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1 Introduction

Computing QCD cross-sections at next-to-next-to-leading order (NNLO) in the strong

coupling is becoming mandatory to provide sufficiently precise fixed-order predictions for

many processes of interest at high-energy colliders. This precision goal has led to the

development of a host of new techniques in perturbative quantum field theory, ranging

from the determination of parton distributions, to jet algorithms and of course to the

calculation of high-order scattering amplitudes (for a recent review, see [1]).

One of the problems that need to be efficiently tackled in order to perform multi-

parton NNLO QCD calculations is the cancellation of infrared singularities. Indeed, it

is well known that, beyond leading order (LO) in QCD, both virtual corrections and

real-radiation corrections contribute to any infrared-safe cross section: while these con-

tributions are separately infrared (IR) singular, their sum (after UV renormalisation of

virtual corrections) gives finite predictions for physical observables [2, 3]. This cancellation

is well-understood in principle, but the increasing complexity of scattering amplitudes at

high orders, and the intricate dependence of many collider observables on experimental

cuts and jet algorithms, lead to significant difficulties in the practical implementation of

the cancellation.

Subtraction algorithms form a class of proposed solutions to this problem. The basic

ingredient of subtraction is the construction of universal infrared counterterms, defined

locally in the radiative phase spaces. Such counterterms are required to mimic the be-

haviour of the radiative squared matrix element in all singular phase-space regions; on

the other hand, they must be simple enough to be integrated over unresolved degrees of

freedom in d = 4−2ε dimensions, in order to analytically cancel the poles in ε arising from

virtual corrections. Given such a set of counterterms, one proceeds by subtracting the

counterterms from the radiative squared matrix element, so that the resulting expression

can be numerically integrated without encountering singular contributions. One then adds

to virtual corrections the integral of the counterterm over the radiative degrees of freedom,

thus cancelling all infrared poles, and without having introduced any approximations in

the distribution of the chosen infrared-safe observable.

At next-to-leading order (NLO), subtraction is well understood and successfully applied

to a vast ensemble of observable multi-parton distributions. The most used subtraction

methods at NLO are the Frixione-Kunszt-Signer (FKS) [4] scheme and the Catani-Seymour

(CS) [5] algorithm. One order higher in the perturbative expansion (at NNLO), the devel-

opment of a fully general and efficient subtraction method has been the subject of active

research by many groups for several years. The literature is too vast to be comprehensively

cited, but the main characteristics and some important applications of the most developed

methods can be found in refs. [6–24]. It must also be mentioned that subtraction is not

the only possible approach to the problem: an alternative viewpoint is provided by slic-

ing methods, where an infrared cutoff is introduced to isolate the singular regions of the

radiative phase space, and approximate expressions for the matrix elements are employed

below the cutoff scale. Such methods were successfully used already at NLO [25, 26],

and have been applied at NNLO to a number of important processes [27–36]. Further-
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more, new ideas have been recently proposed [37–39], including theoretical developments

concerning infrared factorisation [40], and the analysis of the infrared structure of Feyn-

man diagrams [41–43], as well as purely numerical methods based on the cancellation of

singular contributions at the integrand level, before loop and phase-space integrals are

performed [44–49]. Finally, the first developments for the extension of some of these tools

to N3LO have been presented [50–53]. This vast activity bears witness to the fact that

the problem of subtraction (or more generally the problem of local cancellation of IR di-

vergences) at NNLO is very intricate: available NNLO schemes are often characterised by

a remarkable degree of complexity if compared with the NLO ones, and do not always

feature desirable aspects such as universality, analytic control, and full locality in phase

space. We believe that there is much room for further understanding, especially in view

of future extensions to several (possibly massive) partons in the final state, and to higher

perturbative orders.

In the present work, building on the results of ref. [54], we tackle the problem of analytic

integration of local subtraction counterterms; in the context of other NNLO subtraction

schemes, this issue was addressed in refs. [55–62]. To be more precise, we note that the

definition of a set of infrared counterterms has two main ingredients. On the one hand,

these local functions in the radiative phase space must, in all unresolved limits, reproduce

the factorised soft and collinear kernels which emerge in QCD at leading power in the

soft-parton energies and in the collinear-parton transverse momenta. On the other hand,

phase space itself must be factorised and parametrised so that the integration over the

radiative degrees of freedom can be completely decoupled from the integration over the

Born configurations: only when this step has been successfully performed can one claim

the universality of the resulting subtraction algorithm. The necessary mappings of phase

space have been extensively discussed in ref. [63]: many choices are possible, and this choice

is a crucial ingredient of any subtraction procedure.

Let us consider more carefully the interplay between the choice of infrared counterterms

and the choice of phase-space mapping. Any QCD (squared) amplitude with the emission

of one or more unresolved partons can be written as a product (to be understood as a

matrix product in the colour and helicity spaces) of the (squared) amplitude for the process

without the emissions, times a soft or a collinear kernel, containing all dependence on the

momenta of the unresolved radiated particle(s). Any definition of subtraction counterterms

must have the same factorised structure, and the kernels defined by the counterterms

must reproduce the kernels of the QCD factorisation formulae, in all singular regions.

Quite naturally, therefore, the first näıve choice is to use in the counterterms the kernels

of the QCD factorisation formulae themselves. This is, for example, the case for FKS

subtraction [4] at NLO, and for the Colourful subtraction scheme [8] at NNLO. Other

well-known choices are the dipoles in the CS subtraction scheme [5] at NLO, and the

antennas in the Antenna subtraction method [7] at NNLO. The CS and antenna kernels

have expressions that are more involved than the ones of the QCD factorisation formulae,

but still reduce to the QCD soft or collinear kernels in all singular limits. When it comes to

the choice of phase-space mappings, the FKS and Colourful methods essentially involve the

momenta of all outgoing particles of the radiative process, producing rather complicated

– 3 –



J
H
E
P
0
2
(
2
0
2
1
)
0
3
7

expressions in the phase-space of the radiated particles, which then need to be integrated in

d-dimensions. As a consequence, in the Colourful approach, these expressions in some cases

can be integrated just numerically (this is not the case in FKS, because of the simplicity of

NLO kernels). An easier solution for the phase-space mappings is the one adopted in the CS

and antenna subtractions, where the only momenta involved in the parametrisation are the

ones contained in the kernels. This choice overcomes the complexity of the latter (which

in these subtraction procedures are more complicated than the QCD soft and collinear

kernels), and allows for their analytical integration in the radiative phase space.

In what follows, we pursue a different approach, recently proposed in ref. [54], which

combines a definition of the counterterm kernels as close as possible to the QCD soft and

collinear kernels (as is the case for the FKS and Colourful methods), together with phase-

space mappings involving only the particles present in the particular kernel being integrated

(as is the case for the CS and Antenna subtraction methods). As was shown already in

preliminary tests performed in ref. [54], this approach leads to simpler integrals, that can

readily be computed analytically with conventional methods. The goal of this paper is thus

to present the analytic integration in d-dimensions of the soft and collinear kernels of QCD

factorisation formulae at NLO and NNLO, once a specific choice of phase-space mappings,

along the lines of ref. [54], is adopted. We emphasise that the results we present have a

universal aspect: the full integration of NNLO QCD kernels with an exact factorisation of

the radiation phase space, such that the on-shellness of the underlying Born configuration

is ensured, and momentum conservation is properly enforced. On the other hand, these

integrals are essential building blocks for the subtraction procedure of ref. [54]: indeed, all

required integrals for a complete subtraction algorithm for massless final-state partons are

either contained in the results presented here, or are significantly simpler than the ones

we perform.

The structure of the paper is as follows: in section 2, for clarity and completeness, we

present the exact integration of NLO soft and collinear kernels, which was discussed already

in ref. [54]. In section 3, we turn to the integration of tree-level kernels for double-unresolved

radiation, considering explicitly double-soft emission and the case of three partons becom-

ing collinear (which we describe as ‘double-collinear’ limit). In both cases, we consider

un-ordered emissions, where both partons involved become unresolved at the same rate.

We emphasise that this is the most intricate configuration in view of integration: hierarchi-

cal limits, with one of the two partons becoming unresolved at a higher rate than the other

one, lead to a subset of the integrals considered here; similarly, nested soft-collinear limits

lead to simpler integrals. In section 4, we tackle the problem of real-virtual corrections, and

integrate the QCD kernels for single real radiation at one-loop. In the process, we display

the non-trivial cancellation of all singularities proportional to colour tripoles, which is an

essential consistency check, given the absence of such singularities in double-virtual and

double-real contributions. Finally, in section 5, we summarise our results and present per-

spectives for future work. A number of technical details, including a thorough discussion of

the phase-space mappings that we employ, and the treatment of integrals with non-trivial

azimuthal dependence, are discussed in the appendices.

– 4 –
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2 Tree-level infrared kernels with one real emission

In this section we recall methods and results for the integration of the tree-level factorisation

kernels with a single unresolved real emission, as performed in ref. [54], and we introduce

notations that we will use in the rest of the paper. We consider a generic process with

a colour-singlet initial state, producing n massless coloured particles in the final state

at lowest order. We will therefore be interested in scattering amplitudes involving up

to n, n+ 1 and n+ 2 final-state coloured particles at LO, NLO and NNLO, respectively.

We will denote the sets of momenta of coloured particles by {k}, where the number of

particles involved will be clear from the context. Furthermore, we will adopt the notation

{k}/i for the set obtained from {k} by omitting the i-th particle, and {k}[ij] for the set

obtained from {k} by removing particles i and j, and introducing in their stead a single

particle with momentum ki + kj . We note from the outset that, if the set {k} involves

n+ 1 on-shell momenta ki satisfying k2
i = 0 and

∑
i k

µ
i = qµ, then the set {k}/i does not

satisfy the same momentum sum outside the strict soft limit ki = 0, while in the set {k}[ij]
the momentum ki + kj is off-shell outside the strict collinear limit kµi ∝ kµj . A crucial

concern in what follows will be, therefore, to choose a parametrisation of the radiative

phase space factorising a lowest-order parton configuration with n on-shell partons and

enforcing momentum conservation.

We expand perturbatively the amplitude for the emission of n partons as

An = A(0)
n +A(1)

n +A(2)
n + . . . , (2.1)

and we will use the notation B ({k}) for the Born-level squared matrix element, B({k}) =

|A(0)
n |2. At NLO, we will also need the colour-connected Born squared matrix elements,

Blm = A(0)∗
n (Tl·Tm)A(0)

n , where we use the standard notation [5, 64] for the colour-insertion

operators Ti, responsible for the radiation of a gluon from Born-level parton i, and the spin-

connected Born squared matrix elements, Bµν , obtained by stripping the spin polarisation

vector of a selected parton from the Born amplitude and from its complex conjugate. In

this language, the virtual correction at NLO is given by V ({k}) = 2 Re(A(0)∗
n A(1)

n ), and the

real radiation contribution is R({k}) = |A(0)
n+1|2.

With these definitions, we can write the well-known factorised expressions for R({k})
in the limits where one particle becomes unresolved, as follows. Defining the Mandelstam

invariants of the process as sab = (ka+kb)
2 = 2ka ·kb, we can introduce a soft-limit operator

Si, extracting the leading power of R({k}) as sim → 0, uniformly for all m 6= i, i.e. taking

all ratios of the form sil/sim to be of order one; similarly, the collinear-limit operator Cij

extracts the leading power of R({k}) as sij → 0, with all ratios sim/sjm, for m 6= i, j, taken

to be independent of m in the limit. Under these limits, R({k}) factorises as

SiR = −N1

∑
l 6=i
m 6=i

I(i)
lm Blm({k}/i) , Cij R =

N1

sij

[
Pij B({k}[ij]) +Qµνij Bµν({k}[ij])

]
, (2.2)

where the normalisation factor N1 is given by

N1 = 8παS

(
µ2eγE

4π

)ε
, (2.3)

with µ the renormalisation scale and γ
E

the Euler-Mascheroni constant.

– 5 –
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In order to express the infrared kernels in a compact and flavour-symmetric way, we

introduce flavour Kronecker delta functions: if fi is the flavour of parton i, we define for

example δfig as δfig = 1 if parton i is a gluon, and δfig = 0 otherwise; in similar vein,

we define δf{q,q̄} ≡ δfq + δfq̄, and δ{fifj}{qq̄} ≡ δfiqδfj q̄ + δfiq̄δfiq. The soft limit is then

expressed in terms of the eikonal kernel I(i)
lm, which is given by

I(i)
lm = δfig

slm
sil sim

. (2.4)

In order to characterise precisely the collinear limit for partons i and j, on the other hand,

we select a massless reference vector kr, which is conveniently chosen among the momenta

{k} of the outgoing particles; we then introduce ratios of Mandelstam invariants, that can

be interpreted as longitudinal momentum fractions along the collinear direction, as

xi =
sir

sir + sjr
, xj =

sjr
sir + sjr

, xi + xj = 1 , (2.5)

and a transverse-momentum vector

k̃µij = xj k
µ
i − xi k

µ
j − (xj − xi)

sij
sir + sjr

kµr = −k̃µji . (2.6)

We can now write the Altarelli-Parisi kernels Pij , for collinear emissions in a generic flavour

configuration, in the form

Pij = P
(0g)
ij δ{fifj}{qq̄} + P

(1g)
ij δfigδfj{q,q̄} + P

(1g)
ji δfjgδfi{q,q̄} + P

(2g)
ij δfigδfjg , (2.7)

where P
(kg)
ij represents the flavour contribution with k radiated collinear gluons (k = 0, 1, 2),

and can be written explicitly as

P
(0g)
ij = TR

(
1− 2xixj

1− ε

)
, P

(1g)
ij = CF

[
2
xj
xi

+ (1− ε)xi
]
,

P
(2g)
ij = 2CA

(
xi
xj

+
xj
xi

+ xixj

)
. (2.8)

The azimuthal tensor kernel Qµνij , on the other hand, is

Qµνij =

(
− δfig δfjg 2CA xixj + δ{fifj}{qq̄} TR

2xixj
1− ε

)[
− gµν + (d− 2)

k̃µij k̃
ν
ij

k̃2
ij

]
. (2.9)

The task is now to introduce a parametrisation of the (n+ 1)-particle phase space in

terms of n on-shell massless momenta, carrying the same total momentum as the original

set of n+ 1 partons, and factorising the integration over the degrees of freedom of the

unresolved parton. A broad set of solutions to this problem, inspired from [5], is described

in appendix A.1, and we apply it below, with the goal of simplifying as much as possible

the subsequent integration.

– 6 –
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2.1 Phase-space mappings and integration for the soft kernel

For the eikonal kernel I(i)
lm, we perform the mapping described in appendix A.1, choosing

the momenta {ka, kb, kc} differently for each term in the sum in eq. (2.2), as

ka → ki , kb → kl , kc → km . (2.10)

Promoting the set {k}/i (which preserves momentum conservation just in the soft limit) to

the momentum-conserving set {k̄}(ilm) of appendix A.1, we define the mapped soft limit

of R({k}) as

SiR ≡ −N1

∑
l 6=i
m 6=i

I(i)
lm Blm

(
{k̄}(ilm)

)
, (2.11)

which manifestly satisfies the condition Si SiR = SiR, necessary to ensure a local cancel-

lation. Eq. (2.11) can be exactly integrated in d = 4 − 2ε dimensions over the radiative

phase space. One writes∫
dΦn+1 SiR = −

∑
l 6=i
m 6=i

∫
dΦn

(
{k̄}(ilm)

)
J ilms Blm

(
{k̄}(ilm)

)
, (2.12)

where the soft integral

J ilms ≡ N1

∫
dΦ

(ilm)
rad I(i)

lm = δfigN1

∫
dΦ

(ilm)
rad

slm
sil sim

≡ δfig Js

(
s̄

(ilm)
lm

)
(2.13)

depends on the kinematics of particles i, l, m only through the radiative soft function Js,

with argument s̄
(ilm)
lm . Substituting the expression for the Mandelstam invariants given in

eq. (A.4), Js can be trivially calculated to all orders in ε, with the result

Js(s) = N1N(ε) s−ε
∫ π

0
dφ sin−2εφ

∫ 1

0
dy

∫ 1

0
dz
[
y(1− y)2z(1− z)

]−ε
(1− y)

1− z
y z

=
αS

2π

(
s

eγEµ2

)−ε Γ(1− ε)Γ(2− ε)
ε2 Γ(2− 3ε)

=
αS

2π

(
s

µ2

)−ε [ 1

ε2
+

2

ε
+ 6− 7

12
π2 +O(ε)

]
. (2.14)

2.2 Phase-space mappings and integration for the collinear kernels

For the collinear kernels, we choose the momenta {ka, kb, kc} of the mapping of appendix A.1

in the most natural way as

ka → ki , kb → kj , kc → kr . (2.15)

We promote the set {k}[ij] (where the momentum ki + kj is on-shell only in the collinear

limit) to the set of on-shell momenta {k̄}(ijr) of appendix A.1, and we define the mapped

collinear limit of R({k}) as

Cij R ≡
N1

sij

[
Pij B

(
{k̄}(ijr)

)
+Qµνij Bµν

(
{k̄}(ijr)

) ]
, (2.16)

– 7 –
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which can easily be shown to satisfy the locality condition Cij Cij R = Cij R. Proceeding

with the integration, we first notice that the azimuthal kernel Qµνij integrates to zero [5],

because of its tensor structure, taking into account that k̃ij · k̄(ijr)
j = 0. The remaining

terms, involving the Pij kernels, can again be integrated exactly in the radiation phase

space. We write ∫
dΦn+1 Cij R =

∫
dΦn

(
{k̄}(ijr)

)
J ijrc B

(
{k̄}(ijr)

)
, (2.17)

where the collinear integral

J ijrc ≡ N1

∫
dΦ

(ijr)
rad

Pij
sij

≡ δ{fifj}{qq̄} J
(0g)
c

(
s̄

(ijr)
jr

)
+
(
δfigδfj{q,q̄} + δfjgδfi{q,q̄}

)
J (1g)

c

(
s̄

(ijr)
jr

)
+ δfigδfjg J

(2g)
c

(
s̄

(ijr)
jr

)
(2.18)

depends on the kinematics of particles i, j, r only through the radiative collinear functions

J
(0g)
c , J

(1g)
c , J

(2g)
c with argument s̄

(ijr)
jr . Using again the expression for the Mandelstam

invariants given in eq. (A.4) one finds the following results. The radiation of a collinear

quark-antiquark pair gives

J (0g)
c (s) =N1N(ε) s−ε

∫ π

0
dφ sin−2εφ

∫ 1

0
dy

∫ 1

0
dz
[
y(1−y)2z(1−z)

]−ε 1−y
y

TR

(
1− 2z(1−z)

1− ε

)
=
αS

2π

(
s

eγEµ2

)−ε Γ(1− ε)Γ(2− ε)
εΓ(2− 3ε)

TR
−2

3− 2ε

=
αS

2π

(
s

µ2

)−ε
TR

[
−2

3

1

ε
− 16

9
+O(ε)

]
; (2.19)

the radiation of a collinear gluon from a quark or an antiquark, on the other hand, yields

J (1g)
c (s) =N1N(ε)s−ε

∫ π

0
dφ sin−2εφ

∫ 1

0
dy

∫ 1

0
dz
[
y(1−y)2z(1−z)

]−ε 1−y
y

CF

(
2

1−z
z

+ (1−ε)z
)

=
αS

2π

(
s

eγEµ2

)−ε Γ(1− ε)Γ(2− ε)
εΓ(2− 3ε)

CF

(
2

ε
− 1

2

)
=
αS

2π

(
s

µ2

)−ε
CF

[
2

ε2
+

7

2

1

ε
+ 11− 7

6
π2 +O(ε)

]
; (2.20)

finally, the radiation of two collinear gluons from a gluon yields

J (2g)
c (s) = N1N(ε) s−ε

∫ π

0
dφ sin−2εφ

∫ 1

0
dy

∫ 1

0
dz
[
y(1− y)2z(1− z)

]−ε 1− y
y

× 2CA

[
z

1− z
+

1− z
z

+ z(1− z)

]
=
αS

2π

(
s

eγEµ2

)−ε Γ(1− ε)Γ(2− ε)
εΓ(2− 3ε)

CA

(
4

ε
− 1

3− 2ε

)
=
αS

2π

(
s

µ2

)−ε
CA

[
4

ε2
+

23

3

1

ε
+

208

9
− 7

3
π2 +O(ε)

]
, (2.21)
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which completes the required NLO calculations. To be precise, in order to build a complete

NLO subtraction procedure one also needs to introduce and integrate the soft-collinear ker-

nel, extracted from the combined limits SiCijR = CijSiR, after introducing an appropriate

mapping. This presents no further difficulties, as discussed in detail in ref. [54].

3 Tree-level infrared kernels with two real emissions

In this section we consider the integration of tree-level infrared kernels with two real emis-

sions. We first rewrite the factorisation formulae derived in refs. [65, 66] for the emission

of two soft particles and three collinear particles. Indicating with RR({k}) = |A(0)
n+2|2 the

tree-level squared matrix element for the emission of two extra partons, the general struc-

ture of the double-soft limit Sij , where both particles i and j become uniformly soft, can

be written as

Sij RR =
N 2

1

2

∑
c 6=i,j
d 6=i,j

[ ∑
e 6=i,j
f 6=i,j

I(i)
cd I

(j)
ef Bcdef ({k}/i/j) + I(ij)

cd Bcd({k}/i/j)
]

(3.1)

=
N 2

1

2

∑
c 6=i,j
d 6=i,j,c

[ ∑
e 6=i,j,c,d
f 6=i,j,c,d,e

I(i)
cd I

(j)
ef Bcdef ({k}/i/j) + 4

∑
e 6=i,j,c,d

I(i)
cd I

(j)
ed Bcded({k}/i/j)

+ 2 I(i)
cd I

(j)
cd Bcdcd({k}/i/j) +

(
I(ij)
cd −

1

2
I(ij)
cc −

1

2
I(ij)
dd

)
Bcd({k}/i/j)

]
.

On the other hand, in the collinear limit Cijk, where particles i, j and k become uniformly

collinear, we have the general structure

Cijk RR =
N 2

1

s2
ijk

[
Pijk B({k}[ijk]) +Qµνijk Bµν({k}[ijk])

]
. (3.2)

In eqs. (3.1)–(3.2), N1 is given by eq. (2.3), while the momentum sets {k}/i/j and {k}[ijk]

are obtained from {k} by removing ki, kj , and by combining ki, kj , kk into k = ki+kj +kk,

respectively. In eq. (3.1), furthermore, we have introduced the doubly-colour-connected

Born squared matrix element Bcdef = A(0)∗
n {Tc · Td,Te · Tf}A

(0)
n , which is multiplied

times the product of two eikonal factors, defined in eq. (2.4). In the latter expression of

eq. (3.1), we have rearranged all sums in such a way that each term features only unequal

colour indices. The (singly-)colour-connected squared amplitude Bcd, on the other hand,

multiplies the pure NNLO soft kernel, which can be written as

I(ij)
cd = δ{fifj}{qq̄} 2TR I(qq̄)(ij)

cd − δfig δfjg 2CA I(gg)(ij)
cd , (3.3)

with the explicit expressions [66]

I(qq̄)(ij)
cd =

sicsjd + sidsjc − sijscd
s2
ij(sic + sjc)(sid + sjd)

, (3.4)

I(gg)(ij)
cd =

(1− ε)(sicsjd + sidsjc)− 2sijscd
s2
ij(sic + sjc)(sid + sjd)

+scd
sicsjd + sidsjc − sijscd

sijsicsjdsidsjc

[
1− 1

2

sicsjd + sidsjc
(sic+sjc)(sid+sjd)

]
.
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In the collinear factorisation formula, eq. (3.2), the collinear kernels can be organised by

flavour structure as

Pijk = P
(0g)
ijk δ{fifj}{qq̄} δfk{q′,q̄′} + P

(0g)
jki δ{fjfk}{qq̄} δfi{q′,q̄′} + P

(0g)
kij δ{fkfi}{qq̄} δfj{q′,q̄′}

+P
(0g,id)
ijk δ{{fifj}fk}{qq̄} + P

(0g,id)
jki δ{{fjfk}fi}{qq̄} + P

(0g,id)
kij δ{{fkfi}fj}{qq̄}

+P
(1g)
ijk δ{fifj}{qq̄} δfkg + P

(1g)
jki δ{fjfk}{qq̄} δfig + P

(1g)
kij δ{fkfi}{qq̄} δfjg

+P
(2g)
ijk δfig δfjg δfk{q,q̄} + P

(2g)
jki δfjg δfkg δfi{q,q̄} + P

(2g)
kij δfkg δfig δfj{q,q̄}

+P
(3g)
ijk δfig δfjg δfkg , (3.5)

where q′ is a quark of flavour equal to or different from that of q; similarly, the azimuthal

tensor kernel can be written as

Qµνijk = Q
(1g)µν
ijk δ{fifj}{qq̄} δfkg +Q

(1g)µν
jki δ{fjfk}{qq̄} δfig +Q

(1g)µν
kij δ{fkfi}{qq̄} δfjg

+Q
(3g)µν
ijk δfig δfjg δfkg . (3.6)

In eqs. (3.5)–(3.6) we introduced δ{{fafb}fc}{qq̄} = δfaq δfbq δfcq̄+δfaq̄ δfbq̄ δfcq, and, as before,

the superscripts (kg) refer to the number of final-state gluons featuring in the various

kernels.

The expressions for P
(0g)
ijk , P

(0g,id)
ijk , P

(1g)
ijk , P

(2g)
ijk , and P

(3g)
ijk can be extracted from

ref. [66], and can be written as

P
(0g)
ijk =CFTR

{
−
s2
ijk

2s2
ij

(
sjk
sijk
− sik
sijk

+
zi−zj
zij

)2

+
sijk
sij

[
2
zk−zizj
zij

+ (1−ε)zij
]
− 1

2
+ ε

}
,

(3.7)

P
(0g,id)
ijk =CF (2CF−CA)

{
−
s2
ijk zk

2sjksik

[
1 + z2

k

zjkzik
− ε
(
zik
zjk

+
zjk
zik

+ 1 + ε

)]
+(1− ε)

[
sij
sjk

+
sij
sik
− ε
]

+
sijk
2sjk

[
1 + z2

k − εz2
jk

zik
− 2(1− ε) zj

zjk
− ε(1 + zk)− ε2 zjk

]
+
sijk
2sik

[
1 + z2

k − εz2
ik

zjk
− 2(1− ε) zi

zik
− ε(1 + zk)− ε2 zik

]}
, (3.8)

P
(1g)
ijk =CFTR

{
2s2
ijk

siksjk

[
1 + z2

k −
zk + 2zizj

1− ε

]
− (1− ε)

[
sij
sjk

+
sij
sik

]
− 2

−
sijk
sjk

[
1 + 2zk + ε−

2zjk
1− ε

]
−
sijk
sik

[
1 + 2zk + ε− 2zik

1− ε

]}

+ CATR

{
−
s2
ijk

2s2
ij

(
sjk
sijk
− sik
sijk

+
zi − zj
zij

)2

−
s2
ijk

siksjk

[
1 + z2

k −
zk + 2zizj

1− ε

]

– 10 –
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+
s2
ijk

2sijsik

zi
zkzij

[
z3
ij − z3

k −
2zi(zjk − 2zjzk)

1− ε

]
+

s2
ijk

2sijsjk

zj
zkzij

[
z3
ij − z3

k −
2zj(zik − 2zizk)

1− ε

]
+
sijk
2sik

zik
zkzij

[
1 + zkzij −

2zjzik
1− ε

]
+
sijk
2sjk

zjk
zkzij

[
1 + zkzij −

2zizjk
1− ε

]
+
sijk
sij

1

zkzij

[
1 + z3

k +
zk(zi − zj)2 − 2zizj(1 + zk)

1− ε

]
− 1

2
+ ε

}
, (3.9)

P
(2g)
ijk =C2

F

{
s2
ijk zk

2siksjk

[
1 + z2

k − εz2
ij

zizj
+ ε(1− ε)

]
− (1− ε)2 sjk

sik
+ ε(1− ε)

+
sijk
sik

[
zkzjk + z2

ik − εzikz2
ij

zizj
+ ε zik + ε2 (1 + zk)

]}

+CFCA

{
(1− ε)

s2
ijk

4s2
ij

(
sjk
sijk
− sik
sijk

+
zi − zj
zij

)2

−
s2
ijk zk

4siksjk

[
z2
ij(1− ε) + 2zk

zizj
+ ε(1− ε)

]
+

s2
ijk

2sijsik

[
z2
ij(1− ε) + 2zk

zj
+
z2
j (1− ε) + 2zik

zij

]
+

1

4
(1− ε)(1− 2ε)

+
sijk
2sik

[
(1− ε)

z3
ik + z2

k − zj
zjzij

− 2ε
zik(zj − zk)

zjzij

−
zkzjk + z3

ik

zizj
+ ε zik

z2
ij

zizj
− ε(1 + zk)− ε2zik

]
+
sijk
2sij

[
(1− ε)

zi(2zjk + z2
i )− zj(6zik + z2

j )

zjzij
+ 2ε

zk(zi − 2zj)− zj
zjzij

]}
+ (i↔ j) , (3.10)

P
(3g)
ijk =C2

A

{
(1− ε)

s2
ijk

4s2
ij

(
sjk
sijk
− sik
sijk

+
zi − zj
zij

)2

+
3

4
(1− ε)

+
s2
ijk

2sijsik

[
2zizjzik(1−2zk)

zkzij
+

1+2zi+2z2
i

zikzij
+

1−2zizjk
zjzk

+ 2zjzk + zi(1+2zi)− 4

]
+
sijk
sij

[
4
zizj − 1

zij
+
zizj − 2

zk
+

(1− zkzij)2

zizkzjk
+

5

2
zk +

3

2

]}
+ (5 permutations) , (3.11)

where we defined

za =
sar

sir+sjr+skr
, zab = za + zb , a, b = i, j, k , (3.12)

and kr, as before, is a massless reference vector, which can be chosen among the momenta

of the outgoing particles.
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From ref. [66] we can also obtain the expressions for the azimuthal tensor kernels

Q
(1g)µν
ijk and Q

(3g)µν
ijk , which we report in our notation for completeness. They are

Q
(1g)µν
ijk = −CFTR

2

1− ε
sijk
siksjk

[
k̃2
i q

µν
i + k̃2

j q
µν
j − ε k̃

2
k q

µν
k

]
(3.13)

+CATR
sijk

2(1− ε)

{
[

2

siksjk
− 4zj

zk

sij + 2sjk
s2
ijsjk

+
2(zisjk + zjsik)

zijsijsiksjk
+

(
2zizj
zkzij

− 1 + ε

)
sik − sjk
sijsiksjk

]
k̃2
i q

µν
i

+

[
2

siksjk
− 4zi
zk

sij + 2sik
s2
ijsik

+
2(zisjk + zjsik)

zijsijsiksjk
+

(
2zizj
zkzij

−1+ ε

)
sjk − sik
sijsiksjk

]
k̃2
j q

µν
j

+

[
2zizj
zkzij

1

sij

(
4

sij
+

1

sik
+

1

sjk

)
+
zi − zj
zij

sik − sjk
sijsiksjk

− ε
sijk + sij
sijsiksjk

]
k̃2
k q

µν
k

}
,

Q
(3g)µν
ijk = C2

A

sijk
sij

{[
2zj
zk

1

sij
+

(
zjzik
zkzij

− 3

2

)
1

sik

]
k̃2
i q

µν
i

+

[
2zi
zk

1

sij
−
(
zjzik
zkzij

− 3

2
− zi
zk

+
zi
zij

)
1

sik

]
k̃2
j q

µν
j

−
[

2zizj
zijzk

1

sij
+

(
zjzik
zkzij

− 3

2
− zi
zj

+
zi
zik

)
1

sik

]
k̃2
k q

µν
k

}
+ ( 5 permutations ) ,

where all terms are proportional to azimuthal tensors of the form

qµνa = −gµν + (d− 2)
k̃µa k̃νa

k̃2
a

, (3.14)

and, in analogy with eq. (2.6), we defined a transverse-momentum vector

k̃µa = kµa − zakµ − (k ·ka − zak2)
kµr
k ·kr

, a, b, c = i, j, k ,

k̃2
a = za(zak

2 − 2 k ·ka) = za(sbc − zbcsijk) , (3.15)

where the momentum kµ = kµi + kµj + kµk is the parent momentum of the three collinear

particles. We stress that the symmetry of P
(3g)
ijk , Q

(3g)µν
ijk under exchange of i, j, k, and of

all other kernels under exchange of i, j, guarantees that the kernels Pijk and Qµνijk defined

in eqs. (3.5)–(3.6) are totally symmetric under permutations of i, j, and k.

3.1 Phase-space mappings and integration

3.1.1 Double-soft kernel

In order to integrate the double-soft kernel in eq. (3.1) we introduce different phase-space

mappings according to the number of different momenta involved in the various contribu-

tions to the kernel. For the terms containing Bcd and Bcdcd, where only the four particles

– 12 –



J
H
E
P
0
2
(
2
0
2
1
)
0
3
7

i, j, c, d are present, we use the mapping described in appendix A.3.1, with the identifica-

tions

ka → ki , kb → kj , kc → kc , kd → kd . (3.16)

For the terms with Bcded involving the five particles i, j, c, d, e, we use the mapping given

in appendix A.3.2, with

ka → ki , kb → kj , kc → kc , kd → kd , ke → ke . (3.17)

Finally, for the terms proportional to Bcdef , we use the mapping of appendix A.3.3, with

ka → ki , kb → kj , kc → kc , kd → kd , ke → ke , kf → kf . (3.18)

The mapped double-soft limit of RR({k}) is then

Sij RR =
N 2

1

2

∑
c 6=i,j
d 6=i,j,c

[ ∑
e 6=i,j,c,d
f 6=i,j,c,d,e

I(i)
cd I

(j)
ef Bcdef

(
{k̄}(icd,jef)

)

+ 4
∑

e 6=i,j,c,d
I(i)
cd I

(j)
ed Bcded

(
{k̄}(icd,jed)

)
+ 2 I(i)

cd I
(j)
cd Bcdcd

(
{k̄}(ijcd)

)

+

(
I(ij)
cd −

1

2
I(ij)
cc −

1

2
I(ij)
dd

)
Bcd

(
{k̄}(ijcd)

)]
, (3.19)

and its integral in the n+ 2 phase-space is given by∫
dΦn+2 Sij RR =

1

2

∑
c 6=i,j
d 6=i,j,c

{ ∑
e 6=i,j,c,d
f 6=i,j,c,d,e

∫
dΦn

(
{k̄}(icd,jef)

)
J ijcdefs⊗s Bcdef

(
{k̄}(icd,jef)

)

+ 4
∑

e 6=i,j,c,d

∫
dΦn

(
{k̄}(icd,jed)

)
J ijcdes⊗s Bcded

(
{k̄}(icd,jed)

)
+ 2

∫
dΦn

(
{k̄}(ijcd)

)
J ijcds⊗s Bcdcd

(
{k̄}(ijcd)

)
+

∫
dΦn

(
{k̄}(ijcd)

)
J ijcdss Bcd

(
{k̄}(ijcd)

)}
, (3.20)

where the radiative integrals of products of eikonal kernels are defined by

J ijcdefs⊗s ≡ N 2
1

∫
dΦ

(icd,jef)
rad,2 I(i)

cd I
(j)
ef ≡ δfig δfjg J

(4)
s⊗s

(
s̄

(icd,jef)
cd , s̄

(icd,jef)
ef

)
,

J ijcdes⊗s ≡ N 2
1

∫
dΦ

(icd,jed)
rad,2 I(i)

cd I
(j)
ed ≡ δfig δfjg J

(3)
s⊗s

(
s̄

(icd,jed)
cd , s̄

(icd,jed)
ed

)
,

J ijcds⊗s ≡ N 2
1

∫
dΦ

(ijcd)
rad,2 I

(i)
cd I

(j)
cd ≡ δfig δfjg J

(2)
s⊗s

(
s̄

(ijcd)
cd

)
, (3.21)

while the radiative integral of the pure double-soft kernel is

J ijcdss ≡ N 2
1

∫
dΦ

(ijcd)
rad,2

(
I(ij)
cd −

1

2
I(ij)
cc −

1

2
I(ij)
dd

)
≡ δ{fifj}{qq̄} 2TR J

(qq̄)
ss

(
s̄

(ijcd)
cd

)
− δfig δfjg 2CA J

(gg)
ss

(
s̄

(ijcd)
cd

)
. (3.22)
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The kinematic dependence of these integrals is described by the five radiative double-

soft functions J
(4)
s⊗s, J

(3)
s⊗s, J

(2)
s⊗s, J

(qq̄)
ss and J

(gg)
ss . The integrals defining J

(4)
s⊗s and J

(3)
s⊗s are

factorised, so their calculation is trivial, and can be performed to all orders in ε, analogously

to the case with one emission. We find

J
(4)
s⊗s(s, s

′) = N 2
1 N2(ε) (s s′)−ε

∫ π

0
dφ′ (sinφ′)−2ε

∫ 1

0
dy′
∫ 1

0
dz′
∫ π

0
dφ (sinφ)−2ε

∫ 1

0
dy

∫ 1

0
dz

×
[
y′(1− y′)2 z′(1− z′) y(1− y)2 z(1− z)

]−ε
(1− y′)(1− y)

1− z′

y′z′
1− z
yz

= Js(s) Js(s
′) =

(αS

2π

)2
(

ss′

e2γ
Eµ4

)−ε [Γ(1− ε)Γ(2− ε)
ε2 Γ(2− 3ε)

]2

=

(
αS

2π

)2(ss′
µ4

)−ε [ 1

ε4
+

4

ε3
+

(
16− 7

6
π2

)
1

ε2
+

(
60− 14

3
π2 − 50

3
ζ3

)
1

ε

+ 216− 56

3
π2 − 200

3
ζ3 +

29

120
π4+O(ε)

]
, (3.23)

and

J
(3)
s⊗s(s, s

′) = N 2
1 N2(ε) (s s′)−ε

∫ π

0
dφ′ (sinφ′)−2ε

∫ 1

0
dy′
∫ 1

0
dz′
∫ π

0
dφ (sinφ)−2ε

∫ 1

0
dy

∫ 1

0
dz

×
[
y′(1− y′)2 z′(1− z′) y(1− y)3 z(1− z)

]−ε
(1− y′)(1− y)

1− z′

y′z′
1− z
yz

=
(αS

2π

)2
(

ss′

e2γ
Eµ4

)−ε Γ(1− ε)Γ(2− ε)
ε2 Γ(2− 3ε)

Γ(1− ε)Γ(2− ε)Γ(2− 3ε)

ε2 Γ(2− 2ε)Γ(2− 4ε)

=

(
αS

2π

)2(ss′
µ4

)−ε [ 1

ε4
+

4

ε3
+

(
17− 4

3
π2

)
1

ε2
+

(
70− 16

3
π2 − 68

3
ζ3

)
1

ε

+ 284− 68

3
π2 − 272

3
ζ3 +

13

90
π4 +O(ε)

]
. (3.24)

The integrals defining J
(2)
s⊗s, J

(gg)
ss , J

(qq̄)
ss are not factorised, and are thus more involved. They

have been performed following the procedure described in section 3.2, with the results

J
(2)
s⊗s(s) =

(
αS

2π

)2( s
µ2

)−2ε[ 1

ε4
+

4

ε3
+

(
18− 3

2
π2

)
1

ε2
+

(
76− 6π2 − 74

3
ζ3

)
1

ε

+ 312− 27π2 − 308

3
ζ3 +

49

120
π4+O(ε)

]
,

J (qq̄)
ss (s) =

(
αS

2π

)2( s
µ2

)−2ε[1

6

1

ε3
+

17

18

1

ε2
+

(
116

27
− 7

36
π2

)
1

ε
+

1474

81
− 131

108
π2 − 19

9
ζ3 +O(ε)

]
,

J (gg)
ss (s) =

(
αS

2π

)2( s
µ2

)−2ε[ 1

2

1

ε4
+

35

12

1

ε3
+

(
487

36
− 2

3
π2

)
1

ε2
+

(
1562

27
− 269

72
π2 − 77

6
ζ3

)
1

ε

+
19351

81
− 3829

216
π2 − 1025

18
ζ3 −

23

240
π4 +O(ε)

]
. (3.25)
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3.1.2 Double-collinear kernel

In order to integrate the double-collinear kernel, we perform the phase-space mappings

described in appendix A.3.1, with the choices

ka → ki , kb → kj , kc → kk , kd → kr . (3.26)

The mapped double-collinear limit of RR({k}) is then

Cijk RR =
N 2

1

s2
ijk

[
Pijk B

(
{k̄}(ijkr)

)
+Qµνijk Bµν

(
{k̄}(ijkr)

)]
. (3.27)

As was the case for the single-collinear limit at NLO, the integrals of the azimuthal tensor

kernel Qµνijk vanish because of its Lorentz structure:∫
dΦn+2 q

µν
a =

∫
dΦn

(
{k̄}(ijkr)

) ∫
dΦ

(ijkr)
rad,2 qµνa = 0, for a = i, j, k , (3.28)

which relies on the fact that k̃a · k̄(ijkr)
k = 0 for a = i, j, k. The remaining terms, featuring

the Pijk kernels, can be integrated in the (n+ 2)-particle phase-space, and the result can

be written as ∫
dΦn+2 Cijk RR =

∫
dΦn

(
{k̄}(ijkr)

)
J ijkrcc B

(
{k̄}(ijkr)

)
, (3.29)

where the radiative integral

J ijkrcc ≡ N 2
1

∫
dΦ

(ijkr)
rad,2

Pijk
s2
ijk

(3.30)

≡ δ{fifjfk}{qq̄q′,qq̄q̄′} J
(0g)
cc

(
s̄

(ijkr)
kr

)
+ δ{fifjfk}{qqq̄,q̄q̄q} J

(0g,id)
cc

(
s̄

(ijkr)
kr

)
+ δ{fifjfk}{qq̄g} J

(1g)
cc

(
s̄

(ijkr)
kr

)
+ δ{fifjfk}{ggq,ggq̄} J

(2g)
cc

(
s̄

(ijkr)
kr

)
+δfigδfjgδfkg J

(3g)
cc

(
s̄

(ijkr)
kr

)
admits a flavour decomposition following from eq. (3.5), and has a kinematic dependence

described by the five radiative double-collinear functions J
(0g)
cc , J

(0g,id)
cc , J

(1g)
cc , J

(2g)
cc , J

(3g)
cc

with argument s̄
(ijkr)
kr . Here we have introduced symmetrised flavour delta functions, ac-

cording to

δ{fifjfk}{qq̄q′,qq̄q̄′} = δ{fifj}{qq̄} δfk{q′,q̄′} + δ{fjfk}{qq̄} δfi{q′,q̄′} + δ{fkfi}{qq̄} δfj{q′,q̄′} ,

δ{fifjfk}{qqq̄,q̄q̄q} = δ{{fifj}fk}{qq̄} + δ{{fjfk}fi}{qq̄} + δ{{fkfi}fj}{qq̄} ,

δ{fifjfk}{qq̄g} = δ{fifj}{qq̄} δfkg + δ{fjfk}{qq̄} δfig + δ{fkfi}{qq̄} δfjg ,

δ{fifjfk}{ggq,ggq̄} = δfig δfjg δfk{q,q̄} + δfjg δfkg δfi{q,q̄} + δfkg δfig δfj{q,q̄} , (3.31)

where again q′ is a quark of flavour equal to or different from that of q. The integration of

J
(0g)
cc , J

(0g,id)
cc , J

(1g)
cc , J

(2g)
cc , J

(3g)
cc is the computation of the highest complexity among those
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presented in this paper. It can however be performed analytically following the procedure

described in section 3.2. The results are

J (0g)
cc (s) =

(
αS

2π

)2( s

µ2

)−2ε

CFTR

×
[
− 1

3

1

ε3
− 31

18

1

ε2
−
(

889

108
− π2

2

)
1

ε
− 23941

648
+

31

12
π2 +

80

9
ζ3 +O(ε)

]
,

J (0g,id)
cc (s) =

(
αS

2π

)2( s

µ2

)−2ε

CF
(
2CF − CA

)
×
[
−
(

13

8
− 1

4
π2 + ζ3

)
1

ε
− 227

16
+ π2 +

17

2
ζ3 −

11

120
π4 +O(ε)

]
,

J (1g)
cc (s) =

(
αS

2π

)2( s

µ2

)−2ε

×

{
CFTR

[
− 2

3

1

ε3
− 31

9

1

ε2
−
(

889

54
− π2

)
1

ε
− 23833

324
+

31

6
π2 +

160

9
ζ3 +O(ε)

]

+CATR

[
− 4

3

1

ε3
− 41

6

1

ε2
−
(

1675

54
− 17

9
π2

)
1

ε
− 10808

81
+

1063

108
π2+

278

9
ζ3+O(ε)

]}
,

J (2g)
cc (s) =

(
αS

2π

)2( s
µ2

)−2ε
{
C2
F

[
4

ε4
+

14

ε3
+

(
251

4
− 6π2

)
1

ε2
+

(
2125

8
− 21π2 − 308

3
ζ3

)
1

ε

+
17607

16
− 753

8
π2 − 1096

3
ζ3 +

13

10
π4 +O(ε)

]
+CFCA

[
1

ε4
+

16

3

1

ε3
+

(
905

36
− 4

3
π2

)
1

ε2
+

(
11773

108
− 89

12
π2 − 65

3
ζ3

)
1

ε

+
295789

648
− 845

24
π2 − 2191

18
ζ3 +

19

120
π4 +O(ε)

] }
,

J (3g)
cc (s) =

(
αS

2π

)2( s
µ2

)−2ε

C2
A

[
15

ε4
+

63

ε3
+

(
853

3
− 22π2

)
1

ε2
+

(
10900

9
− 275

3
π2 − 376ζ3

)
1

ε

+
180739

36
− 3736

9
π2 − 1555 ζ3 +

41

10
π4 +O(ε)

]
. (3.32)

This completes the integration of the factorised kernels for tree-level double-unresolved

radiation. Once again, in order to build a complete subtraction procedure at NNLO, one

needs to consider both strongly-ordered and composite limits, mixing soft and collinear

configurations. For such limits, it is important to find a consistent set of phase-space

mappings, which need to be mutually consistent when the relevant limits are taken, in

order to guarantee a local cancellation of singularities: a procedure to do so is described

in ref. [54]. When it comes to the phase-space integration, however, all the composite

and strongly-ordered limits are either contained in the results we just stated, or lead to

significantly simpler integrals. We have thus provided all the key ingredients necessary for

the integration of local counterterms (for massless final-state partons) at NNLO.
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3.2 Details of the integration procedure

In this section we describe in detail how the integration of the kernels J
(2)
s⊗s, J

(gg)
ss , J

(qq̄)
ss ,

J
(0g)
cc , J

(0g,id)
cc , J

(1g)
cc , J

(2g)
cc , J

(3g)
cc has been performed. We note that the procedure we follow,

while certainly non-trivial, does not require the deployment of advanced techniques such as

integration by parts or the use of differential equations (see, for example, [67–73]): in this

sense our method, at NNLO, allows for a complete analytic integration of all subtraction

counterterms, by means of relatively simple tools.

The integration procedure is simplified by a careful analysis of the symmetries of the

relevant integrals under exchanges of particle labels. When integrating in the two-body

radiative phase space dΦ
(abcd)
rad,2 , the freedom in choosing ka, kb, kc, kd does not stem from the

symmetries of the kernel itself, but from those of the four-body phase space. In particular,

following ref. [57], we note that the four-body phase space for momenta ka, kb, kc, kd is

symmetric under the permutation of the four momenta, as well as under the following

permutations of Mandelstam invariants:

sab ↔ scd , sac ↔ sbd , sad ↔ sbc . (3.33)

These symmetries are reflected in our parametrisations of phase space, in particular when

moving from the set {ka, kb, kc, kd} to the set {k̄(abcd)
c , k̄

(abcd)
d , y, z, φ, y′, z′, w′}, and this is

crucial to simplify the analytic integration.

In order to exploit these symmetries for the integration of the soft and collinear kernels,

after assigning the momenta ka, kb, kc, kd according to the discussion of section 3.1, we

apply the following transformations:

• in the terms containing 1/(sad + sbd)/(sad + scd), all permutations of the invariants

sab ↔ scd, sac ↔ sbd, sad ↔ sbc are performed;

• in the terms containing 1/(sad+scd) (but not 1/(sad+sbd)), the permutation kb ↔ kc
is performed;

• in the terms containing 1/(sbd+scd) (but not 1/(sad+sbd)), the permutation ka ↔ kc
is performed;

• in the terms containing 1/(sad sbd), the partial fractioning

1

sad sbd
=

1

sad + sbd

(
1

sad
+

1

sbd

)
(3.34)

is performed, and in the first term the permutation ka ↔ kb is applied.

• in the terms containing 1/sad (but not 1/sbd), the permutation ka ↔ kb is performed.

After these transformations, the denominators of all integrands feature only the following

combinations of invariants:

sab , sac , sbc , scd , sbd , sac + sbc , sad + sbd , sab + sbc , (3.35)
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and they can be parametrised as (see eq. (A.19))

sab = y′ y sabcd ,

sac = z′(1− y′) y sabcd ,
sbc = (1− y′)(1− z′) y sabcd ,
scd = (1− y′)(1− y)(1− z) sabcd ,

sbd = (1− y)
[
y′z′(1− z) + (1− z′)z + 2(1− 2w′)

√
y′z′(1− z′)z(1− z)

]
sabcd ,

sac + sbc = (1− y′) y sabcd ,
sad + sbd = (y′ + z − y′ z) (1− y) sabcd ,

sab + sbc = (1− z′ + z′y′) y sabcd . (3.36)

We now detail the integration procedure, focusing on one variable at a time. In section 3.2.1

we analyse the trivial integration over y, and the first non-trivial structure arising from the

w′ integration. Then, the subsequent integrations over z and z′ are detailed in section 3.2.2,

including a discussion on how we linearise the argument of the resulting hypergeometric

functions. Finally, section 3.2.3 concerns the ε-expansion of intermediate results, and the

last integration step.

3.2.1 Integration on y and on the azimuthal variable w′

Since in all denominators in the list (3.35) the dependence on y is factorised, the integration

in the y variable is always of the form∫ 1

0
dy
[
y (1− y)

]1−2ε
yn (1− y)m , n,m ∈ Z , (3.37)

which clearly gives B(n+ 2− 2ε,m+ 2− 2ε).

We now switch to the integration over the azimuthal variable w′. According to

eq. (3.36), the only denominator containing the azimuthal variable w′ is sbd, while the

presence of the w′ in the numerator uniquely stems from linear combinations of sad and

sbd, see eq. (A.19). Thus, terms without sbd in the denominator are of the form∫ 1

0
dw′

[
w′(1− w′)

]− 1
2
−ε

(1− 2w′)n = 2−1+2ε (1 + (−1)n)B

(
1

2
− ε, 1 + n

2

)
, n ∈ N . (3.38)

Terms containing the ratio sad/sbd can be simplified according to

sad
sbd

=
sad + sbd
sbd

− 1 = (y′ + z − y′ z) (1− y)
sabcd
sbd
− 1 ; (3.39)

therefore, no dependence on w′ in the numerator is left in the presence of the denominator

sbd. The only non-trivial integration involving the azimuthal variable w′ is then∫ 1

0
dw′

[
w′(1− w′)

]− 1
2
−ε sabcd

sbd
=

1

1− y

∫ 1

0
dw′

[
w′(1− w′)

]− 1
2
−ε 1

(A+B)2 − 4ABw′

≡ 1

1− y
Iw′ , (3.40)

– 18 –



J
H
E
P
0
2
(
2
0
2
1
)
0
3
7

with A =
√
y′z′(1− z) and B =

√
z(1− z′). Note that, as already discussed at the

beginning of this section (see eq. (3.37)), the y dependence is trivially factorised. Therefore,

from now on, we understand the y dependence to be integrated out.

The integral Iw′ is of the type described in appendix B.1, with a = 1 and b = 1 + ε.

From eq. (B.10) we get then

Iw′ = I1+ε

(√
y′z′(1− z),

√
z(1− z′)

)
=

Γ2(1/2− ε)
Γ(1− 2ε)

[
1

z(1− z′) 2F1

(
1, 1 + ε, 1− ε, y

′z′(1− z)

z(1− z′)

)
Θ

(
1− y′z′(1− z)

z(1− z′)

)

+
1

y′z′(1− z)
2F1

(
1, 1 + ε, 1− ε, z(1− z′)

y′z′(1− z)

)
Θ

(
y′z′(1− z)

z(1− z′)
− 1

)]
. (3.41)

3.2.2 Integration of the variables z and z′

After integrating over y and w′, one is left with three integrations over the variables z, z′ and

y′. We now analyse the z and the z′ integrations. While all numerators have a polynomial

dependence on z, z′, the denominators manifest a richer structure. In particular,

• the invariants sab, sac, sbc, scd, sac + sbc feature a trivial dependence on z′ and z, as

they are just products of powers of z′, (1− z′), z and (1− z);

• the structure sad+sbd does not depend on z′, while it depends on z through the factor

y′+ z−y′z; analogously, sab+ sbc depends only on z′, through the factor 1− z′+ z′y′;

• when the denominator is sbd, the z, z′ dependence is confined to the arguments and

the prefactors of the hypergeometric functions of in eq. (3.41), as well as in the

accompanying Θ functions; the latter are to be understood as constraints on the

integration region for either z or z′.

The soft and collinear kernels feature products of the invariant structures described above.

Among them, a non-trivial dependence on z and z′ arises from the following building blocks:

1

y′ + z − y′ z
,

1

1− z′ + z′y′
,

Iw′

y′ + z − y′ z
,

Iw′

1− z′ + z′y′
, Iw′ .(3.42)

In contributions proportional to the first structure in eq. (3.42), the z′ integration gives

Beta functions, while the z integration takes the form∫ 1

0
dz

zn−ε(1− z)m−ε

y′ + z − y′ z
=B(n+ 1− ε,m+ 1− ε) 2F1

(
1,m+ 1− ε, n+m+ 2− 2ε, 1− y′

)
,

(3.43)

where we used 2F1(a, b, c, x) = (1− x)−a2F1(a, c− b, c,−x/(1− x)). Note that m,n stand

for generic powers of z, arising from the numerators. Similarly, in terms that embed the
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second structure in eq. (3.42), the z integration is trivial (Beta functions), while the z′

integration takes the form∫ 1

0
dz′

(z′)n−ε(1−z′)m−ε

1−z′ + z′y′
=B(n+ 1−ε,m+ 1−ε) 2F1

(
1, n+ 1−ε, n+m+ 2− 2ε, 1− y′

)
.

(3.44)

In the third (fourth) structure of eq. (3.42) the whole z′ (z) dependence is contained in

Iw′ , and this variable is integrated first. Finally, in the fifth structure of eq. (3.42), where

no denominator depends on z nor on z′, the order of integration of z and z′ is irrelevant.

Accounting for generic numerators, whose dependence upon z and z′ is polynomial, we can

cast all integrals to be performed as combinations of the following building blocks:1

I
(n)
w′z =

∫ 1

0
dz
[
z(1− z)

]−ε
(1− z)n Iw′ , J

(n)
w′z =

∫ 1

0
dz
[
z(1− z)

]−ε
zn Iw′ , (3.45)

I
(n)
w′z′ =

∫ 1

0
dz′
[
z′(1− z′)

]−ε
(z′)n Iw′ , J

(n)
w′z′ =

∫ 1

0
dz′
[
z′(1− z′)

]−ε
(1− z′)n Iw′ , (3.46)

where n is an integer such that n ≥ −1.

Because of the symmetries of Iw′ upon z ↔ 1−z′, the results for I
(n)
w′z′ and J

(n)
w′z′ can be

inferred from those for I
(n)
w′z and J

(n)
w′z, respectively. We then proceed with the computation

of the latter two integrals, which are of the type described in eq. (B.18) of appendix B.2

with b = 1 + ε. Specifically

I
(n)
w′z =

∫ 1

0
dz (z)−ε(1− z)n−ε I1+ε(A,B) = I1+ε,−ε,n−ε(1− z′, y′z′) ,

J
(n)
w′z =

∫ 1

0
dz (z)n−ε(1− z)−ε I1+ε(A,B) = I1+ε,n−ε,−ε(1− z′, y′z′) . (3.47)

We see that the integral I1+ε,−ε,n−ε(1−z′, y′z′) is of the special type Ib,1−b,γ(C,D) described

in eq. (B.30), while the integral I1+ε,n−ε,−ε(1− z′, y′z′) is of the special type Ib,β,1−b(C,D)

described in eq. (B.31). Using the results derived there we have

I
(n)
w′z =

1

1− z′
Γ2(1/2− ε)
Γ(1− 2ε)

Γ(−ε)Γ(n+1−ε)
Γ(n+ 1− 2ε)

2F1

(
1, n+1−ε, 1−ε,− y′z′

1−z′

)
,

J
(n)
w′z =

1

y′z′
Γ2(1/2− ε)
Γ(1− 2ε)

Γ(−ε)Γ(n+1−ε)
Γ(n+ 1− 2ε)

2F1

(
1, n+1−ε, 1−ε,−1−z′

y′z′

)
. (3.48)

We now show the result for specific values of n, and in particular we distinguish between

1In some cases it is necessary to apply the partial fractioning

1

z(1− z)
=

1

z
+

1

1− z
.
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n = −1 and n ≥ 0. For n = −1, eq. (3.48) reads

I
(−1)
w′z =

1

1− z′
Γ2(1/2− ε)
Γ(1− 2ε)

Γ2(−ε)
Γ(−2ε)

2F1

(
1,−ε, 1− ε,− y′z′

1− z′

)
, (3.49)

J
(−1)
w′z =

1

y′z′
Γ2(1/2− ε)
Γ(1− 2ε)

Γ2(−ε)
Γ(−2ε)

2F1

(
1,−ε, 1− ε,−1− z′

y′z′

)
= − Γ2(1/2− ε)

Γ(1− 2ε)

Γ(−ε)Γ(1− ε)
Γ(−2ε)

[
1

1 + ε

1

1−z′ 2F1

(
1, 1 + ε, 2 + ε,− y′z′

1−z′

)
−Γ(1 + ε)Γ(−ε) (1− z′)ε

(y′z′)1+ε

]
,

where in the second integral of eq. (3.49), we have inverted the argument of the hyperge-

ometric function by means of eq. (B.20). For n ≥ 0 the hypergeometric functions are of

the class 2F1(1, c+ n, c, x), with c = 1− ε, and can therefore be written as a finite sum in

the form

2F1(1, c+ n, c, x) = (c− 1)
n∑
k=0

Γ(n+ 1)Γ(c+ n− k − 1)

Γ(n− k + 1)Γ(c+ n)

1

(1− x)k+1
, n ≥ 0 . (3.50)

The integrals of eq. (3.48) for n ≥ 0 are then given by

I
(n)
w′z =

Γ2(1/2− ε)
Γ(1− 2ε)

Γ(1−ε)Γ(n+1)

Γ(n+ 1− 2ε)

n∑
k=0

Γ(n−k−ε)
Γ(n−k+1)

(1− z′)k

(1− z′ + z′y′)k+1
, n ≥ 0 ,

J
(n)
w′z =

Γ2(1/2− ε)
Γ(1− 2ε)

Γ(1−ε)Γ(n+1)

Γ(n+ 1− 2ε)

n∑
k=0

Γ(n−k−ε)
Γ(n−k+1)

(y′)k(z′)k

(1− z′ + z′y′)k+1
, n ≥ 0 . (3.51)

Notice that the two integrals coincide for n = 0, evaluating to

I
(0)
w′z = J

(0)
w′z =

1

2

Γ2(1/2− ε)
Γ(1− 2ε)

Γ2(−ε)
Γ(−2ε)

1

1− z′ + z′y′
. (3.52)

After the first z (z′) integration has been performed, all non-trivial dependence on the

remaining z′ (z) variable is encoded in one of the following structures:

I
(n,p,q,m)
w′zz′ ≡

∫ 1

0
dz′

(1−z′)p−ε(z′)q−ε

(1−z′+z′y′)m
I

(n)
w′z

=

∫ 1

0
dz

∫ 1

0
dz′

(1−z′)p−ε(z′)q−ε

(1−z′+z′y′)m
[
z(1−z)

]−ε
(1−z)n Iw′ ,

J
(n,p,q,m)
w′zz′ ≡

∫ 1

0
dz′

(1−z′)p−ε(z′)q−ε

(1−z′+z′y′)m
J

(n)
w′z

=

∫ 1

0
dz

∫ 1

0
dz′

(1−z′)p−ε(z′)q−ε

(1−z′+z′y′)m
[
z(1−z)

]−ε
zn Iw′ , (3.53)

where the integers n, p, q,m are such that n, p, q ≥ −1, while m = 0, 1. For later conve-

nience, we recursively use the following partial fractioning

zp−ε(1− z)q−ε = zp+1−ε(1− z)q−ε + zp−ε(1− z)q+1−ε ,

(z′)p−ε(1− z′)q−ε = (z′)p+1−ε(1− z′)q−ε + (z′)p−ε(1− z′)q+1−ε , (3.54)

until the condition p+ q ≥ m is satisfied.
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Using the symmetry under the exchange z ↔ 1− z′, the integrals I
(n,p,q,m)
w′zz′ , J

(n,p,q,m)
w′zz′

can equivalently be written in terms of I
(n)
w′z′ and J

(n)
w′z′ , as

I
(n,p,q,m)
w′zz′ ≡

∫ 1

0
dz

zp−ε(1−z)q−ε

(y′+z−y′z)m
I

(n)
w′z′

=

∫ 1

0
dz

∫ 1

0
dz′

zp−ε(1−z)q−ε

(y′+z−y′z)m

[
z′(1−z′)

]−ε
(z′)n Iw′ ,

J
(n,p,q,m)
w′zz′ ≡

∫ 1

0
dz

zp−ε(1−z)q−ε

(y′+z−y′z)m
J

(n)
w′z′

=

∫ 1

0
dz

∫ 1

0
dz′

zp−ε(1−z)q−ε

(y′+z−y′z)m

[
z′(1−z′)

]−ε
(1−z′)n Iw′ . (3.55)

To proceed with the computation, we choose the representation of I
(n,p,q,m)
w′zz′ , J

(n,p,q,m)
w′zz′ in

terms of I
(n)
w′z and J

(n)
w′z, according to eq. (3.53). Thanks to the results in eq. (3.51), the case

n ≥ 0 is trivial, and yields

I
(n,p,q,m)
w′zz′ =

Γ2(1/2− ε)
Γ(1− 2ε)

Γ(1−ε)Γ(n+1)

Γ(n+ 1− 2ε)

n∑
k=0

Γ(n−k−ε)
Γ(n−k+1)

Γ(p+k+1−ε)Γ(q+1−ε)
Γ(p+q+k+2−2ε)

× 2F1

(
m+k+1, q+1−ε, p+q+k+2−2ε, 1−y′

)
, n ≥ 0 ,

J
(n,p,q,m)
w′zz′ =

Γ2(1/2− ε)
Γ(1− 2ε)

Γ(1−ε)Γ(n+1)

Γ(n+ 1− 2ε)

n∑
k=0

Γ(n−k−ε)
Γ(n−k+1)

Γ(p+1−ε)Γ(q+k+1−ε)
Γ(p+q+k+2−2ε)

× (y′)k 2F1

(
m+k+1, q+k+1−ε, p+q+k+2−2ε, 1−y′

)
, n ≥ 0 . (3.56)

For n = −1, we exploit the integral representation of the hypergeometric functions in

eq. (3.49), introducing the auxiliary integration variable t, and write

I
(−1,p,q,m)
w′zz′ =

Γ2(1/2− ε)
Γ(1− 2ε)

Γ(−ε)Γ(1− ε)
Γ(−2ε)

∫ 1

0
dz′
∫ 1

0
dt

(1− z′)p−ε(z′)q−ε

(1− z′ + z′y′)m
t−1−ε

1− z′ + tz′y′
,

J
(−1,p,q,m)
w′zz′ = − Γ2(1/2− ε)

Γ(1− 2ε)

Γ(−ε)Γ(1− ε)
Γ(−2ε)

∫ 1

0
dz′

(1− z′)p(z′)q−ε

(1−z′+z′y′)m

×

[∫ 1

0
dt

(1− z′)−ε tε

1−z′+tz′y′
− Γ(1 + ε)Γ(−ε)

(z′y′)1+ε

]
. (3.57)

The second expression makes sense only if p ≥ 0, which is the case in all soft and collinear

kernels. For m = 0, the z′ integration gives

I
(−1,p,q,0)
w′zz′ =

Γ2(1/2− ε)
Γ(1− 2ε)

Γ(−ε)Γ(1− ε)
Γ(−2ε)

Γ(p+1−ε)Γ(q+1−ε)
Γ(p+q+2−2ε)

(3.58)

×
∫ 1

0
dt t−1−ε

2F1

(
1, q + 1− ε, p+ q + 2− 2ε, 1− ty′

)
,

J
(−1,p,q,0)
w′zz′ =− Γ2(1/2− ε)

Γ(1− 2ε)

Γ(−ε)Γ(1− ε)
Γ(−2ε)

[
− Γ(1 + ε)Γ(−ε)

(y′)1+ε

Γ(p+ 1)Γ(q − 2ε)

Γ(p+ q + 1− 2ε)

+
Γ(p+1−ε)Γ(q +1−ε)

Γ(p+ q + 2− 2ε)

∫ 1

0
dt tε 2F1

(
1, q+1− ε, p+ q + 2−2ε, 1− ty′

) ]
, p ≥ 0 .
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For m = 1, before performing the remaining z′ integration, we employ the partial fraction-

ing

1

1− z′ + z′y′
1

1− z′ + tz′y′
=

1

1− t
1

y′z′

[
1

1− z′ + tz′y′
− 1

1− z′ + z′y′

]
. (3.59)

with the results

I
(−1,p,q,1)
w′zz′ =

1

y′
Γ2(1/2− ε)
Γ(1− 2ε)

Γ(−ε)Γ(1− ε)
Γ(−2ε)

Γ(p+ 1− ε)Γ(q − ε)
Γ(p+ q + 1− 2ε)

∫ 1

0
dt
t−1−ε

1− t
(3.60)

×
[

2F1

(
1, q−ε, p+q+1−2ε, 1− ty′

)
− 2F1

(
1, q−ε, p+q+1−2ε, 1− y′

) ]
,

J
(−1,p,q,1)
w′zz′ =− 1

y′
Γ2(1/2− ε)
Γ(1− 2ε)

Γ(−ε)Γ(1− ε)
Γ(−2ε)

{
Γ(p+ 1− ε)Γ(q − ε)

Γ(p+ q + 1− 2ε)

×
∫ 1

0
dt

tε

1−t

[
2F1

(
1, q−ε, p+q+1−2ε, 1−ty′

)
− 2F1

(
1, q−ε, p+q+1−2ε, 1−y′

)]
−Γ(1 + ε)Γ(−ε)

(y′)ε
Γ(p+ 1)Γ(q − 2ε)

Γ(p+q+1−2ε)
2F1

(
1, q−2ε, p+q+1−2ε, 1−y′

)}
, p ≥ 0 .

Summarising, for n ≥ 0 we still have to perform the last integration over the y′ variable.

Conversely, for the case n = −1, we are left with two integrations, one over the physical

variable y′, the other over the auxiliary variable t stemming from the integral representation

of hypergeometric functions. Notice that, so far, all our results are exact in ε: only while

performing these last steps we resort to an expansion2 in powers of ε.

3.2.3 Expansion in ε and integration of the y′ and t variables

After the y, w′, z and z′ integrations have been performed following the steps detailed in

the previous sections, the integrations over y′ and t only involve monomials y′, (1− y′), t,
(1− t), and hypergeometric functions of the types

2F1(n1, n2 − ε, n3 − 2ε, 1− ω), n1 ≥ 1, n2 ≥ 0, n3 ≥ n1 + 1, n2, ω = ty′, y′ ,

2F1(1, n2 − 2ε, n3 − 2ε, 1− ω), n2 ≥ 0, n3 ≥ n2 + 1, ω = y′ . (3.61)

For the first type the constraint n3 ≥ n1 + 1 is always achieved, thanks to the condition

p+ q ≥ m, which comes from the partial fractioning described in eq. (3.54).

We first manipulate these hypergeometric functions by means of the identity

2F1(a, b, c, x) = (1− x)c−b−a 2F1(c− a, c− b, c, x) = (1− x)c−b−a 2F1(c− b, c− a, c, x) ,

(3.62)

to get

2F1(n1, n2−ε, n3−2ε, 1−ω) = (ω)n3−n2−n1−ε
2F1(n3−n2−ε, n3−n1−2ε, n3−2ε, 1−ω) ,

2F1(1, n2−2ε, n3−2ε, 1−ω) = (ω)n3−n2−1
2F1(n3−n2, n3−1−2ε, n3−2ε, 1−ω) . (3.63)

2Formally, one could give exact results in terms of the hypergeometric functions 3F2 and 4F3 evaluated

at unit argument.
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Since n3 ≥ n1 +1, the first hypergeometric function 2F1(n3−n2−ε, n3−n1−2ε, n3−2ε, 1−ω) in

eq. (3.63) is of the type 2F1(a, b, b+n, x), and can be treated recursively using the relation

2F1(a, b, b+ n, x) =
1

n− 1

[
(b+ n− 1) 2F1(a, b, b+ n− 1, x)− b 2F1(a, b+ 1, b+ n, x)

]
,

(3.64)

until it reduces to a hypergeometric function of the type 2F1(a, b, b+1, x), with a = m1−ε,
b = m2 − 2ε (m1,m2 ≥ 0). The other hypergeometric function 2F1(n3−n2, n3−1−2ε, n3−
2ε, 1−ω) in eq. (3.63) is already of the type 2F1(a, b, b + 1, x), but with a = m1 + 1,

b = m2 − 2ε (m1,m2 ≥ 0). We then make use of the relations (properly combined)

2F1(a, b, b+ 1, x) =
b

a− 1

1

x

[
(1− x)1−a − 2F1(a− 1, b− 1, b, x)

]
,

2F1(a, b, b+ 1, x) =
1

a− 1

[
b (1− x)1−a + (a− b− 1) 2F1(a− 1, b, b+ 1, x)

]
,

2F1(a, b, b+ 1, x) =
b

a− b
1

x

[
(1− x)1−a − 2F1(a, b− 1, b, x)

]
, (3.65)

until all hypergeometric functions are reduced to the following forms

2F1(−ε,−2ε, 1− 2ε, 1− ω) , 2F1(1,−2ε, 1− 2ε, 1− ω) . (3.66)

Their expansions in ε is known to all orders and is given by

2F1(−ε,−2ε, 1− 2ε, 1− ω) = 1−
∞∑
n=1

∞∑
p=1

(2ε)n(−ε)p Sn,p(1− ω) ,

2F1(1,−2ε, 1− 2ε, 1− ω) = 1 + 2ε lnω −
∞∑
n=2

(2ε)n Lin(1− ω) , (3.67)

where the Spence functions Sn,p(x) are defined by

Sn,p(x) =
(−1)n+p−1

(n− 1)! p!

∫ 1

0
dv

lnn−1 v

v
lnp(1− x v) , (3.68)

and reduce to standard polylogarithms for p = 1, with Sn,1(x) = Lin+1(x).

At this point, all poles in ε can be extracted using the standard identities∫ 1

0
dxx−1+αε(1− x)−1+βε f(x) =

∫ 1

0
dxx−1+αε(1− x)βε f(x) +

∫ 1

0
dxxαε(1− x)−1+βε f(x) ,∫ 1

0
dxx−1+αε f(x) =

1

αε
f(0) +

∫ 1

0
dxxαε

f(x)− f(0)

x
,∫ 1

0
dx (1− x)−1+βε f(x) =

1

βε
f(1) +

∫ 1

0
dx (1− x)βε

f(x)− f(1)

1− x
, (3.69)

where x can be either y′ or t. The remaining ε dependence does not generate any pole and

can be safely expanded in Taylor series. Therefore, at this point, the remaining integrals (in

t or y′) can be easily performed using standard techniques. Discarding terms that vanish

in the ε→ 0 limit, we obtain the final expressions given in section 3.1.
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4 One-loop infrared kernels with one real emission

To complete the study of NNLO factorisation formulae we are left with the integration of

one-loop infrared kernels involving the emission of one soft or two collinear particles at the

one-loop level. These kernels are known from the literature [74–80], and we rewrite them

in the most suited form to perform their integration in the radiation phase-space in the

context of our method.

Indicating with RV ({k}) the renormalised one-loop squared matrix element for the

emission of one unresolved parton i, the factorisation formulae for the soft limit Si and for

the collinear limit Cij read

SiRV = −N1

∑
l 6=i
m 6=i

[
I(i)
lm Vlm

(
{k}/i

)
− αS

2π

(
Ĩ(i)
lm + I(i)

lm

β0

2ε

)
Blm

(
{k}/i

)

+αS

∑
p 6=i,l,m

Ĩ(i)
lmpBlmp

(
{k}/i

)]
,

CijRV =
N1

sij

{
Pij V

(
{k}[ij]

)
+Qµνij Vµν

(
{k}[ij]

)
+
αS

2π

[(
P̃ij − Pij

β0

2ε

)
B
(
{k}[ij]

)
+

(
Q̃µνij −Q

µν
ij

β0

2ε

)
Bµν

(
{k}[ij]

)]}
, (4.1)

where the symbols N1, B, V , Blm, Bµν , {k}/i , {k}[ij], I
(i)
lm, Pij , and Qµνij were already

introduced in section 2. In addition, here we have introduced the completely antisymmetric

tripole-colour-correlated Born squared matrix element

Blmp =
∑
a, b, c

fabcA(0)∗
n Ta

l Tb
mTc

pA(0)
n , (4.2)

as well as the colour-connected one-loop squared matrix element Vlm ≡ 2ReA(0)∗
n (Tl ·

Tm)A(1)
n , and the spin-connected one-loop squared matrix element Vµν , obtained by strip-

ping the spin polarisation vectors of the particle with momentum ki + kj from both the

matrix element and its complex conjugate inside V . The one-loop soft kernels are

Ĩ(i)
lm = δfig CA

Γ3(1 + ε)Γ4(1− ε)
ε2 Γ(1 + 2ε)Γ2(1− 2ε)

slm
silsim

(
eγE µ2slm
silsim

)ε
,

Ĩ(i)
lmp = δfig

Γ(1 + ε)Γ2(1− ε)
εΓ(1− 2ε)

slm
silsim

(
eγE µ2 smp
simsip

)ε
. (4.3)

Their collinear counterparts, on the other hand, can be written as

P̃ij =
Γ2(1+ε)Γ3(1−ε)

Γ(1+2ε)Γ2(1−2ε)

(
sij
eγEµ2

)−ε
(4.4)

×
[
PijMij +N

(1g)
ij δfigδfj{q,q̄} +N

(1g)
ji δfjgδfi{q,q̄} +N

(2g)
ij δfigδfjg

]
,

Q̃µνij =
Γ2(1+ε)Γ3(1−ε)

Γ(1+2ε)Γ2(1−2ε)

(
sij
eγEµ2

)−ε[
Qµνij Mij −N (2g)

ij δfigδfjg

(
− gµν + (d− 2)

k̃µij k̃
ν
ij

k̃2
ij

)]
,
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with

Mij =
1

ε2

[
Cf[ij]−Cfi−Cfj +

(
Cf[ij]+Cfi−Cfj

)
F (xi) +

(
Cf[ij]+Cfj−Cfi

)
F (xj)

]
+

1

1−2ε

[
1

ε

(
β0 − 3CF

)
+ CA − 2CF +

CA + 4TRNf

3(3− 2ε)

]
δ{fifj}{qq̄} , (4.5)

F (x) = 1− 2F1

(
1,−ε; 1− ε; x− 1

x

)
= ε lnx+

+∞∑
n=2

εn Lin

(
x− 1

x

)
,

and

N
(1g)
ij = CF

CA−CF
1− 2ε

(
1− εxi

)
, N

(2g)
ij = 4CA

CA(1− ε)− 2TRNf

(1− 2ε)(2−2ε)2(3−2ε)

(
1−2εxixj

)
. (4.6)

While the one-loop kernels are rather intricate, there is only a single further unresolved

radiation: the phase space mapping, to which we now turn, is therefore simpler in this case.

4.1 Phase-space mappings and integration

4.1.1 One-loop soft kernel and cancellation of colour tripoles

As done for the tree-level infrared kernels with one real emission, for the soft kernels we

perform the mapping described in appendix A.1, choosing the momenta {ka, kb, kc} as the

momenta {ki, kl, km} present in each term of the eikonal kernel, according to

ka → ki , kb → kl , kc → km . (4.7)

Promoting the set {k}/i to the momentum conserving set {k̄}(ilm) of appendix A.1, we

define the mapped soft limit of RV ({k}) as

SiRV ≡ −N1

∑
l 6=i
m 6=i

[
I(i)
lm Vlm

(
{k̄}(ilm)

)
(4.8)

− αS

2π

(
Ĩ(i)
lm + I(i)

lm

β0

2ε

)
Blm

(
{k̄}(ilm)

)
+ αS

∑
p 6=i,l,m

Ĩ(i)
lmpBlmp

(
{k̄}(ilm)

)]
.

The integral of this function in the (n+ 1)-particle phase-space can be written as∫
dΦn+1 SiRV =−

∑
l 6=i
m 6=i

∫
dΦn({k̄}(ilm))

[
J ilms Vlm

(
{k̄}(ilm)

)
(4.9)

−αS

2π

(
J̃ ilms + J ilms

β0

2ε

)
Blm

(
{k̄}(ilm)

)
+ αS

∑
p 6=i,l,m

J̃ (i),lmp
s Blmp

(
{k̄}(ilm)

)]
,

where J ilms = δfig Js, defined and computed in eqs. (2.13)–(2.14), must here be expanded

up to order O(ε2). One gets

Js(s) =
αS

2π

(
s

µ2

)−ε [ 1

ε2
+

2

ε
+ 6− 7

12
π2 +

(
18− 7

6
π2 − 25

3
ζ3

)
ε (4.10)

+

(
54− 7

2
π2 − 50

3
ζ3 −

71

1440
π4

)
ε2 +O(ε3)

]
.
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Also the integral J̃ ilms , defined below, can be easily computed after substituting the ex-

pression for the Mandelstam invariants in our parametrisation, eq. (A.4). The result is

J̃ ilms ≡ N1

∫
dΦ

(ilm)
rad Ĩ(i)

lm = δfigN1CA
(eγEµ2)ε Γ3(1+ε)Γ4(1−ε)
ε2 Γ(1 + 2ε)Γ2(1− 2ε)

∫
dΦ

(ilm)
rad

(
slm
silsim

)1+ε

≡ δfig CA J̃s

(
s̄

(ilm)
lm

)
, (4.11)

whose kinematic dependence is described by the one-loop radiative soft function J̃s given by

J̃s(s) = N1N(ε)
(eγEµ2)ε Γ3(1+ε)Γ4(1−ε)
ε2 Γ(1 + 2ε)Γ2(1− 2ε)

s−2ε

∫ π

0
dφ
(
sinφ

)−2ε
∫ 1

0
dy

∫ 1

0
dz

×
[
y(1− y)2z(1− z)

]−ε
(1− y)

(
1−z
y z

)1+ε

=
αS

2π

(
s

eγEµ2

)−2ε Γ3(1 + ε)Γ3(1− ε)
4 ε4 Γ(1 + 2ε)Γ(2− 4ε)

(4.12)

=
αS

2π

(
s

µ2

)−2ε
[

1

4ε4
+

1

ε3
+

(
4− 7

24
π2

)
1

ε2
+

(
16− 7

6
π2 − 14

3
ζ3

)
1

ε

+ 64− 14

3
π2 − 56

3
ζ3 −

7

480
π4 +O(ε)

]
.

We now discuss the last and most interesting contribution to eq. (4.9): the soft integral

proportional to the triple-colour-correlated Born amplitude. It is defined by

J̃ (i),lmp
s ≡ N1

∫
dΦ

(ilm)
rad Ĩ(i)

lmp = δfigN1
(eγEµ2)ε Γ(1+ε)Γ2(1−ε)

εΓ(1− 2ε)

∫
dΦ

(ilm)
rad

slm
silsim

(
smp
simsip

)ε
≡ δfig J̃

tripole
s

s̄(ilm)
lm ,

s̄
(ilm)
lp

s̄
(ilm)
mp

 . (4.13)

whose kinematic dependence is described by the radiative tripole soft function J̃ tripole
s

which in our approach turns out to be a function of the invariant s̄
(ilm)
lm and of the ratio

s̄
(ilm)
lp /s̄

(ilm)
mp . As can be guessed from the more intricate kinematic dependence, this part

of the soft one-loop kernel requires more refined techniques to be analytically integrated:

the reason is its peculiar kinematic structure, involving two eikonal kernels linking four

particles, which leads to a non-trivial azimuthal dependence. With the phase-space map-

ping {ka, kb, kc} → {ki, kl, km}, we can use the results of appendix A.2 to parametrise the

Mandelstam invariants present in Ĩ(i)
lmp in the form

sil = y s̄
(ilm)
lm ,

sim = z(1− y) s̄
(ilm)
lm ,

slm = (1− z)(1− y) s̄
(ilm)
lm ,

smp = (1− y) s̄(ilm)
mp ,

sip = y(1− z)s̄(ilm)
mp + z s̄

(ilm)
lp − 2(1− 2w)

√
y z(1− z)s̄

(ilm)
lp s̄

(ilm)
mp , (4.14)
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which leads to the expression

J̃ tripole
s (s, ξ) = N1 2−2εN(ε)

(eγEµ2)ε Γ(1+ε)Γ2(1−ε)
εΓ(1− 2ε)

s−2ε

∫ 1

0
dw dy dz

[
w(1−w)

]−ε− 1
2

×
[
y(1− y)2z(1− z)

]−ε
(1−y)

1− z
y z

z−ε

×
[
y(1− z) + z ξ − 2(1− 2w)

√
y z (1− z) ξ

]−ε
. (4.15)

At this point, we observe that this expression takes the form of the master integral defined

in eq. (B.32), namely Iε,1+ε,−1−2ε,1−ε,−1−ε,1−2ε(ξ, 1), thus it can be computed and expanded

in powers of ε following the procedure discussed in appendix B.3. The final result reads

J̃ tripole
s (s, ξ) =

αS

2π

(
s

µ2

)−2ε [ 3

8

1

ε3
+

(
3

2
− 1

4
ln ξ

)
1

ε2
+

(
7− 19

48
π2 − ln ξ +

1

4
ln2 ξ

)
1

ε

+ 32− 19

12
π2 − 10ζ3 −

(
4− π2

24

)
ln ξ + ln2 ξ − 1

6
ln3 ξ − Li3(−ξ) +O(ε)

]
.

(4.16)

Eq. (4.16) features up to a triple pole, stemming from the combination of the double pole

arising from the phase-space integration of the radiated soft gluon, and the single pole of

the one-loop squared matrix element. There are however solid arguments to expect that

there should be no infrared poles proportional to colour tripoles at NNLO. A first hint for

this is the calculation in ref. [79], showing that, before the factorisation and mapping of

the (n+ 1)-particle phase-space, the pole arising from the squared matrix element cancels

by colour conservation, when only final-state partons are considered, as is the case here.

A stronger argument comes from the observation that real-virtual singular contributions

proportional to colour tripoles would find no double-virtual or double-real counterparts to

cancel against: indeed, the structure of virtual infrared poles at NNLO [81–87] contains

only colour dipoles, as well as quadrupoles generated by exponentiation, but no tripoles.

Similarly, as clearly shown by eq. (3.1), singular contributions to double-unresolved real

radiation do not contain three-particle colour correlations. We conclude that all poles

generated by eq. (4.16), including those that come from the phase-space integration of the

radiated soft gluon, should cancel when performing the appropriate colour sums, whereas

non-singular terms will provide important finite contributions to subtraction counterterms.

To see that this cancellation indeed takes place, consider the sums involved in the tripole

term in eq. (4.9), ∑
l 6=i,m 6=i,l
p 6=i,l,m

J̃ (i),lmp
s Blmp . (4.17)

The sum can be simplified using symmetry arguments, for instance exploiting the complete

antisymmetry of Blmp under label exchange, as well as colour conservation. To give an

obvious example, terms contributing to pole residues but independent of the Mandelstam

invariants will cancel in the sum over colours, using the Born matrix-element property
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Blmm + Blml = 0. This is sufficient to prove the cancellation of triple poles. Double and

single poles, on the other hand, feature residues that also contain the structures∑
l 6=i,m 6=i,l
p 6=i,l,m

Blmp lnk
s̄lm
µ2

ln2n s̄lp
s̄mp

,
∑

l 6=i,m 6=i,l
p 6=i,l,m

Blmp ln
s̄lp
s̄mp

,
∑

l 6=i,m 6=i,l
p 6=i,l,m

Blmp ln
s̄lm
µ2

ln
s̄lp
s̄mp

, (4.18)

with k, n ∈ N. The first structure vanishes because of the symmetry of both logarithms for

the exchange l↔ m. Similarly, the second structure can be rewritten as∑
l 6=i,m 6=i,l
p 6=i,l,m

Blmp ln
s̄lp
s̄mp

=
∑

l 6=i,m 6=i,l
p 6=i,l,m

(
Blmp ln

s̄lp
µ2
−Blmp ln

s̄mp
µ2

)
= 0 , (4.19)

since the first and second terms vanish separately upon summation over the indices m and

l, respectively. For the remaining structure we get∑
l 6=i,m 6=i,l
p 6=i,l,m

Blmp ln
s̄lm
µ2

ln
s̄lp
s̄mp

=
∑

l 6=i,m 6=i,l
p 6=i,l,m

(
Blmp ln

s̄lp
µ2

ln
s̄lm
µ2
−Blmp ln

s̄mp
µ2

ln
s̄lm
µ2

)
= 0 , (4.20)

where individual terms vanish thanks to the same symmetry arguments used in eq. (4.19).

This completes the proof that colour tripoles do not contribute to infrared counterterms

at NNLO, except for subtraction-scheme-dependent finite contributions. In our approach,

these are given by∑
l 6=i,m 6=i,l
p 6=i,l,m

J̃ (i),lmp
s Blmp

= − δfig
αS

2π

∑
l 6=i,m 6=i,l
p 6=i,l,m

Blmp

[
1

2
ln
s̄lp
s̄mp

ln2 s̄lm
µ2

+
1

6
ln3 s̄lp

s̄mp
+ Li3

(
−
s̄lp
s̄mp

)
+O(ε)

]
. (4.21)

4.1.2 One-loop collinear kernel

For the one-loop collinear kernel we choose the momenta {ka, kb, kc} of the phase-space

mapping in appendix A.1, as was done for the tree-level collinear kernel with one real

emission. Thus we pick

ka → ki , kb → kj , kc → kr . (4.22)

We promote the set {k}[ij] to the set of on-shell momenta {k̄}(ijr) of appendix A.1, and get

Cij RV ≡
N1

sij

{
Pij V

(
{k̄}(ijr)

)
+Qµνij Vµν

(
{k̄}(ijr)

)
(4.23)

+
αS

2π

[(
P̃ij − Pij

β0

2ε

)
B
(
{k̄}(ijr)

)
+

(
Q̃µνij −Q

µν
ij

β0

2ε

)
Bµν

(
{k̄}(ijr)

)]}
.

Once again, the integration of the collinear kernels is simplified by the fact that terms

proportional to Qµνij and Q̃µνij integrate to zero, because of their Lorentz structure. For the
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remaining pieces, containing Pij and P̃ij , integration in the (n+ 1)-particle phase-space

leads to∫
dΦn+1 Cij RV =

∫
dΦn

(
{k̄}(ijr)

)[
J ijrc V

(
{k̄}(ijr)

)
+
αS

2π

(
J̃ ijrc − J ijrc

β0

2ε

)
B
(
{k̄}(ijr)

)]
.

(4.24)

The integral J ijrc is defined in eq. (2.18), where it is expressed in terms of the radiative

collinear functions J
(kg)
c (with k = 0, 1, 2). These must now be computed to O(ε2), and yield

J (0g)
c (s) =

αS

2π

(
s

µ2

)−ε
TR

[
− 2

3

1

ε
− 16

9
−
(

140

27
− 7

18
π2

)
ε

−
(

1252

81
− 28

27
π2 − 50

9
ζ3

)
ε2 +O(ε3)

]
,

J (1g)
c (s) =

αS

2π

(
s

µ2

)−ε
CF

[
2

ε2
+

7

2

1

ε
+ 11− 7

6
π2 +

(
33− 49

24
π2 − 50

3
ζ3

)
ε

+

(
99− 77

12
π2 − 175

6
ζ3 −

71

720
π4

)
ε2 +O(ε3)

]
, (4.25)

J (2g)
c (s) =

αS

2π

(
s

µ2

)−ε
CA

[
4

ε2
+

23

3

1

ε
+

208

9
− 7

3
π2 +

(
1874

27
− 161

36
π2 − 100

3
ζ3

)
ε

+

(
16870

81
− 364

27
π2 − 575

9
ζ3 −

71

360
π4

)
ε2 +O(ε3)

]
.

Similarly, the expression for the integral J̃ ijrc is obtained by integrating the one-loop kernels

P̃ij . We define

J̃ ijrc ≡N1

∫
dΦ

(ijr)
rad

P̃ij
sij

(4.26)

≡ δ{fifj}{qq̄}J̃
(0g)
c

(
s̄

(ijr)
jr

)
+
(
δfigδfj{q,q̄}+δfjgδfi{q,q̄}

)
J̃ (1g)

c

(
s̄

(ijr)
jr

)
+ δfigδfjgJ̃

(2g)
c

(
s̄

(ijr)
jr

)
.

where the kinematic dependence can be described by the one-loop radiative collinear func-

tions J̃
(0g)
c , J̃

(1g)
c , J̃

(2g)
c with argument s̄

(ijr)
jr . Terms in P̃ij which are proportional to the

simple polynomials N
(1g)
ij and N

(2g)
ij (see eq. (4.4)) can be integrated easily. Less triv-

ial integrals arise from the PijMij term in eq. (4.4), and in particular from structures of

the type

Im,nF =

∫ 1

0
dz (1− z)m−εzn−ε 2F1

(
1,−ε; 1− ε;− z

1− z

)
, (4.27)

where n,m can take only the integer values −1, 0, 1. For these values, the integral can be

expressed in terms of a generalised hypergeometric function of type 3F2, evaluated at unit

argument. More precisely,

Im,nF =
Γ(m− ε+ 2)Γ(n− ε+ 1)

Γ(m+ n− 2ε+ 3)
3F2(1, 1, n− ε+ 1;m+ n− 2ε+ 3, 1− ε; 1) . (4.28)
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This, in turn, can be expanded in powers of ε, using for example the package HypExp [88, 89].

The integration over the remaining radiative phase-space variables is then straightforward.

The final results for the three contributions to J̃ ijrc are

J̃ (0g)
c (s) =

αS

2π

(
s

µ2

)−2ε
{
NfT

2
R

[
4

9

1

ε2
+

64

27

1

ε
+

284

27
− 2

3
π2 +O(ε)

]
(4.29)

+CATR

[
− 1

3

1

ε3
− 31

18

1

ε2
−
(

211

27
− 1

2
π2

)
1

ε
− 5281

162
+

31

12
π2 +

62

9
ζ3 +O(ε)

]
+CFTR

[
2

3

1

ε3
+

31

9

1

ε2
+

(
431

27
− π2

)
1

ε
+

5506

81
− 31

6
π2 − 124

9
ζ3 +O(ε)

]}
,

J̃ (1g)
c (s) =

αS

2π

(
s

µ2

)−2ε
{
C2
F

[
−
(

5

4
− π2

3

)
1

ε2
−
(

15

2
− 2

3
π2 − 10ζ3

)
1

ε

− 141

4
+

109

24
π2 + 20ζ3 −

7

45
π4 +O(ε)

]
+ CFCA

[
− 1

2

1

ε4
− 7

4

1

ε3
−
(

15

2
− 7

12
π2

)
1

ε2
−
(

31− 55

24
π2 − 16

3
ζ3

)
1

ε

− 503

4
+

119

12
π2 +

157

6
ζ3 −

67

720
π4 +O(ε)

] }
,

J̃ (2g)
c (s) =

αS

2π

(
s

µ2

)−2ε
{
CANfTR

[
1

3

1

ε
+

25

9
+O(ε)

]
+C2

A

[
− 1

ε4
− 23

6

1

ε3
−
(

172

9
− 11

6
π2

)
1

ε2
−
(

253

3
− 77

12
π2 − 92

3
ζ3

)
1

ε

− 57277

162
+

94

3
π2 +

893

9
ζ3 −

179

360
π4 +O(ε)

] }
.

This completes the list of all the integrals associated with factorised soft and collinear

kernels at NNLO. These integrals form the basis for the construction of all integrated

infrared counterterms for single- and double-unresolved real radiation at NNLO.

5 Conclusions

In any massless gauge theory, (squared) matrix elements factorise in soft and collinear

limits, at leading power in the soft energy and in the small transverse momentum, yielding

universal soft and collinear kernels, which multiply the (squared) matrix element for the

Born process, without the unresolved particles. Away from the strict limits (or beyond

leading power in the resolving variables) this factorisation is not exact: in particular, the

factorised Born matrix element does not conserve momentum (near the soft limit), or is

not on the mass shell (near collinear limits). In order to integrate the factorisation kernels

over the unresolved degrees of freedom in a universal way (i.e. requiring no information on

the underlying Born process), one needs to provide a set of phase-space mappings, which

must re-express the factorised Born process in terms of an on-shell, momentum-conserving
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set of momenta. This amounts to a specific choice of a set of sub-leading power terms in

the factorisation, and such a choice is a necessary ingredient for any infrared subtraction

procedure.

In the present paper, we have presented the complete integration of the QCD factori-

sation kernels at NLO and NNLO, with a set of phase-space mappings selected along the

lines suggested in ref. [54], chosen with the goal of simplifying as much as possible the

analytic integration. As a consequence, we have been able to give analytic results for all

kernels, including non-singular terms. In particular, all integrals of the double-real coun-

terterms can be written exactly, to all orders in ε, in terms of hypergeometric functions,

with the most intricate cases involving 4F3 evaluated at unit argument. We have however

chosen to give the expansion of these hypergeometrics in powers of ε, up to and including

O(ε0) terms, since this is what is required in practical calculations. All our results have

been validated against independent numerical integration codes based on sector decom-

position [90–92]. The analytic results of this paper are necessary (and indeed sufficient)

ingredients to build all integrated counterterms in the context of the local analytic sector

subtraction of ref. [54]. The present work shows that this novel approach allows to use

standard techniques to compute an important class of integrals that appear in all NNLO

QCD computations, yielding comparatively very simple results.

We believe that achieving the maximum simplicity in the case at hand - NNLO radia-

tion of massless partons in the final state - is important not only for building an efficient and

transparent NNLO subtraction algorithm for these processes, but also for future extensions.

The method presented here is expected to be generalisable to initial-state QCD radiation

without conceptual changes, and the results are sufficiently simple that a generalisation to

massive particles at NNLO appears feasible. Furthermore, since the integrations presented

in this paper have been performed with conventional techniques, one may reasonably hope

that more advanced techniques, such as those involving differential equations for Feynman

integrals (see, for example, [67–73]), might be sufficient to tackle the problem even at the

next perturbative order.
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A Phase-space mappings

A.1 One unresolved particle

Given an on-shell, momentum conserving (n + 1)-tuple of final-state massless momenta

{k} = {ki}, i = 1, . . . , n + 1, including the momentum ka of the unresolved parton, we
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choose two momenta kb and kc, with b, c 6= a, and construct an on-shell, momentum

conserving n-tuple of massless momenta {k̄}(abc) (without ka) as

{k̄}(abc) =
{
{k}/a/b/c, k̄

(abc)
b , k̄(abc)

c

}
, (A.1)

with

k̄
(abc)
b = ka + kb −

sab
sac + sbc

kc , k̄(abc)
c =

sabc
sac + sbc

kc , k̄
(abc)
i = ki, if i 6= a, b, c, (A.2)

where we have introduced sabc = sab + sac + sbc = s̄
(abc)
bc . These momenta satisfy the

condition k̄
(abc)
b + k̄

(abc)
c = ka + kb + kc, ensuring momentum conservation, and they are all

light-like, as easily checked. Next, we introduce Catani-Seymour parameters [5]

y =
sab
sabc

, z =
sac

sac + sbc
, (A.3)

which allow us to write

sab = y s̄
(abc)
bc , sac = z(1− y) s̄

(abc)
bc , sbc = (1− z)(1− y) s̄

(abc)
bc . (A.4)

We use these variables to parametrise the (n+ 1)-body phase space as

dΦn+1({k}) = dΦn({k̄}(abc)) dΦ
(abc)
rad , dΦ

(abc)
rad ≡ dΦrad

(
s̄

(abc)
bc ; y, z, φ

)
, (A.5)

leading to the explicit expression∫
dΦ

(abc)
rad ≡ N(ε)

(
s̄

(abc)
bc

)1−ε
∫ π

0
dφ sin−2εφ

∫ 1

0
dy

∫ 1

0
dz
[
y(1− y)2z(1− z)

]−ε
(1− y) , (A.6)

where we have defined

N(ε) ≡ (4π)ε−2

√
π Γ
(

1
2 − ε

) . (A.7)

In eq. (A.5), dΦn({k̄}(abc)) is the n-body phase space for partons with momenta {k̄}(abc),
while, in eq. (A.6), φ is the azimuthal angle of ka, measured in the rest frame of the

ka + kb + kc system, with k̄
(abc)
b pointing along the z-direction, (see appendix A.2 for full

details).

A.2 Parametrisation of the azimuthal angle

While in NLO computations the integration on the azimuthal angle is always trivial, at

NNLO the integration of at least one azimuthal variable is significantly more complicated,

and has to be treated with care. First of all, one needs an auxiliary four-momentum kd,

to fix the plane with respect to which the azimuthal angle is defined. We take as reference

frame the one where p = ka + kb + kc is at rest, and the direction of k̄
(abc)
b as the axis with

respect to which the polar angle θ is defined. The azimuthal angle φ is then defined as the
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angle between the plane containing ka and k̄
(abc)
b , and the plane containing k̄

(abc)
b and kd.

Using the formulae derived in the second section of [93], in this reference frame we have

cosφ =
[
∆3

(
p, k̄

(abc)
b , kd

)
∆3

(
p, k̄

(abc)
b , ka

)]−1/2
G

(
p, k̄

(abc)
b , kd

p, k̄
(abc)
b , ka

)
, (A.8)

where

∆n(p1, . . . , pn) = G

(
p1, . . . , pn
p1, . . . , pn

)
, G

(
p1, . . . , pn
q1, . . . , qn

)
=

∣∣∣∣∣∣∣∣
p1 ·q1 . . . p1 ·qn
. . .
: : :

pn ·q1 . . . pn ·qn

∣∣∣∣∣∣∣∣ .
Using eq. (A.8) we get

cosφ =
2ka ·k̄(abc)

b 2kd ·k̄
(abc)
c + 2ka ·k̄(abc)

c 2kd ·k̄
(abc)
b − sabc 2ka ·kd

2
[
2ka ·k̄(abc)

b 2ka ·k̄(abc)
c (2k̄

(abc)
b ·kd 2k̄

(abc)
c ·kd − sabck2

d)
]1/2

, (A.9)

which, in the case k2
d = 0, and using eq. (A.4), leads to

cosφ =
y(1− z) s̄

(abc)
cd + z s̄

(abc)
bd − sad

2 [yz(1− z)s̄
(abc)
bd s̄

(abc)
cd ]1/2

, sin2 φ = −
Λ
(
y(1− z)s̄

(abc)
cd , zs̄

(abc)
bd , sad

)
4 yz(1− z)s̄

(abc)
bd s̄

(abc)
cd

, (A.10)

where Λ(a, b, c) = a2 + b2 + c2 − 2ab − 2bc − 2ca is the Källén function. Having written

cosφ in terms of invariants, we introduce a new integration variable,

w =
1− cosφ

2
, cosφ = 1− 2w, sin2 φ = 4w(1− w), dφ =

dw

[w(1− w)]1/2
. (A.11)

The integration over the azimuthal angle then becomes∫ π

0
dφ sin−2εφ = 2−2ε

∫ 1

0
dw [w(1− w)]−ε−1/2 , (A.12)

giving, for the radiative phase space,∫
dΦ

(abc)
rad = 2−2εN(ε)

(
s̄

(abc)
bc

)1−ε
∫ 1

0
dw

∫ 1

0
dy

∫ 1

0
dz [w(1− w)]−ε−

1
2 ×

×
[
y(1− y)2z(1− z)

]−ε
(1− y) . (A.13)

Among the new scalar products s̄
(abc)
cd , s̄

(abc)
bd , and sad, only the last one involves the unre-

solved parton ka. Its relation with the other invariants is then

sad = y(1− z)s̄
(abc)
cd + zs̄

(abc)
bd − 2 (1− 2w)

[
yz(1− z)s̄

(abc)
bd s̄

(abc)
cd

]1/2
. (A.14)

A.3 Two unresolved particles

Given an on-shell, momentum conserving (n + 2)-tuple of final-state massless momenta

{k} = {ki}, i = 1, . . . , n+ 2, including the momenta ka, kb of the two unresolved partons,

we construct an on-shell, momentum conserving n-tuple of massless momenta, applying

twice the procedure in appendix A.1. We distinguish the cases involving four, five, and six

momenta in the mapping.
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A.3.1 Mapping involving four momenta

In addition to the momenta ka, kb, we choose a third momentum kc to construct the

on-shell, momentum conserving (n+ 1)-tuple of massless momenta {k̄}(abc)

{k̄}(abc) =
{
{k}/a/b/c, k̄

(abc)
b , k̄(abc)

c

}
, (A.15)

and a fourth momentum kd to fix the azimuthal angle of ka in the reference frame where

ka + kb + kc is at rest, as described in appendix A.2. Then in {k̄}(abc) we select the three

momenta k̄
(abc)
b , k̄

(abc)
c and k̄

(abc)
d = kd to construct the on-shell, momentum conserving

n-tuple of massless momenta {k̄}(abcd)

{k̄}(abcd) =
{
{k}/a/b/c/d, k̄

(abcd)
c , k̄

(abcd)
d

}
, (A.16)

with

k̄(abcd)
c = k̄

(abc)
b + k̄(abc)

c −
s̄

(abc)
bc

s̄
(abc)
bd + s̄

(abc)
cd

k̄
(abc)
d , k̄

(abcd)
d =

s̄
(abc)
bcd

s̄
(abc)
bd + s̄

(abc)
cd

k̄
(abc)
d , (A.17)

while all other momenta are left unchanged (k̄
(abcd)
n = kn , n 6= a, b, c, d). Introducing

Catani-Seymour parameters

y′ =
sab
sabc

, z′ =
sac

sac + sbc
, y =

s̄
(abc)
bc

s̄
(abc)
bcd

, z =
s̄

(abc)
bd

s̄
(abc)
bd + s̄

(abc)
cd

, (A.18)

we can write the six invariants involving a, b, c, d in terms of the invariant s̄
(abcd)
cd = s̄

(abc)
bcd =

sabcd:

sab = y′ y s̄
(abcd)
cd , sac = z′(1− y′) y s̄(abcd)

cd , sbc = (1− y′)(1− z′) y s̄(abcd)
cd ,

scd = (1− y′)(1− y)(1− z) s̄
(abcd)
cd ,

sad = (1− y)
[
y′(1− z′)(1− z) + z′z − 2(1− 2w′)

√
y′z′(1− z′)z(1− z)

]
s̄

(abcd)
cd ,

sbd = (1− y)
[
y′z′(1− z) + (1− z′)z + 2(1− 2w′)

√
y′z′(1− z′)z(1− z)

]
s̄

(abcd)
cd . (A.19)

We use these variables to parametrise the (n+ 2)-body phase space as

dΦn+2({k}) = dΦn({k̄}(abcd)) dΦ
(abcd)
rad,2 , (A.20)

dΦ
(abcd)
rad,2 = dΦrad(s̄

(abcd)
cd ; y, z, φ) dΦrad(s̄

(abc)
bc ; y′, z′, w′) , (A.21)

where the explicit expression of dΦrad,2 in terms of Catani-Seymour parameters reads∫
dΦ

(abcd)
rad,2 = 2−2εN2(ε)

(
s̄

(abcd)
cd

)2−2ε
∫ 1

0
dw′
∫ 1

0
dy′
∫ 1

0
dz′
∫ π

0
dφ (sinφ)−2ε

∫ 1

0
dy

∫ 1

0
dz (A.22)

×
[
w′(1−w′)

]−1/2−ε[
y′(1−y′)2 z′(1−z′) y2(1−y)2 z(1−z)

]−ε
(1−y′) y(1−y) .

Here w′ = (1 − cosφ′)/2 parametrises the azimuth φ′ of ka in the reference frame where

ka + kb + kc is at rest, while φ is the azimuth of k̄
(abc)
b , whose integration is trivial.
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A.3.2 Mapping involving five momenta

In this case, we first select two momenta kc, kd, and build the (n + 1)-tuple of massless

momenta {k̄}(acd)

{k̄}(acd) =
{
{k}/a/c/d, k̄

(acd)
c , k̄

(acd)
d

}
. (A.23)

Then in {k̄}(acd) we choose the three momenta k̄
(acd)
b = kb, k̄

(acd)
e = ke, and k̄

(acd)
d to

construct the on-shell, momentum conserving n-tuple of massless momenta {k̄}(acd,bed)

{k̄}(acd,bed) =
{
{k}/a/b/c/d/e, k̄

(acd,bed)
c , k̄

(acd,bed)
d , k̄(acd,bed)

e

}
, (A.24)

with

k̄(acd,bed)
c = k̄(acd)

c , k̄
(acd,bed)
d =

s̄
(acd)
bed

s̄
(acd)
bd +s̄

(acd)
ed

k̄
(acd)
d ,

k̄(acd,bed)
e = k̄

(acd)
b + k̄(acd)

e −
s̄

(acd)
be

s̄
(acd)
bd +s̄

(acd)
ed

k̄
(acd)
d , (A.25)

while all other momenta are left unchanged (k̄
(acd,bed)
n = kn , n 6= a, b, c, d, e). Introducing

Catani-Seymour parameters

y′ =
sac
sacd

, z′ =
sad

sad + scd
, y =

s̄
(acd)
be

s̄
(acd)
bed

, z =
s̄

(acd)
bd

s̄
(acd)
bd + s̄

(acd)
ed

, (A.26)

we write the six relevant invariants in terms of s̄
(acd,bed)
cd , and s̄

(acd,bed)
ed = s̄

(acd)
bed , as

sac = y′ (1− y)s̄
(acd,bed)
cd , sad = z′ (1− y′)(1− y)s̄

(acd,bed)
cd ,

sbe = y s̄
(acd,bed)
ed , sbd = (1− y′) z (1− y)s̄

(acd,bed)
ed ,

scd = (1− y′)(1− z′)(1− y)s̄
(acd,bed)
cd , sed = (1− y′)(1− z)(1− y)s̄

(acd,bed)
ed . (A.27)

For the (n+ 2)-body phase space we obtain

dΦn+2({k}) = dΦn({k̄}(acd,bed)) dΦ
(acd,bed)
rad,2 , (A.28)

where the double radiative phase space

dΦ
(acd,bed)
rad,2 = dΦrad(s̄

(acd,bed)
ed ; y, z, φ) dΦrad(s̄

(acd)
cd ; y′, z′, φ′) , (A.29)

can be written as∫
dΦ

(acd,bed)
rad,2 =N2(ε)

(
s̄

(acd,bed)
cd s̄

(acd,bed)
ed

)1−ε
∫ π

0
dφ′ (sinφ′)−2ε

∫ 1

0
dy′
∫ 1

0
dz′
∫ π

0
dφ (sinφ)−2ε

∫ 1

0
dy

×
∫ 1

0
dz
[
y′(1− y′)2 z′(1− z′) y(1− y)3 z(1− z)

]−ε
(1− y′)(1− y)2 . (A.30)
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A.3.3 Mapping involving six momenta

Similarly to the mapping with five momenta, we first select two momenta kc, kd, and build

the (n+ 1)-tuple of massless momenta {k̄}(acd)

{k̄}(acd) =
{
{k}/a/c/d, k̄

(acd)
c , k̄

(acd)
d

}
. (A.31)

Then in {k̄}(acd) we choose the three momenta k̄
(acd)
b = kb, k̄

(acd)
e = ke and k̄

(acd)
f = kf to

construct the on-shell, momentum conserving n-tuple of massless momenta {k̄}(acd,bef)

{k̄}(acd,bef) =
{
{k}/a/b/c/d/e/f , k̄

(acd,bef)
c , k̄

(acd,bef)
d , k̄(acd,bef)

e , k̄
(acd,bef)
f

}
, (A.32)

with

k̄(acd,bef)
c = k̄(acd)

c = ka + kc −
sac

sad + scd
kd , k̄

(acd,bef)
d = k̄

(acd)
d =

sacd
sad + scd

kd ,

k̄(acd,bef)
e = k̄(bef)

e = kb + ke −
sbe

sbf + sef
kf , k̄

(acd,bef)
f = k̄

(bef)
f =

sbef
sbf + sef

kf , (A.33)

while all other momenta are left unchanged (k̄
(acd,bef)
n = kn , n 6= a, b, c, d, e, f). Introducing

Catani-Seymour parameters

y′ =
sac
sacd

, z′ =
sad

sad + scd
, y =

sbe
sbef

, z =
sbf

sbf + sef
, (A.34)

we write the six relevant invariants in terms of s̄
(acd,bef)
cd = s̄

(acd)
cd = sacd, and s̄

(acd,bef)
ef =

s̄
(bef)
ef = sbef , as

sac = y′ s̄
(acd,bef)
cd , sad = z′ (1− y′)s̄(acd,bef)

cd , scd = (1− z′)(1− y′)s̄(acd,bef)
cd ,

sbe = y s̄
(acd,bef)
ef , sbf = z (1− y)s̄

(acd,bef)
ef , sef = (1− z)(1− y)s̄

(acd,bef)
ef . (A.35)

In this case, the double-radiative phase space is exactly the product of two factorised

single-radiative phase spaces. Indeed

dΦn+2({k}) = dΦn({k̄}(acd,bef)) dΦ
(acd,bef)
rad,2 , (A.36)

and

dΦ
(acd,bef)
rad,2 = dΦrad(s̄

(acd,bef)
ef ; y, z, φ) dΦrad(s̄

(acd)
cd ; y′, z′, φ′) ,∫

dΦ
(acd,bef)
rad,2 =N2(ε)

(
s̄

(acd,bef)
cd s̄

(acd,bef)
ef

)1−ε
∫ π

0
dφ′ (sinφ′)−2ε

∫ 1

0
dy′
∫ 1

0
dz′
∫ π

0
dφ (sinφ)−2ε

∫ 1

0
dy

×
∫ 1

0
dz
[
y′(1− y′)2 z′(1− z′) y(1− y)2 z(1− z)

]−ε
(1− y′)(1− y) . (A.37)
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B Azimuthal integrals

In this appendix we show the details of the integration of structures (combinations of

Lorentz invariants) that feature a non-trivial dependence on the azimuthal variable w′.

Such structures appear both in the integration of one-loop kernels over a single-radiation

phase-space (see section 4), and in the integration of tree-level kernels over the double-

unresolved radiation phase-space (see section 3). Three master integrals are presented,

ordered with increasing complexity. In particular the basic integral over the azimuthal

variable is presented in section B.1. One and two further integrations of the result give rise

respectively to the master integrals considered in section B.2 and in section B.3.

B.1 The master integral Ia,b(A,B)

The basic building block for azimuthal integrals is the master integral Ia,b(A,B), that is

defined as

Ia,b(A,B) ≡
∫ 1

0
dw′

[w′(1− w′)]
1
2
−b

[A2 +B2 + 2(1− 2w′)AB]a
, (B.1)

with A,B ∈ R and, in the cases we are interested in, A,B ≥ 0. Notice that Ia,b(A,B) is

manifestly symmetric under the exchange A↔ B. Defining

η =
4AB

(A+B)2
, (B.2)

we have

Ia,b(A,B) =
1

(A+B)2a

∫ 1

0
dw′

[w′(1− w′)]
1
2
−b

(1− ηw′)a

=
1

(A+B)2a

Γ2(3/2− b)
Γ(3− 2b)

2F1

(
a, 3/2− b, 3− 2b, η

)
. (B.3)

The hypergeometric functions of this kind satisfy

2F1(α, β, 2β, x) =

(
1 +
√

1− x
2

)−2α

2F1

(
α, α− β +

1

2
, β +

1

2
,

(
1−
√

1− x
1 +
√

1− x

)2
)
, (B.4)

so that one can rewrite the master integral as

Ia,b(A,B) =

[
(1 +

√
ρ)2

(A+B)2

]a
Γ2(3/2− b)
Γ(3− 2b)

2F1(a, a+ b− 1, 2− b, ρ) , (B.5)

where

ρ ≡
(

1−
√

1− η
1 +
√

1− η

)2

=


A2

B2
if A2 ≤ B2

B2

A2
if A2 ≥ B2

,
(1 +

√
ρ)2

(A+B)2
=


1

B2
if A2 ≤ B2

1

A2
if A2 ≥ B2

, (B.6)
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and we used

2

1 +
√

1− η
= 1 +

1−
√

1− η
1 +
√

1− η
= 1 +

√
ρ . (B.7)

The final result reads

Ia,b(A,B) =
Γ2(3/2− b)
Γ(3− 2b)

[
(B2)−a 2F1

(
a, a+ b− 1, 2− b, A

2

B2

)
Θ
(
B2−A2

)
+ (A2)−a 2F1

(
a, a+ b− 1, 2− b, B

2

A2

)
Θ
(
A2−B2

)]
. (B.8)

For the specific case where a = 1 we find

Ib(A,B) ≡ I1,b(A,B) =

∫ 1

0
dw′

[w′(1− w′)]
1
2
−b

A2 +B2 + 2(1− 2w′)AB
(B.9)

=
Γ2(3/2− b)
Γ(3− 2b)

[
1

B2 2F1

(
1, b, 2− b, A

2

B2

)
Θ(B2−A2)

+
1

A2 2F1

(
1, b, 2− b, B

2

A2

)
Θ(A2−B2)

]
.

B.2 The master integral Ia,b,β,γ(C,D)

The master integral Ia,b,β,γ(C,D) is defined by

Ia,b,β,γ(C,D) ≡
∫ 1

0
dv

∫ 1

0
dw′

vβ(1− v)γ [w′(1− w′)]
1
2
−b[

C v +D(1− v) + 2(1− 2w′)
√
CDv(1− v)

]a , (B.10)

with C,D ∈ R and, in the cases we are interested in, C,D ≥ 0. Notice that Ia,b,β,γ(C,D)

is symmetric under the simultaneous exchange C ↔ D, β ↔ γ,

Ia,b,γ,β(D,C) = Ia,b,β,γ(C,D) , (B.11)

and the w′ integration has the structure of the master integral of appendix B.1, with

A2 = Cv and B2 = D(1− v). Thus one may write

Ia,b,β,γ(C,D) =

∫ 1

0
dv vβ(1−v)γ Ia,b

(√
Cv,

√
D(1− v)

)
(B.12)

=
Γ2(3/2− b)
Γ(3− 2b)

∫ 1

0
dv vβ(1−v)γ

×

[(
D(1−v)

)−a
2F1

(
a, a+ b− 1, 2− b, Cv

D(1−v)

)
Θ

(
1− Cv

D(1−v)

)

+
(
Cv
)−a

2F1

(
a, a+ b− 1, 2− b, D(1−v)

Cv

)
Θ

(
Cv

D(1−v)
− 1

)]
. (B.13)
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The step functions appearing in eq. (B.13) modify the v integration domain as

1− Cv

D(1−v)
≷ 0 ←→ v ≶

D

C +D
. (B.14)

Since C,D > 0, then 0 < D
C+D < 1 and we get

Ia,b,β,γ(C,D) =
Γ2(3/2−b)
Γ(3− 2b)

[
1

Da

∫ D
C+D

0
dv vβ(1−v)γ−a 2F1

(
a, a+ b− 1, 2− b, Cv

D(1−v)

)

+
1

Ca

∫ 1

D
C+D

dv vβ−a(1−v)γ 2F1

(
a, a+ b− 1, 2− b, D(1−v)

Cv

)]
. (B.15)

Next, we restore the integration region to the unit interval [0, 1], with the following changes

of variables:

v →
D
C v

1+D
C v

(first integral in eq. (B.15)) , v → 1

1+ C
D v

(second integral in eq. (B.15)) .

(B.16)

The master integral becomes

Ia,b,β,γ(C,D) =
Γ2(3/2−b)
Γ(3− 2b)

[
D1+β−a

C1+β

∫ 1

0
dv vβ

(
1+

D

C
v

)a−β−γ−2

2F1

(
a, a+ b− 1, 2− b, v

)
+
C1+γ−a

D1+γ

∫ 1

0
dv vγ

(
1+

C

D
v

)a−β−γ−2

2F1

(
a, a+ b− 1, 2− b, v

)]
. (B.17)

In the integration of the two-unresolved tree-level kernels the integration over the azimuthal

angle gives rise to the master integral Ia,b,β,γ(C,D) with a = 1 (see section 3.2.1), which

deserves a separate analysis. We define

Ib,β,γ(C,D) ≡ I1,b,β,γ(C,D) =

∫ 1

0
dv

∫ 1

0
dw′

vβ(1− v)γ [w′(1− w′)]
1
2
−b

C v +D(1− v) + 2(1− 2w′)
√
CDv(1− v)

,

(B.18)

with C,D ∈ R and C,D ≥ 0. The w′ integration can be performed using eq. (B.10), with

A2 = Cv,B2 = D(1− v), with the result

Ib,β,γ(C,D) =

∫ 1

0
dv vβ(1−v)γ Ib

(√
Cv,

√
D(1− v)

)
. (B.19)

The hypergeometric functions with the first argument set to unity satisfy

2F1

(
1, b, c, x

)
= − c− 1

b− 1

1

x
2F1

(
1, 2− c, 2− b, 1

x

)
+

Γ(c)Γ(1− b)
Γ(c− b)

(
−1

x

)b(
1− 1

x

)c−b−1

,

(B.20)
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which leads to

Ib,β,γ(C,D) =
1

C

Γ2(3/2− b)
Γ(3− 2b)

∫ 1

0
dv

{
vβ−1(1−v)γ 2F1

(
1, b, 2− b, 1−v

α v

)
− (−α)b

Γ(2− b)Γ(1− b)
Γ(2− 2b)

vβ+b−1(1−v)γ+b−1

×
[
1− v(1+α)

]1−2b
Θ

(
1− α v

1−v

)}
, (B.21)

where we have defined α = C/D. Upon making the substitution v → v/(1+α) in the

second term, it can be integrated, giving yet another hypergeometric function. Thus

Ib,β,γ(C,D) =
1

C

Γ2(3/2− b)
Γ(3− 2b)

[ ∫ 1

0
dv vβ−1(1−v)γ 2F1

(
1, b, 2− b, 1−v

α v

)
− (−α)b

(1+α)β+b

Γ(2− b)Γ(1− b)Γ(β + b)

Γ(β − b+ 2)

×2F1

(
1− γ − b, β + b, β − b+ 2,

1

1+α

) ]
. (B.22)

Though the integral Ib,β,γ(C,D) is well defined for real positive C and D, in order to

properly keep track of the imaginary parts we give a small imaginary part to α, according to

α→ α± iδ, (−α)s →
(
− α∓ iδ

)s
= αs e∓isπ , δ → 0+ . (B.23)

Then we can write the first hypergeometric function using its integral representation, as

2F1

(
1, b, 2− b, 1−v

α v

)
=−α v Γ(2− b)

Γ(b)Γ(2− 2b)

∫ 1

0
dt tb−2(1−t)1−2b

[
1− t+ α

t
v

]−1

, (B.24)

and integrate in v, with the result

Ib,β,γ(C,D) =
1

C

Γ2(3/2− b)
Γ(3− 2b)

[
− αΓ(2−b)

Γ(b)Γ(2−2b)

Γ(β+1)Γ(γ+1)

Γ(β+γ+2)
(B.25)

×
∫ 1

0
dt tb−2(1−t)1−2b

2F1

(
1, β+1, β+γ+2,

t+α

t

)
− αb e∓ibπ

(1+α)β+b

Γ(2−b)Γ(1−b)Γ(β+b)

Γ(β−b+2)
2F1

(
1−γ−b, β+b, β−b+2,

1

1+α

)]
.
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Using simple hypergeometric identities (similar to eq. (B.20)), we obtain then the expression

Ib,β,γ(C,D) =
1

C

Γ2(3/2−b)
Γ(3−2b)

{
α

Γ(2− b)
Γ(b)Γ(2− 2b)

Γ(β + 1)Γ(γ + 1)

Γ(β + γ + 2)

∫ 1

0
dt tb−2(1−t)1−2b

×

[
t

α

β + γ + 1

β
2F1

(
1, γ + 1, 1− β,− t

α

)

− Γ(β + γ + 2)Γ(−β)

Γ(γ + 1)

(
−α
t

)−β−1
(

1 +
t

α

)−β−γ−1
]

−α−βe∓ibπ Γ(2− b)Γ(1− b)Γ(β + b)

Γ(β − b+ 2)

×2F1

(
β + γ + 1, β + b, β − b+ 2,− 1

α

) }
. (B.26)

The second term of the integral over t in eq. (B.26) can be now integrated, giving the same

hypergeometric function that appears in the last line. Recalling now that

Γ(z) Γ(1− z) =
π

sin(πz)
, e∓izπ Γ(z) Γ(1− z) =

π cos(πz)

sin(πz)
∓ i π , (B.27)

using straightforward trigonometric identities, and inserting back α = C/D, we obtain

Ib,β,γ(C,D) =
1

C

Γ2(3/2− b)Γ(2− b)
Γ(3− 2b)Γ(b)

(B.28)

×

{
Γ(β)Γ(γ + 1)

Γ(2− 2b)Γ(β + γ + 1)

∫ 1

0
dt tb−1(1−t)1−2b

2F1

(
1, γ+1, 1−β,−D

C
t

)

−
(
C

D

)−β Γ(β + b)

Γ(β − b+ 2)

π sin(π(β + b+ 1))

sin(π(β + 1)) sin(πb)

× 2F1

(
β + γ + 1, β + b, β − b+ 2,−D

C

)}
.

We notice that the imaginary part of eq. (B.27) drops out of the latter expression, as it

does not depend on z. In the special case where β = 1 − b, the second hypergeometric in

eq. (B.29) does not contribute, since its prefactor vanishes. We then obtain

Ib,1−b,γ(C,D) =
1

C

Γ2(3/2− b)Γ(2− b)
Γ(3− 2b)Γ(b)

Γ(1− b)Γ(γ + 1)

Γ(2− 2b)Γ(γ − b+ 2)

×
∫ 1

0
dt tb−1(1−t)1−2b

2F1

(
1, γ + 1, b,−D

C
t

)
. (B.29)

In this case, the integral yields again a simple hypergeometric function, so that we get the

compact result

Ib,1−b,γ(C,D) =
1

C

Γ2(3/2− b)
Γ(3− 2b)

Γ(1− b)Γ(γ + 1)

Γ(γ − b+ 2)
2F1

(
1, γ + 1, 2− b,−D

C

)
. (B.30)
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Using the symmetry of the original master integral under the simultaneous exchange C ↔
D, β ↔ γ, we similarly get the result

Ib,β,1−b(C,D) =
1

D

Γ2(3/2− b)
Γ(3− 2b)

Γ(1− b)Γ(β + 1)

Γ(β − b+ 2)
2F1

(
1, β + 1, 2− b,−C

D

)
. (B.31)

B.3 The master integral Ia,b,β,γ,δ,σ(P,Q)

In the integration of the colour-tripole contributions to the one-loop single-soft kernel (see

section 4.1.1), the integral of eq. (B.10) needs to be integrated over one further variable.

We then define the master integral Ia,b,β,γ,δ,σ(P,Q) as follows,

Ia,b,β,γ,δ,σ(P,Q) ≡
∫ 1

0
du

∫ 1

0
dv

∫ 1

0
dw′

uδ(1− u)σvβ(1− v)γ
[
w′(1− w′)

] 1
2
−b[

P v +Qu(1− v) + 2(1− 2w′)
√
P Quv(1− v)

]a
=

∫ 1

0
duuδ(1− u)σIa,b,β,γ

(
P,Qu

)
. (B.32)

According to the result in eq. (B.17) we can write

Ia,b,β,γ,δ,σ(P,Q) =
Γ2(3/2−b)
Γ(3− 2b)

Q1+β−a

P 1+β

×
∫ 1

0
du

∫ 1

0
dv uβ+δ−a+1(1− u)σ 2F1

(
a, a+ b− 1, 2− b, v

)
×

[
vβ
(

1+
Q

P
uv

)a−β−γ−2

+ va−β−2

(
1+

Q

P

u

v

)a−β−γ−2
]
. (B.33)

The integration over u gives another hypergeometric function,

Ia,b,β,γ,δ,σ(P,Q) =
Γ2(3/2−b)
Γ(3− 2b)

Γ(β + δ − a+ 2)Γ(σ + 1)

Γ(β + δ + σ − a+ 3)

Q1+β−a

P 1+β
(B.34)

×
∫ 1

0
dv 2F1

(
a, a+ b− 1, 2− b, v

)
×
[
vβ2F1

(
β+γ−a+2, β+δ−a+2, β+δ+σ−a+3,−Q

P
v

)
+ va−β−2

2F1

(
β+γ−a+2, β+δ−a+2, β+δ+σ−a+3,−Q

P

1

v

)]
.

The expansion of these hypergeometric functions in powers of ε is simpler if the integer

part of the first index is 0. Since this quantity is positive for the cases of interest, we can

lower the first index (taking care that in the generated hypergeometric functions b > 0 and

c− b > 0) using the identities

2F1(a, b, c, x) = − c− 1

a− 1

1

x

[
2F1(a− 1, b− 1, c− 1, x)− 2F1(a− 1, b, c− 1, x)

]
, (B.35)

2F1(a, b, c, x) =
b

a− 1
2F1(a− 1, b+ 1, c, x) +

a− b− 1

a− 1
2F1(a− 1, b, c, x) ,

2F1(a, b, c, x) =
1

1− x

[
c− b
a− 1

2F1(a− 1, b− 1, c, x) +
a− c+ b− 1

a− 1
2F1(a− 1, b, c, x)

]
.

– 43 –
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Once the integer part of the first index is 0, we can then expand in powers of ε using

2F1(αε, b, c, x) = 1 +
Γ(c)

Γ(b)Γ(c− b)

+∞∑
n=1

(−αε)n

n!

∫ 1

0
dt tb−1(1− t)c−b−1 lnn(1− tx) , (B.36)

and then easily perform the remaining integrations.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[8] G. Somogyi, Z. Trócsányi and V. Del Duca, Matching of singly- and doubly-unresolved limits

of tree-level QCD squared matrix elements, JHEP 06 (2005) 024 [hep-ph/0502226]

[INSPIRE].

[9] A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Jet rates in

electron-positron annihilation at O(α3
s) in QCD, Phys. Rev. Lett. 100 (2008) 172001

[arXiv:0802.0813] [INSPIRE].

[10] M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B

693 (2010) 259 [arXiv:1005.0274] [INSPIRE].

[11] M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross Section at

Hadron Colliders Through O(α4
S), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254]

[INSPIRE].

[12] M. Czakon and D. Heymes, Four-dimensional formulation of the sector-improved residue

subtraction scheme, Nucl. Phys. B 890 (2014) 152 [arXiv:1408.2500] [INSPIRE].

[13] M. Czakon, D. Heymes and A. Mitov, High-precision differential predictions for top-quark

pairs at the LHC, Phys. Rev. Lett. 116 (2016) 082003 [arXiv:1511.00549] [INSPIRE].

[14] V. Del Duca, C. Duhr, G. Somogyi, F. Tramontano and Z. Trócsányi, Higgs boson decay into
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