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A B S T R A C T   

Ultrasound has been applied in food processing for various purpose, showing potential to advance the physical 
and chemical modification of natural compounds. In order to explore the effect of ultrasonic pretreatment on the 
complexation of inulin and tea polyphenols (TPP), different frequencies (25, 40, 80 kHz) and output power (40, 
80, 120 W) were carried out. According to the comparison in particle size distribution and phenolic content of 
different inulin-TPP complexes, it was indicated that high-intensity ultrasonic (HIU) treatment (25 kHz, 40 W, 
10 min) could accelerate the interaction of polysaccharides and polyphenols. Moreover, a series of spectral 
analysis including UV–Vis, FT-IR and NMR jointly evidenced the formation of hydrogen bond between saccha-
rides and phenols. However, the primary structure of inulin and the polysaccharide skeleton were not altered by 
the combination. Referring to field emission scanning electron microscopy (FESEM), the morphology of ultra-
sound treated-complex presented a slight agglomeration in the form of bent sheets, compared to non-treated 
sample. The inulin-TPP complex also revealed better stability based on thermogravimetric analysis (TGA). 
Thus, it can be speculated from the identifications that proper ultrasonic treatment is promising to promote the 
complexation of some food components during processing.   

1. Introduction 

Ultrasound (US), a mechanical/acoustic wave, can be converted 
from electrical energy to mechanical energy, inducing physical and/or 
chemical changes of different dimensions [1,2]. Ultrasound is usually 
characterized in terms of wavelength, frequency and intensity. Ac-
cording to the frequency, it has been classified into three categories: 
power ultrasound (20–100 kHz), high-frequency ultrasound (100 kHz-1 
MHz), and diagnostic ultrasound (1–500 MHz) [3]. In food processing, 
ultrasound less than 100 kHz is often used with high power intensity 
from 1 to 1000 W/cm2. The high-intensity/low-frequency ultrasound, 
which produces cavitation effect, can advance the physical and chemical 
modifications of compounds [4,5]. Furthermore, compared to conven-
tional processing technologies, ultrasound is often considered as a kind 
of emerging or non-thermal technique, which preserves the bioavail-
ability of food components and improves their functional properties 

with high efficiency in food industry and agricultural production 
[6–10]. 

Nowadays, high-intensity ultrasonic (HIU) treatment has been 
widely applied to improve the functional properties of food proteins, 
including crop, bean and egg yolk protein isolates [11–13]. Moreover, it 
is indicated that ultrasonic pretreatment can intensify the hydrolysis or 
degradation of starch or some polysaccharides, further modifying their 
properties, such as gelation and rheological properties [14,15]. It is also 
found recently that ultrasound under special conditions is effective to 
accelerate the interaction of food components, inducing alteration on 
physicochemical and functional properties of foods. For example, 
Albano et al. (2020) demonstrated that ultrasound homogenization 
promotes the complexation of soy protein isolate and methoxyl pectin 
based on electrostatic interaction, which is potent to be emulsion sta-
bilizers [16]. Greater interactions between protein and polysaccharide 
were observed in whey protein concentrate-pectin complexes with 
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ultrasonic treatment, indicating reduced suspension viscosity and 
smaller size [17]. Intriguingly, it was further reported that lotus seed 
starch-green tea polyphenol complex with slow digestibility could be 
formed after treated by synergistic ultrasound and microwave [12]. 
Hence, utilization of ultrasound has been recognized as an effective 
strategy to improve food quality, which is considerably easy to indus-
trialize and scale-up. 

Since the concern on human health is growing and no cure or vaccine 
has been developed for COVID-19 disease yet, the demand of functional 
foods sharply increases in the market and the behavior of consumers will 
change to adapt to the innovations of food supply chain [18–20]. More 
and more food ingredients and active compounds supporting body’s 
immune system have been consumed, such as vitamins and folate, 
polysaccharides and dietary fiber, lipids, peptides, and natural poly-
phenols [21]. Phenol-rich extracts obtained from plant resources or food 
processing by-products are generally accepted for its excellent perfor-
mance in antioxidation, which have been widely used in food industry or 
cosmetics [22,23]. To be mentioned, the enrichment of food-derived 
polyphenols also depends on ultrasound-assisted extraction or other 
non-thermal technologies, which has promising application foreground 
[24]. Inulin, known as functional fructo-oligosaccharides or poly-
saccharides, mainly comes from natural resources, such as coneflower, 
chicory root and Jerusalem artichoke root [25]. The commonly present 
inulin contains two types: Fn type through fructosyl-fructose links, and 
GFn type with a glucose unit at the end of fructan chain [26]. It has been 
widely used for production of healthier food products or ingredients, 
being as sugar substitute, fat replacer or texture modifier [27]. However, 
inulins with high degree of polymerization (DP) lead to lower solubility 
and enhanced viscosity of food matrix, which restrict its application in 
food industry to some extent. Recently, we found that the complexation 
of inulin and polyphenol (e.g epicatechin and its oligomers) will 
strengthen the antioxidant activity and solubility of polysaccharides, 
broadening its usable range in foods. However, the absorption rate of 
polyphenols on inulin is limited, accompanied with low yield of the 
complex. Therefore, a food-acceptable strategy needs to be employed, 
improving the reaction efficiency of inulin and other small molecules. 

In this study, ultrasound was introduced to advance the interaction 
of inulin and tea polyphenols in vitro systems with different frequencies 
and output power. In order to select the optimal ultrasonic condition and 
illustrate its positive effect on the complexation, the morphological 
and spectroscopic properties of the complex were identified by a series 
of characteristic methods. 

2. Materials and methods 

2.1. Chemicals and materials 

Inulin extract was kindly offered by MB Med S.R.L (Torino, Italy), 
obtained from roots of Taraxacum officinale (L.), using maltodextrin as 
carrier. The green tea polyphenols were extracted from Camellia sinensis 
Kuntze (purity˃90%), which was mainly composed of epigallocatechin 
gallate (EGCG) and epicatechin gallate (ECG) referring to HPLC results 
and previous studies [28,29]. Folin-Ciocalteu reagent was purchased 
from Sigma Co. (USA). All other reagents used in this experiment are of 
analytical grade. 

2.2. Ultrasonic treatments 

In order to prepare inulin-polyphenol complex, 800 mg of inulin 
extract and 200 mg of tea polyphenols (TPP) were mixed and suspended 
in 15 mL of diluted water. The fully dissolved solution was exposed to 
different ultrasonic treatments and incubated for different time dura-
tions. Ultrasonic conditions involving 25 kHz (40 W, 80 W, 120 W), 40 
kHz (40 W, 80 W, 120 W) and 80 kHz (40 W, 80 W, 120 W) were carried 
out, in which the optimal parameter was selected and applied to pro-
mote the formation of inulin-TPP complex. The untreated solution of 

inulin at the presence of TPP was set as control. 
After incubation, the products were isolated through alcohol pre-

cipitation. Samples of complexes were further collected by centrifuga-
tion (4000 r/min, 10 min) and washed twice with 50% ethanol solution 
to remove the uncomplexed polyphenols. The final precipitates were 
freeze-dried and ground to powder, which was recorded in Fig. 2C. 

2.3. Particle size analysis of ultrasound-treated mixtures 

The ultrasound-treated and untreated solutions containing inulin, 
TPP and their complex were evaluated by 90Plus Particle size analyzer 
(Brookhaven Instrument Co., USA). The diameter distribution and 
average particle size of the product was obtained based on five parallel 
tests, which was collected at the wavelength of 675 nm. 

2.4. Phenolic content determination 

The total phenol content of inulin-TPP complex was measured by the 
Folin-Ciocalteu method referring to Li et al. (2020) with modifications, 
using gallic acid as standard [30]. 1 mL of Folin-Ciocalteu reagent was 
added into 0.5 mL of different samples (1 g/L), which was followed by 
addition of 1 mL of 7% Na2CO3 solution, and kept in dark for 90 min. 
The absorbance of the final solution was determined at wavelength of 
760 nm, and the relative phenolic content of the complex could be 
calculated. 

2.5. Ultraviolet–visible (UV–Vis) analysis 

Based on the phenolic content of non-treated complex, the corre-
sponding uncombined mixture of inulin and TPP can be prepared with 
same weight ratio. Then, three inulin-TPP complexes (1 g/L) from 
different ultrasonic treatments and their mixtures were determined on a 
UV–Vis spectrophotometer, recording from 200 to 800 nm (Cary 60 
UV–Vis, Agilent Technologies, USA). 

2.6. Fourier transform infrared (FT-IR) spectroscopy 

The FT-IR spectra of four samples (three inulin-TPP complexes and 
one mixture) were measured by a spectrometer from 500 to 4000 cm− 1 

with scans 16 times and 8 resolutions respectively (NEXUS670, Nicolet, 
USA). 3 mg of samples was fully mixed with dried KBr (300 mg), and 
then pressed into tables for analysis. 

2.7. Nuclear magnetic resonance (NMR) spectroscopy 

The ultrasound-treated and untreated inulin-TPP complex were 
maintained over P2O5 in a vacuum for several days and deuterium ex-
change was performed thrice with 0.5 mL D2O. 1H NMR, 13C NMR and 
correlation spectroscopy (COSY) spectra of samples were recorded in 
D2O at 500 MHz (for 1H NMR) or 125 MHz (for 13C NMR) using a Jeol 
ECZR600 spectrometer, operating at 14 T and equipped with Jeol Royal 
Standard probe. 

2.8. High performance gel permeation chromatography 

The molecular weight distribution of different inulin-TPP complexes 
and their mixture, were observed by high performance gel permeation 
chromatography (GPC). Samples (0.2% w/w, dissolved by mobile 
phase) were examined by Agilent 1100 liquid chromatography, which 
was equipped with G1376A binary gradient pump, Agilent G137A 
injector, and G1328B differential refractive index detector. The type of 
column applied was PL aquagel-OH MIXED (7.5 mm × 300 mm, 8 μm). 
Conditions were as follows: flow rate at 0.9 mL/min, column tempera-
ture at 35 ◦C, and the mobile phase was 0.05 M of Na2SO4 [30]. 
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2.9. Field emission scanning electron microscopy analysis 

The morphological properties of different inulin-TPP complexes 
were characterized by field emission scanning electron microscopy 
(FESEM) analysis, using a Tescan S9000G FESEM 3010 microscope (30 
kV) equipped with a high brightness Schottky emitter and fitted with 
Energy Dispersive X-ray Spectroscopy (EDS) by a Ultim Max Silicon Drift 
Detector (SDD, Oxford). For analysis, the powdered samples were 
deposited on a stub and inserted in the chamber by a fully motorized 
procedure. In order to avoid any modification, the samples of complex 
were not metallized and the secondary electron (SE) FESEM images have 
been acquired at 2 keV. It is worth noting that under these conditions the 
complexes were stable to prolonged exposition to the electron beam of 
the instrument. 

2.10. Thermogravimetric analysis 

The maximum decomposition rate and thermal stability of different 
inulin complexes was measured by thermogravimetric analysis (TGA), 
referring to the relationship between weight loss and heating time. The 
thermodynamic properties of four samples were obtained depending on 
Perkin Elmer TGA 4000 (New York, USA). Approximate 10.0 mg of 
samples were weighed in the tubes, heating from 30 ◦C to 800 ◦C at 
10 ◦C/min, under 90 mL/min of argon atmosphere. 

2.11. Statistical analysis 

The data of particle size and phenolic content were expressed as 
mean ± standard deviations (SD). The statistical significance was 
defined as p less than 0.05, which was conducted using single factorial 
ANOVA with Origin 8.0 software. 

3. Results and discussion 

3.1. Effect of ultrasound on the complexation of inulin and TPP 

Particle size distribution has been often used to define powder, 
granular material, or particles dispersed in fluid, associated with the 
relative amount, proportion and mass of compounds [31]. Thus, the 
complexation of inulin and TPP in solution was examined by dynamic 
light scattering in this study, indicating significant changes after ultra-
sonic treatment. It has been demonstrated that the formation of complex 
often leads to increased average diameter and wider molecular weight 
distribution compared to original substrates [32,33]. Moreover, ultra-
sound can facilitate the chemical combination of compounds, but 
depending on conditions [34,35]. Herein, there was a contrast effect of 
ultrasound with different frequencies on the complexation of inulin and 
TPP. According to Fig. 1, it was indicated that 25 kHz-ultrasound-treated 
solution possessed a significantly larger mean diameter (around 1084 
nm at 40 W), and the particle size distribution of which was more 
condensed than the untreated inulin-TPP dispersed fluid. It was possibly 
caused by the cavitation effect of high-intensity ultrasound that transfers 
energy during the oscillation and rupture of bubbles, accelerating the 
aggregation and interaction of compounds. However, 40 and 80 kHz of 
ultrasound decreased the mean diameter of the solutes, further pro-
ducing inulin-based solutions with more dispersive size distributions. 
This is owing to the ultrasonication with higher frequencies, which can 
generate more stable bubbles, presenting weaker cavitation effect and 
hindering the contact of substrates [36]. Another possibility could be 
that the intrinsic chain structure of inulin was destroyed by the specific 
ultrasound, decomposed to shorter saccharides. For example, ultrasound 
irradiation (20 kHz, 600 W) degraded the polysaccharide from black-
currant fruit into smaller molecules, increasing the antioxidant activities 
but not changing the primary structure of polysaccharides [37]. The 
pectin can be also degraded and modified by ultrasound, presenting 
better properties and higher bioactivities [38]. 

In addition, the increase in the power of sonication caused the par-
ticles of inulin-TPP to shift toward smaller sizes, which was similar to the 
study of Chen et al. (2011) [39]. As the increase of vibration amplitude 
(40 ~ 120 W), the intensity of the bubble collapse was enhanced, 
resulting in the de-aggregation or de-gradation of the nanoparticles. 

3.2. Optimal parameters of ultrasonic treatment for complexation 

Based on the result of 3.1, it was implied that 10 min of ultrasound 
can be effective to facilitate the combination of inulin and TPP at 25 kHz 
(40 or 80 W). In order to identify the time-effect, 400 mg of inulin and 
100 mg of TPP were dissolved in 10 mL of water, which was treated by 
ultrasound for different time periods. It was indicated that the mean 
diameter of particle size was increased at the beginning, which was 
followed by gradual decline in the second half of treatment (Fig. 2). The 
largest particles were obtained at 10 and 5 min for 40 and 80 W of ul-
trasound, respectively. Extending reaction time led to a slight de- 
aggregation of the complex, the mechanism of which needs to be 
further studied. 

As stated, the complex index (CI) and/or the loading capacity of 
target compound have been often considered as important index to 
determine extent of complex formation [40,41]. Hereby, we introduced 
total phenolic content of the complex to describe the complexation of 
TPP within inulin. And higher content of polyphenols stands for better 
combination of compounds. It was shown that the phenolic contents of 
different complexes (treated for 0, 10 and 30 min) were significantly 
different, but implying the same trend with their particle size. The 
largest particle corresponded to the highest phenolic loading, reaching 
to 70 ± 6.5 mg/g after 10 min of ultrasonic treatment (Fig. 2A). In our 
previous research, it was suggested that 25 kHz of ultrasound cannot 
destroy the structure of polyphenols, as well as the interaction force with 
inulin. That is to say, the decrease of phenolic content in the complex 
may come from the decomposition of polysaccharides, who probably 
possess lower adsorption capacity on polyphenols. Therefore, we finally 
selected 25 kHz (40 W, 10 min) as the optimal condition to prepare the 
product of inulin-TPP complex. 

3.3. UV–Vis and IR spectrum of inulin-TPP complex 

Referring to the phenolic content of the complex, the mixture of 
inulin and TPP with the same weight ratio was prepared. The complex 
treated by ultrasound (25 kHz, 40 W) for 30 min was also measured as 
control. It can be seen from Fig. 3A that inulin-TPP mixture had a typical 
absorption around 280 nm, due to the flavanol structure (B-ring) of 
EGCG and ECG [30,42]. However, after successful grafting, the corre-
sponding peak obviously weakened, because fructo-oligomers have no 
absorption during 240–400 nm [43]. The presence of polyphenol has 
been previously evidenced by Folin-Ciocalteu method. Thus, it can be 
speculated that the complexation modified the ultraviolet properties of 
phenolic compounds. Moreover, there were no significant changes be-
tween two inulin-TPP complexes prepared by ultrasonication, whereas 
both revealing lower adsorption at 280 nm compared to untreated 
samples. This finding further proved that ultrasound intensifies the 
interaction between polysaccharide and polyphenol, changing their 
flavanolic structures and binding forces to some degree. 

As exhibited in Fig. 3B, inulin has a broad peak at 3390 cm− 1 from 
the O–H stretching of associated glucose and fructose units in the 
polysaccharide backbone. The band around 2929 cm− 1 corresponds to 
C–H stretch and peak at 1626 cm− 1 can be assigned to the hydroxyl 
bending mode [44]. The bands at 1032 cm− 1 and 933 cm− 1 correspond 
to C-O-C and C-O stretching, respectively. However, in case of inulin- 
TPP complex, two typical peaks of –OH moved to larger wave-
numbers, at 3396 cm− 1 and 1641 cm− 1 respectively. The C–H stretch 
shifted to a lower wavenumber at 2920 cm− 1. The changes can be 
attributed to the formation of hydrogen bond from different hydroxyls 
and are a strong proof for the combination of inulin with polyphenols. 
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Fig. 1. Particle size distribution and mean diameter (nm) of ultrasound-treated inulin and TPP mixtures under different conditions.  

S. Li et al.                                                                                                                                                                                                                                        



Ultrasonics Sonochemistry 74 (2021) 105568

5

There was no detection of new peaks within 1200–900 cm− 1 range, 
indicating that the glycosidic bonds involving C-O-C and C-O stretch 
between the skeleton of polysaccharides were not altered in the complex 
[45]. After ultrasonic pretreatment, similar peaks were also found in 40 
W-10 min complex at 3412 and 2920 cm− 1, both implying the pro-
moting effect of ultrasound on the interaction. 

3.4. NMR spectrum of inulin-TPP complex 

Three different inulin complexes were identified by NMR analysis, 
using inulin extract as control. To be mentioned, the inulin applied in 
this experiment was a maltodextrin-based mixture prior to alcohol 
precipitation. Thus, its 1H NMR spectrum contained complicated signals 
that was hard to distinguish (Fig. 4A1). However, the three regions of 
typical signals were similar to other test compounds. The 1H NMR 
spectra of inulin-TPP complex without ultrasonic treatment (Fig. 4A2) 
showed the presence of signal in the anomeric region at 5.24 ppm. 

Moreover, intense signals were observed at 4.65 ppm, and in the region 
between 3.20 and 3.95 ppm. Actually, the previous analysis of inulin 
extract has revealed its main composition of monosaccharides, including 
glucose and fructose. Hence, the signals at 5.24 and 4.54 ppm can be 
assigned as H-1 protons of the α- and β-anomeric forms of free glucose, 
respectively [46]. The other chemical shifts detected at 3.82, 3.70 and 
3.50 ppm represented for fructose units of inulin. The integration of the 
H-1 signal of the glucose moiety at δ 5.24 ppm and the H-3 and/or H-4 
signals of the preponderant fructosyl units between δ 3.20 and 3.95 ppm 
may provide the mean degree of polymerization (DP) of saccharides 
involved, possibly from 8 to 10 [47,48]. Comparing the integral ratio 
between glucose and fructose, it can be found that the peak intense of 
fructose was decreased after complexation, which implied that the 
combination of polyphenols with inulin mostly occurs at furan rings 
depending on hydrogen bond [48]. Additionally, it was revealed that 
with the introduction of ultrasound, the signal of fructosyl units became 
even weaker, also verifying the degraded effect of ultrasonic treatment 
on carbohydrate polymers (Fig. 4A3 & 4). However, there was no 
observation of significant difference on 13C NMR spectrum of these three 
different inulin complexes (data not shown), supporting the point that 
the primary structure of carbohydrate chain was not affected by 25 kHz 
of ultrasound. 

According to DQF-COSY (1H–1H) spectra, the structure of inulin-type 
fructan can be further confirmed in the complex by the relative signals 
(Fig. 4B) [49]. The chemical shift of untreated inulin-TPP complex 
moved to a higher field compared with original extract, which also 
proved the formation of hydrogen bond between saccharides and phe-
nols (Fig. 4B1 & 2). Furthermore, it was likely that the ultrasound- 
treated complexes possessed lower DP than untreated ones, which 

Fig. 2. Average particle size (nm) and phenolic content of inulin-TPP complex 
treated by 25 kHz, 40 W (A) and 80 W (B) of ultrasound (1, 2, 3 represented 
different processing times at 0, 10 and 30 min, respectively). 

Fig. 3. UV–Vis (A) and FT-IR (B) spectroscopic profiles of different inulin- 
TPP complexes. 
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needs to be subsequently examined by mass spectrometry [50,51]. 

3.5. Molecular weight distribution of different complexes 

The weight-average molecular weight (Mw) and weight-number 
molecular weight (Mn) of three different inulin complexes and 
mixture were analyzed by GPC. The polydispersity of tested samples was 
all less than 1.8, indicating that the fractions of samples were evenly 
distributed [52]. Due to the chromatographic profiles, only one fraction 
with a wide range of mass distribution was obtained from inulin 

mixture, whereas two main peaks were eluted from other three inulin- 
TPP complexes. The former one represented the constituent with 
larger molecular weight (Fig. 5). Hence, it means that after complexed 
with polyphenols, the relative content of the second eluted peak was 
decreased significantly, compared to original inulin. Accordingly, the 
Mw of untreated inulin mixture, inulin-TPP complex, 40 W-10 min and 
40 W-30 min complex were 3.395 × 103, 2.967 × 104, 3.175 × 104 and 
2.985 × 104 g/mol, respectively. One possible reason for the increasing 
of the molecular weight might referred to the combination of interacted 
compounds, such as phenols and their polymers. The other one was 

Fig. 4. 1H NMR (A) and DQF-COSY (1H–1H, B) spectra of different inulin-TPP complexes.  
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mostly likely because of the presence of oligosaccharide molecules in 
inulin extract, which were not removed prior to alcohol precipitation. 
Spizzirri et al. (2010) found that the molecular weight distribution of 
inulin was almost unchanged after grafting with catechin, which was 
probably due to the lower grafting efficiency of the conjugate [53]. But 
in our study, ultrasound advanced the grafting and interaction of inulin 
with phenols. In addition, the first eluted peak of ultrasound-treated 
complex was narrowed, but the second peak was enlarged compared 
with untreated complex. The phenomenon could be resulted from the 
degradation effect of ultrasound, which was consistent with the previous 
conclusion. 

3.6. Morphology characteristics of different complexes 

Compared with conventional scanning electron microscopy (SEM), 
field emission SEM (FESEM) produces clearer and less electrostatically 
distorted images. According to Fig. 6, the morphology of inulin was 
quite heterogeneous and included a lot of different shapes, which 
appeared in the form of small balls and roundly shaped bags ranging 
from some µm up to around 100 µm. There were big elongated particles 
that seem squeezed bags (with size of about 200 µm × 500 µm) with 
fibrous composition, and the surface of which was rough (Fig. 6A). 
However, after combined with polyphenols, obvious difference can be 
found from the morphology of inulin-TPP complex (Fig. 6B). At lower 
magnification, the complex appeared in the form of small and elongated 
shreds, which alternated smooth surfaces with punctured ones. The 
holes had quite homogeneous size (diameter around 2.5 µm) and seemed 
regularly arranged. Shi et al. (2020) reported that the irregularly shaped 
fragments on the surface of starch granules were potential to promote 
the formation of a complex layer. Furthermore, the interaction between 
wheat starch and palmitic acid changed the crystal type of starch [54]. 
The similar phenomenon was also observed in yum starch complex gels, 
indicating more complex 3D network structure as well as a thinner 
lamellar membrane [55]. 

On the other side, the collected images of ultrasound treated- 
complex presented a slight agglomeration in the form of bent sheets, 
compared to non-treated sample, which was in accordance with the 
result of particle size (Fig. 6C). It has been evidenced by Cheng et al. 
(2018) that complex particle of polysaccharides increased with con-
centration, also suggesting a gradually broader distribution [56]. To 
some extent, it could be also resulted from the residual ethanol solvent 
remained within the material. For 30 min-ultrasound-treated complex, 
small eroded shreds were detected, which appeared organized to form a 

Fig. 4. (continued). 

Fig. 5. Molecular weight distribution of different inulin-TPP complexes by 
GPC analysis. 
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complicated structure with lace-like morphology (Fig. 6D). In some re-
gions, residual diatom-like appearance has also been observed. It seems 
that ultrasonic treatment leads to looser and sharp edges, and the pro-
longed treating time has a beneficial effect on the development of ob-
tained morphology. Zhao et al. (2019) also found that more and more 
spherulites crystalline formed and gathered as large fragments were 
destroyed by increasing ultrasound-microwave treatment, which resul-
ted in an opposite effect in the formation of starch complex [35]. 

3.7. Thermal-stability of different complexes 

The TGA curves of inulin-TPP mixture and three complexes were 
presented in Fig. 7. On account of previous study, the weight loss in 
thermograph of inulin was composed of three regions. The first region 
(30–230 ◦C) corresponded to the weight loss of small amount of mois-
ture in the sample. The second region (230–340 ◦C) is due to the 
decomposition of polysaccharides which is followed by a region of 
complete combustion (340–800 ◦C). To be mentioned, the second zone 
lost more than 60% of weight of inulin [57]. However, in the case of 
complex, four stages of weight loss were present, involving 30–100 ◦C, 

100–300 ◦C, 300–350 ◦C and 350–800 ◦C, respectively. Major weight 
loss (˃70%) in thermograph of complex was attributed to the third re-
gion, possibly coming from the depolymerization of inulin and degra-
dation of polyphenols. The first stage was shortened, while the newly 
generated second stage enhanced the initial temperature of decompo-
sition from 230 to 300 ◦C. All the results manifest that the inulin-TPP 
complexes possess better thermal stability than natural inulin [58]. 
Moreover, only a slight weight loss was observed in the second stage, 
which also suggested the more stable property of the complex. By the 
way, at the inflection point between third and fourth stage of thermo-
graph (350 ◦C), 10 min-treated sample was found to loss approximate 
75% of total weight, which was lighter than other complexes, further 
demonstrating its higher phenolic loading efficiency during 
complexation. 

4. Conclusion 

Even though the positive impact of ultrasound on the modification of 
food component has been evidenced, ultrasonic treatments with 
different frequencies and output energy present distinct effects on the 
complexation of polysaccharides and polyphenols. The inulin-TPP 
complex with highest phenolic loading rate (70.02 ± 6.53 mg/g) was 
obtained after treated by ultrasound at 25 kHz (40 W, 10 min). However, 
40 and 80 kHz of ultrasound decreased the mean diameter of the solutes, 
simultaneously producing inulin-based solutions with more dispersive 
size distributions. Based on the identification of inulin-TPP complexes 
by UV–Vis, FT-IR and NMR analysis, it was shown that the primary 
structure and polysaccharide skeleton of inulin were not altered in the 
optimally formed complex. But the degree of polymerization and mo-
lecular weight distribution of the complex was influenced by extended 
ultrasonic treatment. Furthermore, the flavanolic ring of EGCG and ECG 
in tea polyphenols was possibly modified by complexation, due to the 
weakened absorption at 280 nm. As a result, the morphological property 
of the complex was further affected. Diverse FESEM images of com-
plexes and mixture proved the modification of inulin and the promoting 
effect of ultrasound. Particularly, the thermal stability of ultrasound- 
treated complex was also improved compared to inulin, possessing 
higher phenolic content, which supports our previous understanding on 
the HIU technique. We assume that the complexed-inulin could be an 
upgraded functional food ingredient with better physicochemical 
properties in future with the involvement of ultrasound. 
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