
Updated Next-to-Next-to-Leading-Order QCD Predictions
for the Weak Radiative B-Meson Decays

M. Misiak,1 H. M. Asatrian,2 R. Boughezal,3 M. Czakon,4 T. Ewerth,5 A. Ferroglia,6,7 P. Fiedler,4 P. Gambino,8

C. Greub,9 U. Haisch,10,11 T. Huber,12 M. Kamiński,1 G. Ossola,6,7 M. Poradziński,1,12 A. Rehman,1

T. Schutzmeier,13 M. Steinhauser,5 and J. Virto12
1Institute of Theoretical Physics, University of Warsaw, PL-02-093 Warsaw, Poland

2Yerevan Physics Institute, 0036 Yerevan, Armenia
3High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

4Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University, D-52056 Aachen, Germany
5Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany

6New York City College of Technology, CUNY, Brooklyn, New York 11201, USA
7The Graduate School and University Center, CUNY, New York, New York 10016, USA
8Dipartimento di Fisica, Università di Torino & INFN, Torino, I-10125 Torino, Italy

9Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, CH-3012 Bern, Switzerland
10Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OX1 3PN Oxford, United Kingdom

11CERN, Theory Division, CH-1211 Geneva 23, Switzerland
12Theoretische Physik 1, Naturwissenschaftlich-Technische Fakultät, Universität Siegen, D-57068 Siegen, Germany

13Physics Department, Florida State University, Tallahassee, Florida 32306-4350, USA
(Received 11 March 2015; published 2 June 2015)

Weak radiative decays of the B mesons belong to the most important flavor changing processes that
provide constraints on physics at the TeV scale. In the derivation of such constraints, accurate standard
model predictions for the inclusive branching ratios play a crucial role. In the current Letter we present an
update of these predictions, incorporating all our results for the Oðα2sÞ and lower-order perturbative
corrections that have been calculated after 2006. New estimates of nonperturbative effects are taken into
account, too. For the CP- and isospin-averaged branching ratios, we find Bsγ ¼ ð3.36� 0.23Þ × 10−4 and
Bdγ ¼ ð1.73þ0.12

−0.22 Þ × 10−5, for Eγ > 1.6 GeV. Both results remain in agreement with the current
experimental averages. Normalizing their sum to the inclusive semileptonic branching ratio, we obtain
Rγ ≡ ðBsγ þ BdγÞ=Bclν ¼ ð3.31� 0.22Þ × 10−3. A new bound from Bsγ on the charged Higgs boson mass
in the two-Higgs-doublet-model II reads MH� > 480 GeV at 95% C.L.
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Introduction.—The inclusive decays B̄ → Xsγ and B̄ →
Xdγ are considered among the most interesting flavor
changing neutral current processes. They contribute in a
significant manner to current bounds on masses and
interactions of possible additional Higgs bosons and/or
supersymmetric particles. The evaluation of such bounds
depends in a crucial manner on both the central values and
uncertainties of the branching ratio predictions within the
standard model (SM). Updating the SM predictions is the
main purpose of the present Letter.
Measurements of the CP- and isospin-averaged B̄ →

Xsγ branching ratio by CLEO [1], Belle [2,5], and BABAR
[6–9] lead to the combined result [4]

Bexp
sγ ¼ ð3.43� 0.21� 0.07Þ × 10−4; ð1Þ

for the photon energy Eγ > E0 ¼ 1.6 GeV in the decaying
mesonrest frame.Thecombination involvesanextrapolation
from measurements performed at E0 ∈ ½1.7; 2.0� GeV.
Applying the same extrapolation method to the available
B̄ → Xdγ measurement [10], one finds

Bexp
dγ ¼ ð1.41� 0.57Þ × 10−5 ð2Þ

at E0 ¼ 1.6 GeV [11]. More precise determinations of Bexp
qγ

for q ¼ s, d are expected from Belle II [12].
Theoretical calculations of Bqγ have a chance to match

the experimental precision only in a certain range of E0

where the nonperturbative contribution δΓnonp in the
relation

ΓðB̄ → XqγÞ ¼ Γðb → Xp
qγÞ þ δΓnonp ð3Þ

remains under control. Here, Γðb → Xp
qγÞ denotes the

perturbatively calculable rate of the radiative b-quark decay
involving only charmless partons in the final state. Their
overall strangeness vanishes for Xp

d and equals −1 for Xp
s .

The analysis of Ref. [13] implies that unknown contribu-
tions to δΓnonp are potentially larger than the so-far
determined ones, and induce around �5% uncertainty in
Bsγ at E0 ¼ 1.6 GeV. Nonperturbative uncertainties in Bdγ
receive additional sizeable contributions [14] due to col-
linear photon emission in the b → duūγ process whose
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Cabibbo-Kobayashi-Maskawa (CKM) factor is only a few
times smaller than the one in the leading term.
Apart from possible future progress in analyzing non-

perturbative effects, one needs to determine Γðb → Xp
qγÞ to

a few percent accuracy. It requires evaluating next-to-next-
to-leading order (NNLO) QCD corrections that involve
Feynman diagrams up to four loops. The first SM estimate
of the B̄ → Xsγ branching ratio at this level was presented
in Ref. [15] where all the corrections calculated up to 2006
were taken into account. A part of the Oðα2sÞ contribution
was obtained via interpolation [16] in the charm quark mass
between the large-mc asymptotic expression [17] and the
mc ¼ 0 boundary condition that was estimated using the
Brodsky-Lepage-Mackenzie (BLM) approximation [18].
In the present Letter, we provide an updated prediction for

Bsγ, including all the contributions and estimatesworked out
after the completion of Ref. [15]. They are listed in the next
section where the necessary definitions are introduced. The
interpolation in mc is still being applied. However, the
mc ¼ 0 boundary condition is no longer a BLM-based
estimate but rather comes from an explicit calculation [19].
The current analysis supersedes our previous one in

Ref. [15], which was published in 2006 and has not been
updated since then. It has been widely considered as a
standard reference until now. The time for our update
comes only at present because the most recent and
technically challenging four-loop calculation of Ref. [19]
constitutes a breakthrough in the analysis. It has an
important effect on the central value of Bsγ .
The Letter is organized as follows: After discussing Bsγ ,

our NNLO analysis is extended to Bdγ . Next, we consider
Rγ ≡ ðBsγ þ BdγÞ=Bclν which may sometimes be more
convenient than Bsγ for deriving constraints on new
physics. Finally, we present a generic expression for
beyond-SM contributions, as well as an updated bound
for the charged Higgs boson mass in the two-Higgs-
doublet-model II (THDM II).
Bsγ in the SM.—Radiative B-meson decays are most

conveniently described in the framework of an effective
theory that arises after decoupling of the W boson and
heavier particles. Flavor-changing weak interactions that
are relevant for Γðb → Xp

qγÞ with q ¼ s, d are given by

Leff ∼ V�
tqVtb

�X8
i¼1

CiQi þ κq
X2
i¼1

CiðQi −Qu
i Þ
�
: ð4Þ

Explicit expressions for the current-current (Q1;2), four-
quark penguin (Q3;…;6), photonic dipole (Q7), and gluonic
dipole (Q8) operators can be found, e.g., in Eq. (2.5) of
Ref. [16]. The CKM element ratio κq ¼ ðV�

uqVubÞ=
ðV�

tqVtbÞ is small for q ¼ s, and it affects Bsγ by less than
0.3%. Barring this effect and the higher-order electroweak
ones, Γðb → Xp

s γÞ in the SM is given by a quadratic
polynomial in the real Wilson coefficients Ci

Γðb → Xp
s γÞ ∼

X8
i;j¼1

CiCjGij: ð5Þ

A series of contributions to the above expression from our
calculations in Refs. [19–28] makes the current analysis
significantly improved with respect to the one in Ref. [15].
In particular, the NNLO Wilson coefficient calculation
becomes complete after including the four-loop anomalous
dimensions that describe Q1;…;6 → Q8 mixing under
renormalization [20]. Effects of the charm and bottom
quark masses in loops on the gluon lines in G77 [21], G78

[22], and Gð1;2Þ7 [23], as well as a complete calculation of
G78 [24], are now available. Three- and four-body final-
state contributions to G88 [25,26] and Gð1;2Þ8 [26] are
included in the BLM approximation. Four-body final-state
contributions involving the penguin and Qu

1;2 operators
are taken into account at the leading order (LO) [27] and
next-to-leading order (NLO) [28]. Last but not least, the
complete NNLO calculation [19] of G17 and G27 at mc ¼ 0
is used as a boundary for interpolating their unknown
parts in mc.
Following the algorithm described in detail in Ref. [19],

taking into account new nonperturbative effects [13,29,30],
as well as the previously omitted parts of the NNLO BLM
corrections [31], we arrive at the following SM prediction

BSM
sγ ¼ ð3.36� 0.23Þ × 10−4 for E0 ¼ 1.6 GeV: ð6Þ

Individual contributions to the total uncertainty are of
nonperturbative (�5%), higher-order (�3%), interpolation
(�3%), and parametric (�2%) origin. They are combined
in quadrature. The parametric one gets reduced with respect
to Ref. [15], which becomes possible thanks to the new
semileptonic fits of Ref. [32]. Our input parameters, their
uncertainties, and the corresponding correlation matrix can
be found in Appendix D of Ref. [19]. Since we normalize to
the semileptonic branching ratio Bclν, our result shows
little sensitivity to the b-quark mass and the CKM angles.
The main parametric uncertainty (�1.5%) originates from
Bclν, while the next one (�0.75%) comes from αsðMZÞ.
As far as the interpolation uncertainty is concerned, one

might have hoped for its reduction with respect to Ref. [15]
after the explicit evaluation of the mc ¼ 0 boundary [19].
Unfortunately, the interpolated parts of the Oðα2sÞ contri-
butions to Gð1;2Þ7 turn out to be sizeable. Their effect on
BSM
sγ grows from 0% to around 5%whenmc changes from 0

up to the measured value (see Fig. 4 of Ref. [19]). In such a
situation, we prefer to stay conservative, and retain our
interpolation uncertainty estimate at the �3% level.
For the higher-order uncertainty estimation, it is useful to

study how BSM
sγ depends on three renormalization scales:

the matching scale μ0 ∼mt at which the heavy particles (t,
W, Z, H0) are decoupled, the low-energy scale μb ∼mb=2
at which the Wilson coefficient renormalization group
evolution is terminated, and the scale μc at which the
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charm quark mass is renormalized. We vary them in the
ranges μ0 ∈ ½80; 320� GeV and μb; μc ∈ ½1.25; 5� GeV,
setting the central values to μ0 ¼ 160 GeV and
μb ¼ μc ¼ 2 GeV. The observed scale dependence (see
Fig. 6 of Ref. [19]) turns out to be quite similar to the one in
Fig. 2 of Ref. [15]. Therefore, we leave the higher-order
uncertainty estimate at the �3% level, i.e., unchanged with
respect to Ref. [15].
The nonperturbative uncertainty estimate of �5% is

adopted from Ref. [13] without any modification. It turns
out to be identical to our earlier rough estimate in Ref. [15].
Some comments on possible future suppression of this
uncertainty are given in our summary below.
The central value in Eq. (6) is considerably higher than

3.15 × 10−4 in Ref. [15], although the difference between
the two values does not exceed the previously estimated
uncertainty. A detailed description of various contributions
to this difference is given in Sec. 4 of Ref. [19], as well as in
Table 2 there.
Bdγ in the SM.—Extending our NNLO calculation to the

Bdγ case begins with inserting the proper CKM factors in
Eq. (4). Contrary to κs, the ratio κd is not numerically small.
Using the CKM fits of Ref. [33], one finds

κd ¼ ð0.007þ0.015
−0.011Þ þ ið−0.404þ0.012

−0.014Þ: ð7Þ

The small real part implies that the effects of κd on the CP-
averaged Bdγ are dominated by those proportional to jκdj2.
In such terms, perturbative two- and three-body final state
contributions arise only at the NNLO and NLO, respec-
tively. They vanish in the mc ¼ mu limit, which effectively
makes them suppressed by m2

c=m2
b ≲ 0.1. In consequence,

the main κd effect comes from b → duūγ at the LO, where
phase-space suppression is partially compensated by the
collinear logarithms.
In the first (rough) approximation, one evaluates the tree-

level b → duūγ diagrams retaining a common light-quark
mass mq inside the collinear logarithms [26], and varying
mb=mq between 10 ∼mB=mK and 50 ∼mB=mπ to estimate
the uncertainty. The considered effect varies then from 2%
to 11% of Bdγ . A more involved analysis with the help of
fragmentation functions gives a very similar range [14].
Including this contribution in our evaluation of the entire
Bdγ from Eq. (4), we find

BSM
dγ ¼ ð1.73þ0.12

−0.22Þ × 10−5 for E0 ¼ 1.6 GeV; ð8Þ

where the central value corresponds to mb=mq ¼ 50. Our
result is about 12% larger than the one given in Ref. [11]
where the b → duūγ contributions were neglected. The
uncertainty estimate in Eq. (8) improves with respect to
Ref. [11] thanks to including the NNLO QCD corrections
and using the updated CKM fit [33]. Interestingly, the
parametric uncertainty due to the CKM input amounts to
�2.5% only.

The collinear logarithm problem might seem artificial
because isolated photons are required in the experimental
signal sample. Unfortunately, requiring photon isolation on
the perturbative side would necessitate introducing an
infrared cutoff on the gluon energies, e.g., in the NLO
corrections to the dominant G77 term. Without a dedicated
analysis (which is beyond the scope of the present Letter), it
is hard to verify whether such an approach would enhance
or suppress the uncertainty in Bdγ .
Another question concerning the jκdj2 terms is whether

the off-shell light vector meson conversion to photons can
be assumed to be included in our overall �5% non-
perturbative uncertainty. Much smaller effects found in
the vector-meson-dominance analysis of Ref. [34] imply
that it is likely to be the case.
The ratio Rγ.—In the fully inclusive measurements of

radiative B-meson decays [1,5–8], the final hadronic state
strangeness is not verified. The actually measured quantity
is Bsγ þ Bdγ . Next, the result is divided by ð1þ jðV�

tdVtbÞ=
ðV�

tsVtbÞj2Þ to obtain Bsγ . To avoid such a complication, we
provide here our SM prediction for Bsγ þ Bdγ with all the
correlated uncertainties properly taken into account.
Moreover, we normalize it to the CP- and isospin-averaged
inclusive semileptonic branching ratio Bclν. In the Bsγ case,
such a normalization reduces the parametric uncertainty
from �2.0% to fþ1.2;−1.4g%. It may also be useful on
the experimental side because the inclusive semileptonic
events can serve for determining the B-meson yield.
Proceeding as in the previous sections, we obtain for
Eγ ¼ 1.6 GeV

RSM
γ ≡ ðBSM

sγ þ BSM
dγ Þ=Bclν ¼ ð3.31� 0.22Þ × 10−3: ð9Þ

The relative uncertainties are identical to those in Bsγ [as
given below Eq. (6)], except for the parametric one, which
amounts to fþ1.2;−1.7g% including the effect of mb=mq.
The gain in the overall theory uncertainty is hardly
noticeable, but this may change with the future progress
in determining the perturbative and nonperturbative
corrections.
Beyond-SM effects.—In most of the new-physics scenar-

ios considered in the literature, beyond-SM effects on Bsγ
are driven by new additive contributions to the Wilson
coefficients of the dipole operators at the matching scale μ0.
Denoting such contributions by ΔC7;8 and setting μ0 to
160 GeV, we find

Bsγ × 104 ¼ ð3.36� 0.23Þ − 8.22ΔC7 − 1.99ΔC8;

Rγ × 103 ¼ ð3.31� 0.22Þ − 8.05ΔC7 − 1.94ΔC8: ð10Þ

The above expressions are linearized; i.e., it is assumed that
the quadratic terms in ΔC7;8 are negligible when they enter
with Oð1Þ coefficients into the above equations. If they are
not, a detailed analysis of QCD corrections in the consid-
ered beyond-SM scenario is necessary.
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Such an analysis is available in the THDM II [35] for
which the NLO [36–38] and NNLO [39] corrections to
ΔC7;8 are known. They are always negative and remain
practically independent of the vacuum expectation value
ratio tan β when tan β ≳ 2. Sending tan β to infinity in the
expressions for ΔC7;8, we find the following updated
bounds from Bsγ on the charged Higgs boson mass in this
model

MH� > 480 GeV at 95%C:L:;

MH� > 358 GeV at 99%C:L: ð11Þ

For tan β ≲ 2 the bounds become considerably stronger, but
at the same time other observables provide competitive
limits [40]. In the supersymmetric case, in which the
charged scalar and the neutral pseudoscalar tend to be
almost degenerate, the current direct search bounds [41,42]
exceed 500 GeV for tan β ≳ 20.
Summary.—We presented an updated prediction for Bsγ

in the SM taking into account all the perturbative and
nonperturbative effects worked out after the 2006 publi-
cation [15] of the first NNLO estimate for this quantity. Our
current analysis supersedes the one of Ref. [15].
Some of the Oðα2sÞ corrections are still interpolated in

mc, but themc ¼ 0 boundary condition now comes from an
explicit calculation. Despite this improvement, the inter-
polation uncertainty cannot be reduced because the inter-
polated correction is sizeable. Future progress requires
extending the calculation ofGð1;2Þ7 to arbitrarymc, which is
considered a difficult but manageable task. It would amount
to evaluating the same propagator diagrams with unitarity
cuts as in Ref. [19], but for arbitrary mc rather than just for
mc ¼ 0. Several hundreds of four-loop two-scale master
integrals would need to be calculated. For this purpose, one
could numerically solve differential equations in the
variable z ¼ m2

c=m2
b. The necessary boundary conditions

at z ≫ 1 could be found from asymptotic expansions in this
limit. Determining such boundary conditions involves
only three-loop single-scale propagator integrals. They
are likely much simpler than the four-loop single-scale
ones in Ref. [19].
In parallel, one should investigate whether nonperturba-

tive uncertainties can be suppressed by combining lattice
inputs with measurements of observables like the CP or
isospin asymmetries in B̄ → Xqγ. In the analysis of
Ref. [13], nonperturbative effects have been parametrized
in terms of the so-called subleading shape functions, i.e.,
matrix elements of nonlocal operators between the
B-meson states at rest. Determining such functions directly
seems to remain beyond the current lattice capabilities.
However, constraints on them can be derived from matrix
elements of local operators, the same ones that matter
for the extraction of jVcbj from Bclν [32]. The higher-
dimensional operator matrix elements are practically
unconstrained by the data. Any lattice estimates of them

could help to suppress the nonperturbative uncertainties in
both jVcbj and Bsγ .
The main outcome of our current analysis is an upwards

shift by around 6.4% in the central value of BSM
sγ . It

originates mainly from fixing the mc ¼ 0 boundary
(þ3%) and including the complete NNLO BLM correc-
tions to the three- and four-body final state channels
(þ2%). Both effects are within the previously [15] esti-
mated interpolation (�3%) and higher-order (�3%) uncer-
tainties, respectively. Nevertheless, the obtained Oð1σÞ
increase of the central value is an important one, especially
in the context of constraining beyond-SM theories. The
new four-loop calculation of the mc ¼ 0 boundary in
Ref. [19] improves an essential point in the analysis, and
brings the estimated NNLO effects under much better
control.
Since BSM

sγ is now closer to Bexp
sγ (but still BSM

sγ < Bexp
sγ ),

the bound on MH� in the THDM II becomes significantly
stronger. The 95% C.L. one grows by 120 GeVwith respect
to its previous evaluation in Ref. [39] (cf. “note added”
there). For moderate values of tan β, no other available
measurement constrains MH� in a more efficient manner.
We supplemented our analysis with new NNLO pre-

dictions for Bdγ and for the ratio Rγ ¼ ðBsγ þ BdγÞ=Bclν
where correlated uncertainties are treated in a consistent
manner. The ratio Rγ may serve in the future as a more
convenient observable for testing beyond-SM theories with
minimal flavor violation.
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