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Abstract  

Background: Dynamic cultures, characterized by continuous fluid reperfusion, elicit 

physiological responses from cultured cells. Mesenchymal stem cell-derived EVs (MSC-EVs) 

has been proposed as a novel approach in treating several renal diseases, including acute 

glomerular damage, by using traditional two-dimensional cell cultures and in vivo models. We 

aimed to use a fluidic 3D glomerular model to study the EV dynamics within the glomerular 

structure under perfusion. 

Methods: To this end, we set up a 3D glomerular model culturing human glomerular 

endothelial cells (h-GECs) and podocytes (h-PODs) inside a bioreactor on the opposite sides of 

a porous membrane coated with type IV collagen. The bioreactor was connected to a circuit 

that allowed fluid passage at the rate of 80 µl/min. To mimic glomerular damage, the system 

was subjected to doxorubicin administration in the presence of therapeutic MSC-EVs.  

Results: The integrity of the glomerular basal membrane in the 3D glomerulus was assessed 

by a permeability assay, demonstrating that the co-culture could limit the passage of albumin 

through the filtration barrier. In dynamic conditions, serum EVs engineered with cel-miR-39 

passed through the glomerular barrier and transferred the exogenous microRNA to hPODs. 

Doxorubicin treatment increased podocyte apoptosis, whereas MSC-EV within the endothelial 

circuit protected podocytes from damage, decreasing cell death and albumin permeability.  

Conclusion: Using an innovative millifluidic model able to mimic the human glomerular 

barrier, we were able to trace the EV passage and therapeutic effect in dynamic conditions.  



 4 

Introduction 

Understanding the uptake and effect of therapeutic agents in dynamic conditions and possibly 

in three-dimensional models is relevant for their clinical application. At present, preclinical in 

vitro studies usually rely on living cells growing in a dish in the absence of a flow, making the 

treatment conditions very different from the physiological ones [1]. On the contrary, three 

dimensional (3D) millifluidic systems, composed of living cells seeded in a bioreactor and a 

continuous fluid perfusion system [2], mimic the organ 3D architecture and offer an alternative 

solution to the animal experimentation studies [3]. In particular, the in vivo cell grown, and 

differentiation can be better obtained in an organ-on-a-chip. The coupling of the chip with 

fluidic perfusion allows mimicking the role of vascular organ perfusion. 

The glomerulus, the kidney's filtering unit, is a specialized bundle of capillaries contained 

within the Bowman's capsule. The glomerular filtration barrier is composed of the fenestrated 

endothelium, the glomerular basement membrane, and the visceral epithelial cells called 

podocytes. The podocytes help create the filtration slit diaphragm and serve as support to help 

sustain the integrity of the free-standing capillary loops [4]. The glomerular cells are classical 

targets of numerous diseases, including immune, metabolic, vascular and malignant disorders 

[5]. However, experimental data are coming mainly from in vivo models and do not entirely 

clarify the mechanisms of glomerular biology and the pathogenesis of these diseases [6]. 

Numerous advances have been made in applying 3D millifluidic systems to the kidney 

pathophysiology. Individual components of the nephron, such as proximal tubule, distal 

tubule/medullary collecting duct, have been successfully mimicked using fluidic devices and 

making a significant contribution to the understanding of the molecular mechanisms underlying 

drug toxicity and therapies [7]. Moreover, glomerular fluidic systems have been used to explore 

the pathological mechanisms of hypertensive nephropathy [8,9] or to characterize differentiated 

podocytes obtained from human inducible pluripotent stem cells (iPSCs) [10]. Furthermore, the 
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use of shear stress triggers physiological mechanisms such as the deposition of collagen on the 

glomerular basement membrane and modulates the pathological mechanisms [9,10]. 

Extracellular vesicles from mesenchymal stem/stromal cells (MSC-EVs) have been 

demonstrated to contain genetic and protein material that can activate several repair 

mechanisms to ameliorate kidney injury [11]. In literature, there is a substantial number of 

publications supporting their role in promoting tissue repair and reduce inflammation in 

different pathological models, including models of acute kidney injury (AKI) [12,13] and 

chronic kidney disease (CKD) [14,15]. However, the effect of EV in dynamic condition under 

flow has not been studied in detail in the glomerular filtration barrier. 

In this study, we developed an innovative technology that recapitulates the human glomerular 

filtration barrier in a bioreactor to evaluate the effect of MSC-EVs on the GFB under a 

continuous perfusion flow. The millifluidic dynamic system allowed us to track the fate of 

different sources of EVs in entering glomerular target cells. Moreover, we evaluate the ability 

of mesenchymal stromal cells derived EVs (MSC-EVs) infused in the system to protect 

podocytes from the damage induced by doxorubicin, an anticancer drug with toxic effects on 

the kidney [16].  
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2 Materials and methods 

2.1 Cell lines  

A podocyte cell line (h-PODs) obtained as described [17] was used in all the experiments. The 

cells were cultured in Dulbecco's modified Eagle's medium DMEM High Glucose (Euroclone 

SpA, Pero, MI, Eataly) 10% fetal bovine serum (FBS) (Euroclone), with the addition of 

penicillin-streptomycin (PS) and L-glutamine (Sigma-Aldrich, St. Louis, MO, USA).  

Human primary kidney glomerular endothelial cells (h-GECs) were acquired from Cell 

Biologics (Cell Biologics Inc., Chicago, USA) and subsequently immortalized at passage two 

by a retrovirus containing p-BABE-puro-hTERT plasmid (Addgene plasmid 1771). 

Immortalized h-GECs were selected using puromycin (1 µg/ml -ThermoFisher Scientific, 

Waltham, MA, USA). The expression of classical endothelial markers was confirmed by flow 

cytometry analysis using antibodies against CD44, CD144, CD105, CD146, CD31, VE-

cadherin, tyrosine-protein kinase receptor Tie-2 (all from Miltenyi Biotec, Bergisch Gladbach, 

Germany). Cells were expanded in flasks previously coated with attachment factor (Sigma-

Aldrich) and cultured in complete EndoGRO-LS Complete Culture Media Kit (Merck 

Millipore, Burlington, Massachusetts, USA) with 10% FBS, PS and MycoZapTM (Lonza, Basel, 

Switzerland) to prevent contaminations.  

Mesenchymal Stem Cells (MSCs) were obtained from Lonza, cultured and characterized as 

described [18]. MSCs were cultured in Mesenchymal Stem Cells Basal Medium (Lonza) and 

expanded after 15 days for the first passage and every 7 days for subsequent passages.  

2.2 EV isolation 

Isolation of EVs from MSCs was performed as described [19]. Confluent MSCs were cultured 

in serum-free Roswell Park Memorial Institute medium (RPMI) for about 18h. The medium 

was then collected and centrifuged for 30 min at 3,000g to remove cell debris and apoptotic 
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bodies. The supernatant was then ultracentrifuged for 2 h at 100,000g, 4 °C using the Beckman 

Coulter Optima L-100 K Ultracentrifuge (Beckman Coulter, Brea, California, USA) with the 

rotor type 70 Ti. The EV pellet was resuspended in RPMI supplemented with 1% DMSO and 

then stored at −80 °C until further use. EVs were counted using the NanoSight NS300 system 

(Malvern Instruments Ltd, Malvern, UK). 

In selected experiments, serum-EVs were used. In this case, serum EVs were obtained from 

healthy people. The serum was centrifuged for 5 minutes at 3000 rpm at room temperature to 

eliminate any debris present. The supernatant was subsequently ultracentrifuged at 100,000 for 

2 hours at 4°C. EVs pellets were then resuspended in a final volume of 1 ml of RPMI with 1% 

of DMSO and stored at -80°C [20]. 

2.3 Staining of EVs 

MSCs were stained with VybrantTM Cell-labeling Solution (ThermoFisher Scientific), as 

described [21]. Briefly, MSCs were detached and resuspended at a density of 1x106/ mL in a 

serum-free medium. A cell labelling solution at 5 µl/ mL was added to the cell suspension for 

20 min at 37 ° C. Three washes were then performed with a warm medium by centrifugation at 

1500 rpm for 5 min. Cells were then plated, and EVs were collected with the protocol described 

before. In selected experiments, EVs were directly labelled with 1 µM VybrantTM Cell-

labeling Solution during the ultracentrifugation procedure and then washed twice by 

ultracentrifugation in 1X PBS [22]. 

2.4 Millifluidic model of the glomerular filtration barrier 

A millifluidic device for cell cultures fabricated by IVtech Srl was used (Massarosa LU, Italy). 

The system allows continuous fluid perfusion (80 µl/min) in a bioreactor where the cells are 

seeded. The circuit comprises three elements: a peristaltic pump, a bioreactor and two tanks 

containing liquids passing continuously throughout the system as described [23].  
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Before cell seeding, a porous (Ø 0.45 µl) membrane in PET (ipCELLCULTURETM, it4ip, 

Louvain-la-Neuve, Belgium) was coated with a solution of type IV collagen (Col IV) (Sigma-

Aldrich) diluted in 70% ethanol and incubated overnight in the presence of culture medium. 

The day after, 1 x 105 h-GEC were seeded on one side of the membrane in 100 µl of the medium. 

After five hours in the incubator, the bioreactor was assembled, and 1 x 105 h-PODs were 

seeded on the other side of the membrane (Fig. 1A). After one day, the circuit was connected 

to allow the fluid flow. The circuit is designed to allow the entry of a cellular stimulus always 

from the endothelial compartment to mimic factors present in the blood circulation and study 

their passage through the GFB. Two different flow configurations were used. In the first, the 

liquid leaving the chambers re-enters in the system in a constant recirculation (Fig. 1B). In the 

second configuration, used for the permeability test, the culture medium enters one of the 

chambers and can be collected to the outlet part of the system (Fig. 1C).  



 9 

 

Figure 1. The dynamic glomerular circuit. (A) Schematic representation of the two compartments of 
the bioreactor in which the h-GEC (bottom) and h-PODs (upper part) were seeded. (B and C) 
Configuration of the dynamic system: constant recirculation (B) used in the toxicity study or h-POD 
fluid collection (C) used in the permeability test. 

 

2.5 In vitro model of acute glomerular damage  

A model mimicking acute glomerular damage was achieved by doxorubicin treatment (Sigma-

Aldrich). In detail, the endothelial compartment of the dynamic system was filled with DMEM 

without FBS in the presence of 0.5 µg/ml of doxorubicin, while the h-POD compartment was 
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filled with DMEM w/o FBS. The doxorubicin enriched medium flowed for 3h in recirculation 

configuration, at a speed of 80 µl/min. The medium was then changed with basal media 

supplemented with 2% FBS. In selected experiments, after the doxorubicin treatment, the cells 

in the bioreactor were washed with PBS, and the basal EndoGRO enriched in growth factors 

was added in the endothelial compartment in the presence of 4 x 109 MSC-EVs (20.000 EVs 

per cell) for 24h with a fluid flow of 80 µl/min.  

2.6 Electroporation of EVs with cel-miR-39 

To study the uptake of EVs into the podocytes, MSC-EVs were electroporated with an 

exogenous cel-miR-39 from C.elegans. Briefly, 6 x 1010 EVs were incubated with 5 µl of cel-

miR-39 (20 µM) in 200 µl of the reaction solution (NEONTM, Invitrogen, ThermoFisher 

Scientific) for 30 min at 37 ° C. Electroporation was then carried out with the following 

program: 10 discharges of 20 ms at 750 volts. The EV suspension was then placed at 4°C 

overnight. To avoid a non-specific attachment of cel-miR-39 on the cell membranes, MSC-EVs 

were treated with RNase A (ThermoFisher Scientific), at a concentration of 0.2 mg/mL, for 30 

min at 37°C; then the reaction was stopped using an RNase inhibitor (ThermoFisher Scientific), 

according to with manufacturer's protocol. The following day electroporated EVs were 

ultracentrifuged for 2h at 100.000 g. The EVs were resuspended in medium and used for uptake 

studies on the glomerular model. In these experiments, cel-miR-39 alone (20 µM) was 

introduced into the dynamic system and used as a control. 

2.7 Assessment of permeability 

Infusion of guanidine isothiocyanate (FITC) conjugated bovine serum albumin (BSA) (Sigma-

Aldrich) solution in the endothelial compartment was used to assess barrier integrity. 

Quantification of the filtration rate through the glomerular filtration barrier was performed [24] 

for 3h at the flow rate of 80 ul/min. The configuration used is described in Fig 1B. The medium 
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enriched in FITC-BSA collected from h-PODs compartment was analyzed in triplicate, with 

the Promega™ GloMax® Plate Reader (Promega Italia S.r.l., Milano, Italy). 

2.8 Evaluation of apoptosis 

Apoptotic cell rate was evaluated using the Muse™ Annexin V & Dead Cell Kit (Merck-

Millipore), according to the manufacturer's recommendations. The assay was based on the 

detection of phosphatidylserine on the surface of apoptotic cells, using fluorescently labelled 

Annexin V in combination with the dead cell marker, 7- (amino-actinomycin D) AAD. Briefly, 

after doxorubicin or EV treatments into a dynamic circuit, the cells were detached from the 

membrane and resuspended in MuseTM Annexin V and a Dead Cell kit. The percentages of the 

total live cells (negative for Annexin V and dead cell marker) and apoptotic cells (Annexin V+ 

/7-AAD+ Annexin V+ and 7-AAD-) were detected. 

2.9 Immunofluorescence studies 

The membranes of the dynamic system were removed from the support rings and sectioned. 

Cells attached to the membrane were fixed in 4% paraformaldehyde (PAF) for 20 minutes at 

room temperature (RT) and then permeabilized with 0.1% Triton X100 (Sigma-Aldrich) in PBS 

1X for 10 minutes at 4°C. Non-specific sites were blocked with 1.5% BSA in PBS 1X for 20 

minutes at RT, followed by incubation with the primary antibodies (Abs) for 1h at RT. After 

extensive washes, the secondary Abs and Phalloidin (1: 1000) (Sigma-Aldrich) was added for 

1h at RT. Cell nuclei were stained with 4',6-diamidino-2-phenylindole (DAPI, 1: 10000) 

(Sigma-Aldrich). Finally, coverslips were mounted with Fluoromount-G™ Mounting Medium 

(ThermoFisher Scientific). In some cases, to obtain cross-sections of the cells, membranes were 

included in OCT gel and stored at -80 ° C. Transversal cuts at cryotome were then carried out. 

Imaging was performed using a Leica TCS SP5 confocal system (LEICA Microsystems S.r.l.). 

Samples were imaged using a 40X PlanApo/1.4 NA oil immersion objectives. Series of x-y-z 



 12 

images (typically 0.19*0.19*0.5 µm3 voxel size) were collected along the z-axis at 0.5 µm 

intervals throughout the sample depth (36 µm). Three-dimensional reconstruction was 

performed using Image J software.  

2.10 PCR analysis  

Total RNA was isolated from different cell preparations using Trizol reagent (Ambion, 

ThermoFisher) according to the manufacturer's protocol. RNA was quantified 

spectrophotometrically (Nanodrop ND-1000, Wilmington, DE). The first-strand cDNA was 

produced from 200 ng of total RNA using the High-Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems, ThermoFisher). Gene expression analysis was performed by quantitative 

real-time PCR (qRT-PCR) using Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

mRNA as a housekeeping normalizer. The reaction mixes contained 5 ng of cDNA template, 

sequence-specific oligonucleotide primers (purchased from MWG - Biotech, Eurofins 

Scientific, Brussels, Belgium) (Table 1) and the Power SYBR Green PCR Master Mix (Applied 

Biosystems). Fold change expression in respect to control was calculated for all samples. 

To confirm the presence of cel-miR-39 in the cells, 200 ng of input RNA from all samples were 

reverse transcribed with the miScript Reverse Transcription Kit and the cDNA was then used 

to detect cel-miR-39, using the miScript SYBR Green PCR Kit (all from Qiagen, Hilden, 

Germany). All samples were run in triplicate using 3 ng of cDNA for each reaction described 

by the manufacturer's protocol (Qiagen). Ct detection cut-off was set at 35 PCR cycles. In this 

case, the small nucleolar RNA 6B (RNU6B) was used as a housekeeping normalizer. 

All reactions were performed using an Applied Biosystems 7900HT real-time PCR instrument 

equipped with a 96-well reaction plate. 

2.11 Statistical analysis  
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Data are shown as mean ± standard deviation (SD). Each experiment was performed at least in 

triplicate Unpaired t-test or one way ANOVA with Dunnett's multiple comparison test were 

applied when necessary. All statistical analyses were done with GraphPad Prism software 

version 8.0 (GraphPad Software, Inc.). P values < 0 .05 were considered significant.
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3 Results 

3.1 Assembly of 3D-glomerular millifluidic model 

A standardized protocol for preparing glomerular co-cultures was obtained, starting from the 

coating of the porous membrane of a bioreactor with type IV collagen to improve endothelial 

cell adhesion and ensures the maintenance of the podocyte phenotype [25,26]. h-GECs and h-

PODs were seeded on opposite sides of the membrane, with a density of 100,000 cells/1.9 cm2, 

to allow the formation of uniform cell bilayers. In detail, the endothelial layer was plated in the 

lower part of the membrane (Fig. 2A), and after 4-5 h required for cell adhesion, the bioreactor 

was assembled. h-PODs were directly plated through the channel in the upper compartment 

(Fig. 2A). The next day, the bioreactor was attached to a dynamic circuit equipped with a 

peristaltic pump, that permits a continuous flux of fluids at the rate of 80 µl/min. Cells were 

then submitted to different times of perfusion. After 24h, the glomerular co-culture completely 

covered the membrane, as shown by the immunofluorescence staining for actin (Fig. 2A) and 

3D reconstruction (Fig. 2B-D). 

 

Figure 2. Assembly of dynamic co-cultures. (A) Immunofluorescence staining of the bioreactor 
membrane in which glomerular cells were grown for 24 hours in dynamic condition, fixed and stained 
for actin (in green) and nuclei (in blue). Cross section of the membranes showed the presence of both h-
PODs and h-GECs on the opposite sites of the membrane. (B) 3D reconstruction of the 2 monolayers 
presents on the opposite side of the membrane. h-PODs were plated on the top and h-GECs on the 
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bottom (actin in red, nuclei in blue). In (C) the podocyte cell monolayer, while in (D) the endothelial 
monolayer is represented. Images were acquired with the Leica TCS SP5 confocal system confocal 
microscope, magnification: 40X; scale bar: 20 µm. 

 

3.2 Assessment of the integrity of the 3D-glomerular model 

Since proteinuria is the index of kidney damage, a filtration test based on FITC-BSA was 

adopted to evaluate the barrier's integrity. Medium enriched with FITC-BSA was flowed into 

the endothelial circuit for 3h, mimicking the circulating serum albumin in the bloodstream. We 

initially tested the capability of different membrane configurations to allow the passage of BSA 

from the lower (endothelial) to the upper (podocyte) layers. As shown in Fig. 3, the presence of 

a single component of the glomerular filtration barrier was sufficient to limit the protein 

filtration in comparison to the uncoated membrane alone. The best results were obtained when 

the entire co-culture was assembled. Interestingly, the presence of h-GECs was sufficient to 

strongly reduce the BSA filtration, highlighting the endothelium's contribution to the barrier 

permeability and to the glomerular structure maintenance.  
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Figure 3. Permeability test for the evaluation of the integrity of 3D-glomerular model. The passage 
of FITC-BSA through the GFB in the dynamic model was evaluated in 5 different conditions: 
membranes alone (membrane), membranes coated with type IV collagen (Col IV), and membranes 
coated with Col IV in presence of h-PODs or h-GECs (h-PODs or h-GECs, respectively) or in presence 
of the two cells in co-culture (Co-cultures). Perfusion was calculated as a percentage of filtered FITC-
BSA (FITC-BSA solution=1 mg/mL as 100% fluorescence). *p< 0.05, *** p<0.001, **** p< 0.0001, 
respectively. 

 

Endothelial cells in the dynamic system were able to modify their actin filaments in the direction 

of shear stress, in a physiologic fashion, after 3 and 24 hours of flow (Fig. 4A). We also assessed 

the production of basal membrane components, such as laminin, required for the barrier's 

integrity and the podocyte phenotype. We found that in the 3D dynamic glomerulus during 

perfusion, h-PODs increased the expression of nephrin and podocin, proteins that compose the 

slit diaphragm, in a time-dependent manner (Fig. 4B). Moreover, the deposition of laminin 

produced by the glomerular cells was also increased during perfusion (Fig. 4B). 
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Figure 4. Effect of flow on the 3D-glomerular dynamic model. Immunofluorescence of the co-culture 
of h-GEC (A) and h-PODs (B) submitted to perfusion for 3h and 24h. Membrane were then fixed and 
h-GECs (A) were stained for actin (in red) and nuclei (in blue). (B) Podocytes were stained for Nephrin 
and Podocin (in green), laminin (in red) and nuclei (in blue). The images were acquired with a Leica 
SP5 confocal microscope, 40X objective, scale bar: 20µm. 

 

3.3 Tracking EV fate using the 3D-glomerular model 

We speculated that the 3D model could be a helpful tool for tracking in a physiological context 

the dynamics of EV passage from the endothelial to the podocyte compartment. For this 
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purpose, we tested the capability of co-cultured podocytes to internalize EVs of different origin 

under dynamic perfusion within the fluid circulating on the endothelial side. EVs from MSCs 

or from serum were labelled with the lipophilic DIl dye and electroporated with cel-miR-39, an 

exogenous miRNA from C. Elegans. The 3D-glomerular model was then perfused for 24h with 

the cel-miR-39 enriched EVs (4x109) or cel-miR-39 alone, and podocytes were analyzed for the 

uptake of EVs by immunofluorescence and for miR transfer by RT-PCR (Fig. 5). DII labelled 

EVs from both MSCs or serum could pass the glomerular barrier and target the co-cultured 

podocytes, and by confocal microscopy they were detectable within the cell body (Fig. 5A, B). 

Internalization of cel-miR-39 was also confirmed by qRT-PCR (Fig. 5C). Interestingly, EVs 

showed a strong delivery of cel-miR-39 to the co-cultured podocytes in respect to free cel-

miR-39 (Fig. 5C). 

 

 

Figure 5.  Internalization of labelled EVs carrying cel-miR-39 by h-PODs in the dynamic model. 
Immunofluorescence of the h-PODs subjected to a dynamic perfusion for 24h in the presence of DII 
labelled EVs from serum (Serum-EVs) (A) and EVs from MSC (MSC-EVs) (B). Incorporated EVs (in 
red) were detected in both conditions. Cells were co-stained for Actin (in green), nuclei (in blue). The 
images were made with Leica SP5 confocal, 40X objective (scale bar: 20µm). Orthogonal sections were 
generated with ImageJ software. (C) Detection by qRT-PCR of the active transfer of cel-miR-39 by 
MSC-EVs (EVs+cel-39) in h-PODs after dynamic perfusion for 24h. Cells were perfused for 24h with 
cel-miR-39 (cel-39) or with culture medium (CTL) alone were used as control. In all the experiments, 
EVs+cel-39 and cel-39 alone were inserted into the endothelial compartment, and the presence of cel-
39 internalized by h-PODs was then analyzed. RNU6B was used as normalizer. ** p <0.01 with respect 
to CTL. 
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3.4 Development of glomerular damage using the 3D-glomerular model 

To test the versatility of our system, we developed a model of glomerular damage induced by 

doxorubicin. A scheme of the protocol used is represented in Fig. 6A. Briefly, a doxorubicin 

enriched culture medium (0.5 µg/mL) was added within the endothelial compartment and 

maintained for 3h. The stimulus was then removed, and basal culture medium was added in 

both endothelial and podocyte compartments for 24h.  

Doxorubicin treatment drastically affected the podocyte cytoskeleton as detected by actin 

staining. The treatment was able to create discontinuities in the epithelial layer, narrowing the 

podocyte body (Fig. 6B). Moreover, the expression of markers of apoptosis such as caspase 3, 

7 (CASP3 and CASP7) and metalloproteinase 9 (MMP9) was significantly increased in 

doxorubicin treated h-PODs in comparison with co-cultured h-PODs only subjected to flow for 

24h (Fig. 6C). The expression of podocalyxin (PDX), a protein highly involved in filtration 

integrity maintenance [27], was also induced during the drug treatment, suggesting the 

capability of podocytes to activate a damage response in the 3D glomerular model. Finally, 

doxorubicin treatment for 24h induced relevant apoptosis in podocytes co-cultured in the 3D-

glomerular model in respect to the control untreated cells (Fig. 7A). 
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Figure 6. Effect of DXR treatment in the 3D-glomerular dynamic model. (A) Scheme of 
drug and regenerative EV administration in the 3D-glomerulus. (B) Immunofluorescence 
analysis of co-cultured h-PODs treated with DXR for 3h followed by reperfusion for 24h (DXR) 
or maintained in control medium (CTL). hPODs were stained for actin (in red) and nuclei (in 
blue). (C) qRT-PCR analysis of the cell damage markers Casp3, Casp7 and MMP9 and of the 
epithelial markers, PDX and SYN in control or DXR-treated hPODs. GAPDH was used as 
housekeeping gene. The results obtained were made comparable by setting the control (CTL) 
equal to 1. **p<0.01, *** p<0.001 ****, p< 0.0001 with respect to CTL. 

 

3.4 Regenerative properties of MSC-EVs in the 3D-glomerular damage model. 

We finally tested the potential of MSC- EVs to protect podocytes after the doxorubicin 
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treatment., EVs (4 x 109) or medium alone were added to the endothelial circuit for 24h 

following doxorubicin damage, in a condition of fluid recirculation both in the upper and in the 

lower part of the chamber. MSC- EV treatment significantly reduced the number of apoptotic 

cells as compared to doxorubicin treatment alone (Fig. 7A). Furthermore, the permeability test 

showed an improvement in the GFB integrity by MSC-EVs, with a consequent decrease in the 

passage of albumin through the barrier (Fig. 7B), indicating the ability of MSC-EVs to cross 

the glomerular filtration barrier and protect podocytes in a dynamic system.  

 

  
Figure 7. Protective effects of MSC-EVs on the 3D-glomerular dynamic model treated with DXR. 
(A) Evaluation of the apoptosis rate in co-cultured h-PODs treated with DXR for 3h and then stimulated 
with MSC-EVs (DXR+MSC-EVs) or medium alone (DXR) for 24h. Untreated co-cultured h-PODs 
(CTL) were used as negative control. The results obtained were made comparable by setting the control 
(CTL) equal to 1. *p< 0.05, *** p<0.001, **** p< 0.0001 respectively. (B) Permeability test in DXR 
treated co-cultures in the absence (DXR) or presence of MSC-EVs (DXR+MSC-EVs). Perfusion was 
calculated as a percentage of filtered FITC-BSA (FITC-BSA solution=1 mg/mL as 100% fluorescence); 
then normalized to DXR=1. *p< 0.05 with respect to DXR. 
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Discussion 

Fluidic 3D models represent an innovative technology for preclinical in vitro research. This is 

especially true for organs in which hemodynamics plays a relevant role in organ homeostasis 

such as liver, heart and kidney. We here propose a simplified model mimicking a human 

glomerulus in vitro, composed of the three functional layers, the endothelial cells, the 

glomerular basal membrane and the podocytes, cultured in the presence of continuous 

perfusion. Taking advantage of these models, we showed EV passage from the endothelial to 

the podocyte compartment under flux and their therapeutic effect in a model of drug injury. 

Glomerular hemodynamic depends upon integrated mechanical forces (including filtration 

pressure, flow, shear force, and traction force), which are fundamental for signalling and cell 

communication pathways [28]. Changes in ultrafiltrate flow underlie the pathogenesis of many 

kidney diseases [29]. In this study, the use of a constant flow of 80 µl/min allowed to mimic 

the physiological conditions of the glomerulus. This may be relevant not only for the 

endothelium but also for the podocyte layer, as shown by the increased expression of several 

podocyte proteins involved in the control of filtration after flow. It was demonstrated that during 

the ultrafiltrate passage within the Bowman's space and directly through the slit diaphragm, the 

flow of fluid applies tangential forces and increases shear stress on the podocyte body and foot 

processes [30]. Moreover, our 3D glomerular model could functionally block the passage of 

fluorescence-labelled serum albumin from the endothelial to the podocyte compartment, 

allowing us to assess albumin passage, universally recognized as an index of glomerular 

damage [31].  

The passage of EVs present in the circulation toward the podocyte compartment and eventually 

to the ultrafiltrate is debated. Considering the small size (6 nm in the healthy state) of 

membrane-pores of the glomerular filtration barrier and basement membrane of the kidney, a 

direct filtration of serum EVs appears unlikely and possible only in disease conditions [32–34]. 
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However, the fenestrations of the endothelial layer appear of up to 100 nm in size, allowing EV 

penetration into the basal membrane [35]. In addition, mechanisms of transcytosis can be 

prospected. From a therapeutic point of view, biodistribution experiments of labelled i.v. 

injected EVs clearly showed renal localization of EVs in kidney injury models [22]. However, 

few studies detected podocyte localization, mainly in cell cultures [36]. We found that EVs 

added to the endothelial compartment of the 3D glomerulus could target podocytes and transfer 

an exogenous miRNA. However, we cannot exclude that in our system, increased permeability 

of the layers could occur.  

Several groups have investigated the therapeutic potential of different EV sources in kidney 

diseases [37]. Interestingly, we also found that EVs administered to the endothelial 

compartment effectively restored podocyte viability [ref]. EVs from bone marrow-derived 

MSCs (MSC-EVs) have been proposed as a promising source of pro-regenerative molecules in 

a different model of AKI in mice [18,38]. In this context, MSC-EV administration in our model 

significantly reduced doxorubicin-dependent apoptosis in co-cultured podocytes and 

subsequently the passage of albumin throughout the system by preserving the glomerular 

filtration barrier. The same effect of administered MSC-EVs on podocyte apoptosis was 

previously demonstrated using adipose-derived stem cell EVs in a model of type-2 diabetes in 

mice [39]. 

In conclusion, using an innovative millifluidic device that can easily mimic the human 

glomerular filtration barrier, we could trace EVs across the barrier and confirm their therapeutic 

effect on the podocyte compartment. This study opens the possibility to use this device in the 

future in a multi-organ circuit for EV metabolism studies. 
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