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We perform a comprehensive analysis of scalar contributions in b → cτν transitions including the latest 
measurements of R(D(∗)), the q2 differential distributions in B → D(∗)τν , the τ polarization asymmetry 
for B → D∗τν , and the bound derived from the total width of the Bc meson. We find that scalar 
contributions with the simultaneous presence of both left- and right-handed couplings to quarks can 
explain the available data, specifically R(D(∗)) together with the measured differential distributions. 
However, the constraints from the total Bc width present a slight tension with the current data on 
B → D∗τν in this scenario, preferring smaller values for R(D∗). We discuss possibilities to disentangle 
scalar new physics from other new-physics scenarios like the presence of only a left-handed vector 
current, via additional observables in B → D(∗)τν decays or additional decay modes like the baryonic 
�b → �cτν and the inclusive B → Xcτν decays. We also analyze scalar contributions in b → uτν
transitions, including the latest measurements of B → τν , providing predictions for �b → pτν and 
B → πτν decays. The potential complementarity between the b → u and b → c sectors is finally 
investigated once assumptions about the flavour structure of the underlying theory are made.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The first run of the Large Hadron Collider (LHC) has completed 
experimental evidence for the Standard Model (SM) of electroweak 
(EW) interactions by discovering a scalar boson with properties 
consistent with a SM Higgs doublet [1]. The absence of clear sig-
nals beyond the SM in both collider and flavour analyses seems to 
suggest that the scale of new physics (NP) is much higher than the 
EW scale. However, relatively light weakly-coupled particles could 
have been missed by current searches, given the limited sensitiv-
ity of the LHC to such states. In particular, additional light scalar 
bosons, predicted in many extensions of the SM, are in general still 
allowed.

In this work we are interested in the possibility of sizable scalar 
couplings in b → c(u)τν transitions, as induced for instance by a 
charged-scalar boson with a mass around the EW scale [2,3]. In 
2012 the BaBar collaboration observed an excess in B → D(∗)τν
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decays with respect to the SM predictions, hinting at a violation 
of lepton-flavour universality at the 30% level [4]. The measured 
observables are the ratios

R(D(∗)) = Br(B → D(∗)τν)

Br(B → D(∗)�ν)
, (1)

with � = e or μ, in which many sources of experimental as well 
as theoretical uncertainties cancel. These deviations cannot be ac-
commodated by a charged-scalar contribution in the type-II two-
Higgs-doublet model (2HDM) [4], motivating the discussion of 
more general extended scalar sectors as well as different NP in-
terpretations [5–19]. Recently, the LHCb collaboration announced 
a measurement of R(D∗) [20], and the Belle collaboration pub-
lished several analyses with different decays on the tagging side 
as well as different τ -decay final states: an update of their anal-
ysis of R(D(∗)) with hadronic tagging and leptonic τ decay [21], 
an analysis of R(D∗) with semileptonic tagging and leptonic τ de-
cay [22], and the first analysis of R(D∗) with hadronic tagging and 
different hadronic τ -decay final states [23] which importantly in-
cludes for the first time a measurement of the τ polarization in 
this mode, albeit with rather limited precision. All available mea-
surements [24] are very consistent and, while all recent analyses 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Average of R(D(∗)) measurements, displayed as red filled ellipses (68% CL and 
95% CL). The SM prediction is shown as a black ellipse (95% CL), and the individual 
measurements as continuous contours (68% CL): Belle (blue ellipse and horizontal 
bands), BaBar (green ellipse), and LHCb (horizontal orange band). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

are individually compatible with the SM predictions at ∼ 95% CL, 
they yield the average

R(D) = 0.403 ± 0.047 , R(D∗) = 0.310 ± 0.015 , (2)

with a correlation of −23%, as displayed in Fig. 1. This implies 
a deviation from the SM predictions of about 4σ . Furthermore, 
the shapes of the differential distributions d�(B → D(∗)τν)/dq2

have been made available by Belle [21] and BaBar [25], yielding 
additional information to distinguish NP from the SM as well as 
different NP models from each other. We also include information 
from the inclusive decay b → Xτν , measured at LEP [26]. Finally, 
the total width of the Bc meson can help to exclude fine-tuned 
solutions with very large NP contributions [19,27]. The possibil-
ity of scalar contributions in b → uτν transitions is also analyzed, 
paying in particular attention to the potential complementarity be-
tween the b → c and b → u sectors.

Our paper is organized as follows: In Sec. 2 we present the 
theoretical framework used in this work. The physical observables 
considered in our analysis are summarized in Sec. 3. In Sec. 4
we discuss the phenomenological implications of current data, 
before concluding in Sec. 5. Hadronic input parameters and the 
statistical treatment are discussed in Appendix A. Details on the 
b → cτν observables entering our analysis, like the q2 distribu-
tions for B → D(∗)τν decays, are collected in Appendix B. Details 
of the fit are provided in Appendix C.

2. Framework

The study of NP contributions to charged-current semileptonic 
processes can in principle be carried out in a model-independent 
manner. We discuss here the subset of operators induced e.g.
by charged scalars which naturally lead to observable effects in 
b → c(u)τν transitions, while b → c(u)�ν remain unaffected. Note 
that in general this is not true for contributions from left- or right-
handed vector currents. Specifically, right-handed vector currents 
are explicitly lepton-flavour-universal in all models with SM par-
ticle content and gauge symmetry at the EW scale, if the EW 
symmetry is linearly realized, up to contributions of order v4/�4, 
where v denotes the EW vacuum expectation value and � the 
scale of additional NP particles [15,28,29]. While this universality 
can be broken if the EW symmetry is non-linearly realized [28], 
right-handed vector-current contributions are generally strongly 
constrained by semileptonic B decays into light lepton modes. 
When comparing with NP scenarios with vector couplings, we 
therefore assume vanishing right-handed couplings.

The low-energy effective Lagrangian describing scalar-mediated 
charged-current semileptonic transitions is given by

Leff = −4G F Vquqd√
2

[
q̄u(gquqd�

L PL + gquqd�
R PR)qd

]
[�̄PLν�], (3)

where we neglect neutrino-mass-related terms with right-handed 
neutrinos, V represents the Cabibbo–Kobayashi–Maskawa (CKM) 
matrix [30], and PL,R = (1 ∓ γ5)/2 are the usual chiral projectors. 
The Wilson coefficients gquqd�

L,R are complex parameters which en-
code details of the theory at high energies. Note that the explicit 
appearance of the CKM matrix does not imply any assumption 
about the flavour structure of the underlying theory at this stage, 
but is merely a choice of normalization of the Wilson coefficients. 
They are in full generality independent for every possible flavour 
combination qu = (u, c, t), qd = (d, s, b), � = (e, μ, τ ), yielding 54 
couplings. However, Eq. (3) effectively already assumes a colour-
neutral scalar exchange, since generally a coloured scalar like a 
leptoquark would induce tensor couplings as well [31]. Therefore, 
without (further) loss of generality, we can assume the couplings 
to obey

gquqd�
L,R = gquqd

L,R g�
L , (4)

thereby reducing the number of independent parameters to 21: 
two general matrices in quark-flavour space gquqd

L,R and three cou-

plings g�
L . Since we assume that the NP effects are negligible for 

the light lepton modes, we set ge,μ
L = 0. Considering b → c(u)

transitions restricts the quark-sector parameters in our analysis 
to gc(u)b

L,R , i.e. 4 complex couplings. This effective Lagrangian al-
lows for a model-independent discussion of scalar contributions 
in b → c(u)τν transitions, which comprises the objective of our 
analysis. This general scenario will be dubbed S1 in the follow-
ing. A particular realization of this framework is provided by the 
type-III 2HDM, see e.g. Refs. [13,18,32,33] for recent discussions.1

If we want to relate processes involving different flavour transi-
tions, we need to make assumptions about the flavour structure of 
the underlying theory. In order to study the potential complemen-
tarity between b → c and b → u probes of scalar contributions, we 
will consider as a benchmark the universality relations2

gcb
L

gub
L

= mc

mu
,

gcb
R

gub
R

= 1 , (5)

which are realized e.g. in 2HDMs with natural flavour conservation 
(NFC) [35,36], but also e.g. in the aligned 2HDM [3,37]. This sce-
nario will be labelled S2 in the following. In our analysis we will 
consider both scenarios S1 and S2 with complex as well as real 
parameters.

3. Observables

The low-energy flavour processes considered in this work are 
summarized in Table 1, together with their corresponding SM pre-
dictions and the current experimental values. In addition to the 
changes discussed in the introduction, these values include new 
measurements of the branching ratio for B → τν by BaBar and 

1 Note that the interpretation of the R(D(∗)) anomalies in terms of a 2HDM is 
severely constrained by the LHC searches for additional scalars in the τ+τ− chan-
nel [18,34].

2 Universality refers here to the relation between the two sets of Yukawa matri-

ces occurring in 2HDMs, i.e. Y u,d
1 ∼ Y u,d

2 , leading to scalar couplings to fermions 
proportional to the fermion masses.
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Table 1
Predictions within the SM for the various leptonic and semileptonic decays consid-
ered in this work, together with their corresponding experimental values.

Observable SM prediction Exp. value Reference

R(D) 0.301 ± 0.003 0.403 ± 0.047 [4,21,24,38]
R(D∗) 0.252 ± 0.001 ± 0.003 0.310 ± 0.015a [4,20,21,23,24,38]
Aλ(D∗) 0.502 ± 0.005 ± 0.017 0.38 ± 0.55 [23]
R(Xc) 0.222 ± 0.000 ± 0.007 0.220 ± 0.022 [39]
R(τ ) 0.48 ± 0.04 0.72 ± 0.13 [24,40]
R(π) 0.594+0.017

−0.015 1.03 ± 0.49 (≤ 2.0) [24,41]

a The correlation between R(D) and R(D∗) is −23%.

Belle [40], and a very recent upper limit from Belle on R(π) =
Br(B → πτν)/Br(B → π�ν) [41]. Explicit formulae for all these 
observables taking into account the scalar contribution have been 
provided in Refs. [3,12]3; the necessary adaption of the expression 
for B → πτν is discussed in Appendix A. Note that instead of us-
ing the branching ratio of B → τν directly, we normalize it to that 
of B → π�ν [5,42,43]:

R(τ ) ≡ Br(B → τν)

Br(B → π�ν)
. (6)

While this normalization does not yield any advantage experimen-
tally, it yields the cancellation of |V ub| which is very helpful, given 
the discrepancy between the inclusive and exclusive determina-
tions of this quantity at present, see the article by Kowalewski and 
Mannel in Ref. [39] for a review.

The q2 distributions for B → D(∗)τν are given in Appendix B, 
where also their treatment within the present analysis is de-
scribed. Importantly, we leave the normalization of each of these 
distributions free in the fit, thereby decoupling the information 
from the shapes of the distributions from that of the measure-
ments of R(D(∗)), which are already included in the averages in 
Eq. (2). We introduce binned quantities R(D(∗), i) in analogy with 
Eq. (1) as

R(D(∗), i) ≡
∫

bin i dq2 d�(B→D(∗)τν)

dq2∫
bin i dq2 d�(B→D(∗)�ν)

dq2

. (7)

The binning is given with the experimental data in Tables 5 and 6
in the appendix.

The experimental values for the differential distributions and 
R(D(∗)) depend on the size of the potential NP contribution, since 
the latter affects the kinematics of the decay distribution [25]. We 
will comment on this issue when performing the fits in the next 
section.

Note that the measured values of R(D(∗)) oversaturate the SM 
prediction for the inclusive B → Xcτν decay rate when including 
an estimate for the decays to other excited charm-meson states, 
implying that the tension in R(D(∗)) with the SM predictions is 
independent of the B → D(∗) form-factor determination [16,44]. 
Furthermore, the B → D(∗)τν modes already saturate the inclusive 
branching ratio Br(b → Xcτν) that can be estimated from the LEP 
measurement of b-hadron decays to final states with a τ lepton. 
A confirmation of the latter result with higher precision would in-
dicate that the actual value for R(D(∗)) is smaller than the present 
average, closer to the Belle central value. Below we discuss the 
inclusive measurement without relying on estimates for the de-
cays to excited charm-meson states. We calculate R(Xc) = Br(B →
Xcτν)/Br(B → Xc�ν) consistently at next-to-leading order (NLO), 

3 Our definition for the τ polarization asymmetry Aλ(D∗) differs by a global sign 
from the one used by the Belle collaboration in Ref. [23].
which results in a qualitative difference for the non-SM part com-
pared to the leading-order (LO) result. Details of the calculation 
are deferred to Appendix B.

The limit from the total width of the Bc meson is obtained 
as follows: we consider only the modification due to the decay 
Bc → τν , which is calculable once the decay constant is known. To 
this end we add an estimate for those Bc decays which are mod-
ified negligibly by scalar NP. Apart from the fact that NP models 
with new scalar interactions typically yield charged-scalar interac-
tions that are at least roughly proportional to the fermionic mass, 
this is justified by the very successful SM predictions of leptonic π , 
K and D decays: large corrections to the light-lepton or first-family 
quark couplings would be visible in these modes. Given that they 
make up over 85% of the successfully predicted total width [45], 
we consider an upper limit Br(Bc → τν) ≤ 40%, which is still ex-
tremely conservative and thereby accounts also for sizable theory 
uncertainties in this estimate4; note that its SM value is about 2%.

For the baryonic decays �b → p�ν and �b → �c�ν we follow 
Refs. [46–49].

Further useful measurements of b → c(u)τν transitions in-
clude the branching ratios of Bs → D(∗)

s τν , Bc → J/ψτν , Bs →
K (∗)τν , and B → D∗∗τν decays; the hadronic uncertainties for 
these modes are, however, not yet on the same level as for the 
observables discussed in this work.

4. Discussion

We now discuss the implications of current flavour data for 
the couplings in the effective Lagrangian in Eq. (3), first model-
independently (scenario S1) and then imposing the universality 
relations in Eq. (5) (scenario S2). We focus on the new elements 
in our analysis, i.e. the influence of the new data for R(D(∗)), 
the differential distributions in B → D(∗)τν , the inclusive mode 
b → Xτν , the total width of the Bc meson, and the interplay with 
b → uτν transitions. For the scenarios that remain viable we give 
predictions for selected additional observables that could be mea-
sured in the future.

4.1. Model-independent analysis – S1

4.1.1. b → cτν
Given the discrepancy of R(D(∗)) with respect to the SM pre-

dictions we start by analyzing the possibility of accommodating 
B → D(∗)τν data by a scalar contribution. Without assumptions on 
the flavour structure, only observables corresponding to b → cτν
transitions can be included model-independently. These are the 
available observables from B → D(∗)τν , R(Xc), and the total width 
of the Bc meson. Note that B → Dτν and B → D∗τν depend only 
on the parameter combinations

δ�
cb ≡ (gcb�

L + gcb�
R )(mB − mD)2

m� (m̄b − m̄c)
, �

cb ≡ (gcb�
L − gcb�

R )m2
B

m� (m̄b + m̄c)
, (8)

respectively, which we consequently choose to display the cor-
responding constraints. This implies that any value of R(D) and 
R(D∗) can at first be trivially explained in this scenario. How-
ever, the remaining observables give independent constraints, po-
tentially allowing to rule out scalar NP as an explanation of the 
observed anomaly.

In Fig. 2 we show the fit results for B → Dτν data in the com-
plex δτ

cb plane (left), and the B → D∗τν data together with the 
constraint from the total Bc width �Bc in the complex τ

cb plane 

4 We observe that our results are not affected in a significant manner by using 
instead the slightly stronger limit Br(Bc → τν) � 30% used in Ref. [27].
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Fig. 2. Model-independent fits in the complex δτ
cb- (left) and τ

cb-planes (right). The dark rings stem from R(D(∗)), the lighter discs from the shape information of the 
q2-distributions of B → D(∗)τν , the dark green disc from the indirect bound on Br(Bc → τν) (see text), and the dashed contour in the right plot encloses the allowed region 
from Aλ(D∗). The yellow areas represent the global fit in each sector, while the dotted contour in the left plot encloses the allowed region from a fit to R(D(∗)) together 
with R(τ ) in scenario S2, see text. All coloured areas correspond to 95% CL regions, only the dashed contour to 68% CL. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)
(right). For the B → Dτν data we find that the q2-distribution se-
lects a part of the R(D) ring that is closer to zero; its preferred 
central value has a negative real part, opposite to the one from 
R(D), rendering the combination well consistent with the SM at 
95% CL.

For the B → D∗τν data, the differential distribution tends to 
exclude a part of the side of the R(D∗) ring that is closer to zero, 
while extending over the full ring on the other side. An important 
role is played by the constraint from the total Bc width: it excludes 
a large part of the parameter space preferred by the R(D∗) mea-
surement, including the second real solution in the complex τ

cb
plane, which was already discussed previously to be a highly fine-
tuned solution [12].5 Specifically, it restricts the maximally allowed 
R(D∗) values quite strongly. Nevertheless a consistent solution can 
be found for the available data, with the combined fit closer to 
the SM, and preferring large values for the branching ratio of 
Bc → τν , see the discussion below. The τ polarization asymmetry 
does presently not impose a further constraint on these couplings; 
its 68% CL contour is shown for completeness.

The R(D(∗))-rings in the complex δτ
cb- and τ

cb-planes yield four 
solutions when these parameters are chosen to be real, as shown 
in Fig. 3. The differential distributions exclude two of these so-
lutions very clearly. A third solution is excluded by the total Bc

width �Bc , leaving an unambiguous solution, which shows how-
ever some tension with the differential distributions and �Bc , 
thereby shifting the global fit to lower values of |τ

cb|. R(Xc) is 
seen to prefer smaller values for |τ

cb + δτ
cb|, but this constraint is 

shown here only for comparison and is not included in the global 
fit.

The overall χ2 assuming real couplings does not increase com-
pared to the general complex case, see Table 7, in agreement with 
Fig. 2, where these imaginary parts are seen to be well compati-
ble with zero. This is largely due to the fact that the imaginary part 
enters the considered observables only quadratically, while the real 
part enters linearly. Improved measurements of the included ob-
servables could nevertheless provide sensitivity on the imaginary 
part, since for instance the constraints in form of disks from the 
distributions will turn into rings, yielding a potential non-trivial 
overlap with the ones from R(D(∗)).

5 Note that even allowing for this mode to saturate the total rate, which is already 
contradicted by experiment, would still exclude the second real solution.
Fig. 3. Constraints from R(D(∗)) (dark blue), R(Xc) (purple), the differential dis-
tributions in B → D(∗)τν (light blue), and �Bc (dark green) in the δτ

cb–τ
cb -plane, 

assuming real couplings. The global fit is shown in dark yellow, while the light yel-
low contour shows how the global fit area extends when complex couplings are 
allowed. All constraints are shown at 95% CL. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this 
article.)

To analyze the differential distributions in more detail, we 
show them in Figs. 4 and 5 on the left together with a model-
independent NP fit (including R(D(∗)), red), a SM fit (excluding 
R(D(∗)), grey) and, for illustration, the NP prediction for values 
of δτ

cb (τ
cb) that are allowed by R(D(∗)), but excluded by the 

shape information (green). Note again that the overall normaliza-
tion for all four distributions, i.e. the relations between yields and 
branching ratios, are left free in the fits in order to decouple the 
information from the q2 shapes from that of R(D(∗)), making a 
fit necessary also for the SM to fix them. The different normaliza-
tion is also why the SM and NP distributions seem rather similar, 
although they correspond to very different physical pictures. The 
predicted q2 distributions for B → D(∗)τν from the fit are given 
in Table 5, with the normalization corresponding to the Belle data. 
In Figs. 4 and 5 on the right we show predictions for the q2 spec-
trum of R(D(∗)) from the model-independent NP fit and within the 
SM (without fitting). The numerical values for the q2 spectrum of 
R(D(∗)) shown in these figures are given in Table 2.

As can be observed from these fits, the distributions available 
so far allow for sizeable NP contributions, while at the same time 
being compatible with the SM predictions, in accordance with the 
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Fig. 4. Left-panel: Measured differential distributions in B → Dτν by BaBar and Belle, given as efficiency-corrected number of events as a function of the squared lepton 
invariant mass q2. The 1σ ranges obtained from the model-independent fit of R(D) and the q2 distribution are shown as solid-red bands. The result of a SM fit (excluding 
R(D(∗))) is shown as solid-grey bands. The prediction for regions of the NP parameter space allowed by R(D(∗)), but excluded by the shape information are shown as 
solid-green bands. Note that the BaBar data-points have been re-scaled by the relative normalization factor obtained in the fit to have the same scale as the one from Belle. 
Right-panel: The q2-binned SM prediction for R(D), see Eq. (7), and result from the fit including the scalar contribution. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

Fig. 5. The caption is the same as in Fig. 4 but for B → D∗τν .
Table 2
Predicted q2 distributions for R(D(∗)) from the model-independent fit to b → cτν
data and within the SM.

q2 (GeV2) R(D)|fit R(D)|SM R(D∗)|fit R(D∗)|SM

4.0–4.53 0.22(2) 0.199(1) [0.141,0.153] 0.119(5)

4.53–5.07 0.38(3) 0.330(1) [0.227,0.243] 0.191(6)

5.07–5.6 0.52(5) 0.455(1) [0.303,0.323] 0.256(8)

5.6–6.13 0.66(7) 0.571(2) [0.367,0.391] 0.314(8)

6.13–6.67 0.80(9) 0.680(2) [0.420,0.444] 0.361(8)

6.67–7.2 0.94(11) 0.786(3) [0.461,0.485] 0.402(7)

7.2–7.73 1.09(14) 0.892(3) [0.495,0.523] 0.437(6)

7.73–8.27 1.26(17) 1.006(4) [0.521,0.541] 0.467(5)

8.27–8.8 1.45(21) 1.135(5) [0.540,0.558] 0.493(4)

8.8–9.33 1.7(3) 1.294(6) [0.554,0.568] 0.516(3)

9.33–9.86 2.1(4) 1.513(7) [0.563,0.575] 0.535(3)

9.86–10.4 2.7(5) 1.86(1) [0.568,0.574] 0.552(2)

10.4–12.0 4.8(1.2) 3.17(2) [0.570,0.572] 0.564(1)

fits shown in Fig. 2 and the analyses in Refs. [21,25]. On the other 
hand, the second NP distribution (green) is visibly different from 
the other two and in clear tension with the data (especially for 
B → Dτν). For large NP contributions relative to the SM ones, the 
distributions change due to kinematic effects. However, the region 
selected in B → Dτν is safe from such large effects: the sharp 
drop observed in Ref. [25] occurs for tan β/MH± ∼ 0.4 GeV−1, 
which corresponds to δτ

cb ∼ −2.4, being far away from the global 
fit region. Therefore the global fit should be unaffected by this. For 
B → D∗τν , this effect is not very significant anywhere, so that also 
in this case our fit seems to be reliable. Regarding the predictions 
for the differential distributions of R(D(∗)), clearly SM and NP are 
Fig. 6. Constraints from R(D(∗)) (blue), the differential distributions in B → D(∗)τν
(light blue) and �Bc (dark green) on the coefficient gcbτ

L at 95% CL, assuming gcbτ
R

to be zero. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

much easier to be disentangled from each other, since the normal-
ization factors cancel. Upcoming improved measurements of these 
distributions with more events will be particularly helpful to check 
if the observed excess is due to a scalar contribution.

We finish this model-independent analysis by discussing two 
sub-scenarios in which only one of the two couplings gcbτ

L,R is 
present. For gcbτ

L this has been observed as a possible solution 
to explain R(D) and R(D∗) in Ref. [33], and we confirm this in-
cluding the new data. However, as illustrated in Fig. 6, this sce-
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nario is in tension with the measured differential distributions as 
well as the total Bc width. The resulting global fit remains bet-
ter than the SM one, but worse than in scenario S1, both with 
real and complex couplings, see Table 7 in Appendix C. Espe-
cially the option of having a real gcbτ

L as the common explana-
tion for R(D) and R(D∗), which has been reiterated recently in 
Ref. [17], is highly disfavoured; the examples for excluded dis-
tributions shown in Figs. 4 and 5 belong exactly to this class of 
solutions.

The presence of gcbτ
R alone does improve the fit to R(D(∗))

compared to the SM one, but does not yield a good fit. Pursu-
ing this option a bit further anyway, also in this case the situ-
ation is worsened by the differential distributions, although the 
minimal χ2 of the combination is similar to the one with gcbτ

L , 
only indicating less tension between differential distributions and 
R(D(∗)).

Adding both contributions simultaneously, as we did above, 
yields a better result than in both of these two sub-scenarios. Note 
that this option has been ignored in Ref. [14], leading to the in-
correct statement that scalar contributions alone could not explain 
R(D(∗)) together with the measured differential distributions.

Finally, it is worth mentioning that none of the scenarios with 
NFC improves the description of R(D(∗)) over the SM case: the 
only scenario that could affect these observables sizably is the 
Type-II 2HDM, but the constraints from R(D) and R(D∗) contra-
dict each other in this case.6

4.1.2. b → uτν
The semitauonic b → u transitions are less explored experi-

mentally, given their additional suppression by |V ub/V cb|2 ∼ 1%. 
We find a mild tension for the experimental value of R(τ ) with 
respect to the SM prediction, of about 1.8σ , see Table 1. The 
measurement of B → πτν is not significant yet, and well compat-
ible with the SM prediction within the large uncertainties. Clearly 
both quantities are compatible with the SM as well as sizable 
scalar NP contributions, and cannot lead by themselves to tensions 
within the model-independent scenario S1. However, the measured 
R(τ ) already imposes a model-independent correlation between 
R(p) = Br(�b → pτν)/Br(�b → p�ν) and R(π), as discussed be-
low. Additionally, we observe that imposing a more specific flavour 
structure as in scenario S2 yields more stringent constraints, dis-
cussed in the following.

4.2. Universality of b → c and b → u – S2

Assuming the flavour structure described in Eq. (5) (S2), we ob-
tain a more predictive scenario. Specifically, we can analyze the 
compatibility of b → cτν and b → uτν data with a concrete as-
sumption about the flavour structure of the underlying theory; this 
scenario remained viable after the BaBar result [4], see Ref. [12]. 
However, taking into account all present data, the inclusion of R(τ )

worsens the minimal χ2 significantly, χ2
min ≈ 5. The reason is 

that, while R(D), R(D∗) and R(τ ) can be fitted simultaneously, 
R(τ ) selects a region in the parameter space that is in tension with 
the differential distribution of B → Dτν , as displayed in Fig. 2 on 
the left as the dotted contour. Stated differently, the prediction for 
R(D∗) excluding its experimental value, but including R(τ ) is even 
smaller than the fitted value in the global b → cτν fit, preferring 
values below 0.28.

6 For this statement to hold strictly the effect on the differential distributions has 
to be taken into account; however, the BaBar analysis [4,25] indicates that it holds 
even then.
4.3. Differentiation between models

In this subsection we investigate how additional measurements 
of b → (u, c)τν transitions can help to distinguish not only be-
tween the SM and NP, but also between different NP scenarios. On 
the one hand, this is possible by fitting different models to the 
available data, which yields different ranges and correlations be-
tween observables. On the other hand, in a given NP model, one 
can construct combinations of observables in which the NP con-
tributions cancel, such that the corresponding quantities can be 
predicted independently of the NP considered. The operators in 
Eq. (3), for instance, affect the polarization of the final-state parti-
cles in a particular way, making it possible to distinguish the scalar 
effects from other dynamical scenarios; while the SM W − boson 
couples only to left-handed τ− leptons, a charged-scalar would 
couple to τ− leptons of the opposite chirality, and would not en-
ter in helicity amplitudes with a transversely polarized D∗ meson. 
Specifically, the following quantities remain SM-like [12]:

X1(D∗) = R(D∗) − R L(D∗) , (9)

where R L(D∗) represents the decay rate for B → D∗τν normalized 
by the light lepton modes for longitudinally polarized D∗ mesons, 
see Ref. [12] for the explicit expression, and

X2(D(∗)) = R(D(∗))
[

Aλ(D(∗)) + 1
]

, (10)

which is built with the τ polarization asymmetry Aλ(D(∗)) [12]. 
The latter relation can also be generalized to semitauonic �b de-
cays.

On the other hand, the scenario where the dominant NP effects 
in b → cτν have the same Lorentz structure as that of the SM 
operator [7–11], parametrized as

Leff = −4G F V cb√
2

gV L (c̄γμPLb)(τ̄ γ μPLν) + h.c. , (11)

affects universally all ratios

R̂(X) ≡ R(X)/R(X)|SM , (12)

and leaves unaffected all branching fractions that are normalized 
to quantities with the same transition, like the τ polarization 
asymmetry, or double ratios like

X V L
1 (D∗) = R L(D∗)/R(D∗) . (13)

The observations regarding the polarization of the final-state 
particles are illustrated in Figs. 7 and 8. Although experimental un-
certainties are still large for the τ polarization asymmetry and no 
measurement of the D∗ longitudinal polarization fraction has been 
performed yet, the potential of these observables to disentangle 
different dynamical scenarios is clear from these figures. Future 
measurements of b → cτν transitions performed at the LHCb and 
Belle II experiments can exploit these possibilities.

Another generic difference between the two NP scenarios is the 
relation between R(D∗) and Br(Bc → τν), already discussed for 
the scalar case above: the Bc branching ratio is very sensitive to 
charged-scalar effects, yielding large enhancements for the present 
central value of R(D∗), while with SM-like couplings the enhance-
ment is moderate. Since this mode is very difficult to measure, the 
limit stems from the total width of the Bc meson, see Appendix B. 
As can be seen from Fig. 9, the present value for R(D∗) shows 
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Fig. 7. Illustration of relation Eq. (10) (blue line) and experimental situation in 
the R(D∗)–Aλ(D∗) plane. The light blue dot and ellipses show the Belle measure-
ment [23] (central value and 1 and 2 σ ellipses, respectively), the yellow band the 
average for R(D∗) prior to this measurement, the green constant line corresponds 
to the presence of only gV L , and the red dot to the SM prediction. (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)

Fig. 8. Illustration of relations Eqs. (9) (blue line) and (12) (dark green line) in the 
R(D∗)–RL(D∗) plane. The yellow band shows the present average for R(D∗), and 
the red dot corresponds to the SM prediction. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this 
article.)

Fig. 9. Br(Bc → τν) versus R(D∗) in the SM (grey bands), scalar NP (blue area) and 
left-handed vector NP (dark green band). The yellow band shows the present aver-
age for R(D∗). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)

some tension with the total Bc width for scalar NP, while there 
is no limit on the SM-like coupling. Because of this tension, the 
global fit for the SM-like coupling is slightly better than the one 
with scalar NP, see Table 7. However, both scenarios still improve 
the fit significantly compared to the SM.

Figs. 10 and 11 show our fit results for some key observables 
with present data. The fit results for R(D) and R(D∗) in both 
NP scenarios are shown in Fig. 10; for scalar NP, this fit yields a 
range for R(D∗) that is larger than in the SM, but smaller than 
the present experimental central value, while with left-handed 
Fig. 10. Fit result for R(D) versus R(D∗) from a global fit with scalar operators 
(blue area) and with a left-handed vector coupling (green area), together with the 
SM prediction (grey bands) and the experimental average (yellow ellipses). All areas 
correspond to 95% CL, only the dark yellow one to 68% CL. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version 
of this article.)

Fig. 11. Prediction for R(Xc) versus R(�c) from a global fit with scalar operators 
(blue area), a global fit with a left-handed vector coupling (green area), together 
with the SM prediction (grey bands) and the R(Xc) measurement by LEP (yellow 
bands). All bands correspond to 95% CL, only the dark yellow one to 68% CL. (For 
interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)

vector NP this value can be reached for R(D∗), but R(D) is 
predicted to be smaller than the present experimental central 
value, due to the aforementioned strong correlation R̂(D) = R̂(D∗). 
Fig. 11 shows the predictions for R(Xc) and R(�c) = Br(�b →
�cτν)/Br(�b → �c�ν) from a global fit to the other b → cτν ob-
servables in both NP scenarios; in both cases enhancements for 
these two observables are expected with respect to the SM pre-
dictions. The predicted enhancements are larger in the case of a 
left-handed vector coupling, which is in slight tension with the 
available measurement for R(Xc). Again (more) precise measure-
ments for these observables can help to distinguish the two NP 
scenarios.

Finally, considering the same NP structure as in Eq. (11) for 
b → uτν transitions, we show in Fig. 12 the correlation between 
the b → uτν observables R(p) and R(π) as predicted from the 
available measurement of R(τ ). Large enhancements as well as 
SM-like values are possible for both observables, given that R(τ ) is 
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Fig. 12. Prediction for R(p) versus R(π) from a fit to R(τ ) with scalar operators 
(blue area) and with a left-handed vector coupling (green area), together with the 
SM prediction (grey bands) and the R(π) measurement by Belle (yellow bands). All 
bands correspond to 95% CL, only the dark yellow one to 68% CL. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

still compatible with the SM prediction. Furthermore, their correla-
tion is again different in the two NP scenarios, providing therefore 
a means to distinguish them in b → uτν transitions.

5. Conclusions

We have performed a comprehensive analysis of current b →
c(u)τν data in the presence of generic scalar contributions, pro-
viding additionally predictions for �b → �cτν , B → Xcτν , �b →
pτν , and B → πτν from a global fit to the other b → c(u)τν ob-
servables.

We analyzed the possibility to alleviate the current tension be-
tween b → cτν data and the SM predictions, which is at the 
level of about 4σ . Compared to the SM case, we find that scalar 
contributions with the simultaneous presence of both left- and 
right-handed couplings to quarks can improve considerably the 
global fit of R(D(∗)) and the measured q2 differential distribu-
tions in B → D(∗)τν . The indirect bound derived from the total 
Bc width is also included in the analysis and plays an important 
role by excluding a large part of the parameter space preferred by 
the R(D∗) measurement, as shown in Figs. 2 and 3. As a result, 
an explanation of the tension with scalar contributions requires 
values for R(D∗) to be 1–2 standard deviations smaller than the 
present experimental central value. Restricted scenarios with scalar 
couplings involving only left- or right-handed scalar couplings to 
quarks are found to be disfavoured by the q2 differential distribu-
tions in B → D(∗)τν and the total Bc width.

Finally, we also discussed the possibility to disentangle scalar 
effects in b → c(u)τν transitions from other NP scenarios, specifi-
cally the presence of only a left-handed vector current. Observables 
involving the polarization of the final τ lepton and the D∗ me-
son show strong correlations which can be predicted even in the 
presence of NP with high precision. Furthermore, different pat-
terns are predicted for decay modes like �b → �cτν , B → Xcτν , 
�b → pτν , and B → πτν . These findings can be further exploited 
by future measurements of b → c(u)τν transitions at the LHCb and 
Belle II experiments.
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Appendix A. Hadronic input parameters and statistical treatment

The hadronic input parameters used in our analysis are listed 
in Table 3. For R(D∗) we use the Caprini–Lellouch–Neubert (CLN) 
parametrization [50]. The corresponding form factor parameters 
are extracted from data [24], apart from the form factor ra-
tio R3(1), which is obtained using a HQET relation to order 
αs, 1/mb,c [51–53] and enhancing the related uncertainty to ac-
count for higher-order effects [54]. For R(D), we use the recent 
determination of the B → D form factors in Ref. [55], employ-
ing the Boyd–Grinstein–Lebed parametrization [56]. The relevant 
inputs for our R(D) prediction are quoted in Tables 4 and 5 of 
Ref. [55]; we use the results of the N = 2 fit.

We call the attention to recent works on the determination of 
the B → D(∗) form factors. In Refs. [59,60] a model-independent 
parametrization of the form factors based on analyticity and uni-
tarity [56] has been used, in this case avoiding the use of the 
CLN parametrization. The values obtained for R(D) in these works 
are R(D) = 0.299 (11) [59] and R(D) = 0.300 (8) [60], using addi-
tionally experimental input from B → D�ν . Another recent work 
employs perturbative QCD factorization and lattice QCD inputs 
to extract the relevant B → D(∗) form factors, finding R(D) =
0.337+0.038

−0.037 and R(D∗) = 0.269+0.021
−0.020 [61]. We note that these pre-

dictions are compatible with ours at the 1σ level. Finally, the 
possible pollution of R(D∗) from B∗ pole contributions has been 
found to be negligible [62].

For the B → π form factors necessary for the prediction of the 
B → πτν decay we proceed as follows: we use the information 
on the parameters of the vector form factor f B→π+ (q2) from two 
recent lattice calculations [64,65] at large values of q2, as com-
bined by FLAG [66], together with the information from a recent 
light-cone sum rule (LCSR) calculation [67] at small values of q2, to 
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Table 4
Form-factor parameters for f B→π+ (q2) and f B→π

0 (q2) in the Bourrely–Caprini–Lellouch (BCL) parametrization [63] with 
N=2 and N=3 fits, respectively. Note that the coefficient b2 has been eliminated by the constraint f B→π

0 (0) = f B→π+ (0).

Parameter a0 a1 a2 b0 b1 b3

Value 0.424 ± 0.011 −0.333 ± 0.039 −0.31 ± 0.08 0.515 ± 0.019 −1.65 ± 0.08 5.0 ± 0.9

a0 1 0.19 −0.44 0.04 0.13 0.09
a1 0.19 1 −0.50 0.04 0.12 0.08
a2 −0.44 −0.50 1 −0.01 −0.04 −0.02
b0 0.04 0.04 −0.01 1 −0.03 −0.41
b1 0.13 0.12 −0.04 −0.03 1 −0.75
b3 0.09 0.08 −0.02 −0.41 −0.75 1
Fig. 13. The form factor f B→π+ (q2) determined from lattice calculations at large val-
ues of q2 (red), LCSR calculations at small values of q2 (blue), and their combination 
(purple), using the BCL parametrization over the whole q2 range. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

obtain a reliable vector form factor over the whole q2 range. In the 
same combination we use, for the lack of a combination by FLAG, 
the results for the scalar form factor f B→π

0 (q2) from Ref. [64],7

imposing additionally the constraint f B→π
0 (0) = f B→π+ (0) to elim-

inate the coefficient b2, which introduces (small) correlations be-
tween the ai and bi parameters. This combination works very well, 
see Fig. 13. The resulting form factor parameters and their correla-
tions are given in Table 4.

For the predictions of �b → �c�ν and �b → p�ν decays we 
use the transition form factors determined from lattice QCD [46].

Bounds on the parameter space are obtained using frequentist 
statistics and the “Rfit” treatment for theoretical uncertainties [69]. 
However, there is a very limited amount of quantities which re-
ceive large theory uncertainties that are difficult to quantify: these 
are mainly the form factor ratio R3(1) and the coefficients ci in 
B → Xcτν , to be discussed in the next subsection. These lead to 
“flat” uncertainties (in the sense of Rfit) which are quoted as a 
second uncertainty in Table 1 in the SM predictions. All nuisance 
parameters are kept floating in the fits.

Appendix B. Details on b → cτν observables

The q2 distributions for B → D(∗)τν decays measured by 
Belle [21] and BaBar [25] are given as efficiency-corrected num-
ber of events and collected in Tables 5 and 6. They are given for 
q2 ≥ 4 GeV2 due to the experimental selection criteria [21,25]. The 
uncertainties given for the individual bins only include the statis-

7 These values are more precise than the ones given in Ref. [65], which are 
calculated from a subset of the same lattice ensembles, complicating a simple com-
bination. The recent calculation in Ref. [68] only provides a value for f B→π

0 (q2
max), 

which is however about 2σ higher than the value implied by our form-factor fit.
Table 5
Measured q2 distributions for B → D(∗)τν events by Belle [21]. The fit values 
with the normalization corresponding to the BaBar data [25] can be obtained by 
multiplying the given values by 1.4 for B → Dτν and 2.17 for B → D∗τν .

q2 (GeV2) B → Dτν fit B → D∗τν fit

4.0–4.53 24.0 ± 16.3 11 ± 2 5.4 ± 9.3 5.1 ± 0.8
4.53–5.07 27.8 ± 15.2 16 ± 4 3.4 ± 8.1 8.7 ± 1.3
5.07–5.6 22.0 ± 14.0 20 ± 5 −3.8 ± 6.8 12.1 ± 1.8
5.6–6.13 28.4 ± 14.4 24 ± 6 12.1 ± 8.4 14.7 ± 2.2
6.13–6.67 16.2 ± 14.8 26 ± 6 8.0 ± 9.4 16.8 ± 2.5
6.67–7.2 44.5 ± 15.5 26 ± 6 24.7 ± 8.2 18.3 ± 2.7
7.2–7.73 14.2 ± 16.3 27 ± 6 2.7 ± 7.8 19.2 ± 2.8
7.73–8.27 −3.1 ± 15.3 26 ± 6 28.7 ± 9.2 19.4 ± 2.8
8.27–8.8 16.1 ± 15.2 25 ± 5 30.8 ± 8.5 18.9 ± 2.8
8.8–9.33 37.2 ± 15.5 23 ± 5 24.9 ± 7.6 17.6 ± 2.6
9.33–9.86 19.3 ± 15.2 20 ± 5 15.0 ± 6.8 15.4 ± 2.4
9.86–10.4 37.0 ± 15.5 17 ± 4 14.8 ± 5.1 11.6 ± 1.8
10.4–10.93 −1.0 ± 14.2 13 ± 3 16.3 ± 5.1 3.6 ± 0.6
10.93–11.47 20.0 ± 13.1 8 ± 3 – –
11.47–12.0 3.4 ± 10.9 1.1 ± 0.4 – –

Table 6
Measured q2 distributions for B → D(∗)τν events 
by BaBar [25].

q2 (GeV2) B → Dτν B → D∗τν

4.0–4.5 23.8 ± 12.1 0.6 ± 7.1
4.5–5.0 16.8 ± 11.8 23.6 ± 9.5
5.0–5.5 27.9 ± 10.5 22.4 ± 7.7
5.5–6.0 45.1 ± 13.1 20.8 ± 7.8
6.0–6.5 46.9 ± 13.3 20.0 ± 7.5
6.5–7.0 39.7 ± 13.6 38.8 ± 8.6
7.0–7.5 31.7 ± 12.4 44.4 ± 9.2
7.5–8.0 47.4 ± 14.9 49.3 ± 10.3
8.0–8.5 33.7 ± 14.0 40.0 ± 9.4
8.5–9.0 17.7 ± 13.2 37.3 ± 9.5
9.0–9.5 −0.7 ± 13.1 38.4 ± 9.8
9.5–10.0 6.9 ± 14.3 31.7 ± 11.0
10.0–10.5 35.4 ± 16.0 31.9 ± 10.5
10.5–11.0 2.8 ± 12.1 16.7 ± 10.4
11.0–11.5 1.7 ± 11.3 –
11.5–12.0 6.5 ± 8.9 –

tical ones. To account for the systematic uncertainties, we add for 
each bin an additional uncertainty of the same relative size as is 
given for the corresponding R(D(∗)) measurement, which we as-
sume to be uncorrelated between the different bins. We expect 
this treatment to be conservative, given that we consider here the 
shape of the distributions and the systematic uncertainties typi-
cally show sizable correlations between the bins.

The LEP experiments give an averaged constraint on b →
Xτν [39],

Br(b → τν + anything) = (2.41 ± 0.23)% . (B.1)

This measurement is dominated by b → Xcτν because of |V ub|2/
|V cb|2 ∼ 1%. Correcting for the b → u contribution which is about 
2% due to the larger available phase space, we obtain
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Br(b → Xcτν) = (2.35 ± 0.23)% . (B.2)

The LEP measurement corresponds to a known admixture of initial 
states for the weak decay [26]. The inclusive decay rate does, how-
ever, not depend on this admixture to LO in �QCD/mb . The correc-
tions to this limit are hadron-specific and only partly known [70,
71]. It is again advantageous to consider the ratio R(Xc), defined in 
analogy to Eq. (1) and cancelling again the m5

b |V cb|2 dependence. 
The scalar interactions in Eq. (3) modify the inclusive decay width 
�(b → cτ ν̄). Ignoring QCD corrections, we find

�(b → cτ ν̄) = �cb

(1−√
xc)

2∫
xτ

dz
(

1 − xτ

z

)
λ1/2(1, xc, z)

×
{

2
[
(1 − xc)

2 + z (1 + xc) − 2z2
]

+ 2
xτ

z

[
(1 − xc)

2 − 2z (1 + xc) + z2
]

− 2
x2
τ

z2

[
2 (1 − xc)

2 − z (1 + xc) − z2
]

+ 6 Re(gcbτ
L )x1/2

τ x1/2
c

[
1 − xc − xτ + z − xτ

z
(1 − xc)

]
+ 6 Re(gcbτ

R ) x1/2
τ

[
1 − xc + xτ − z − xτ

z
(1 − xc)

]
+ 3

(
|gcbτ

L |2 + |gcbτ
R |2

)
(1 + xc − z) (z − xτ )

+ 12 Re(gcbτ ∗
L gcbτ

R ) x1/2
c (z − xτ )

}
, (B.3)

where �cb = G2
F m5

b
192π3 |V cb|2, xτ = m2

τ /m2
b , xc = m2

c /m2
b , z = q2/m2

b and 
λ(x, y, z) = x2 + y2 + z2 − 2(xy + yz + xz). Here q2 = (pτ + pν)2 =
(pb − pc)

2 is the invariant mass squared of the lepton pair. These 
results confirm known SM expressions at this order [70,72] and 
generalize the results of Refs. [71,73,74] for 2HDMs with NFC, 
which we reproduce in the corresponding limit. We can rewrite 
the differential decay rate as follows:

d�(b → cτ ν̄)

dz
= �W + 3�cb

4

√
λ(1, z, xc) × (B.4)[

(1 − z + xc) f1(z) + 2
√

xc f2(z)
]

,

where the functions f1,2(z) are given as

f i(z) =
∑

I, J=G,H

hI J
i L I J (z) , (B.5)

with hI J
1 =

(
aIa∗

J + bI b∗
J

)
, hI J

2 =
(

aIa∗
J − bI b∗

J

)
, hI J

3 = Re(aI b∗
J ) and 

LI J (z) = z(1 − xτ /z)2
(

a�
I a�∗

J + b�
I b�∗

J

)
. This formulation shows ex-

plicitly that the decay rate is a sum of two incoherent terms, the 
first of which corresponds to a transverse W exchange, while the 
second stems from both the charged-scalar and longitudinal W ex-
changes. Splitting the phase space for the latter as the product of 
that of b → cW ∗ and that of W ∗ → τν together with calculating 
it in Landau gauge allows to obtain the result for the charged-
scalar contribution from the known calculations for t → bW and 
t → bH [74,75] by identifying the changed couplings and propaga-
tors [73,76].

The O(αs) corrections are given as

d�(b → cτ ν̄)

dz

∣∣∣∣
αs

= �
αs
W + 2αs

π
�cb × [G+(z) f1(z) (B.6)

+√
xc G−(z) f2(z) + G0(z) f3(z)

]
,

where the functions Gi(z) can be found in Ref. [74] and the 
transverse-W contribution �αs

W in Ref. [76]. These expressions gen-
eralize the existing ones in 2HDMs with NFC [71,73,77].

The functions hI J
i determine the relative strengths of charged-

scalar and (longitudinal) W exchanges, as well as their interfer-
ence; only their overall coefficients can change at higher orders. At 
LO only two combinations of couplings appear, despite the pres-
ence of four combinations of gL,R in Eq. (B.3). At NLO, a third 
combination enters, to be compared with five independent com-
binations when written as in Eq. (B.3).

The products of the charged-scalar couplings (a, b)
(�)
H corre-

spond to the couplings in the effective Lagrangian as follows:

aH (a�
H )∗ = −(gcbτ

L + gcbτ
R ) ,bH (b�

H )∗ = −(gcbτ
L − gcbτ

R ) , (B.7)

and the Goldstone couplings are given as

aG(a�
G)∗ = − (1 − √

xc)
√

xτ

z
,bG(b�

G)∗ = (1 + √
xc)

√
xτ

z
. (B.8)

Additionally the relations a�
H = −b�

H and a�
G = −b�

G hold due to the 
neglect of neutrino masses.

Numerically, it turns out that the O(αs) corrections cancel 
largely in the SM part of the ratio R(Xc), yielding a rather small 
correction of below 3%; therefore we do not include higher-order 
corrections which are known only in the SM, show similar can-
cellations and are correspondingly smaller [78]. The shift for the 
NP couplings is however larger, making the different coefficients 
of the f i(z) receive a significant reduction at NLO of about 30%. 
Using the 1S mass scheme [79,80], we obtain schematically

R(Xc) = 0.231
[

cSM + (0.183 c1 − 0.050 c3)|gcbτ
L |2 (B.9)

+ 0.183 c1|gcbτ
R |2 + 0.278 c2 Re(gcbτ

L gcbτ∗
R )

+ (0.296 c2 − 0.117 c1 + 0.030 c3)Re(gcbτ
L )

+(0.404 c1 − 0.086 c2 + 0.109 c3)Re(gcbτ
R )

]
,

to be compared with the LO expression

R(Xc) = 0.224
[

cSM + 0.250 c1

(
|gcbτ

L |2 + |gcbτ
R |2

)
(B.10)

+ 0.396 c2 Re(gcbτ
L gcbτ∗

R )

+ (0.421 c2 − 0.152 c1)Re(gcbτ
L )

+(0.548 c1 − 0.117 c2)Re(gcbτ
R )

]
.

The factors ci are introduced as f i(z) → ci f i(z), in order to track 
the corresponding correlations between the different NP contribu-
tions; they are varied around their central values ci = 1 in the 
numerical analysis in order to account for the presence of higher-
order contributions. Note that apart from the sizable numerical 
shift in the coefficients, there is also a qualitative difference be-
tween the expressions at LO and NLO: at LO, the coefficients of 
|gcbτ

L,R |2 are equal, which leads to the absence of interference terms 
between δτ

cb and τ
cb , which allows to write R(Xc) as a sum of pos-

itive definite terms, leaving no possibility for cancellations. This is 
not true at NLO, and therefore strictly speaking there is no con-
straint in the individual δτ

cb and τ
cb planes without restricting the 

combination not shown.
Finally, we also include the SM power corrections of order 

�2
QCD/m2

b . They have been calculated for the B-meson decay in 
Ref. [70] and amount to ∼ 4% of the NLO value for R(Xc). SU(3)

symmetry predicts them to be equal for Bu,d,s mesons, which con-
tribute ∼ 90% in the LEP measurement. The (unknown) shift to the 
power corrections for �b decays as well as the corrections to the 
SU(3) assumption are included as an uncertainty of the leading 
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Table 7
Minimal-χ2 values obtained in the considered scenarios, given for different 
sets of observables, together with the corresponding central values for the 
NP parameters. Note that the central values are only given for illustration.

Scenario χ2
min # Obs. # Pars. Central values (δτ

cb , τ
cb)

R(D(∗)) only

SM 23.1 2 0 —
S1 0 2 4 (0.2 + 0.7i,10.0 − 6.3i)
S1 real 0 2 2 (0.4,−3.6)

gcbτ
L 0 2 2 gcbτ

L = −1.3 − 0.6i

gcbτ
R 9.1 2 2 gcbτ

R = 0.3 + 0.i
gV L 0.2 2 1 |gV L | = 1.12

R(D(∗)), d�/dq2, �Bc

SM 65.9 61 4 —
S1 49.2 61 8 (0.4 + 0.i,−2.4 + 0.i)
S1 real 49.2 61 6 (0.4,−2.4)

gcbτ
L 55.4 61 6 gcbτ

L = −0.4 + 0.8i

gcbτ
R 55.4 61 6 gcbτ

R = 0.3 + 0.i
gV L 42.4 61 5 |gV L | = 1.12

R(D(∗)), d�/dq2, �Bc , R(Xc)

SM 65.9 62 4 —
S1 50.4 62 8 (0.3 + 0.i,−2.4 + 0.i)
S1 real 50.4 62 6 (0.3,−2.4)

gcbτ
L 55.4 62 6 gcbτ

L = −0.4 − 0.8i

gcbτ
R 56.1 62 6 gcbτ

R = 0.2 + 0.i
gV L 46.7 62 5 |gV L | = 1.10

term in Eq. (B.9). This reduces the SM value from 0.231 to 0.222, 
which is in agreement with the result in Ref. [44].

Appendix C. Fit details

In Table 7 we collect details of the fit performed for the differ-
ent benchmark scenarios.
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