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Abstract  12 

Potentially Toxic Elements (PTE) are common soil contaminants and pose a significant risk to 13 

human health. In this study, ingestion (<150 μm) and inhalation (<10 μm) bioaccessibility and 14 

human health risk due to PTE were investigated in soils of the urban and peri-urban area of 15 

Torino. Lead, Cd, Cu, and Zn were observed to be the most soluble elements in simulated 16 

gastric and lung fluids. Higher bioaccessible concentrations of Pb, Ni, Co and Sb were 17 

observed in the inhalable size fraction (< 10 µm) compared to ingestible one probably 18 

because of the higher concentration in fine soil size fraction. Conversely, the relative 19 

bioaccessibility of Pb, Cu, Cd, Zn and As was lower, due to the different extracting conditions 20 

and to the presumable different elemental speciation. Average values suggested that PTE 21 

would be more bioavailable if ingested than inhaled, particularly in urban areas, were the 22 

bioaccessible percentages were always higher than in peri-urban sites. Health risk assessment 23 

was conducted using bioaccessible concentrations and their corresponding toxicities via 24 

ingestion and inhalation exposures. Unacceptable non-carcinogenic risk (HQ > 1) was found 25 

through ingestion exposure for children in some urban sites and Pb was the most hazardous 26 

elements. Carcinogenic risks were under the threshold levels for every soil (CR < 10-4), with 27 

Cr and As being the dominant contributors to risk. Therefore, necessary soil remediation 28 

activities are needed to reduce the risks of human, especially for children, exposure to Pb. 29 

 30 
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 33 

Highlights: 34 

- Gastric and lung bioaccessibility in diverse soil size fractions were investigated 35 

- PTE would be more bioavailable if ingested than inhaled 36 

- Higher bioaccessibility was visible in urban sites 37 

- Pb was, still, the most important element for non-carcinogenic risk  38 

 39 

1. Introduction 40 

Rapid industrialization and expansion of urban areas lead to the entrance of numerous 41 

Potentially Toxic Elements (PTE) to soil (Kabata Pendias, 2010; Ajmone-Marsan and Biasioli, 42 

2010). As PTE tend to accumulate in soils, in cities people exposure to contaminated soils can 43 

pose significant human health risk, due mainly to the routes connected to oral ingestion and 44 

inhalation (Manjon et al., 2020; Marini et al., 2021). In most cases, health risk assessment has 45 

been conducted considering PTE total concentrations; however, not all the elemental species 46 

are available for adsorption and the use of total or pseudo-total contents may somewhat 47 

overestimate the risk, as already reported from many researchers (Paustenbach, 2000; Han et 48 

al., 2020; Mokhtarzadeh et al., 2020). In recent years, different in vitro methods have been 49 

used for estimating the PTE gastrointestinal bioaccessibility, especially the Simple 50 

Bioaccessibility Extraction Test (SBET), which has been widely applied for human health risk 51 

assessment (Oomen et al., 2002; Li et al., 2020).  52 

To correctly estimate the risk due to ingestion, in addition to the SBET, or similar extraction 53 

methods, studies need to analyze the bioaccessibility only on the potentially ingestible 54 

fraction of soil (i.e. the fraction of soil <150 µm) (Li et al., 2021).  55 

The second most important route for PTE interaction with urban population is inhalation, 56 

which involves the soil fine size fractions (i.e. particles <10 μm), as they are easily 57 

resuspended by anthropogenic activities and wind erosion. Thus, PTE in fine particles may 58 

easily enter the nasal cavity and lungs through inhalation (Kastury et al., 2018; Li et al., 2020). 59 

Until now, no unified analytical protocol for the determination of lung bioaccessibility has 60 
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been adopted, and this poses many challenges for methodologies comparison (Ren et al., 61 

2020). Recently, a new study (Zhong et al., 2020) obtained a good in vitro-in vivo correlation 62 

using optimized Gamble solution (Wragg and Klinck, 2007). The method showed good 63 

performance for the prediction of lung bioaccessible PTE and has been proposed for human 64 

exposure assessment. 65 

Turin is the third-largest city in Italy, which has a long industrial history and may represent a 66 

model for cities with historical contaminations, as the industrial activities were concentrated 67 

in the city centre while the peri-urban area was mostly residential and surrounded by 68 

agricultural fields. Previous studies in this area evidenced this difference between the urban 69 

and the peri-urban area (Biasioli et al., 2006; Padoan et al., 2017), however few studies were 70 

carried out to the bioaccessibility of PTE in the particle size-associated fractions (Padoan et 71 

al., 2017; Pelfrêne and Douay, 2018) and to assess the health risk via the combined ingestion 72 

and inhalation pathways, essential to determine the exposure risk. Therefore, the objectives of 73 

this study are: (1) to investigate the concentration and distribution of PTE in soils of the urban 74 

and peri-urban areas; (2) to assess the gastrointestinal and lung bioaccessibility of PTE; (3) to 75 

estimate health hazards due to non-carcinogenic and carcinogenic elements via ingestion and 76 

inhalation exposure based on bioaccessibility data. 77 

 78 

2. Materials and methods 79 

2.1 Study area 80 

The metropolitan area of Turin (45°04′ N; 7°41′ E) lies on an alluvial plain in the Piemonte 81 

region, in north-west Italy, and has a population of 1.7 million inhabitants. It features a very 82 

large amount of vehicular traffic and has a long history of industry, primarily 83 

car-manufacturing factories, and metallurgical industries (Padoan et al., 2017). 84 

Soil sampling sites were selected along a main road across the city, on a South-North 85 

directory, beginning and ending in the peri-urban area (Figure 1). Sites in the peri-urban area 86 

(n=10) were surrounded by agricultural fields and sites in the urban area sites (n=20) were 87 

distributed on roadsides and parks.   88 

 89 
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2.2 Soil sampling 90 

Samples collection was conducted in January and May 2020, a total of 30 topsoil samples 91 

were collected from the study area. Each sample was taken at a 0-10 cm depth and a 92 

composite soil sample at each site was obtained by mixing three sub-samples at a distance of 93 

1 m away from each other. The collected samples were put in plastic bags and homogenized. 94 

All samples were air dried in laboratory at room temperature and sieved through a 2 mm 95 

plastic sieve to remove stones, plant, and anthropic fragments (plastic, glass, metallic, etc.) 96 

before further analyses. 97 

 98 

2.3 Sample characterization 99 

The pH of soil samples was measured in 1:2.5 soil/water suspensions by using a pH meter 100 

with a combined glass electrode, total carbon (TC) and total nitrogen (TN) were measured by 101 

an element analyser (CE Instruments, NA2100 Elemental Analyzer, ISO 10694), carbonates 102 

were analysed by volumetric method (ISO 10693). Particle size distribution and fraction 103 

below 10 μm were measured and collected via the hydrometer method (Padoan et al., 2017). 104 

Soil digestion and measurement of pseudo-total PTE were carried out according to 105 

Ajmone-Marsan et al. (2019). A portion of each sample was crushed to pass through 0.15 mm 106 

sieves, 1.00 g soil sample was weighed and microwave-digested with aqua regia (HCl/HNO3, 107 

3:1 v/v, Milestone Ethos D, ISO 11466)) and then determined by inductively coupled plasma 108 

mass spectrometry (ICP-MS, Perkin Elmer NexION® 350D). All the determinations were 109 

carried out in triplicate. Accuracy was checked against a certified reference material for aqua 110 

regia extractable elements in calcareous soil (CRM 141R).  111 

Along with concentrations in bulk soil (<2 mm), pseudo-total PTE concentrations were 112 

analysed in the <10 µm and in the <150 µm fraction using the same procedure. 113 

 114 

2.4 In vitro gastric and lung bioaccessibility 115 

The gastric bioaccessibility of the elements was determined using the SBET method (Ruby et 116 

al., 1999; Oomen et al., 2002). In brief, soil samples sieved at 0.15 mm were used; 0.5 g of 117 
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sample was weighed and mixed with 50 mL of a 0.4 M glycine solution with pH adjusted to 118 

1.5 by concentrated HCl. The mixture was shaken at 150 rpm, incubated at 37°C for 1 h and 119 

then centrifuged at 3000 rpm for 10 minutes, the supernatant was taken and filtered through a 120 

0.45 µm cellulose filter prior to the analysis.  121 

The lung bioaccessibility test was performed using the optimized Gamble Solution (the 122 

chemical composition of the solution presented in Table S1). Briefly, <10 µm soil samples 123 

were weighed accurately into labelled 50 mL tubes and mixed with solution at a solid:solution 124 

ratio of 1:1000; the mixture was then shaken at 37°C for 24h. After oscillation, the extracts 125 

were centrifuged at 3000 rpm for 10 minutes; the supernatant was taken and filtered through a 126 

0.45 µm cellulose filter. All extraction solutions were freshly prepared, and all the 127 

determinations were carried out in triplicate, the extractant was analysed by ICP-MS.  128 

The bioaccessibility was calculated as follows (Du et al., 2020): 129 

Bioaccessibility (%) = (C in vitro/C total) × 100 130 

Where Cin vitro is the bioaccessible concentration of PTE as determined using the in vitro 131 

extraction, and Ctotal is the aqua regia concentration in the considered soil fraction. 132 

 133 

 134 
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 135 

Figure 1. Sampling sites and map of the study area in Turin, Italy. 136 

 137 

2.5 Human health risk assessment 138 

The non-carcinogenic risk (hazard quotients; HQ) and carcinogenic risk (CR) which proposed 139 

by US Environmental Protection Agency (USEPA, 2004) have been widely used to quantify 140 

the risk of people exposure to PTE contaminated soil. Exposure of humans to PTE in soils can 141 

be categorized into three pathways: inadvertent oral ingestion, dermal contact, and inhalation 142 

(Paustenbach, 2000). Based on the guidelines and Exposure Factors Handbook (USEPA, 143 

1989, 1997, 2002), chemical daily intake (ADD, mg/kg/day) of PTE through different 144 

pathways from soil were calculated using the following equations (1) - (2). 145 

ADDing=C (Gastric)×
𝐼𝑛𝑔𝑅×𝐸𝐹×𝐸𝐷

𝐵𝑊×𝐴𝑇
× 10−6                   (1) 146 
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ADDinh=C (Pulmonary)×
𝐼𝑛ℎ𝑅×𝐸𝐹×𝐸𝐷

𝑃𝐸𝐹×𝐵𝑊×𝐴𝑇
                        (2) 147 

Where ADDing, ADDinh are the daily amount of elemental intake via ingestion and inhalation. 148 

C (Gastric) and C (Pulmonary) are the bioaccessible concentration (mg/kg) in simulated gastric and 149 

lung fluids. Other parameters are given in Table 1. 150 

The hazard quotients (HQ, Eq. (3)) and the hazard index (HI, Eq. (4)) were used to 151 

characterize the non-carcinogenic hazard. 152 

𝐻𝑄𝑖 =
𝐴𝐷𝐷𝑖

𝑅𝑓𝐷𝑖
                                       (3) 153 

𝐻𝐼 = ∑𝐻𝑄𝑖 = ∑
𝐴𝐷𝐷𝑖

𝑅𝑓𝐷𝑖
                               (4) 154 

Where RfDi is the reference does of the specific element (mg/kg/day). When HQ or HI < 1, it 155 

indicates that no potential non-carcinogenic risk for humans, and HQ > 1 or HI >1 indicates 156 

adverse health effects (USEPA, 2011). 157 

Carcinogenic risk (CR) was calculated using the dose of PTE multiply the corresponding 158 

slope factor (Eq. (5)) and it was assumed that all the element risks were additive (Li et al., 159 

2012; Luo et al., 2012). 160 

𝐶𝑅 = 𝐴𝐷𝐷𝑖 × 𝑆𝐹𝑖                                    (5) 161 

TCR = ∑𝐶𝑅                                        (6) 162 

Where SF is the slope factor of carcinogenicity (mg/kg/day). When 10-6 < CR < 10-4 is 163 

considered acceptable (USEPA, 2011), while CR > 10-4 means a carcinogenic risk to human 164 

health (Li et al., 2014; Guney et al., 2010; USEPA, 1989). The values of RfD and SF for 165 

different PTE are shown in Table 2. 166 

Table 1. Definition and reference value of some parameters for health risk assessment of PTE 167 

in soils. 168 

Parameters Definition Units 
Values 

Reference 
Adult Child 

IngR Soil ingestion rate mg/day 100 200 
US DOE 

(2011) 
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EF Exposure frequency day/year 350 350 
US EPA 

(2002) 

ED Exposure duration year 24 6 
US DOE 

(2011) 

BW Body weight kg 70 15 
US EPA 

(2002) 

AT Average time day 

365×ED 

(non-carcinogen)/ 

/365×70 (carcinogen) 

US EPA 

(2002) 

InhR Soil inhalation rate m3/day 20 7.5 
US DOE 

(2011) 

PEF 
Soil to air particulate 

emission factor 
m3/kg 1.36×109 1.36×109 

US EPA 

(2002) 

 169 

Table 2. Summary of reference does (RfD) and slope factor (SF) of different PTE. 170 

Metals 
RfD (mg/kg/day) SF (mg/kg•day) 

Ingestion Inhalation  Ingestion Inhalation 

Cd 1.0∙10-03 1.0∙10-02   6.3 

Cr 3.0∙10-03a 2.86∙10-05  5.01∙10-01 4.2∙10-01 

Ni 2.0∙10-02 2.0∙10-02    

Zn 3.0∙10-01 3.0∙10-01    

Cu 4.0∙10-02 4.0∙10-02    

Pb 3.5∙10-03b 3.5∙10-02  8.5∙10-03 4.2∙10-02c 

As 3.0∙10-02 3.0∙10-03  1.5 4.3∙10-03 

References USDOE, 2011 USDOE, 2011  Adimalla, 2020 Adimalla, 2020 

a USEPA (2002) 171 

b WHO (1993) 172 

c Wang et al. (2020) 173 

 174 

2.5 Statistical analysis 175 

Data processing and statistical analysis were conducted with Microsoft Excel 2010 and Origin 176 

8.0. 177 

 178 

3. Results and discussion 179 

3.1 Physicochemical properties of soils 180 

In Table 3, the mean values of the soil physicochemical properties in the urban and peri-urban 181 

area are presented. Soils pH in the peri-urban area (agricultural soils) were slightly acidic, 182 
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however, urban soils were neutral to alkaline, consistently with previous studies highlighting 183 

this difference, which may be due to the historical inclusion of extraneous materials (Biasioli 184 

et al., 2006). The sand content (50 μm - 2 mm) was almost constant in all samples, with a 185 

mean value of 65%. Total carbon (TC) and carbonates content in the urban area were, on 186 

average, higher than in peri-urban areas, with carbonate content in line with differences in pH. 187 

The higher TC was probably due to the sampling areas, as most of the urban area soils were 188 

covered by grass or trees, with a possible variable but low contribution from exogenous 189 

organic pollutants such as hydrocarbons or plastics. 190 

The descriptive statistics summary of PTE concentrations in samples is presented in Table 4. 191 

The mean and median concentrations of all the elements (except As) were higher in the urban 192 

area than in peri-urban locations. The concentration of all the elements were higher than the 193 

average values of European and world soils (Kabata-Pendias 2010) in both peri-urban and 194 

urban areas. Compared to a previous study (Padoan et al., 2017), peri-urban concentrations 195 

were lower, while some elements in urban area, such as Cd and Ni, were a little higher.  196 

Little can be said about the spatial trends within the city, as the variability of the distribution 197 

of PTE within an urban area is exceedingly high (Ajmone and Biasioli 2010). 198 

Considering only the transect, PTE presented a higher pollution degree in the middle of the 199 

city, near the historical centre, and lower concentrations at the edge of the city, in the 200 

peri-urban area (Figure S1). High concentration of Ni was documented in a roadside park, 201 

while Cr presented no obvious polluting sources, confirming that Cr and Ni concentrations in 202 

soils were primarily controlled by parent materials (Ajmone-Marsan et al., 2008). 203 

Copper and Zn had similar spatial distributions, indicating that they may originate from the 204 

same source. The highest concentrations were found in the central and northern part of the 205 

city, coherently with previous studies indicating Cu and Zn as mainly originating from vehicle 206 

factories and traffic (Grigoratos and Martini, 2015). Two Pb hotspots were located in the 207 

north of the study area, near two gas stations, and in trafficked sites; thus, the high 208 

concentrations may derive from fuel leakage or diffuse contamination. Antimony, also, was 209 

concentrated in the northern part of the city, which is the oldest industrialized area (Figure 210 

S2). 211 
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These few hints, together with the results of previous studies (Biasioli et al., 2006), suggest 212 

the use of distance patterns (e.g. from the city centre) in place of a systematic sampling to 213 

evaluate the effects of a city on the transportation and disposal of pollutants within its 214 

boundaries giving the heterogeneity of human activities contribution to the content of PTE in 215 

urban soils. 216 

 217 

Table 3. Descriptive statistics of the peri-urban and urban area soil properties. 218 

 219 

 pH TN TC Carbonates Particle size distribution (mass %) 

  % % % < 2 µm 2-20 µm 20-50 µm 50-200 µm > 200 µm 

Peri-urban area 

Mean 6.53 0.35 3.10 0.76 4.3 19.2 13.2 43.5 19.9 

Median 6.27 0.39 3.41 0.65 3.9 19.8 13.5 45.4 21.0 

Max 8.00 0.59 5.39 1.77 7.9 26.5 16.8 51.7 31.5 

Min 5.70 0.10 0.75 0.33 1.2 11.7 8.9 32.2 7.9 

Std.Dev 0.72 0.17 1.54 0.39 2.3 4.7 2.3 5.5 7.3 

Urban Area 

Mean 7.42 0.37 4.02 1.05 4.8 18.3 12.1 34.5 30.3 

Median 7.46 0.34 3.56 1.01 4.7 17.8 12.0 31.4 28.6 

Max 7.91 0.64 6.36 2.29 8.9 27.8 20.8 58.9 54.9 

Min 6.53 0.21 2.16 0.32 0.2 5.7 7.5 21.5 17.5 

Std.Dev 0.31 0.12 1.44 0.58 2.0 6.5 3.2 9.9 11.2 

 220 

Table 4. Summary statistics of PTE (mg/kg) in the peri-urban and urban area. (significant 221 

differences (p < 0.05) between the two areas are represented from different lower-case letters 222 

in the same column).   223 

 Cr Ni Cu Zn Pb Co Cd Sb As 

Peri-urban area          

Mean 265  187 b 47 b 145 b 66 b 20  1.0  1.2 b 7.9  
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Median 206 162 43 130 54 20 0.6 1.0 7.7 

Max 461 289 94 322 196 25 4.6 2.5 12.1 

Min 158 125 26 72 24 14 0.4 0.7 5.3 

Std.Dev 121 56 19 66 48 3.5 1.3 0.5 1.7 

Urban area          

Mean 270  240 a 90 a 216 a 220 a 23  1.3  4.1 a 7.5  

Median 236 222 69 167 86 22 0.6 2.8 6.8 

Max 665 632 257 551 1174 37 7.9 19.1 11.7 

Min 117 104 31 89 27 15 0.3 0.9 0.7 

Std.Dev 128 113 56 139 319 5 1.7 4.1 2.8 

Previous study1 405  254  128  286  319   0.6  5.4  

European soils2 59.5  37  38.9  68.1 32    11.6  

Worldwide soils2 94.8  29  17.3  70 27 10    6.8  

Legislative limit3 150  120 120  150  100 ab 11  2  10   

1 Padoan et al., 2017 224 

2 Kabata-Pendias, 2010 225 

3 Metha et al., 2020 226 

 227 

3.2 In vitro bioaccessibility of PTE in urban and peri-urban areas 228 

3.2.1 Oral bioaccessibility 229 

Bioaccessible percentages and relative concentrations for the studied PTE are presented in 230 

Figure 2 and Table 5 for the urban and peri-urban areas. The data showed that the 231 

bioaccessibility of Pb, Zn and Co (p < 0.05) in the urban area was significantly higher than in 232 

the peri-urban area, although all the elements were more bioaccessible in the urban area. The 233 

bioaccessibility trend between elements was similar in both areas; i.e. Pb > Cd, Cu > Zn > Co > 234 

As, Ni, Sb > Cr. Moderate to weak correlations between total concentrations and 235 

bioaccessibility were observed for Cu (R2=0.67), Zn (R2=0.54), Pb (R2=0.43), and Ni 236 

(R2=0.33), while there was no clear connection in the case of Cr and Cd (R2<0.10, Fig. S3). 237 

These observations corroborated previous studies where PTE bioaccessibility in soils varied 238 
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significantly between sampling sites and elements (Wu et al., 2017; Ai et al., 2019). Many 239 

factors contribute to the disparity in bioaccessibility values, which one of the most important 240 

is the presence of different sources of elements (Kelepertzis, 2014; Liu et al., 2019) whose 241 

possibly include diverse fractions of PTE with different bioaccessibilities (Liu et al., 2019). 242 

High bioaccessibility of Pb, Zn, and Cu has been linked to a higher level of anthropogenic 243 

pollution (Liu et al., 2017; Padoan et al., 2017), since elements from anthropogenic sources 244 

are generally more soluble in the gastrointestinal environment and thereby more bioaccessible 245 

(Luo et al., 2019; Hernandez-Pellon et al., 2018). Huang et al. (2018) also reported that PTE 246 

originated in a residential area were more bioaccessible than ones originated in commercial 247 

and industrial areas. Furthermore, the PTE speciation need to be considered; the low 248 

bioaccessibility of Cr, for example, may be due to the high geogenic contribution of refractory 249 

chromium-containing minerals from serpentinites, which cannot be easily solubilized (Sialelli 250 

et al., 2011; Biasioli et al., 2006). A very high bioaccessibility of Cd was observed during in 251 

vitro digestion, as found also in different areas (Luo et al., 2012; Francova et al., 2020) and 252 

the results may be associated with the low pH in simulated extraction solutions (Li et al., 253 

2016).  254 
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 255 

Figure 2.Gastric bioaccessibility of PTE in the urban and peri-urban area. Lower-case letters 256 

show significant difference (p < 0.05) of different element bioaccessibility between areas. 257 

 258 

3.2.2 Lung bioaccessibility 259 

Elements associated with fine soil size fraction (<10 μm) may pose potential health risks 260 

because they can directly enter into the lung then to the blood system via inhalation. The 261 

results of the total and bioaccessible concentrations, and inhalation bioaccessibility in soils 262 

(<10 μm) were displayed in Table 5 and Figure 3. Bioaccessible PTE concentrations (Co, Ni, 263 

Sb and Pb) through inhalation were higher than ones through ingestion (p < 0.05), posing 264 

concerns to their possible harm. However, the relative bioaccessibility was lower (Fig. 4) 265 

because of the high total concentrations in the <10 μm fraction, higher than in coarser 266 

fractions. The higher concentrations has already been reported from many articles and is due 267 

to different phenomenon, such as, in some case, to the increase of sorption due to the higher 268 

specific surface of fine particles, according to what was already been reported 269 

(Ajmone-Marsan et al., 2008; Ma et al., 2019).  270 
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The differences in bioaccessibility may be due also to the different components of the 271 

extracting solutions and to pH values of the in vitro methods (Hu et al., 2019; Monneron et al., 272 

2020). Many researchers found that pH has a substantial impact on PTE bioaccessibility (Liu 273 

et al., 2018). In opposition with these results, PTE bioaccessibility generally decrease with a 274 

higher pH (Basta et al., 1993; Li et al., 2020), however, the complexity of Gamble’s solution 275 

could probably have resulted in a different behaviour as, for example, the presence of 276 

chlorides in its formula could lead in the formation of metal-chloride complexes which are 277 

readily solubilized (Bourliva et al., 2020). 278 

The lung bioaccessibility varied widely among different elements because of the different 279 

chemical forms in which the elements could be present in the urban setting. Lead, Cd, Cu, and 280 

Co had the highest bioaccessibility, followed by Sb, Zn, As, Ni and Cr. The relatively high 281 

bioaccessibility of Cu and Zn may be due to the presence of cysteine in the extraction solution, 282 

which provides thiol groups that strongly coordinated with Zn and Cu (Huang et al., 2014). 283 

The high bioaccessibility of Cd is also interesting. According to a previous study (Pelfrêne 284 

and Douay, 2018), between the major forms of the elements present in the environment, Cd 285 

oxide and Cd chloride are easily dissolved in the lung, however, Cd sulfide not.  286 

Lead, Cu, Zn, Ni, and Co had a higher bioaccessibility in the urban than in the peri-urban area, 287 

although not statistically significant, while Cr, As, Sb and Cd where more bioaccessible in the 288 

peri-urban area. This variability highlighted that PTE release could be influenced by the 289 

geological origins and by different anthropogenic processes.  290 

 291 

 292 
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 293 

Figure 3. Lung bioaccessibility of PTE in the urban and peri-urban area. Lower-case letters 294 

show significant difference (p < 0.05) of different element bioaccessibility between areas. 295 

 296 

Figure 4. Comparison of PTE oral and lung bioaccessibility in urban (1) and peri-urban (2) 297 

area.  298 

 299 

Table 5. Total (< 10μm) and bioaccessible (<150 μm, <10μm) PTE concentrations (mg/kg) in 300 

the urban and peri-urban area. Ranges, Median (Med), Averages (Avg) and Standard 301 

Deviations (SD). Upper-case letters show significant differences (p < 0.05) between ingestion 302 
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and inhalation in the urban area, while lower-case letters indicate significant differences (p < 303 

0.05) in the peri-urban area. 304 
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  Total concentration (< 10μm)   Urban Area   Peri-urban Area 

 Urban  Peri-urban  

Bioaccessible concentration 

(< 150 μm) 

 

Bioaccessible 

concentration (< 10 μm) 

 

Bioaccessible concentration 

(< 150 μm) 

 

Bioaccessible 

concentration (< 10 μm) 

 Range 

M

ed 

Ave±

SD 

 

Rang

e 

M

ed 

Ave±

SD 

 Range Med Ave±SD  Range Med Ave±SD  

Rang

e 

Med Ave±SD  Range Med Ave±SD 

Cr 

179-85

0 

35

8 

425±

192 

 

249-

927 

36

8 

479±

263 

 1-64 3.4 7±14 A  2-34 5.2 

7.6±7.3 

A 

 

1.7-2

0 

3.3 4.8±5.5 b  1.9-90 12.4 25±28 a 

C

o 

27-74 42 

45±1

2 

 

22-5

7 

45 

40±1

2 

 4-13 7 7.3±2.1 B  6-19 12.2 12±3 A  2.1-5 4 3.8±1 b  

3.3-15.

8 

9 

8.9±3.6 

a 

Ni 

186-93

2 

40

8 

466±

207 

 

247-

669 

35

7 

410±

164 

 

13-16

4 

31 40±35 B  15-140 38.8 50±31 A  12-41 17 21±9 b  25-60 35 40±14 a 

C

u 

80-467 

14

7 

187±

111 

 

68-2

22 

10

3 

114±

43 

 

15-23

1 

39 63±39 A  28-232 47.9 73±59 A  13-66 19 26±16 b  24-93 47.9 39±21 a 

Zn 

192-17

20 

39

6 

510±

382 

 

230-

559 

25

4 

309±

113 

 

20-33

4 

66 112±66 A  21-371 65.5 94±90 B  

12-13

5 

35 47±38 a  15-106 38.3 48±32 a 

A

s 

13-23 18 18±3  7-25 

19

.9 

18±6  

0.6-4.

1 

1.2 1.3±0.8 A  1.3-3.7 2 

2.1±0.7 

A 

 

0.3-1.

5 

0.9 0.9±0.4 b  1.3-3.5 2.3 

2.4±0.8 

a 
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C

d 

0.7-11.

9 

1.

3 

2.4±2

.7 

 

0.8-6

.4 

1.

2 

1.7±1

.7 

 0.2-7 0.5 0.9±1.5 A  0.2-6.1 0.6 

1.1±1.4 

A 

 0.2-4 0.3 0.7±1.2 a  0.4-3.7 0.51 0.9±1 a 

Sb 2-30 

5.

6 

7.9±7

.7 

 

1.5-5

.8 

2.

9 

3.1±1

.3 

 

0.1-1.

8 

0.3 0.4±0.4 B  0.2-3.9 0.8 

1.1±0.9 

A 

 

0.1-0.

3 

0.1 0.1±0.1 b  0.3-1.5 0.6 

0.7±0.4 

a 

Pb 

88-342

6 

28

6 

636±

938 

 

90-6

53 

12

8 

200±

174 

 

19-11

71 

69 209±69 B  

35-166

9 

123.

7 

301±486 

A 

 

16-21

0 

36 60±63  b  38-300 55 87±81 a 
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 305 

 306 

3.4 Human health risk assessment 307 

The non-carcinogenic and carcinogenic risks due to soil PTE via the ingestion and inhalation 308 

exposure pathways are presented in Figures 5 and 6. The mean and median values of HI in 309 

this study were lower than 1, suggesting an acceptable average non-carcinogenic risk for the 310 

studied soils. However, some sample sites in urban area, children exposure to Pb 311 

contaminated soil may have adverse health effects (Fig.5a). 312 

The health risks through the different exposure routes were in the order of ingestion > 313 

inhalation (Fig.5 a,b), indicating that exposure to soils due to ingestion contributed to the 314 

largest to the total calculated health risk (Zhuo et al., 2019; Liu et al., 2020). Comparatively, 315 

non-carcinogenic risks for children were higher than for adults (Fig. 5 1,2), and higher in the 316 

urban area than in peri-urban area (Fig.5 d) and the same trend was observed for carcinogenic 317 

risk, suggesting that children faced more potential health risks from exposure to elements. 318 

The non-carcinogenic risk for each element decreased in the order of Pb > As > Cr > Ni > Cu > 319 

Cd > Zn in both areas, which indicated Pb (> 80%) as the main contributor to the estimated 320 

human health risk.  321 

In terms of carcinogenic risk, the TCR probabilities for As, Cd, Cr and Pb to children and 322 

adults were under the acceptable level (< 1×10-4), indicating no significant risks to adults and 323 

children exposed to soils. Soil ingestion was calculated as the most important pathway of 324 

exposure (Fig.6 a,b), but inhalation has a higher contribution to the carcinogenic risk than to 325 

the non-carcinogenic. Chromium (42%) and As (37%) were the dominant contributor to 326 

cumulative carcinogenic risk. This was consistent with previous studies revealing As and Cr 327 

being the major carcinogen and Pb the major non-carcinogen factors (Eziz et al., 2018; Fan et 328 

al., 2019; Bourliva et al., 2020).  329 
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 331 

Figure 5. Non-cancer Hazard Quotients (HQ) and Hazard Indexes (HI) of PTE in urban (blue) 332 

and peri-urban (yellow) areas via ingestion and inhalation exposure pathways calculated for 333 

children (1) and for adults (2). In detail: (a) HQ of each element through ingestion; (b) HQ of 334 

each element through inhalation; (c) HI of each element through ingestion and inhalation; (d) 335 

HQ and HI of combined elements through ingestion and inhalation. 336 
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 337 

 338 

Figure 6. Cancer risk due to PTE in urban (blue) and peri-urban (yellow) areas via ingestion 339 
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and inhalation exposure pathways for children (1) and adults (2). In detail: (a) CR of each 340 

element through ingestion; (b) CR of each element through inhalation; (c) TCR of each 341 

element through ingestion and inhalation; (d) CR and TCR of combined elements through 342 

ingestion and inhalation. 343 

 344 

4. Conclusions 345 

In vitro oral and lung bioaccessibility and human health risk assessment of PTE in soil 346 

samples from an urban and peri-urban area in Turin were investigated. The average PTE 347 

contents and chemico-physical parameters of soils were in line with previous works in the 348 

same area. Concerning bioaccessible percentages, they exhibited a decreasing order of Pb > 349 

Cd, Cu > Zn > Co > As, Ni, Sb > Cr in the gastric environment and Pb > Cd, Cu > Zn > Co > 350 

As, Ni, Sb >Cr regarding lung bioaccessibility. Comparing ingestion and inhalation results, a 351 

relative enrichment of bioaccessible concentrations of Pb, Ni, Co and Sb was observed in the 352 

inhalable size fraction (< 10 µm) compared to ingestible one. Conversely, the relative 353 

bioaccessibility of Pb, Cu, Cd, Zn and As was lower, due to the different components of the 354 

extraction solution and extracting pH. The average bioaccessibility values suggested that PTE 355 

would more bioavailable if ingested than inhaled. In addition, a higher solubility of Pb, Cd, 356 

Zn, and Cu was found using both methods, which may reflect a higher level of anthropogenic 357 

pollution. 358 

Human health risk was assessed for the ingestion and inhalation pathways, using the 359 

bioaccessible fractions in simulated fluids. Unacceptable non-carcinogenic risk (HQ > 1) was 360 

found through ingestion exposure for children in some urban sites and Pb was the most 361 

hazardous elements for non-carcinogenic risk. Carcinogenic risks were under the threshold 362 

levels for every soil (CR < 10-4), with Cr and As being the dominant contributors to risk. 363 

Furthermore, children were more susceptible to PTE toxicity than adults and urban area soils 364 

posed a higher risk than peri-urban ones. Therefore, this elements, and especially Pb pollution 365 

in the urban soils still need more attention, and the necessary soil remediation activities are 366 

needed to reduce the risks of human, especially children, exposure to PTE. 367 

 368 

 369 
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