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Background: The vagus nerve (VN), also called the pneumogastric nerve, connects
the brainstem to organs contained in the chest and abdomen. Physiologically, VN
stimulation can rapidly affect cardiac activity and heart rate (HR). VN neuropathy can
increase the risk of arrhythmias and sudden death. Therefore, a selective test of VN
function may be very useful. Since peripheral neurodynamic tests (NDT) are reliable for
the assessment of neuropathies in somatic nerves, we aimed to validate a novel NDT to
assess VN activity, namely, the VN-NTD.

Methods: In this cross-sectional double-blind, sex-balanced study, 30 participants (15
females) completed a checklist of autonomic dysfunction symptoms. During the VN-
NDT administration, HR and symptoms (i.e., mechanical allodynia) were monitored in
parallel to a real-time ultrasonography imaging (USI) and motion capture analysis of the
neck. The VN-NDT impact on HR and its accuracy for autonomic symptoms reported
in the last 7 days were tested.

Results: The VN-NDT induced a significant HR reduction of about 12 and 8 bpm
in males and females [t(1, 119) = 2.425; p < 0.017; ηp

2
= 0.047, 95% confidence

interval (CI): 0.93–9.18], respectively. No adverse events were observed during VN-NDT.
A substantial interexaminer agreement between the evaluators in symptoms induction
by VN-NDT was detected [F (1, 119) = 0.540; p = 0.464; ηp

2
= 0.005, low effect].

Notably, mechanical allodynia accuracy for gastrointestinal dysfunctions was excellent
(p < 0.05; 95% CI: 0.52–0.73; p < 0.001; 95% CI: 0.81–0.96).

Conclusions: The novel VN-NDT is a valid and accurate test capable of detecting VN
activation with high sensitivity. Data provided are suitable for both sexes as a hallmark of
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HR variation due to VN normal response. The proposed VN-NDT may be reliable as daily
routine neurological examination tests for the evaluation of neuropathic signs related to
neuroinflammation of the VN.

Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT04192877.

Keywords: vagus nerve stimulation, heart rate, diagnostic test, ultrasound, neuropathic pain

INTRODUCTION

Several health-related conditions have prominent and clinically
important manifestations including autonomic peripheral
neuropathies (APN) (Freeman, 2005). The main causes
described in the literature are diabetes, amyloidosis, immune-
mediated, neoplastic, paraneoplastic, hereditary, secondary to
infectious diseases, and intoxications (Oaklander and Nolano,
2019). The pathophysiology of neurodegenerative disorders
often involves a microbiota–gut–brain axis perturbation (Fung
et al., 2017). Cranial neuropathies due to acute diseases like
Zika virus-associated Guillain–Barré syndrome (Parra et al.,
2016), local lesions like in schwannomas of the vagus nerve (VN)
(Sunaryo et al., 2012), and iatrogenic damage of the VN can affect
nerve function with critical immediate (bradycardia and cardiac
asystole) or delayed consequences (Nazir et al., 2017; Aggarwal
et al., 2018).

Autonomic neuropathies are conditions difficult to be
detected that increase hemodynamic instability (Ang et al., 2020),
postsurgery complications (Lankhorst et al., 2015; Suarez-Roca
et al., 2019), and sudden death in obese and diabetic patients
(Freeman, 2005; Santos Breder and Sposito, 2019; Williams
et al., 2019; Malaty et al., 2021). Patients with coronavirus
disease 2019 (COVID-19) have an increased prevalence of cardiac
arrhythmias (Ho et al., 2020) with an estimated incidence of
15% in post-COVID-19 patients (Malaty et al., 2021). Since APN
is a growing health problem, it is of paramount importance
to have a reliable clinical tool that investigates selectively VN
neuropathies. Ultrasound imaging (USI) is the most reliable
and cost-effective imaging tool to assess VN morphology (Anil
and Tan, 2011; Kasehagen et al., 2018), but morphological
changes alone cannot predict the clinical conditions of patients.
A “gold standard” to assess only the VN functioning level
excluding its interaction with the sympathetic system is missing,
so general autonomic response tests, involving sympathetic and
parasympathetic responses, are used with no negligible side
effects and risks like retinal detachment, syncope, chest pain,
and arrhythmias (Valsalva maneuver, tilt-table protocols, lower
body negative pressure, noradrenaline spillover, etc.) (Fujii et al.,
2004; Schrezenmaier et al., 2007; Pstras et al., 2016; Fajgenbaum
et al., 2018; Ehrman et al., 2020). Therefore, a selective and
reliable test to assess VN functions with no or possibly negligible
side effects is necessary. Peripheral nerve selective tension tests
or neurodynamic tests (NDT) are bedside examinations and
reliable clinical tests validated for the detection of neuropathies
of the somatic nerves (Taenzer et al., 2000; Wasan et al., 2011;
Bueno-Gracia et al., 2016; Verwoerd et al., 2016; Ekedahl et al.,
2018; Koulidis et al., 2019). NDTs assess the nerve response to

mechanical stimuli which are transduced by stretch-sensitive ion
channels in peripheral nerves also present in the VN axons and
cell body membranes (Beaulieu-Laroche et al., 2020; Bonet et al.,
2021). Therefore, the aim of the present study was threefold: (1) to
describe and validate a tool for selective VN assessment as NDT
of the VN (VN-NDT), (2) to collect normative data to define a
hallmark of physiological spectrum in males and females for heart
rate (HR) variations induced by the VN-NDT maneuvers, and (3)
to describe the relationship between symptoms induced during
the VN-NDT and any autonomic dysfunction-related symptom.

MATERIALS AND METHODS

Study Design
Since no selective test for the VN exists, a validation process
was performed ex novo taking advantage of the available data
reported in the literature. An a priori power analysis was
performed referring to Cohen’s kappa coefficient values reported
by Martínez-Payá et al. (2015) (k = 0.66; k = 0.94) studying the
USI during a neurodynamic test. A sample size of 30 subjects
provided a statistical power of 0.90 assuming a moderate strength
of agreement between two evaluators and correct classification
of subjects as positive of 0.50 with an alpha of 0.05. Also,
considering an HR reduction induced by the test similar to
the one described by Antonino et al. (2017) (η2

= 1.134), 13
subjects for each sex were identified to provide a statistical
power of 0.96 with an alpha error of 0.05 and 1 − β error of
0.95. Estimating a 20% dropout rate, we enrolled 36 subjects
in the study. An expert (a physical therapist with more than
12 years of experience in neurodynamic test administration)
and a novice examiner (a medical doctor with no training in
neurodynamic tests) blinded to their judgments performed the
maneuver sequences of VN-NDT to every participant on the VNs
of participants on both sides.

Participants voluntarily took part in the examination after an
explanation of all the risks and benefits, and they all signed the
written informed consent form according to the Declaration of
Helsinki. Before data collection, the study was approved by the
University Bioethics Committee (protocol 139870-14/03/2019)
and registered on www.ClinicalTrials.gov (trial registration
number: NCT04192877) on December 5, 2019. Subjects were
enrolled from December 12, 20191. Participants were asked to
not consume tea, caffeine, energy drinks, alcohol, and tobacco
within 2 h of the study and avoid them 24 h before the study.
Subjects were blinded to the expertise level of the evaluators, and

1https://bit.ly/3kkhZQL

Frontiers in Neuroscience | www.frontiersin.org 2 September 2021 | Volume 15 | Article 698470

http://www.ClinicalTrials.gov
http://www.ClinicalTrials.gov
https://bit.ly/3kkhZQL
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-698470 August 30, 2021 Time: 12:34 # 3

Carta et al. Vagus Nerve Neurodynamic Test

the results were communicated only when the assessment was
completed. Also, USI during the VN-NDT was performed by
an expert medical doctor, currently a licensed USI international
instructor in critical and acute care. The test results were available
to the participants and evaluators only at the end of the study.

Settings
The study was conducted in the Posture and Movement Analysis
Laboratory of the Department of Electronics, Information, and
Bioengineering, Politecnico di Milano.

Inclusion/Exclusion Criteria and
Motivation
Subjects were included if they were between 18 and 70 years old
and sober. Subjects were excluded if they reported significant
neck pain or headache [with Numeric Pain Rating Scale (NPRS)
greater than 3/10] (Salaffi et al., 2004), pregnancy, recent neck or
cardiac surgery or significant trauma in the preceding 3 months,
cancer or inflammatory disorders, spinal cord or cauda equina
signs, widespread neurological disorders affecting the tone of the
upper limb and neck muscles, or underlying diseases, such as
diabetes mellitus.

Procedures and Data Collection
Data collection was performed in a standardized order:
(1) fulfillment of self-report questionnaires, (2) neurological
examination, (3) VN-NDT under USI and motion capture
analysis assessment (MCA), and (4) short-term autonomic
response (STAR) measured based on HR.

Self-Report Questionnaires
Epidemiological data (Supplementary Table 1), diagnosis,
medication prescribed, a checklist of AD symptoms, and signs
were declared by every participant (Terkelsen et al., 2017). An
11-item Likert scale was also administered to assess the perceived
health status (PHS: 100 the best, 0 the worst health status ever).

Neurological Examination
A segmental neurological examination was performed to confirm
that the participants had no signs of nerve conduction loss. In
short, dermatomes from C2 to C5 were evaluated bilaterally
with a 10-g monofilament (Paisley et al., 2002). The presence of
mechanical allodynia as a sign of central sensitization (Jensen and
Finnerup, 2014) was assessed by asking the participants to keep a
clothes peg on the middle fingernail for 5 s and on the middle
earlobe (to assess sensitization away from the “assessed area”) of
both sides (Egloff et al., 2011).

Sensory discrimination was tested by administering a
random sequence of 10 nociceptive and tactile stimuli on
the skin of the neck (using a Neuropen R©, Owen Mumford
Ltd., Woodstock, United Kingdom). The upper limb NDT
(ULNDT) was administered bilaterally to assess any subclinical
neuropathic condition involving the neck or upper limbs
(Schmid et al., 2009).

Participants were instructed to verbally stop the test
immediately when any type of tension, discomfort, or unpleasant
sensation was felt during the sequence of passive movements of

the VN-NDT. The location of the symptom and behavior were
defined using a pain drawing tool at the end of every single
test (Bertilson et al., 2007), and their intensity was rated (NPRS)
(Salaffi et al., 2004).

Vagus Nerve Neurodynamic Test
The VN emerges from the medulla of the brainstem and reaches
the coeliac and mesenteric plexi in the abdomen passing through
the jugular foramen (Verlinden et al., 2016) of the skull, between
the internal carotid artery and the jugular vein in the neck and
between the cardiac and pulmonary plexi in the thorax. The VN-
NDT was developed starting from its morphology, selecting a
combination of physiological movements that induce a higher
mechanical tension on the nerve (Figure 1A). The subjects were
assessed supine on an examination table, and evaluators were
standing at the cranial short side of the table.

Upper cervical flexion and contralateral lateral flexion were
selected for loading the intracranial part (Verlinden et al., 2016).
Ipsilateral neck rotation was added to load the cervical tract.

Considering that the VN has afferent endings that are
mechanosensitive (Zeng et al., 2018; Besecker et al., 2020),
discrimination between VN and other tissues was performed
while holding the head of the subject in the final pose,
gently pushing the upper abdomen caudally and cranially to
load and unload the thoracic tract. The test was positive
(indicating abnormal responses) if discrimination maneuvers
changed the symptoms of the subject indicating a neurogenic
source; otherwise, it was declared negative (Schmid et al., 2009).
To standardize the test, all participants were placed in the supine
position without a pillow in a room at 25◦C for 30 min as
described by Fujii et al. (2004).

Short-Term Autonomic Response
Short-term autonomic response was assessed as described by
Devalle and coworkers, which is a reliable outcome for the
autonomic response to pain even in subjects with disturbances
of consciousness, comparing the HR values (fingertip portable
pulse oximeter Intermed SAT-200) at rest (10 s after the ULNDT
administration) and after a 10-s window holding the end position
of the VN-NDT (Devalle et al., 2018). Moreover, we verified that
no chances in HR were induced by abdominal compression alone.
To avoid any placebo/nocebo response, HR was blinded to the
assessors and participants.

Ultrasound Imaging and Motion Capture
Analysis Protocols
Protocols defined by Martinoli and coworkers for the detection
of the anterior tubercle of C6 (Martinoli et al., 2002) and the
cervical tract of the VN (Giovagnorio and Martinoli, 2001) were
adopted. Participants were assessed in a supine position on a
medical table and real-time USI was performed by the medical
doctor standing near to the right long edge of the table, while
the assessor performing the neurodynamic test was standing near
to the short edge of the table where the head of the participant
was (Figure 1 and Supplementary Figure 1). Axial scans were
obtained using the inferior margin of the thyroid as an initial
reference from which the probe was moved laterally to the region
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FIGURE 1 | Sequence of the vagus nerve neurodynamic test (VN-NDT) with (1) starting position with upper cervical spine in flexion. (2) Contralateral lateral flexion.
(3) Ipsilateral neck rotation. (4) The end position of the test with gentle movements of the upper abdomen caudally and cranially as discrimination maneuverers.

of the transverse processes. The probe was moved cranially till the
anterior tubercle of C6 was detected. Distance between the VN
and C6 anterior tubercle (VN–C6) was measured at rest and at
the final position of the VN-NDT to quantify the lateralization
or proximalization of the VN induced by the test, suggesting
an increased or decreased tension on the wire-like structure
of the VN. Esaote R© MyLab Alpha (Esaote S.p.A, Genoa, Italy)
USI equipment was used with a 5–7-MHz convex array probe
(Figure 1B). All subjects were screened for thyroid problems at
the end of the assessment.

Throughout the whole duration of the VN-NDT and real-
time USI assessment, the three-dimensional head orientation
of the subjects was recorded at 100 Hz with an optoelectronic
motion capture system (Smart-DX, BTS S.p.A., Milan, Italy).
A cluster with three retroreflective markers (diameter: 15 mm)
was secured on the head of the subject using an elastic band;
three additional markers were fixed on the acromion and the
sternum (Supplementary Figure 1). The rest and final head
positions were manually annotated upon explicit communication
by the USI operator. System calibration was conducted according
to the guidelines of the manufacturers and returned an average
error in marker position of 0.35 mm, on a working volume of
2.6× 1.8× 2.5 m3.

Data Analysis
Differences from baseline were checked, as well as the effects
between and within factors among symptoms induced by the

test and perceived AD signs and symptoms. Custom routines
were developed within Smart Analyzer (version 1.10.465, BTS
S.p.A) to extract kinematic data. Three-dimensional coordinates
were smoothed with a fourth-order low-pass Butterworth filter
with a cutoff frequency of 1 Hz. A local reference system
fixed on the head was defined: the x-axis was anteroposterior
and pointed forward; the y-axis was craniocaudal and pointed
upward; the z-axis was mediolateral and pointed to the right of
the subject. The acromial and sternum markers defined a local
trunk coordinate system (Zago et al., 2020), with an analogous
axes convention, that served as a reference for head orientation
(Supplementary Figure 1).

Head lateral inclination on the frontal plane (positive to the
right), axial rotation on the transverse plane (positive to the left),
and flexion (negative)–extension (positive) angles on the sagittal
plane were computed as the Euler angles (XYZ rotation sequence)
between the head and trunk reference frames, respectively. The
initial position, i.e., that assumed by the participants laying down
on the bed before the test initiation, was taken as neutral (all
angles equal to zero). An explanatory representation of head
rotations during the test is depicted in Figure 4A.

To provide an indirect measure of the vagal strain level, we
also measured the distance between the sternum and right (or
left) head marker, according to the side the test was performed
on. The ratio between final and initial values was termed as head
displacement ratio: higher values indicate larger head motion
and vagal strain.
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TABLE 1 | Differences between sexes at baseline characteristics and reported autonomic signs and symptoms (experienced during the last 7 days).

Variable F M Total/cases (%) p

Epidemiologic data

Age, years 31.68 ± 11.08 31.64 ± 13.44 31.7 ± 12.0 0.99

Education Bachelor’s degree Bachelor’s degree Bachelor’s degree 0.15

Smoke 0 0.14 ± 0.36 2 (6.7) 0.13

BMI 22.4 ± 3.37 23.2 ± 2.37 22.8 ± 2.92 0.45

NRS (0–10 points) 0.66 ± 1.19 1.1 ± 1.62 0.87 ± 1.4 0.39

Health status (0–100 points) 82.81 ± 13.9 87.14 ± 12.04 84 ± 13 0.38

HR at rest (bpm) 76 ± 12.22 74.57 ± 11.59 75.3 ± 11.7 0.75

Autonomic checklist

At least one autonomic symptom 0.56 ± 0.51 0.36 ± 0.51 14 (46.7) 0.28

Nausea 0.12 ± 0.34 0 2 (6.7) 0.18

Orthostatic hypotension 0.31 ± 0.48 0.14 ± 0.36 7 (23.3) 0.29

Digestion alterations 0.32 ± 0.48 0.33 ± 0.48 7 (23.3) 0.29

Breathing alterations (shortness of breath) 0 0 0 –

Voice changes 0 0 0 –

Altered deglutition 0.06 ± 0.25 0 1 (3.3) 0.36

Perceived augmented HR 0.19 ± 0.4 0.07 ± 0.27 4 (13.3) 0.37

Perceived reduced HR 0.06 ± 0.25 0 1 (3.3) 0.36

Burning sensation in the stomach 0.25 ± 0.45 0.28 ± 0.47 8 (26.7) 0.83

Constipation 0.06 ± 0.25 0 1 (3.3) 0.36

Diarrhea 0.06 ± 0.25 0 1 (3.3) 0.36

Vomiting 0.06 ± 0.25 0 1 (3.3) 0.36

Augmented lacrimation 0 0 0 (0) –

Reduced lacrimation 0.12 ± 0.34 0 2 (6.7) 0.183

Augmented salivation 0 0 0 (0) –

Reduced salivation 0 0 0 (0) –

Head and neck sweating attacks 0.06 ± 0.25 0 1 (3.3) 0.36

Head and neck skin dryness 0.06 ± 0.25 0 1 (3.3) 0.36

Sleep alteration 0.34 ± 0.48 0.14 ± 0.36 7 (23.3) 0.29

Numeric values are reported as means ± standard deviation (SD); nominal values are reported as medians. The checklist was administered to all participants and answers
are expressed as the number of subjects having symptoms and percentage (%).
HR, heart rate; AD, autonomic dysfunction; APN, peripheral neuropathies; p, level of significance (p < 0.05).

Statistics
Statistical analyses were performed within SPSS v.20.0 (IBM
Corp., Armonk, NY, United States). Paired Student’s t-tests
were used to detect differences from rest to end position in
terms of STAR and VN–C6 distance. As an effect size measure,
Cohen’s d was used. The agreement in reporting test outcomes
between the two operators was computed as Cohen’s kappa
(Martínez-Payá et al., 2015).

Receiver operating characteristic (ROC) curves were adopted
to define the sensibility, specificity, and positive and negative
likelihood ratios of the VN-NDT-related symptoms to predict
VN dysfunctions or neuropathies. The overall diagnostic
accuracy of the VN-NDT was defined by the area under the curve
(AUC); a value of 0.5 was deemed as no discrimination, a value
from 0.7 to 0.8 as acceptable, from 0.8 to 0.9 as excellent, and
more than 0.9 as outstanding (Sarkar and Midi, 2010). CI at
95% was calculated and a statistical significance level of 0.05 was
implemented throughout.

A two-way analysis of variance (ANOVA) for repeated
measures with a 2 × 2 full-interaction design was adopted to test
changes on the side (test administered on the right or left of the

participant) and operator factors (experienced, not experienced)
on the following variables: tests positivity, symptoms location,
anatomical and physiological parameters assessed at rest and end
of the VN-NDT, angular rotations, and head displacement ratio.
The two-way ANOVA for repeated measures was also adopted to
define differences between sexes and HR variations induced by
the VN-NDT test. The effect size of each factor was computed as
partial eta-squared (ηp

2): a value of ηp
2 of 0.010 was considered a

small effect, a value of 0.059 a medium effect, and a value of 0.138
a large effect (Richardson, 2011).

RESULTS

As can be seen in Table 1, 46.7% of the participants had at least
one symptom of the AD checklist (nine females and six males);
23.3% of the subjects had experienced in the previous 7 days an
episode of orthostatic hypotension (five females and two males),
and one-fourth reported gastrointestinal symptoms (six females
and three males).
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The STARD flowchart (Figure 2) shows that six out of the 36
participants were not able to perform the experiments because of
work or family issues. Notably, the sample size actual power was
not affected by the loss of participants since 20% of the dropout
was calculated as reported above. The age of the participants
was not significantly different between males and females [t(1,
30) = −0.01; p = 0.992; 95% CI: −9.22 to 9.21]. Twenty-
one out of 30 subjects were pain-free, five reported low back
pain, three leg pain, and one facial pain. Five participants had
a medical diagnosis with drug prescriptions: two for asthma,
one for hyperthyroidism, one for gastric reflux, and one for
hypertension and gastric reflux. No alteration was detected at
the neurological examination for all participants. Four subjects
reported mechanical allodynia of the right ear lobe. The ULNDT
was positive on both sides in two subjects and on one side in four
subjects. Cohen’s kappa of 0.67 (95% CI: 0.49–0.85; p < 0.001)
defined that VN-NDT reliability was significantly substantial.

No significant differences were detected between the sides
and positive or negative tests between the two evaluators
(Supplementary Table 1) nor the type and location of symptoms
provoked [F(1, 119) = 0.540; p = 0.464; ηp

2
= 0.005, low

effect]. Tension or mechanical allodynia in the suboccipital
ipsilateral neck portion was reported in 66.7 and 5% of the cases,
respectively. No adverse events (nausea, vomiting, hypotension,
or neurological symptoms) were recorded during and after the
VN-NDT administration.

The HR of the participants (Figure 3A) at rest
(75.33 ± 11.61 bpm, n = 30) displayed no significant differences
between females and males [t(1, 119) = −0.672; p = 0.502;
ηp

2
= 0.004, 95% CI: −5.64 to 2.78]. Intriguingly, the VN-NDT

induced a significant HR reduction in all participants [F(1,
119) = 89.919; p < 0.000; ηp

2
= 0.432, very high effect]. The

HR drop was of 8 (±12.13) in females and 11.63 (±10.02) bpm
in males and resulted statistically different between females
and males [t(1, 119) = 2.425; p = 0.017; ηp

2
= 0.047, 95% CI:

0.93–9.18]. Notably, even when mild pain was provoked, an HR
reduction was recorded confirming a selective VN stimulation
by the VN-NDT (Devalle et al., 2018).

Anatomical and Biological Variables
The USI revealed no variations nor pathologies of the cervical
portion of the VN (Giovagnorio and Martinoli, 2001). The
VN-NDT induced a significant overall reduction of the VN–
C6 distance (Figure 3B) of about 0.1 mm [t(1, 119) = 2.48;
p < 0.01; d = 0.2; 95% CI: 0.03–0.3]. The VN–C6 distance
was significantly higher on the right side at rest and in the
VN-NDT end position of 0.30 and 0.34 mm, respectively [t(1,
118) = 3.24; p < 0.002; d = 0.592; t(1, 118) = 3.83; p < 0.000;
d = 0.699, respectively]. USI identified a significant interaction
(Supplementary Table 1) for side factor [F(1, 119) = 14.98;
p < 0.000; ηp

2
= 0.114] and between operator but not for

side factor and VN–C6 distance [F(1, 119) = 0.032; p = 0.571;
ηp

2
= 0.003]. Also, no significant interaction between sexes of

the participants and VN–C6 changes before and after the test was
detectable [F(1, 119)= 0.378; p= 0.540; ηp

2
= 0.003]. These data

indicate a higher distance on the right side between C6 and VN,
but the degree of tension induced by the VN-NDT is similar to
each side and not dependent on the sex of the participants.

Head Kinematics
To reach the VN-NDT final position, the neck of the subject
was moved to stretch one VN each time, from the anatomical
position of rest, of about 52◦ (±11◦) of ipsilateral to the
tested side rotation, 12◦ (±8.5◦) of contralateral lateral flexion,
and 12◦ (±8.5◦) of flexion (Figure 4A), which indicates that
the test was performed in a normal cervical range of motion
not able to overstress muscle ligaments and joints of this
anatomical region. Neither head inclination nor head flexion–
extension significantly changed between sides relative to the
assessor factor (Supplementary Table 3). Conversely, the head

FIGURE 2 | STARD flowchart of the vagus nerve neurodynamic test (VN-NDT).
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FIGURE 3 | (A) Effect of the VN-NDT on HR in males and females. Values in the graph are expressed as mean ± SD. Two-way ANOVA was carried out (data are
normally distributed with comparable variances); asterisk shows the statistically significant difference between sexes (*p ≤ 0.05 and ****p ≤ 0.0001). (B) Ultrasound
imaging axial scans of the (i) right vagus nerve at rest and (ii) the final position of the neurodynamic test. The red arrow indicates the vagus nerve and the yellow arrow
indicates the anterior tubercle of C6 in male or female participants (no differences between sexes were detected by USI, p = 0.54).

was more laterally rotated by about 4◦ [F(1, 119) = 6.29;
p = 0.015; ηp

2
= 0.101] when the left side was tested, as

prompted in Supplementary Figure 2 and Supplementary
Table 3. Consistently, a slightly but significantly higher head
displacement ratio was observed on the left side [Supplementary
Figure 2D, F(1, 119) = 6.211; p = 0.016; ηp

2
= 0.1, medium-to-

large effect], especially when the novice assessor performed the
test [F(1, 119)= 6.969; p= 0.011; ηp

2
= 0.111, medium-to-large

effect]. No significant side-by-operator interaction was found.

Autonomic Symptoms Detection
Accuracy
The onset of tension or mechanical allodynia in the suboccipital
ipsilateral region during the VN-NDT showed a significant ability
to detect AD-related symptoms (Figure 4B and Supplementary
Table 3). In particular, burning sensation in the stomach was
significantly detected by tension and mechanical allodynia in the
neck with an accuracy of 0.62 and 0.89, respectively (p < 0.026;
95% CI: 0.52–0.73; p < 0.001; 95% CI: 0.81–0.96; Table 2). Levels
of PHS inferior or equal to 80 on 100 were significantly detected
by neck tension (Figure 4B) with an accuracy of 0.61 (p < 0.045;
95% CI: 0.51–0.72).

DISCUSSION

This study indicates that the proposed VN-NDT induces a
consistently moderate HR reduction in subjects of both sexes.
Therefore, we propose it as a sensitive, fast, and riskless screening

test for vagal function assessment which could be useful in the
assessment of autonomic nervous system neuropathies.

Our data validate the proposed VN-NDT as a selective tool for
VN function assessment. The collected normative data define the
hallmark of physiological spectrum in males and females for HR
variations induced by the VN-NDT and suggest a relationship
between symptoms induced during the test and some autonomic
dysfunction-related symptoms.

As described by Velten et al. (2020), autonomic symptoms
related to orthostatic hypotension are commonly reported in
20% of the healthy population. Indeed, none of the participants
had a diagnosis related to an autonomic disease, but many had
experienced 1 week before the test at least one symptom related to
autonomic dysregulation. In particular, orthostatic hypotension
and altered digestion were the more prevalent conditions. The
VN-NDT induces an HR reduction greater than those reported
with Valsalva maneuver (VM) (Schrezenmaier et al., 2007),
VN transcutaneous, or direct electrical stimulation (Clancy
et al., 2014; Anand et al., 2020). Indeed, the VN-NTD induces
a consistent and significant HR reduction of about 8 bpm in
females and 12 bpm in males, respectively, likely triggered
by the stretch-sensitive baroreceptor fibers traveling in the
nodose and petrosal sensory ganglia of the VN (Berthoud and
Neuhuber, 2000; Zeng et al., 2018; Norcliffe-Kaufmann, 2019;
Besecker et al., 2020). Although neck torsion during the test
was performed in a physiological mid-range of motion and the
hands of the assessor were positioned on the head and upper
cervical spine of the participant, we cannot exclude a role for the
esophageal intraganglionic laminar endings in mechanical
stress transduction (Zagorodnyuk and Brookes, 2000;
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FIGURE 4 | (A) Head orientation at the end of the neurodynamic test (R: head inclined on the right of the subject; L: head inclined on the left of the subject). (i)
Inclination, (ii) rotation, and (iii) flexion/extension. The three dotted vertical lines in the graphs represent the three movements of the VN-NDT combined from the left to
the right: upper cervical flexion, contralateral later flexion, and ipsilateral rotation, respectively. (B) ROC curves of symptoms related to vagal dysfunctions or
autonomic peripheral neuropathies detected by the onset of tension (left) and pain (right) in the neck during the vagus nerve neurodynamic test. PHS, perceived
health status; HR, heart rate.

Brookes et al., 2013). A somewhat similar effect on HR has
been found in normotensive humans during prolonged
submaximal mandibular extension (60% of the maximal
interincisal distance), prevented by minimal mandibular
extension keeping a wooden tongue depressor between the
incisors (Del Seppia et al., 2016, 2017). We cannot definitively
rule out that similar effects are triggered by the two maneuvers,
but the VN-NDT maneuvers did not induce any remarkable
changes in the temporomandibular joint, prevented by the
upper cervical flexion. Also, the effects on HR were detected
at a short latency of 10 s of test administration, while the

effects of the prolonged mandibular extension were recorded
after 10 min of submaximal mandibular extension (Del
Seppia et al., 2016; Devalle et al., 2018). Considering those
data, we can reasonably hypothesize a marginal role of the
glossopharyngeal nerve stretch reflex enrolment in the VN-NDT
cardiac effects.

The VN-NDT is less invasive than the VM and other
neural provocative tests (Schrezenmaier et al., 2007; Ehrman
et al., 2020), since no side events were recorded, and no
stress is applied to the cardiocirculatory system (Pstras
et al., 2016). Also, no active participation of the tested
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TABLE 2 | The vagus nerve neurodynamic test accuracy.

Tension Pain (mechanical allodynia)

Variable Sensitivity Specificity +LR −LR Sensitivity Specificity +LR −LR

Digestion alterations 1 0.81 5.26 0

Perceived augmented HR 0.67 0.90 6.7 0.37

Burning sensation in the stomach 0.35 0.90 3.5 0.72 1 0.77 4.35 0

Any APN symptoms 0.67 0.65 1.91 0.51 1 0.46 1.85 0

Number of symptoms

More than 1 0.45 0.80 2.2 0.7 1 0.67 3.03 0

More than 7 0 0.90 0 1.1 0 0.96 0 1.04

PHS (80 < on 100) 0.47 0.75 1.88 0.71

Results about symptoms-induced diagnostic features in detecting vagal impairment and APN-related symptoms of the vagus nerve neurodynamic test are reported above
(only significant predicted symptoms using ROC curves were reported). Sensitivity, specificity, and positive and negative likelihood ratios are reported (+LR, −LR).
HR, heart rate; PHS, perceived health status.

subjects is required, which is particularly useful in subjects
with communication problems like in the case of intensive
care patients with COVID-19 and with disturbances of
consciousness. The USI and the motion capture analysis
confirmed that the VN-NDT induces a standardized
anatomical reduction of the bone–nerve distance, which
can stretch the VN and provoke symptoms related to
autonomic dysfunctions.

The test accuracy and interrater agreement are comparable
or higher than other clinical tests commonly used in the
neurological assessment for neuropathic conditions like sensory
testing, manual muscle testing, and nerve mechanosensitivity
(Schmid et al., 2009; Terkelsen et al., 2017; Reshef et al., 2019).

Notably, mechanical allodynia—which is a common symptom
when nerves receive prolonged exposure to inflammatory
cytokines (Jensen and Finnerup, 2014; Beaulieu-Laroche et al.,
2020; Bonet et al., 2021)—provoked by the VN-NDT had the
best test accuracy in detecting digestion alterations and burning
sensation in the stomach. Indeed, gastrointestinal dysfunctions
are very common in acute and chronic APNs (Freeman, 2005;
Oaklander and Nolano, 2019; Gutierrez et al., 2020; Marathe
et al., 2020). Since the perioperative and postsurgery risks of
cardiovascular side events (Lankhorst et al., 2015; Ho et al., 2020;
Malaty et al., 2021) are higher in post-COVID-19 patients and
patients with APN, which are difficult to be studied, it is possible
to adopt the VN-NDT as a sensitive, faster, and riskless screening
test. Yet, the test does not require other instruments than a finger
pulse oximeter and a medical examination table, which makes it
usable in low- and high-income countries.

Here, we report for the first time that a sequence of neck
movements can systematically affect HR, both in males and
females, suggesting a key role of the stretch on the neck
portion of the VN in HR modulation. Gutierrez and coworkers
reported that a patient with acute sensory and autonomic
neuropathy had her symptoms relieved by neck movements
(Gutierrez et al., 2020) which are included in the VN-NDT.
Therefore, we can argue that studying the VN-NDT effects
can be helpful in diagnosis and symptoms management in
autonomic dysfunctions. Indeed, neurodynamic tests had
been adopted successfully as treatment interventions for

peripheral neuropathies. For instance, it has been established
that invasive and non-invasive stimulation on the cervical tract
of the VN ameliorates survival rates in sepsis models (Huston
et al., 2007) and promotes heart and lung regeneration
in preclinical models (Brandt et al., 2019; Chen et al.,
2020), HR variability in cardiological patients (Kobayashi
et al., 2013), and symptoms improvement in people with
pharmacoresistant problems such as acute and chronic pain,
dementia, psychiatric illness, consciousness disorder, and
epilepsy (Kirchner et al., 2000; Schachter, 2006; Corazzol et al.,
2017; Breit et al., 2018; Dong and Feng, 2018; Johnson and
Wilson, 2018).

Since the VN-NDT can induce an effective VN stimulation,
it would be useful to investigate its effects on these
pathophysiological conditions and other conditions like diabetes-
related gastrointestinal alterations, cardiac neuropathies, and
arrhythmias secondary to coronavirus infection (Garamendi-
Ruiz and Gómez-Esteban, 2019; Santos Breder and Sposito, 2019;
Malaty et al., 2021).

CONCLUSION

The tests currently available for APN are neither selective nor
sex-specific for evaluating the parasympathetic nervous system
and can have troubling side effects. The proposed VN-NDT
is a reliable, sensible, and sustainable screening test to assess
parasympathetic activity and VN alterations also in patients
with verbal/communication problems. The physiological HR
changes induced by the VN-NDT are provided for healthy males
and females. The VN-NDT can be safely incorporated into
bedside assessment routines and pretreatment routine tests for all
conditions in which APN is suspected and to discriminate APN
from neck musculoskeletal problems.
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