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We perform a case study of the behaviour of gluon radiation beyond the soft approximation, using as 
an example the Drell–Yan production cross section at NNLO. We draw a careful distinction between the 
eikonal expansion, which is in powers of the soft gluon energies, and the expansion in powers of the 
threshold variable 1 − z, which involves important hard-collinear effects. Focusing on the contribution 
to the NNLO Drell–Yan K-factor arising from real–virtual interference, we use the method of regions 
to classify all relevant contributions up to next-to-leading power in the threshold expansion. With this 
method, we reproduce the exact two-loop result to the required accuracy, including z-independent 
non-logarithmic contributions, and we precisely identify the origin of the soft-collinear interference 
which breaks simple soft-gluon factorisation at next-to-eikonal level. Our results pave the way for the 
development of a general factorisation formula for next-to-leading-power threshold logarithms, and 
clarify the nature of loop corrections to a set of recently proposed next-to-soft theorems.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

It is well known that singularities arise in perturbative scat-
tering amplitudes due to low-energy (soft) emission of massless 
gauge bosons, and to collinear splittings of massless particles. 
These infrared (IR) singularities cancel for suitably defined inclusive 
cross sections, once real and virtual diagrams are combined [1–3]; 
more generally, they are known to factorise at the level of scat-
tering amplitudes [4], and their general structure in the case of 
multi-parton non-abelian gauge amplitudes has been the subject 
of much recent activity (for a recent summary, see for example [5,
6], and the references therein).

Even for finite, infrared-safe cross sections, residual contribu-
tions persist after the cancellation of singularities, taking the form 
of potentially large kinematic logarithms at all orders in perturba-
tion theory, which may need to be resummed. In the generic case 
of multi-scale processes, these logarithms can have a variety of ar-
guments, such as transverse momenta which vanish at Born level, 
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or event shape variables which vanish in the two-jet limit. In this 
note, we will concentrate on threshold logarithms, which arise in 
inclusive cross sections when real radiation is forced to be soft 
or collinear by the properties of the selected final state. Examples 
are: electroweak annihilation processes, such as Drell–Yan produc-
tion or Higgs production via gluon fusion, where the threshold 
variables are z = Q 2/ŝ and z = M2

H/ŝ, respectively, with ŝ the par-
tonic center-of-mass energy; Deep Inelastic Scattering (DIS), where 
the threshold variable is the partonic version of Bjorken x; and 
tt̄ production, where the threshold variable is z = 4m2

t /ŝ. In all 
of these cases the cancellation of infrared singularities leaves be-
hind logarithms of the general form αn

s (1 − z)m logp(1 − z), with 
0 ≤ p ≤ 2n − 1, and m ≥ −1.

Contributions with m = −1, which we describe as leading power
(LP) threshold logarithms, have been extensively studied, and suc-
cessfully resummed to very high logarithmic accuracy using a va-
riety of formalisms [7–12]. It is however known that also loga-
rithms accompanied by subleading powers of the threshold vari-
able, most notably those with m = 0, which we call next-to-leading 
power (NLP) threshold logarithms, can give numerically significant 
contributions [13]. In recent years, a number of studies have ap-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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peared [14–27] developing our understanding of certain classes of 
NLP threshold logarithms. A full-fledged resummation formalism 
for NLP logarithms is however still not available.

An important class of NLP threshold logarithms, which is the 
best studied so far, is generated by contributions to scattering 
amplitudes that arise from the emission of soft gluons, at next-
to-leading power in the soft gluon energy. We call these contri-
butions next-to-eikonal (NE), or next-to-soft. It has been known for 
many years, at least in the abelian case [28–30], that next-to-soft 
emissions share many of the universal features that characterise
leading-power soft radiation, which is described by the eikonal 
approximation. This understanding, to some extent, has been gen-
eralised to non-abelian theories in [15,21,31], where it was shown 
that the eikonal approximation can be generalised to take into ac-
count next-to-soft effects, while preserving many of the nice uni-
versality and factorisation properties which are present at leading 
power. Ultimately, however, in order to organise all NLP threshold 
logarithms, one must include also the effects of collinear emis-
sions. The importance of collinear emissions is evident in the case 
of processes with final-state jets, for example DIS, where some 
threshold logarithms are directly associated with the mass of the 
current jet. It is crucial to realise, however, that collinear emis-
sions will also contribute to NLP logarithms for processes, like 
Drell–Yan or Higgs production, where real radiation is forced to 
be soft by phase space constraints. In such cases the soft expan-
sion breaks down because singularities arising from virtual hard 
collinear gluons interfere with the soft approximation. This issue 
was first tackled, in the abelian case, in Ref. [30], and similar ef-
fects were noted in Refs. [15,16]. The analysis of the present paper 
will precisely identify the origin of these interfering contributions 
in an example involving real–virtual interference for the Drell–Yan 
cross section at NNLO.

Quite interestingly, next-to-soft corrections to scattering ampli-
tudes have been the focus of intense recent research also from a 
more formal point of view. It is well known that leading-power 
soft radiation can be studied with eikonal methods both in gauge 
theories and in gravity [32–36]. Recently, Ref. [37] conjectured that 
next-to-soft behaviour at tree-level is universal in gravity, based 
on the observation that the known universal soft behaviour [32]
can be obtained via a Ward identity associated with the Bondi–
Metzner–Sachs (BMS) symmetry at past and future null infin-
ity [38]. Ref. [39] generalised this to Yang–Mills theory, and there 
have been a number of follow-up studies [40–52]. In particular, 
Ref. [53] pointed out the relationship between this body of work 
and the more phenomenological results of Refs. [15,21,28–30]. A 
key point of contention in the current literature is whether next-
to-soft theorems receive corrections at loop level. As Ref. [52]
makes clear, this is related to the sequential order in which the 
expansions in soft momentum and the dimensional regularisation 
parameter ε (in 4 − 2ε dimensions) are carried out. The authors of 
Ref. [52] state that the soft expansion should be carried out first 
(with ε kept non-zero). Loop corrections were further explored in 
Refs. [45,48,51], with Ref. [48] advocating that the soft expansion 
be carried out after the ε-expansion, which would correspond to 
how complete amplitudes are usually calculated.

Our aim in this Letter is to perform a case study of NLP thresh-
old logarithms at loop level in Drell–Yan production, including in 
particular those that originate from next-to-soft corrections to the 
corresponding scattering amplitude. There are a number of moti-
vations for doing so. First, our ultimate aim (building on the work 
of Refs. [15,21]), is to develop a fully general resummation pre-
scription for NLP threshold logarithms. Our investigation here will 
provide crucial data in this regard, although we postpone a de-
tailed discussion of factorisation at NLP accuracy to a subsequent 
paper [54]. Secondly, by explicitly characterising contributions in 
Drell–Yan according to their soft and/or collinear behaviour, we 
will be able to concretely examine the issue of loop corrections to 
next-to-soft theorems, including the interplay between the dimen-
sional regularisation and soft expansions. We will verify explicitly 
that performing the ε expansion before the soft expansion correctly 
reproduces known results that are sensitive to this ordering. The 
reason is, as might be expected, the fact that there are collinear 
singularities arising from virtual exchanges of hard collinear glu-
ons, which are not correctly taken into account if one performs 
a soft expansion before loop integrations.

More specifically, we will examine the K -factor for Drell–Yan 
production at NNLO, concentrating on those terms which arise 
from having one real and one virtual gluon emission, which are 
ideally suited to examine the questions posed above. Indeed, loga-
rithms arising from double real emission were already understood 
from an effective next-to-soft approach in Ref. [21], using the fact 
that, for electroweak annihilation processes, real radiation near 
threshold is forced to be soft. Double virtual corrections, on the 
other hand, have a trivial dependence on the threshold variable z, 
and do not influence the present considerations. In this Letter, we 
will further concentrate on terms proportional to the colour pref-
actor C2

F , which are the same as those that would be obtained in 
an abelian theory, as considered in the earlier work of [28–30]. 
This is sufficient to illustrate our main points, and a complete 
analysis will be given in forthcoming work [54]. Our task here 
will be to perform a detailed momentum-space analysis of the 
selected contributions, and trace the origin of all NLP threshold 
logarithms to hard, soft, or collinear configurations. To this end, 
we will use the method of regions, as developed in [55]. A similar 
analysis has recently been performed in the case of Higgs produc-
tion via gluon fusion in the large top mass limit, to an impressive 
N3LO accuracy [56], as part of the complete calculation of the soft 
and virtual contributions to the cross section at this order. In that 
case, the method of regions was used as an alternative technique 
to check the validity of the threshold expansion, and as a method 
to investigate the convergence properties of the expansion itself.1

Our goal is different, namely to analyse the factorisation proper-
ties of various diagrammatic contributions to the cross section. As 
a consequence, in Ref. [56] the method of regions was applied af-
ter reduction to scalar master integrals, while here we apply it to 
complete diagrams, thus making it easier to trace various sources 
of next-to-soft behaviour in our chosen (Feynman) gauge. Further-
more, for the specific NNLO contributions we focus on, we will be 
able to show how the method of regions gives an exact account of 
threshold contributions also at next-to-leading power.

Our results will prove useful in the development of a factori-
sation formula for NLP threshold logarithms, which will gener-
alise the well-known soft-collinear factorisation formula at leading 
power (see, for example, Ref. [58] for a review of the latter); work 
in this direction is in progress [54].2 Interestingly, we find that 
our analysis with the method of regions is able to reproduce cor-
rectly all NLP threshold corrections, including terms with m = 0
and p = 0, which have no logarithms at all, and would correspond 
to terms of order 1/N in a Mellin-space analysis, with no log N
enhancements. We think this gives evidence for the existence of 
a systematic organisation of threshold contributions to cross sec-
tions, order by order in m. The question then arises of how many 
terms a fully resummed approach would be able to control, given 
the progress already made in this regard by the physical evo-

1 For a discussion of the limits of the threshold expansion in this process, see 
Ref. [57].

2 Progress can also be made using effective field theory techniques [59]. One of 
the authors (CDW) is very grateful to Duff Neill for correspondence on this point, 
including sharing an early draft of Ref. [59].
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Fig. 1. Abelian-like cut diagrams contributing to the Drell–Yan cross section at NNLO, involving one real and one virtual gluon. Diagrams obtained by interchanging p ↔ p̄
and/or complex conjugation are not shown.
lution kernel approach of Refs. [18–20,22,27]. The arguments of 
Refs. [28–30] (see also Refs. [15,49,50]) indicate that terms which 
are suppressed by more than one power of the threshold variable 
(NNLP logarithms) are not fully fixed by gauge invariance, and thus 
are not expected to be resummable in a factorisation-based ap-
proach. On the other hand, our paper provides evidence that, in 
principle, all threshold logarithms at NLP can be organised to all 
orders in perturbation theory.

The structure of the Letter is as follows. In Section 2 we review 
necessary information about Drell–Yan production. In Section 3 we 
apply the method of regions to classify all abelian-like terms in 
the real–virtual contribution to the NNLO Drell–Yan K -factor. In 
Section 4, we interpret our results in light of Refs. [45,48,51,52], 
focusing in particular on the required ordering of the soft and 
ε-expansions. We discuss our results and conclude in Section 5.

2. Real–virtual interference in Drell–Yan at NNLO

As discussed in the introduction, we consider Drell–Yan produc-
tion of a virtual vector boson [60], which at leading order proceeds 
via the process

q(p) + q̄(p̄) → V ∗(Q ), (1)

where we do not display flavor indices, so that the vector boson V
could be a photon, a Z or a W ± boson. The threshold variable in 
this case is z = Q 2/ŝ, with Q = p + p̄. The Drell–Yan K -factor at 
O(αn

s ) is defined by

K (n)(z) = 1

σ (0)

dσ (n)(z)

dz
, (2)

where σ (n) is the total cross-section including terms up to O(αn
s ). 

The cross section has been calculated exactly up to n = 2 in 
Refs. [61–69], which allows scrutiny of threshold logarithms both 
at LP and at NLP accuracy. The relevant contributions take the form
LP : αn
s

[
logm(1 − z)

1 − z

]
+

≡ αn
s Dm(z); NLP : αn

s logm(1 − z),

0 ≤ m ≤ 2n − 1. (3)

Leading power logarithms, supplemented by terms proportional to 
δ(1 − z), form the so-called ‘soft + virtual’ contribution, which has 
been recently computed to N3LO in Ref. [70]. We see that NLP con-
tributions show up as pure logarithms, integrably singular in the 
threshold region z → 1. At NLO, such terms arise only through real 
emission contributions: these were analysed in Ref. [21], together 
with the double real emission contributions at NNLO, and shown 
to be reproducible from an effective next-to-eikonal approach. This 
is due to a lack of contamination in tree-level DY production from 
hard collinear effects, which is not true in more generic processes, 
or at loop level: beyond NLO, also for Drell–Yan kinematics, one 
must then differentiate between the expansion in emitted (soft) 
gluon momentum, and the threshold expansion which also includes 
collinear effects.

Following on from Ref. [15], the next milestone in understand-
ing the structure of NLP threshold logs is to examine one-loop 
graphs at NNLO, involving one real and one virtual gluon. These 
were not considered explicitly in Refs. [15,21], due to the fact that 
hard collinear singularities were not accounted for. The interplay 
between (next-to) soft and collinear effects has been discussed at 
length in Ref. [30], at the price of neglecting discussion of double 
counting issues between gluon emissions that are simultaneously 
soft and collinear. In order to clarify these issues, we concentrate 
here on the abelian-like NNLO real–virtual interference contribu-
tion to the K -factor, corresponding to the (cut) Feynman diagrams 
shown in Fig. 1. As an example, to fix our notation, we note that 
diagram (a) contributes

Fa(z) = g4
s

∫
[dk1][dk2](2π)δ(k2

2)θ(k0
2)δ

(ω

2
− k0

2

) 1

k2

1
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×Tr

[
/pγ α /k2 − /̄p

(k2 − p̄)2
γ μ/̄pγ ρ /k1 − /̄p

(k1 − p̄)2
γα

× /p + /k1 − /k2

(p + k1 − k2)2
γμ

/p + /k1

(p + k1)2
γρ

]
, (4)

where ω = √
ŝ(1 − z), and we have defined the integration measure∫

[dki] ≡ eεγE

(4π)ε
μ2ε

MS

∫
ddki

(2π)d
, (5)

with d = 4 − 2ε and μMS = μe−γE/2(4π)1/2. One must then add to 
Eq. (4), and to all other contributions from the diagrams depicted 
in Fig. 1, similar terms obtained by interchanging p ↔ p̄ and by 
complex conjugation. Colour matrices have been neglected, given 
that we are focusing on the abelian-like part of the K -factor, which 
appears with an overall factor of C2

F .
In order to reproduce the NLP threshold logarithms in the 

K -factor, one must now classify all next-to-soft and collinear con-
tributions. This is the subject of the following section.

3. Method of regions analysis

The method of regions is a systematic procedure for expanding 
loop integrals about their singular regions [55], such that collinear 
and soft behaviours are disentangled. Whilst a general proof of 
its validity is not yet available (see for example [71,72]), it has 
been tested in a number of highly non-trivial examples, most re-
cently in Higgs production via gluon fusion at N3LO [56], a process 
closely related to Drell–Yan production. In what follows, however, 
we will apply the method of regions to identify all sources of NLP 
threshold logarithms, including next-to-soft contributions as well 
as collinear ones, going beyond the purely soft or collinear limits 
considered in Ref. [56].

We begin by defining the directions collinear to the incoming 
quark and antiquark by the light-like vectors n+ and n− , defined 
such that n2+ = n2− = 0 and n− · n+ = 2. The physical momenta (in 
the centre of mass frame) are related to these vectors via

pμ = 1

2
(n− p)nμ

+ =
√

ŝ

2
nμ

+,

p̄μ = 1

2
(n+ p̄)nμ

− =
√

ŝ

2
nμ

−, (6)

where we introduced the short-hand notation (n±l) ≡ nμ
±lμ . 

A generic momentum l may then be decomposed into light-cone 
and transverse components according to

lμ = 1

2
(n−l)nμ

+ + 1

2
(n+l)nμ

− + lμ⊥. (7)

We now distinguish different regions for the momentum lμ by the 
different scalings of its components, defined according to a book-
keeping parameter λ ∼ √

Esoft/E , where Esoft ∼ √
ŝ(1 − z), and 

E ∼ √
ŝ is the hard scale. More specifically, writing lμ = {l+, l−, l⊥}, 

the relevant regions are defined as follows

Hard: l ∼
√

ŝ (1,1,1) ;
Soft: l ∼

√
ŝ
(
λ2, λ2, λ2

)
;

Collinear: l ∼
√

ŝ
(

1, λ,λ2
)

;
Anticollinear: l ∼

√
ŝ
(
λ2, λ,1

)
. (8)

In any given process, the external momenta are fixed. Here, for 
example, p ( p̄) is by definition collinear (anticollinear), while k2
is (next-to) soft. Different contributions to the K factor then arise 
from various regions of the loop momentum k1.

Our next task is to expand the propagators in Eq. (4) in the dif-
ferent regions. Focusing, as an example, on those associated with 
the p leg, the most complicated case is

/p + /k1 − /k2

(p + k1 − k2)2
. (9)

Expanding to the second non-trivial order in λ in the relevant mo-
mentum regions described above, this propagator becomes

Hard:√
ŝ /n+

2 + /k1

k2
1 + (n+k1)

√
ŝ

+
[

− /k2

k2
1 + (n+k1)

√
ŝ

+
(
(n+k2)

√
ŝ + 2(k1k2)

)(√
ŝ /n+

2 + /k1

)
(k2

1 + (n+k1)
√

ŝ)2

]
+O(λ4);

Collinear: (√
ŝ + (n−k1)

)
/n+
2

k2
1 + (n+k1)

√
ŝ − (n+k2)

(√
ŝ + (n−k1)

)

+
[

/k1⊥
k2

1 + (n+k1)
√

ŝ − (n+k2)
(√

ŝ + (n−k1)
)

+
2(k1⊥k2⊥)

(√
ŝ + (n−k1)

)
/n+
2(

k2
1 + (n+k1)

√
ŝ − (n+k2)

(√
ŝ + (n−k1)

))2

]

+
[

(n+k1)
n−
2 − /k2

k2
1 + (n+k1)

√
ŝ − (n+k2)

(√
ŝ + (n−k1)

)

+
2(k1⊥k2⊥)/k1⊥ + (

(n+k1)(n−k2) − k2
2

)(√
ŝ + (n−k1)

)
/n+
2(

k2
1 + (n+k1)

√
ŝ − (n+k2)

(√
ŝ + (n−k1)

))2

+
4(k1⊥k2⊥)2

(√
ŝ + (n−k1)

)
/n+
2(

k2
1 + (n+k1)

√
ŝ − (n+k2)

(√
ŝ + (n−k1)

))3

]
+O(λ);

Anticollinear:

1√
ŝ

/n−
2

+ 1

(n+k1)

/n+
2

+
[

1

(n+k1)

/k1⊥√
ŝ

+
(

− k2
1⊥

(n+k1)2
√

ŝ
+ (n+k2)

(n+k1)2
+ (n−k2)

(n+k1)
√

ŝ

)
/n+
2

]

+
[(

− k2
1

(n+k1)ŝ
+ (n+k2)

(n+k1)
√

ŝ
+ (n−k2)

ŝ

)
/n−
2

− /k2

(n+k1)
√

ŝ

]

+O(λ3);
Soft:

1

(n+k1) − (n+k2)

/n+
2

+
[

1

(n+k1) − (n+k2)

/k1 − /k2√
ŝ

− 1(
(n+k1) − (n+k2)

)2

(k1 − k2)
2

√
ŝ

/n+
2

]
+O(λ2). (10)

In order to clarify the power counting in Eq. (10), it may be use-
ful to note that the expansion of the propagator given in Eq. (9)
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in powers of λ starts at O(λ0) in the hard and in the anticollinear 
regions, while it starts at O(λ−2) in the collinear and soft regions. 
Moreover, the Taylor expansion is in powers of λ2 in the hard and 
soft regions, while it is in powers of λ in the collinear and an-
ticollinear regions. In Eq. (10), different orders in λ are enclosed 
within square brackets.

Similar expressions can be obtained for all other propagators, 
not all of which are independent (for example, the anticollinear 
region for the p leg can be obtained from the collinear region on 
the p̄ leg by relabelling p ↔ p̄). After substituting all expanded 
propagators into Eq. (4), the integrals may be carried out in di-
mensional regularisation using standard techniques. One may then 
repeat this procedure for the remaining diagrams in Fig. 1. When 
this is done, it is useful to present results for two distinct sums of 
diagrams: those involving both quark legs, p and p̄, given in graphs 
(a)–(d) in Fig. 1, and those involving a single leg, given in graphs 
(e)–(h). Complete results to NLP accuracy are given below: for each 
region r, we write the K factor as Kr(z) = KE,r(z) + KNE,r(z), sepa-
rating the result into two parts, corresponding to leading and next-
to-leading order in the eikonal (soft) expansion of the amplitude 
in powers of k2, before phase space integration. The NLP loga-
rithms in the eikonal contributions K (2)

E,r (z) arise exclusively from 
corrections to the eikonal phase space, as discussed in Ref. [21]. 
Next-to-eikonal contributions K (2)

NE,r, on the other hand, consist of 
genuine corrections arising at the amplitude level.

3.1. Hard region

After integration over the loop momentum k1, and the real ra-
diation phase space for momentum k2, we find that there is no 
contribution at LP or NLP arising from the hard region from di-
agrams (e)–(h). Diagrams (a)–(d), on the other hand, combine to 
give

K (2)

E,h(z) =
(αs

π

)2
[

2D0(z)

ε3
+ −4 + 3D0(z) − 4D1(z)

ε2

+ −6 + 8D0(z) − 6D1(z) + 4D2(z) + 8 log(1 − z)

ε

− 16 + 16D0(z) − 16D1(z) + 6D2(z) − 8D3(z)

3

+ 12 log(1 − z) − 8 log2(1 − z)

]
, (11)

K (2)

NE,h(z) =
(αs

π

)2
[

− 2

ε3
+ 1 + 4 log(1 − z)

ε2

+ −5 + 2 log(1 − z) − 4 log2(1 − z)

ε
− 8

+ 10 log(1 − z) − 2 log2(1 − z) + 8

3
log3(1 − z)

]
.

(12)

In writing our results for K factors, we have chosen μ2
MS

= q2, we 
have omitted the overall factor of C2

F , which is common to all our 
results, and we have also omitted, for brevity, terms involving log-
arithms multiplied by transcendental constants: these terms can 
easily be generated and do not carry any new information. Inter-
estingly, we find that the plus distribution terms in Eq. (11) suffice 
to reproduce all corresponding terms in the exact NNLO Drell–Yan 
K -factor [67]. This means that the remaining regions may not con-
tribute any further LP logarithms. We will briefly comment below 
on the interesting interplay between soft and hard regions which 
is suggested by this result.
3.2. Collinear and anticollinear regions

By symmetry, the collinear and anticollinear regions must give 
the same contribution, after summing over all graphs in Fig. 1, 
and including those obtained via complex conjugation and via the 
interchange p ↔ p̄. The contribution from both regions from dia-
grams (a)–(d) is then

K (2),a−d
NE,c+c̄ (z) =

(αs

π

)2
[
− 1

2ε2
+ 3 log(1 − z)

2ε
+ 1

− 9

4
log2(1 − z)

]
. (13)

As expected, we find only a contribution starting at NE level. Note 
however that it is not true that individual diagrams have only 
next-to-soft contributions in the collinear region. For example, di-
agrams (a), (c), (f) and (h) separately contain plus distribution 
terms. This, however, is an artifact of having used the Feynman 
gauge, and eikonal terms cancel when diagrams are summed. Like-
wise, the contribution from diagrams (e)–(h) read

K (2),e−h
NE,c+c̄ (z) =

(αs

π

)2
[

− 1

2ε2
+ −5 + 6 log(1 − z)

4ε
− 5

2

+ 15

4
log(1 − z) − 9

4
log2(1 − z)

]
. (14)

3.3. Soft region

In this region, all integrals are scaleless, and thus vanish in 
dimensional regularisation. This is consistent with the fact that 
eikonal terms have already been included in the hard region, ac-
cording to its definition in Eq. (8). So far as divergent terms are 
concerned, this collocation of singular terms is not surprising: it 
is well known that one can shift singularities from the IR to the 
UV by using dimensional regularisation as we have just done, tak-
ing literally the vanishing of scaleless integrals without attempting 
to distinguish the ultraviolet and the infrared singularities they 
contain. It is interesting that, at least within the framework of a 
method-of-regions analysis, this mechanism appears to extend to 
finite, and even integrable, contributions to the cross section. Note 
finally that this result is compatible with the approach taken in 
Ref. [30], where the ‘hard’ function is taken to implicitly include 
the soft function, in order to extract the more interesting collinear 
contributions.

3.4. The complete abelian-like real–virtual NNLO K factor

Combining results from the preceding subsections, the complete 
K factor arising from NNLO abelian-like real–virtual contributions, 
as computed by the method of regions, is given by

K (2)
E+NE(z)

=
(αs

π

)2
[

2D0(z) − 2

ε3

+ −4D1(z) + 3D0(z) + 4 log(1 − z) − 6

ε2

+ 16D2(z) − 24D1(z) + 32D0(z) − 16 log2(1 − z) + 52 log(1 − z) − 49

4ε
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− 8D3(z)

3
+ 6D2(z) − 16D1(z) + 16D0(z) + 8

3
log3(1 − z)

− 29

2
log2(1 − z) + 103

4
log(1 − z) − 51

2

]
. (15)

We find that Eq. (15) reproduces exactly the result obtained in 
Ref. [65], when the relevant diagrams are isolated,3 including 
z-independent terms. This is an interesting fact: it reinforces the 
conjecture that one can carry out the calculation, either with the 
method of regions or in a factorised approach, as a systematic ex-
pansion in powers of the distance from threshold, 1 − z, including 
not only functions that are (integrably) singular at threshold, but 
also polynomial dependence.

Whilst fully integrated results are useful in obtaining the fi-
nal NLP threshold logarithms in the K -factor, it is also useful to 
characterise what happens before the real emission integration is 
carried out. This is the subject of the following section.

4. Loop effects and the soft expansion

In this section, we examine our results in light of the recently 
proposed next-to-soft theorems of Ref. [37,39]. In particular, we fo-
cus on the issue, pointed out in Ref. [52], and further discussed in 
Refs. [45,48,51], that potential loop corrections to tree-level next-
to-soft factors depend on the order in which the dimensional reg-
ularisation and soft expansions are carried out.

In Section 3 we presented results for the hard, collinear and 
anticollinear regions, after the integration over the phase space of 
the real gluon (with momentum k2) had already been performed. 
Implicit in the above calculation, but not immediately visible in the 
final result, is the fact that the different regions are weighted by 
different scale-related factors. For example, after integration over 
k1 (but before integration over k2), the contribution from the hard
region can be written schematically as

Hard:
(2p · p̄)−ε

ε2

[
E + NE + . . .

]
+O

(
ε−1

)
, (16)

where with E and NE we denote terms at O(k−1
2 ) and O(k0

2) re-
spectively, and the ellipsis denotes higher-order terms in the soft 
expansion. Likewise, the collinear region contributes terms of the 
form4

Collinear:
(−2p · k2)

−ε

ε

[
NE + . . .

]
+O

(
ε0

)
, (17)

while the anticollinear region is naturally obtained by replacing p
with p̄. That these particular scales arise is not surprising: they are 
the only scales that survive in each given region. It is now clear 
why the eikonal terms are reproduced from the hard region in this 
formalism: these terms must arise from the soft-collinear factori-
sation formula, in which the relevant hard, soft and jet functions 
cannot depend on the scales (p ·k2) and (p̄ ·k2), as they are defined 
without reference to an extra emission. Interestingly, the collinear 
regions depends on z through

(−2p · k2)
−ε ∼ (1 − z)−ε, (18)

3 Note that separate results for the double-real emission and for the real–virtual 
contribution to the NNLO Drell–Yan cross sections are not available in the litera-
ture: we have carried out an independent calculation of the relevant diagrams [54]. 
One may furthermore verify that combining Eq. (15) with the results of Ref. [21], 
and with the appropriate mass-factorisation counterterms, reproduces the complete 
result of Ref. [65].

4 As mentioned above, the presence of NE terms only in Eq. (17) is the effect of 
a cancellation of eikonal terms which are present in individual diagrams.
and the same dependence arises in the anti collinear region, 
through

(−2p̄ · k2)
−ε ∼ (1 − z)−ε . (19)

This dependence is responsible for the pattern of NLP threshold 
logarithms in Eqs. (13) and (14), which is generated as follows. 
The phase space for the real gluon emission contains a further z
dependent factor [(1 − z)/z]1−2ε (see for example [65]), so that the 
k2 integration leads to a result of the form

(1 − z)−3ε

ε2
= 1

ε2
− 3

2

log(1 − z)

ε
+ 9

2
log2(1 − z), (20)

where the additional power of ε−1 arises after carrying out the 
phase space integration. Eq. (20) carries exactly the pattern of NLP 
threshold logarithms observed in Eqs. (13) and (14), after mul-
tiplying by the appropriate normalisation. It is clear that terms 
proportional to (p · k2)

−ε play a crucial role in order to correctly 
reproduce the known Drell–Yan K -factor at NLP accuracy.

The factor (p · k2)
−ε is very interesting from the point of view 

of the soft expansion in powers of k2. Such a factor would be ab-
sent if one performed the soft expansion before the dimensional 
regularisation expansion, and it is clear from individual Feynman 
diagrams such as that of Eq. (4) why this is the case: carrying out 
the soft expansion before the ε expansion amounts to expanding 
the integrand before integration over the virtual momentum k1. 
This, for example, replaces the mixed denominator according to

1

(p − k1 − k2)2
→ 1

(p − k1)2
, (21)

so that logarithmic dependence on (p · k2) can no longer occur in 
the final result: only logarithmic dependence on p · p̄, which is 
still present as a scale in the denominator, can arise. This obser-
vation fixes the order in which these expansions must be carried 
out: to get the right answer, one must integrate over virtual mo-
menta before expanding in soft momentum.5 Note that the only 
terms which are “problematic” from the point of the view of the 
soft expansion (i.e. that depend on the sequential order of the soft 
and ε expansions) are those involving overall powers of (p · k2)

−ε

or (p̄ · k2)
−ε . These arise exclusively from the (anti-)collinear re-

gions, which is not surprising: in the hard region, one may neglect 
the scales (p · k2) and (p̄ · k2) with respect to the hard scale p · p̄, 
leading to a power-like suppression of next-to-soft effects. That 
the collinear region leads to a breakdown of the Low–Burnett–
Kroll theorem [28,29], due to the absence of a hard scale, is well-
known, and was first pointed out by Del Duca [30]. It can also be 
understood from an effective field theory point of view [59]. Fur-
thermore, the need to first perform the dimensional regularisation 
expansion has been recently discussed in Ref. [48]. Here, though, 
we see a concrete example of the impact of this effect on any sys-
tematic treatment of threshold corrections.

5. Discussion

In this paper, we have performed a case study of threshold ef-
fects in Drell–Yan production at next-to-leading power. We focused 
in particular on reproducing known logarithmic contributions to 
the real–virtual part of the NNLO K -factor, from the point of view 
of a threshold expansion: this is the first order at which there is an 
interplay between real and virtual gluons, so that collinear singu-
larities may interfere with the soft expansion. As a consequence, 

5 More precisely, one is allowed to neglect terms proportional to k2 in the nu-
merators of loop integrands. One must, however, keep denominators intact, since 
they can lead to logarithmic dependence.
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our study allowed us also to investigate potential loop correc-
tions to recently proposed next-to-soft theorems [37,39]. Our main 
goal, however, is to provide useful data for the development of a 
generally applicable resummation formalism for NLP threshold log-
arithms, building on previous efforts [14–17,21–23]. We used the 
method of regions [55,71,72] to separate out contributions from 
the hard, soft and (anti)-collinear momentum configurations. A 
first gratifying result is that a systematic application of this method 
beyond leading power allowed us to reproduce exactly all corre-
sponding terms in the exact calculation, including z-independent 
contributions. This confirms that all threshold logarithms to this 
accuracy arise from soft or collinear singularities, and reinforces 
the idea of using the threshold expansion as a systematic tool for 
the analysis of QCD cross sections, both at finite orders [26,56] and 
in the context of threshold resummation. Our analysis also shows 
that collinear regions contribute logarithmic dependence on soft 
momenta, which affects the NLP threshold logarithms one obtains 
after integration over the real gluon phase space. This fixes the or-
der in which the dimensional regularisation and soft expansions 
must be carried out, as was also discussed in Refs. [30,45,48,51,
52]. It is instructive and useful to see exactly how this mechanism 
operates in the familiar context of Drell–Yan production.

Our results will be instrumental in the construction of a sys-
tematic all-order treatment of threshold effects at NLP accuracy: 
they carry the basic information that the interplay between soft 
and collinear effects is considerably more intricate at NLP than it 
is in standard leading-power soft-collinear factorisation. A system-
atic treatment will require the introduction of new operator matrix 
elements, incorporating the effects of non-factorising soft radia-
tion from collinearly enhanced configurations, as first suggested in 
Ref. [30]. Work to implement these considerations in a systematic 
way, beginning with the relatively simple case of electroweak an-
nihilation processes, is in progress.

6. Note added

After the completion of this work, the calculation of the Higgs 
production cross section in the gluon fusion channel, in the large-
top-mass approximation, at N3LO and NLP, was completed and 
presented in Refs. [73,74].
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