011.222414

66. Grahnert A, Klein C, Hauschildt S. Involvement of P2X Receptors in the
NAD(+)-Induced Rise in [Ca (2+)] (I) in Human Monocytes. Purinergic
Signal (2009) 5(3):309–19. doi: 10.1007/s11302-009-9144-4

67. Khakh BS, North RA. P2X Receptors as Cell-Surface ATP Sensors in Health
and Disease. Nature (2006) 442(7102):527–32. doi: 10.1038/nature04886

68. Dubyak GR. P2X7 Receptor Regulation of Non-Classical Secretion From
Immune Effector Cells. Cell Microbiol (2012) 14(11):1697–706. doi: 10.1111/
cmi.12001
August 2021 | Volume 12 | Article 704779

https://doi.org/10.4049/jimmunol.179.1.186
https://doi.org/10.1038/nri.2016.4
https://doi.org/10.1096/fj.00-0566fje
https://doi.org/10.1053/j.gastro.2010.09.039
https://doi.org/10.1186/s40170-018-0186-3
https://doi.org/10.1016/j.it.2005.04.004
https://doi.org/10.1016/B978-0-12-385526-8.00010-2
https://doi.org/10.1016/j.febslet.2011.04.036
https://doi.org/10.1002/jcp.25873
https://doi.org/10.1158/0008-5472.CAN-12-16000008-5472.CAN-12-1600[pii
https://doi.org/10.1158/0008-5472.CAN-12-16000008-5472.CAN-12-1600[pii
https://doi.org/10.1152/ajpcell.00053.2020
https://doi.org/10.1007/s00018-020-03742-1
https://doi.org/10.1007/s00018-020-03742-1
https://doi.org/10.3390/cancers12123855
https://doi.org/10.1210/er.2009-0026
https://doi.org/10.1089/ars.2017.7479
https://doi.org/10.1089/ars.2017.7479
https://doi.org/10.1074/jbc.M110.213298M110.213298[pii
https://doi.org/10.1016/j.bbapap.2015.02.021
https://doi.org/10.1016/j.cmet.2015.05.023
https://doi.org/10.1074/jbc.RA119.010571
https://doi.org/10.3109/10409238.2015.1028612
https://doi.org/10.2174/138161209787185788
https://doi.org/10.1152/physrev.00035.2007
https://doi.org/10.1152/physrev.00035.2007
https://doi.org/10.1007/s11302-006-9002-6
https://doi.org/10.2174/0929867043455611
https://doi.org/10.1159/000058762
https://doi.org/10.1159/000058762
https://doi.org/10.1042/BJ20111263
https://doi.org/10.4161/onci.26246
https://doi.org/10.3389/fimmu.2019.02301
https://doi.org/10.1128/JB.183.13.3974-3981.2001
https://doi.org/10.1128/JB.183.13.3974-3981.2001
https://doi.org/10.1074/jbc.M113.470435M113.470435
https://doi.org/10.18632/oncotarget.65026502
https://doi.org/10.18632/oncotarget.65026502
https://doi.org/10.1111/j.1748-1716.2009.01957.x
https://doi.org/10.1111/j.1748-1716.2009.01957.x
https://doi.org/10.1177/2398212818817494
https://doi.org/10.1074/jbc.M606625200
https://doi.org/10.1016/j.ceca.2009.08.004
https://doi.org/10.1007/s11302-014-9428-1
https://doi.org/10.1007/s11302-014-9428-1
https://doi.org/10.1113/jphysiol.2011.222414
https://doi.org/10.1007/s11302-009-9144-4
https://doi.org/10.1038/nature04886
https://doi.org/10.1111/cmi.12001
https://doi.org/10.1111/cmi.12001
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Audrito et al. NAD-Metabolizing Enzymes in Immune Regulation
69. Adinolfi E, Giuliani AL, De Marchi E, Pegoraro A, Orioli E, Di Virgilio F.
The P2X7 Receptor: A Main Player in Inflammation. Biochem Pharmacol
(2018) 151:234–44. doi: 10.1016/j.bcp.2017.12.021

70. Giuliani AL, Sarti AC, Falzoni S, Di Virgilio F. The P2X7 Receptor-
Interleukin-1 Liaison. Front Pharmacol (2017) 8:123. doi: 10.3389/
fphar.2017.00123

71. Seman M, Adriouch S, Scheuplein F, Krebs C, Freese D, Glowacki G, et al.
NAD-Induced T Cell Death: ADP-Ribosylation of Cell Surface Proteins by
ART2 Activates the Cytolytic P2X7 Purinoceptor. Immunity (2003) 19
(4):571–82. doi: 10.1016/S1074-7613(03)00266-8

72. Hubert S, Rissiek B, Klages K, Huehn J, Sparwasser T, Haag F, et al.
Extracellular NAD+ Shapes the Foxp3+ Regulatory T Cell Compartment
Through the ART2-P2X7 Pathway. J Exp Med (2010) 207(12):2561–8.
doi: 10.1084/jem.20091154

73. Alessio M, Roggero S, Funaro A, De Monte LB, Peruzzi L, Geuna M, et al.
CD38 Molecule: Structural and Biochemical Analysis on Human T
Lymphocytes, Thymocytes, and Plasma Cells. J Immunol (1990) 145
(3):878–84.

74. Malavasi F, Deaglio S, Ferrero E, Funaro A, Sancho J, Ausiello CM, et al.
CD38 and CD157 as Receptors of the Immune System: A Bridge Between
Innate and Adaptive Immunity. Mol Med (2006) 12(11-12):334–41.
doi: 10.2119/2006–00094.Malavasi

75. De Flora A, Guida L, Franco L, Zocchi E. The CD38/cyclic ADP-Ribose
System: A Topological Paradox. Int J Biochem Cell Biol (1997) 29(10):1149–
66. doi: 10.1016/s1357-2725(97)00062-9

76. Zhao YJ, Lam CM, Lee HC. The Membrane-Bound Enzyme CD38 Exists in
Two Opposing Orientations. Sci Signal (2012) 5(241):ra67. doi: 10.1126/
scisignal.2002700

77. Shrimp JH, Hu J, Dong M, Wang BS, MacDonald R, Jiang H, et al. Revealing
CD38 Cellular Localization Using a Cell Permeable, Mechanism-Based
Fluorescent Small-Molecule Probe. J Am Chem Soc (2014) 136(15):5656–
63. doi: 10.1021/ja411046j

78. Liu J, Zhao YJ, Li WH, Hou YN, Li T, Zhao ZY, et al. Cytosolic Interaction of
Type III Human CD38 With CIB1 Modulates Cellular Cyclic ADP-Ribose
Levels. Proc Natl Acad Sci U.S.A. (2017) 114(31):8283–8. doi: 10.1073/
pnas.1703718114

79. Sumoza-Toledo A, Penner R. TRPM2: A Multifunctional Ion Channel for
Calcium Signalling. J Physiol (2011) 589(Pt 7):1515–25. doi: 10.1113/
jphysiol.2010.201855

80. Lee HC. Structure and Enzymatic Functions of Human CD38. Mol Med
(2006) 12(11-12):317–23. doi: 10.2119/2006-00086.Lee

81. Adebanjo OA, Anandatheerthavarada HK, Koval AP, Moonga BS,
Biswas G, Sun L, et al. A New Function for CD38/ADP-Ribosyl Cyclase
in Nuclear Ca2+ Homeostasis. Nat Cell Biol (1999) 1(7):409–14. doi:
10.1038/15640

82. Guse AH. Cyclic ADP-Ribose: A Novel Ca2+-Mobilising Second Messenger.
Cell Signal (1999) 11(5):309–16. doi: 10.1016/S0898-6568(99)00004-2

83. Colgan SP, Eltzschig HK, Eckle T, Thompson LF. Physiological Roles for
Ecto-5’-Nucleotidase (CD73). Purinergic Signal (2006) 2(2):351–60.
doi: 10.1007/s11302-005-5302-5

84. Allard D, Allard B, Gaudreau PO, Chrobak P, Stagg J. CD73-Adenosine: A
Next-Generation Target in Immuno-Oncology. Immunotherapy (2016) 8
(2):145–63. doi: 10.2217/imt.15.106

85. Chen Z, Han ZC. STAT3: A Critical Transcription Activator in
Angiogenesis. Med Res Rev (2008) 28(2):185–200. doi: 10.1002/med.20101

86. Fukushi Y, Kato I, Takasawa S, Sasaki T, Ong BH, Sato M, et al.
Identification of Cyclic ADP-Ribose-Dependent Mechanisms in
Pancreatic Muscarinic Ca2+ Signaling Using CD38 Knockout Mice. J Biol
Chem (2001) 276(1):649–55. doi: 10.1074/jbc.M004469200

87. Partida-Sanchez S, Cockayne DA, Monard S, Jacobson EL, Oppenheimer N,
Garvy B, et al. Cyclic ADP-Ribose Production by CD38 Regulates
Intracellular Calcium Release, Extracellular Calcium Influx and
Chemotaxis in Neutrophils and Is Required for Bacterial Clearance
In Vivo. Nat Med (2001) 7(11):1209–16. doi: 10.1038/nm1101-1209

88. Partida-Sanchez S, Goodrich S, Kusser K, Oppenheimer N, Randall TD,
Lund FE. Regulation of Dendritic Cell Trafficking by the ADP-Ribosyl
Cyclase CD38: Impact on the Development of Humoral Immunity.
Immunity (2004) 20(3):279–91. doi: 10.1016/S1074-7613(04)00048-2
Frontiers in Immunology | www.frontiersin.org 11
89. Munoz P, Mittelbrunn M, de la Fuente H, Perez-Martinez M, Garcia-Perez
A, Ariza-Veguillas A, et al. Antigen-Induced Clustering of Surface CD38 and
Recruitment of Intracellular CD38 to the Immunologic Synapse. Blood
(2008) 111(7):3653–64. doi: 10.1182/blood-2007-07-101600

90. Chatterjee S, Daenthanasanmak A, Chakraborty P, Wyatt MW, Dhar P,
Selvam SP, et al. CD38-NAD(+)Axis Regulates Immunotherapeutic Anti-
Tumor T Cell Response. Cell Metab (2018) 27(1):85–100.e8. doi: 10.1016/
j.cmet.2017.10.006

91. Krejcik J, Casneuf T, Nijhof IS, Verbist B, Bald J, Plesner T, et al.
Daratumumab Depletes CD38+ Immune Regulatory Cells, Promotes T-
Cell Expansion, and Skews T-Cell Repertoire in Multiple Myeloma. Blood
(2016) 128(3):384–94. doi: 10.1182/blood-2015-12-687749

92. Sharif T, Martell E, Dai C, Ghassemi-Rad MS, Kennedy BE, Lee PWK, et al.
Regulation of Cancer and Cancer-Related Genes via NAD. Antioxid Redox
Signal (2018) 30(6):906–23. doi: 10.1089/ars.2017.7478

93. Kar A, Mehrotra S, Chatterjee S. CD38: T Cell Immuno-Metabolic
Modulator. Cells (2020) 9(7):1716–36. doi: 10.3390/cells9071716

94. Hogan KA, Chini CCS, Chini EN. The Multi-Faceted Ecto-Enzyme CD38:
Roles in Immunomodulation, Cancer, Aging, and Metabolic Diseases. Front
Immunol (2019) 10:1187. doi: 10.3389/fimmu.2019.01187

95. Feske S. Calcium Signalling in Lymphocyte Activation and Disease. Nat Rev
Immunol (2007) 7(9):690–702. doi: 10.1038/nri2152

96. Jeng MY, Hull PA, Fei M, Kwon HS, Tsou CL, Kasler H, et al. Metabolic
Reprogramming of Human CD8(+) Memory T Cells Through Loss of
SIRT1. J Exp Med (2018) 215(1):51–62. doi: 10.1084/jem.20161066

97. Geltink RIK, Kyle RL, Pearce EL. Unraveling the Complex Interplay Between
T Cell Metabolism and Function. Annu Rev Immunol (2018) 36:461–88.
doi: 10.1146/annurev-immunol-042617-053019

98. Chang HC, Guarente L. SIRT1 and Other Sirtuins in Metabolism. Trends
Endocrinol Metab (2014) 25(3):138–45. doi: 10.1016/j.tem.2013.12.
001S1043-2760(13)00206-3

99. Feng X, Zhang L, Acharya C, An G, Wen K, Qiu L, et al. Targeting CD38
Suppresses Induction and Function of T Regulatory Cells to Mitigate
Immunosuppression in Multiple Myeloma. Clin Cancer Res (2017) 23
(15):4290–300. doi: 10.1158/1078-0432.CCR-16-3192

100. Newton R, Priyadharshini B, Turka LA. Immunometabolism of Regulatory T
Cells. Nat Immunol (2016) 17(6):618–25. doi: 10.1038/ni.3466

101. Huang L, Xu H, Peng G. TLR-Mediated Metabolic Reprogramming in the
Tumor Microenvironment: Potential Novel Strategies for Cancer
Immunotherapy. Cell Mol Immunol (2018) 15(5):428–37. doi: 10.1038/
cmi.2018.4

102. Morandi F, Airoldi I, Marimpietri D, Bracci C, Faini AC, Gramignoli R.
CD38, A Receptor With Multifunctional Activities: From Modulatory
Functions on Regulatory Cell Subsets and Extracellular Vesicles, to a
Target for Therapeutic Strategies. Cells (2019) 8(12):1527–44. doi: 10.3390/
cells8121527

103. Hartman WR, Pelleymounter LL, Moon I, Kalari K, Liu M, Wu TY, et al.
CD38 Expression, Function, and Gene Resequencing in a Human
Lymphoblastoid Cell Line-Based Model System. Leuk Lymphoma (2010)
51(7):1315–25. doi: 10.3109/10428194.2010.483299

104. Glaria E, Valledor AF. Roles of CD38 in the Immune Response to Infection.
Cells (2020) 9(1):228–44. doi: 10.3390/cells9010228

105. Chini EN, Chini CCS, Espindola Netto JM, de Oliveira GC, van Schooten W.
The Pharmacology of CD38/NADase: An Emerging Target in Cancer and
Diseases of Aging. Trends Pharmacol Sci (2018) 39(4):424–36. doi: 10.1016/
j.tips.2018.02.001

106. Samal B, Sun Y, Stearns G, Xie C, Suggs S, McNiece I. Cloning and
Characterization of the cDNA Encoding a Novel Human Pre-B-Cell
Colony-Enhancing Factor. Mol Cell Biol (1994) 14(2):1431–7. doi:
10.1128/mcb.14.2.1431-1437.1994

107. Rongvaux A, Shea RJ, Mulks MH, Gigot D, Urbain J, Leo O, et al. Pre-B-Cell
Colony-Enhancing Factor, Whose Expression Is Up-Regulated in Activated
Lymphocytes, is a Nicotinamide Phosphoribosyltransferase, a Cytosolic
Enzyme Involved in NAD Biosynthesis. Eur J Immunol (2002) 32(11):3225–
34. doi: 10.1002/1521-4141(200211)32:11<3225::AID-IMMU3225>3.0.CO;2-L

108. Heske CM. Beyond Energy Metabolism: Exploiting the Additional Roles of
NAMPT for Cancer Therapy. Front Oncol (2019) 9:1514. doi: 10.3389/
fonc.2019.01514
August 2021 | Volume 12 | Article 704779

https://doi.org/10.1016/j.bcp.2017.12.021
https://doi.org/10.3389/fphar.2017.00123
https://doi.org/10.3389/fphar.2017.00123
https://doi.org/10.1016/S1074-7613(03)00266-8
https://doi.org/10.1084/jem.20091154
https://doi.org/10.2119/2006&ndash;00094.Malavasi
https://doi.org/10.1016/s1357-2725(97)00062-9
https://doi.org/10.1126/scisignal.2002700
https://doi.org/10.1126/scisignal.2002700
https://doi.org/10.1021/ja411046j
https://doi.org/10.1073/pnas.1703718114
https://doi.org/10.1073/pnas.1703718114
https://doi.org/10.1113/jphysiol.2010.201855
https://doi.org/10.1113/jphysiol.2010.201855
https://doi.org/10.2119/2006-00086.Lee
https://doi.org/10.1038/15640
https://doi.org/10.1016/S0898-6568(99)00004-2
https://doi.org/10.1007/s11302-005-5302-5
https://doi.org/10.2217/imt.15.106
https://doi.org/10.1002/med.20101
https://doi.org/10.1074/jbc.M004469200
https://doi.org/10.1038/nm1101-1209
https://doi.org/10.1016/S1074-7613(04)00048-2
https://doi.org/10.1182/blood-2007-07-101600
https://doi.org/10.1016/j.cmet.2017.10.006
https://doi.org/10.1016/j.cmet.2017.10.006
https://doi.org/10.1182/blood-2015-12-687749
https://doi.org/10.1089/ars.2017.7478
https://doi.org/10.3390/cells9071716
https://doi.org/10.3389/fimmu.2019.01187
https://doi.org/10.1038/nri2152
https://doi.org/10.1084/jem.20161066
https://doi.org/10.1146/annurev-immunol-042617-053019
https://doi.org/10.1016/j.tem.2013.12.001S1043-2760(13)00206-3
https://doi.org/10.1016/j.tem.2013.12.001S1043-2760(13)00206-3
https://doi.org/10.1158/1078-0432.CCR-16-3192
https://doi.org/10.1038/ni.3466
https://doi.org/10.1038/cmi.2018.4
https://doi.org/10.1038/cmi.2018.4
https://doi.org/10.3390/cells8121527
https://doi.org/10.3390/cells8121527
https://doi.org/10.3109/10428194.2010.483299
https://doi.org/10.3390/cells9010228
https://doi.org/10.1016/j.tips.2018.02.001
https://doi.org/10.1016/j.tips.2018.02.001
https://doi.org/10.1128/mcb.14.2.1431-1437.1994
https://doi.org/10.1002/1521-4141(200211)32:11%3C3225::AID-IMMU3225%3E3.0.CO;2-L
https://doi.org/10.3389/fonc.2019.01514
https://doi.org/10.3389/fonc.2019.01514
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Audrito et al. NAD-Metabolizing Enzymes in Immune Regulation
109. Hara N, Yamada K, Shibata T, Osago H, Tsuchiya M. Nicotinamide
Phosphoribosyltransferase/Visfatin Does Not Catalyze Nicotinamide
Mononucleotide Formation in Blood Plasma. PloS One (2011) 6(8):e22781.
doi: 10.1371/journal.pone.0022781

110. Galassi L, Di Stefano M, Brunetti L, Orsomando G, Amici A, Ruggieri S, et al.
Characterization of Human Nicotinate Phosphoribosyltransferase: Kinetic
Studies, Structure Prediction and Functional Analysis by Site-Directed
Mutagenesis. Biochimie (2012) 94(2):300–9. doi: 10.1016/j.biochi.2011.
06.033

111. Duarte-Pereira S, Pereira-Castro I, Silva SS, Correia MG, Neto C, da Costa
LT, et al. Extensive Regulation of Nicotinate Phosphoribosyltransferase
(NAPRT) Expression in Human Tissues and Tumors. Oncotarget (2016) 7
(2):1973–83. doi: 10.18632/oncotarget.6538

112. Manago A, Audrito V, Mazzola F, Sorci L, Gaudino F, Gizzi K, et al.
Extracellular Nicotinate Phosphoribosyltransferase Binds Toll Like Receptor
4 andMediates Inflammation.Nat Commun (2019) 10(1):4116. doi: 10.1038/
s41467-019-12055-2

113. Sayers SR, Beavil RL, Fine NHF, Huang GC, Choudhary P, Pacholarz KJ,
et al. Structure-Functional Changes in eNAMPT at High Concentrations
Mediate Mouse and Human Beta Cell Dysfunction in Type 2 Diabetes.
Diabetologia (2020) 63(2):313–23. doi: 10.1007/s00125-019-05029-y

114. Revollo JR, Korner A, Mills KF, Satoh A, Wang T, Garten A, et al. Nampt/
PBEF/Visfatin Regulates Insulin Secretion in Beta Cells as a Systemic NAD
Biosynthetic Enzyme. Cell Metab (2007) 6(5):363–75. doi: 10.1016/
j.cmet.2007.09.003

115. Tanaka M, Nozaki M, Fukuhara A, Segawa K, Aoki N, Matsuda M, et al.
Visfatin is Released From 3T3-L1 Adipocytes via a Non-Classical Pathway.
Biochem Biophys Res Commun (2007) 359(2):194–201. doi: 10.1016/
j.bbrc.2007.05.096

116. Grolla AA, Torretta S, Gnemmi I, Amoruso A, Orsomando G, Gatti M, et al.
Nicotinamide Phosphoribosyltransferase (NAMPT/PBEF/visfatin) is a
Tumoural Cytokine Released From Melanoma. Pigment Cell Melanoma
Res (2015) 28(6):718–29. doi: 10.1111/pcmr.12420

117. Audrito V, Manago A, La Vecchia S, Zamporlini F, Vitale N, Baroni G, et al.
Nicotinamide Phosphoribosyltransferase (NAMPT) as a Therapeutic Target
in BRAF-Mutated Metastatic Melanoma. J Natl Cancer Inst (2018) 110
(3):290–303. doi: 10.1093/jnci/djx198

118. Yoon MJ, Yoshida M, Johnson S, Takikawa A, Usui I, Tobe K, et al. SIRT1-
Mediated eNAMPT Secretion From Adipose Tissue Regulates Hypothalamic
NAD+ and Function in Mice. Cell Metab (2015) 21(5):706–17. doi: 10.1016/
j.cmet.2015.04.002

119. Sociali G, Grozio A, Caffa I, Schuster S, Becherini P, Damonte P, et al.
SIRT6 Deacetylase Activity Regulates NAMPT Activity and NAD(P)(H)
Pools in Cancer Cells. FASEB J (2019) 33(3):3704–17. doi: 10.1096/
fj.201800321R

120. Yoshida M, Satoh A, Lin JB, Mills KF, Sasaki Y, Rensing N, et al. Extracellular
Vesicle-Contained eNAMPT Delays Aging and Extends Lifespan in Mice.
Cell Metab (2019) 30(2):329–42 e5. doi: 10.1016/j.cmet.2019.05.015

121. Lu YB, Chen CX, Huang J, Tian YX, Xie X, Yang P, et al. Nicotinamide
Phosphoribosyltransferase Secreted From Microglia via exosome during
ischemic injury. J Neurochem (2019) 150(6):723–37. doi: 10.1111/jnc.14811

122. Chiarugi P, Cirri P. Metabolic Exchanges Within Tumor Microenvironment.
Cancer Lett (2015) 380(1):272–80. doi: 10.1016/j.canlet.2015.10.027

123. Kaymak I, Williams KS, Cantor JR, Jones RG. Immunometabolic Interplay in
the Tumor Microenvironment. Cancer Cell (2021) 39(1):28–37. doi: 10.1016/
j.ccell.2020.09.004

124. Camp SM, Ceco E, Evenoski CL, Danilov SM, Zhou T, Chiang ET, et al.
Unique Toll-Like Receptor 4 Activation by NAMPT/PBEF Induces
NFkappaB Signaling and Inflammatory Lung Injury. Sci Rep (2015)
5:13135. doi: 10.1038/srep13135srep13135[pii

125. Torretta S, Colombo G, Travelli C, Boumya S, Lim D, Genazzani AA, et al.
The Cytokine Nicotinamide Phosphoribosyltransferase (eNAMPT; PBEF;
Visfatin) Acts as a Natural Antagonist of C-C Chemokine Receptor Type 5
(CCR5). Cells (2020) 9(2):495–509. doi: 10.3390/cells9020496

126. Van den Bergh R, Morin S, Sass HJ, Grzesiek S, Vekemans M, Florence E,
et al. Monocytes Contribute to Differential Immune Pressure on R5 Versus
X4 HIV Through the Adipocytokine Visfatin/NAMPT. PloS One (2012) 7
(4):e35074. doi: 10.1371/journal.pone.0035074
Frontiers in Immunology | www.frontiersin.org 12
127. Audrito V, Serra S, Brusa D, Mazzola F, Arruga F, Vaisitti T, et al. Extracellular
Nicotinamide Phosphoribosyltransferase (NAMPT) Promotes M2Macrophage
Polarization in Chronic Lymphocytic Leukemia. Blood (2015) 125(1):111–23.
doi: 10.1182/blood-2014-07-589069blood-2014-07-589069[pii

128. Travelli C, Consonni FM, Sangaletti S, Storto M, Morlacchi S, Grolla AA,
et al. Nicotinamide Phosphoribosyltransferase (NAMPT) Acts as a
Metabolic Gate for Mobilization of Myeloid-Derived Suppressor Cells.
Cancer Res (2019) 79(8):1938–51. doi: 10.1158/0008-5472.CAN-18-1544

129. Audrito V, Manago A, Gaudino F, Sorci L, Messana VG, Raffaelli N, et al.
NAD-Biosynthetic and Consuming Enzymes as Central Players of Metabolic
Regulation of Innate and Adaptive Immune Responses in Cancer. Front
Immunol (2019) 10:1720. doi: 10.3389/fimmu.2019.01720

130. Naik J, Themeli M, de Jong-Korlaar R, Ruiter RWJ, Poddighe PJ, Yuan H,
et al. CD38 as a Therapeutic Target for Adult Acute Myeloid Leukemia and
T-Cell Acute Lymphoblastic Leukemia. Haematologica (2019) 104(3):e100–
e3. doi: 10.3324/haematol.2018.192757

131. Zeijlemaker W, Grob T, Meijer R, Hanekamp D, Kelder A, Carbaat-Ham JC,
et al. CD34(+)CD38(-) Leukemic Stem Cell Frequency to Predict Outcome
in Acute Myeloid Leukemia. Leukemia (2019) 33(5):1102–12. doi: 10.1038/
s41375-018-0326-3

132. van de Donk N, Richardson PG, Malavasi F. CD38 Antibodies in Multiple
Myeloma: Back to the Future. Blood (2018) 131(1):13–29. doi: 10.1182/
blood-2017-06-740944

133. Damle RN, Temburni S, Calissano C, Yancopoulos S, Banapour T, Sison C,
et al. CD38 Expression Labels an Activated Subset Within Chronic
Lymphocytic Leukemia Clones Enriched in Proliferating B Cells. Blood
(2007) 110(9):3352–9. doi: 10.1182/blood-2007-04-083832

134. Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N. CD38
and Chronic Lymphocytic Leukemia: A Decade Later. Blood (2011) 118
(13):3470–8. doi: 10.1182/blood-2011-06-275610

135. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, et al. Ig V Gene
Mutation Status and CD38 Expression as Novel Prognostic Indicators in
Chronic Lymphocytic Leukemia. Blood (1999) 94(6):1840–7. doi: 10.1182/
blood.V94.6.1840

136. Durig J, Naschar M, Schmucker U, Renzing-Kohler K, Holter T, Huttmann
A, et al. CD38 Expression Is an Important Prognostic Marker in Chronic
Lymphocytic Leukaemia. Leukemia: Off J Leukemia Soc America Leukemia
Res Fund UK (2002) 16(1):30–5. doi: 10.1038/sj.leu.2402339

137. Deaglio S, Vaisitti T, Zucchetto A, Gattei V, Malavasi F. CD38 as a Molecular
Compass Guiding Topographical Decisions of Chronic Lymphocytic
Leukemia Cells. Semin Cancer Biol (2010) 20(6):416–23. doi: 10.1016/
j.semcancer.2010.08.003

138. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK,
et al. Improved Survival in Multiple Myeloma and the Impact of Novel
Therapies. Blood (2008) 111(5):2516–20. doi: 10.1182/blood-2007-10-
116129

139. Kawano Y, Moschetta M, Manier S, Glavey S, Gorgun GT, Roccaro AM, et al.
Targeting the Bone Marrow Microenvironment in Multiple Myeloma.
Immunol Rev (2015) 263(1):160–72. doi: 10.1111/imr.12233

140. Lonial S, Weiss BM, Usmani SZ, Singhal S, Chari A, Bahlis NJ, et al.
Daratumumab Monotherapy in Patients With Treatment-Refractory
Multiple Myeloma (SIRIUS): An Open-Label, Randomised, Phase 2 Trial.
Lancet (2016) 387(10027):1551–60. doi: 10.1016/S0140-6736(15)01120-4

141. van der Veer MS, de Weers M, van Kessel B, Bakker JM, Wittebol S, Parren
PW, et al. The Therapeutic Human CD38 Antibody Daratumumab
Improves the Anti-Myeloma Effect of Newly Emerging Multi-Drug
Therapies. Blood Cancer J (2011) 1(10):e41. doi: 10.1038/bcj.2011.42

142. Khagi Y, Mark TM. Potential Role of Daratumumab in the Treatment of
Multiple Myeloma. Onco Targets Ther (2014) 7:1095–100. doi: 10.2147/
OTT.S49480

143. Garcia-Guerrero E, Gotz R, Doose S, SauerM, Rodriguez-Gil A, Nerreter T, et al.
Upregulation of CD38 Expression onMultipleMyeloma Cells by Novel HDAC6
Inhibitors Is a Class Effect and Augments the Efficacy of Daratumumab.
Leukemia (2021) 35(1):201–14. doi: 10.1038/s41375-020-0840-y

144. Manna A, Aulakh S, Jani P, Ahmed S, Akhtar S, Coignet M, et al. Targeting
CD38 Enhances the Antileukemic Activity of Ibrutinib in Chronic Lymphocytic
Leukemia. Clin Cancer Res (2019) 25(13):3974–85. doi: 10.1158/1078-
0432.CCR-18-3412
August 2021 | Volume 12 | Article 704779

https://doi.org/10.1371/journal.pone.0022781
https://doi.org/10.1016/j.biochi.2011.06.033
https://doi.org/10.1016/j.biochi.2011.06.033
https://doi.org/10.18632/oncotarget.6538
https://doi.org/10.1038/s41467-019-12055-2
https://doi.org/10.1038/s41467-019-12055-2
https://doi.org/10.1007/s00125-019-05029-y
https://doi.org/10.1016/j.cmet.2007.09.003
https://doi.org/10.1016/j.cmet.2007.09.003
https://doi.org/10.1016/j.bbrc.2007.05.096
https://doi.org/10.1016/j.bbrc.2007.05.096
https://doi.org/10.1111/pcmr.12420
https://doi.org/10.1093/jnci/djx198
https://doi.org/10.1016/j.cmet.2015.04.002
https://doi.org/10.1016/j.cmet.2015.04.002
https://doi.org/10.1096/fj.201800321R
https://doi.org/10.1096/fj.201800321R
https://doi.org/10.1016/j.cmet.2019.05.015
https://doi.org/10.1111/jnc.14811
https://doi.org/10.1016/j.canlet.2015.10.027
https://doi.org/10.1016/j.ccell.2020.09.004
https://doi.org/10.1016/j.ccell.2020.09.004
https://doi.org/10.1038/srep13135srep13135[pii
https://doi.org/10.3390/cells9020496
https://doi.org/10.1371/journal.pone.0035074
https://doi.org/10.1182/blood-2014-07-589069blood-2014-07-589069[pii
https://doi.org/10.1158/0008-5472.CAN-18-1544
https://doi.org/10.3389/fimmu.2019.01720
https://doi.org/10.3324/haematol.2018.192757
https://doi.org/10.1038/s41375-018-0326-3
https://doi.org/10.1038/s41375-018-0326-3
https://doi.org/10.1182/blood-2017-06-740944
https://doi.org/10.1182/blood-2017-06-740944
https://doi.org/10.1182/blood-2007-04-083832
https://doi.org/10.1182/blood-2011-06-275610
https://doi.org/10.1182/blood.V94.6.1840
https://doi.org/10.1182/blood.V94.6.1840
https://doi.org/10.1038/sj.leu.2402339
https://doi.org/10.1016/j.semcancer.2010.08.003
https://doi.org/10.1016/j.semcancer.2010.08.003
https://doi.org/10.1182/blood-2007-10-116129
https://doi.org/10.1182/blood-2007-10-116129
https://doi.org/10.1111/imr.12233
https://doi.org/10.1016/S0140-6736(15)01120-4
https://doi.org/10.1038/bcj.2011.42
https://doi.org/10.2147/OTT.S49480
https://doi.org/10.2147/OTT.S49480
https://doi.org/10.1038/s41375-020-0840-y
https://doi.org/10.1158/1078-0432.CCR-18-3412
https://doi.org/10.1158/1078-0432.CCR-18-3412
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Audrito et al. NAD-Metabolizing Enzymes in Immune Regulation
145. Wo YJ, Gan ASP, Lim X, Tay ISY, Lim S, Lim JCT, et al. The Roles of CD38
and CD157 in the Solid Tumor Microenvironment and Cancer
Immunotherapy. Cells (2019) 9(1):26–44. doi: 10.3390/cells9010026

146. Antonioli L, Yegutkin GG, Pacher P, Blandizzi C, Hasko G. Anti-CD73 in
Cancer Immunotherapy: Awakening New Opportunities. Trends Cancer
(2016) 2(2):95–109. doi: 10.1016/j.trecan.2016.01.003

147. Roh M, Wainwright DA, Wu JD, Wan Y, Zhang B. Targeting CD73 to
Augment Cancer Immunotherapy. Curr Opin Pharmacol (2020) 53:66–76.
doi: 10.1016/j.coph.2020.07.001

148. Chen S, Wainwright DA, Wu JD, Wan Y, Matei DE, Zhang Y, et al. CD73:
An Emerging Checkpoint for Cancer Immunotherapy. Immunotherapy
(2019) 11(11):983–97. doi: 10.2217/imt-2018-0200

149. Allard D, Chrobak P, Allard B, Messaoudi N, Stagg J. Targeting the CD73-
Adenosine Axis in Immuno-Oncology. Immunol Lett (2019) 205:31–9.
doi: 10.1016/j.imlet.2018.05.001

150. Perrot I, Michaud HA, Giraudon-Paoli M, Augier S, Docquier A, Gros L,
et al. Blocking Antibodies Targeting the CD39/CD73 Immunosuppressive
Pathway Unleash Immune Responses in Combination Cancer Therapies.
Cell Rep (2019) 27(8):2411. doi: 10.1016/j.celrep.2019.04.091

151. Allard B, Allard D, Buisseret L, Stagg J. The Adenosine Pathway in Immuno-
Oncology. Nat Rev Clin Oncol (2020) 17(10):611–29. doi: 10.1038/s41571-
020-0382-2

152. Hasmann M, Schemainda I. FK866, a Highly Specific Noncompetitive
Inhibitor of Nicotinamide Phosphoribosyltransferase, Represents a Novel
Mechanism for Induction of Tumor Cell Apoptosis. Cancer Res (2003) 63
(21):7436–42.

153. Galli U, Colombo G, Travelli C, Tron GC, Genazzani AA, Grolla AA. Recent
Advances in NAMPT Inhibitors: A Novel Immunotherapic Strategy. Front
Pharmacol (2020) 11:656. doi: 10.3389/fphar.2020.00656

154. Dalamaga M, Christodoulatos GS, Mantzoros CS. The Role of Extracellular
and Intracellular Nicotinamide Phosphoribosyl-Transferase in Cancer:
Diagnostic and Therapeutic Perspectives and Challenges. Metabolism
(2018) 82:72–87. doi: 10.1016/j.metabol.2018.01.001

155. Sampath D, Zabka TS, Misner DL, O’Brien T, Dragovich PS. Inhibition of
Nicotinamide Phosphoribosyltransferase (NAMPT) as a Therapeutic
Strategy in Cancer. Pharmacol Ther (2015) 151:16–31. doi: 10.1016/
j.pharmthera.2015.02.004

156. Lucena-Cacace A, Otero-Albiol D, Jimenez-Garcia MP, Peinado-Serrano J,
Carnero A. NAMPT Overexpression Induces Cancer Stemness and Defines a
Novel Tumor Signature for Glioma Prognosis. Oncotarget (2017) 8
(59):99514–30. doi: 10.18632/oncotarget.20577

157. Zhu Y, Liu J, Park J, Rai P, Zhai RG. Subcellular Compartmentalization of
NAD(+) and Its Role in Cancer: A sereNADe of Metabolic Melodies.
Pharmacol Ther (2019) 200:27–41. doi: 10.1016/j.pharmthera.2019.04.002

158. Chowdhry S, Zanca C, Rajkumar U, Koga T, Diao Y, Raviram R, et al. NAD
Metabolic Dependency in Cancer is Shaped by Gene Amplification and
Enhancer Remodelling. Nature (2019) 569(7757):570–5. doi: 10.1038/
s41586-019-1150-2
Frontiers in Immunology | www.frontiersin.org 13
159. Tateishi K, Wakimoto H, Iafrate AJ, Tanaka S, Loebel F, Lelic N, et al.
Extreme Vulnerability of IDH1 Mutant Cancers to NAD+ Depletion. Cancer
Cell (2015) 28(6):773–84. doi: 10.1016/j.ccell.2015.11.006

160. Travelli C, Aprile S, Mattoteia D, Colombo G, Clemente N, Scanziani E,
et al. Identification of Potent Triazolylpyridine Nicotinamide
Phosphoribosyltransferase (NAMPT) Inhibitors Bearing a 1,2,3-Triazole
Tail Group. Eur J Med Chem (2019) 181:111576. doi: 10.1016/
j.ejmech.2019.111576

161. Oita RC, Camp SM, Ma W, Ceco E, Harbeck M, Singleton P, et al. Novel
Mechanism for Nicotinamide Phosphoribosyltransferase Inhibition of TNF-
Alpha-Mediated Apoptosis in Human Lung Endothelial Cells. Am J Respir
Cell Mol Biol (2018) 59(1):36–44. doi: 10.1165/rcmb.2017-0155OC

162. Quijada H, Bermudez T, Kempf CL, Valera DG, Garcia AN, Camp SM, et al.
Endothelial eNAMPT Amplifies Preclinical Acute Lung Injury: Efficacy of an
eNAMPT-Neutralising mAb. Eur Respir J (2021) 57(5):2002536.
doi: 10.1183/13993003.02536-2020

163. Sun X, Sun BL, Babicheva A, Vanderpool R, Oita RC, Casanova N, et al.
Direct Extracellular NAMPT Involvement in Pulmonary Hypertension and
Vascular Remodeling. Transcriptional Regulation by SOX and HIF-2alpha.
Am J Respir Cell Mol Biol (2020) 63(1):92–103. doi: 10.1165/rcmb.2019-
0164OC

164. Colombo G, Clemente N, Zito A, Bracci C, Colombo FS, Sangaletti S,
et al . Neutral ization of Extracel lular NAMPT (Nicotinamide
Phosphoribosyltransferase) Ameliorates Experimental Murine Colitis.
J Mol Med (Berl) (2020) 98(4):595–612. doi: 10.1007/s00109-020-01892-0

165. Soncini D, Caffa I, Zoppoli G, Cea M, Cagnetta A, Passalacqua M, et al.
Nicotinamide Phosphoribosyltransferase Promotes Epithelial-to-
Mesenchymal Transition as a Soluble Factor Independent of Its Enzymatic
Activity. J Biol Chem (2014) 289(49):34189–204. doi: 10.1074/jbc.M114.
594721

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Audrito, Messana, Brandimarte and Deaglio. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
August 2021 | Volume 12 | Article 704779

https://doi.org/10.3390/cells9010026
https://doi.org/10.1016/j.trecan.2016.01.003
https://doi.org/10.1016/j.coph.2020.07.001
https://doi.org/10.2217/imt-2018-0200
https://doi.org/10.1016/j.imlet.2018.05.001
https://doi.org/10.1016/j.celrep.2019.04.091
https://doi.org/10.1038/s41571-020-0382-2
https://doi.org/10.1038/s41571-020-0382-2
https://doi.org/10.3389/fphar.2020.00656
https://doi.org/10.1016/j.metabol.2018.01.001
https://doi.org/10.1016/j.pharmthera.2015.02.004
https://doi.org/10.1016/j.pharmthera.2015.02.004
https://doi.org/10.18632/oncotarget.20577
https://doi.org/10.1016/j.pharmthera.2019.04.002
https://doi.org/10.1038/s41586-019-1150-2
https://doi.org/10.1038/s41586-019-1150-2
https://doi.org/10.1016/j.ccell.2015.11.006
https://doi.org/10.1016/j.ejmech.2019.111576
https://doi.org/10.1016/j.ejmech.2019.111576
https://doi.org/10.1165/rcmb.2017-0155OC
https://doi.org/10.1183/13993003.02536-2020
https://doi.org/10.1165/rcmb.2019-0164OC
https://doi.org/10.1165/rcmb.2019-0164OC
https://doi.org/10.1007/s00109-020-01892-0
https://doi.org/10.1074/jbc.M114.594721
https://doi.org/10.1074/jbc.M114.594721
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	The Extracellular NADome Modulates Immune Responses
	Introduction: The Many Faces of NAD, From Energetic Factor to Danger Signal
	Intracellular and Extracellular NAD-Metabolizing Machinery
	eNAD and Purinergic Receptors
	eNAD Degradation-Signaling System in Regulating Immune Responses
	eNAD Biosynthetic-Signaling System in Regulating Immune Responses
	Is the NADome a Therapeutic Target?
	Conclusions and Future Perspectives
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


