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Genòmica, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona; 7CIBERONC, Barcelona, Spain; 8Pathology Department, IRCCS-Istituto
Tumori ‘Giovanni Paolo II’, Bari; 9Tumor Immunology Unit, Dipartimento per la Promozione della Salute e Materno Infantile “G. D’Alessandro”, University of Palermo,
Palermo; 10Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna; 11Pathology Section,
Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, Bari; 12Department of Hematology, Azienda Ospedaliero Universitaria
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Background: Gene expression profiling (GEP) studies recognized a prognostic role for tumor microenvironment (TME) in
diffuse large B-cell lymphoma (DLBCL), but the routinely adoption of prognostic stromal signatures remains limited.

Patients and methods: Here, we applied the computational method CIBERSORT to generate a 1028-gene matrix
incorporating signatures of 17 immune and stromal cytotypes. Then, we carried out a deconvolution on publicly available GEP
data of 482 untreated DLBCLs to reveal associations between clinical outcomes and proportions of putative tumor-infiltrating
cell types. Forty-five genes related to peculiar prognostic cytotypes were selected and their expression digitally quantified by
NanoString technology on a validation set of 175 formalin-fixed, paraffin-embedded DLBCLs from two randomized trials. Data
from an unsupervised clustering analysis were used to build a model of clustering assignment, whose prognostic value was also
assessed on an independent cohort of 40 cases. All tissue samples consisted of pretreatment biopsies of advanced-stage
DLBCLs treated by comparable R-CHOP/R-CHOP-like regimens.

Results: In silico analysis demonstrated that higher proportion of myofibroblasts (MFs), dendritic cells, and CD4þ T cells
correlated with better outcomes and the expression of genes in our panel is associated with a risk of overall and progression-
free survival. In a multivariate Cox model, the microenvironment genes retained high prognostic performance independently of
the cell-of-origin (COO), and integration of the two prognosticators (COOþ TME) improved survival prediction in both
validation set and independent cohort. Moreover, the major contribution of MF-related genes to the panel and Gene Set
Enrichment Analysis suggested a strong influence of extracellular matrix determinants in DLBCL biology.
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Conclusions: Our study identified new prognostic categories of DLBCL, providing an easy-to-apply gene panel that powerfully
predicts patients’ survival. Moreover, owing to its relationship with specific stromal and immune components, the panel may
acquire a predictive relevance in clinical trials exploring new drugs with known impact on TME.
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Introduction

Reliable prognostic stratification at diagnosis and improvement

of first-line/salvage strategies represent unmet clinical needs in

diffuse large B-cell lymphoma (DLBCL). Gene expression

profiling (GEP) studies suggested that patients’ outcome is

entwined with a remarkable heterogeneity of both malignant

clone and cellular/extracellular microenvironment, and

unveiled prognostic cell-of-origin (COO) subtypes of DLBCL,

namely GCB and ABC, driven by peculiar oncogenic pathways

[1]. This prompted the adoption of immunohistochemical

algorithms or NanoString-based assays, as GEP surrogates, for

prognostic purpose [2].

Parallel studies emphasized the prognostic role of genes related

to tumor microenvironment (TME) [3]. Lenz et al. demonstrated

that the ‘Stromal-1’ and ‘Stromal-2’ signatures correlate with

good and poor outcome in R-CHOP-treated patients, respective-

ly, independently of COO [4]. However, these signatures failed in

recognizing definite TME cytotypes with prognostic significance,

and their practical use was limited by the lack of standardized

assays applicable to formalin-fixed, paraffin-embedded (FFPE)

samples. Despite several attempts [5–9], neither specific, nor re-

producible TME biomarkers have been thus far identified, cap-

able of predicting patients’ outcome.

Computational methods of GEP deconvolution allow high-

sensitivity discrimination of cell subsets within complex tissues,

as tumors [10]. Such approaches provide quantitative/functional

information also on rare tumor-infiltrating elements, offering the

unprecedented opportunity of reanalyzing available genomic

data to explore correlation between TME cells and clinical

outcomes.

Here, we applied the computational algorithm CIBERSORT to

GEP datasets from pretreatment DLBCL biopsies to draw a map

of immune and stromal components of TME. We identified

microenvironmental prognostic genes and used the NanoString

technology to develop a reproducible assay, which was validated

in independent DLBCL cohorts.

Materials and methods

Patient cohorts

We selected two homogeneous cohorts of 175 and 40 patients

with newly diagnosed, nodal DLBCL, not otherwise specified, from

two multicenter trials (RHDS0305 [11] and DLCL04 [12]) and three

monocenter ‘real-life’ selections from IRCCS - Istituto Tumori

‘Giovanni Paolo II’ of Bari (Italy), S. Orsola-Malpighi Policlinic,

Bologna (Italy) and Hospital Clinic, Barcelona (Spain), respectively.

Characteristics of the patients and selection criteria are shown in

Figure 1A and detailed in supplementary methods, available at Annals

of Oncology online.

CIBERSORT analyses, NanoString-based gene quan-
tification and building of a Random Forest-based
model for survival prediction

A CIBERSORT-based deconvolution of GEP datasets (GSE10846 and
GSE34171) from 482 DLBCLs was carried out using a 1028-gene signa-
ture matrix customized by normalizing referenced microarray data
(Affymetrix) from 13 immune and 4 stromal cell types, according to
CIBERSORT instructions (https://cibersort.stanford.edu/; supplemen-
tary Tables S1 and S2, available at Annals of Oncology online). DLBCL
cases were stratified in ‘good’ and ‘poor’ outcome subgroups [according
to overall survival (OS)] and only those cell types showing significantly
different infiltration percentages between groups were analyzed. Then,
the most expressed genes (log2 transformed >12) as well as those identi-
fied by a Random Forest analysis as the ‘top-30’ from each cytotype pro-
vided a selection of 150 genes (supplementary Figures S1 and S2,
available at Annals of Oncology online). Among these, only genes showing
a significantly different expression between ‘poor’ and ‘good’ subgroups
were incorporated in a definitive prognostic panel of 45 TME-related
genes (supplementary Figure S3 and Table S3, available at Annals of
Oncology online). Further details are provided in supplementary meth-
ods, available at Annals of Oncology online. The prognostic performance
of the panel was firstly assessed by an unsupervised clustering and sur-
vival analysis of 218 cases homogeneously selected (stages III–IV) from
the GSE10846 dataset [4] (fresh/frozen biopsies). Gene expression levels
were extracted from a normalized matrix and a long-rank test used to
compare OS in the clustered samples.

Expression of TME genes and COO were assessed by the nCounter
Analysis System (NanoString Technology) on the 175 FFPE cases
enrolled in trials. Also, 79 of these cases were randomly selected as tech-
nical replicate using a second nCounter Analysis System located at a dif-
ferent Institute. Details are described in supplementary methods,
available at Annals of Oncology online.

A Random Forest classifier was built on the expression of TME genes
from the validation set and applied to 40 ‘real life’ cases to perform a
TME clustering and survival analysis. Finally, a composite model of sur-
vival prediction was developed by integrating the prognostic contribu-
tion of both COO and TME data, and stratifying cases (both validation
and ‘real life’ cohorts) into high, intermediate and low risk categories.
The overall study design is outlined in Figure 1B.

Gene set enrichment analysis and in situ staining

Gene set enrichment analysis (GSEA) [13] was run on three independent
GEP datasets (GSE10846 [4], GSE34171 [14], and GSE12195 [15]).
Immunohistochemical and immunofluorescence studies were carried
out on representative DLBCL cases (supplementary methods, available at
Annals of Oncology online).

Statistical analysis and risk categories

Principal component analysis (PCA) was carried out to distinguish cell
subsets in the customized matrix. Comparison between groups was carried
out by independent t-test (two tails, unequal variance) and Mann–
Whitney nonparametric test. PCA, Heatmaps, Kaplan–Meier estimator of
survival and P values were produced using ‘R’ statistical software. Long-
rank test was used to compare OS and progression-free survival (PFS)
among patients in different groups. Analysis of parameters included dis-
tance calculations by the Euclidian methodology; Ward’s method was
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applied for cluster aggregation. Multivariate and univariate analyses were
constructed through the Cox proportional hazards regression model.

Results

CIBERSORT-based enumeration of DLBCL-
infiltrating cell fractions has prognostic
significance

PCA confirmed that the customized matrix clearly distinguishes

two main cellular groups including immune cells of both lymph-

oid and myeloid derivation, and cells of mesenchymal origin, re-

spectively (supplementary Figure S1A, available at Annals of

Oncology online). However, among the lymphoid component a

variable degree of transcriptional overlap was expected between

tumor and B-lineage cells, as previously described [16]. In fact,

our analysis revealed that, among immune subsets, memory B

cells (as expected in a B-cell malignancy), natural killer (NK) acti-

vated cells, dendritic cells (DCs), CD4þ T cells, and M2-type

macrophages were the most represented cell fractions within

DLBCL microenvironment, whereas myofibroblasts (MFs) pre-

vailed among the mesenchymal cytotypes (supplementary Figure

S1B, available at Annals of Oncology online). When correlated to

clinical outcome, the cases with higher proportions of MFs, DCs,

and CD4þ T cells showed significantly longer OS (P¼ 0.002,

P¼ 0.02, and P¼ 0.004, respectively), whereas activated NK and

plasma cells (PCs) were more represented in patients with poorer

outcome (P¼ 0.001 for NK). Owing to the potential overlap be-

tween transcriptional programs of PCs and malignant B cells of

DLBCL, PCs were not included in subsequent in silico analyses.

Stratification according to median percentage of infiltration of

MFs, DCs, and CD4þ T cells confirmed their in silico prognostic

significance, since Kaplan–Meier curves indicated their direct

correlation with a longer OS. On the contrary, activated NK cells

correlated with a significantly shorter OS (supplementary Figure

S1C, available at Annals of Oncology online).

Development of a 45-gene microenvironment
panel

DLBCL cases were dichotomized according to the median infil-

tration percentage of cell types endowed with prognostic signifi-

cance in silico. Subsequent analyses provided a selection of 30

MF-, 10 DC-, and 5 CD4þ T-cell-related transcripts, which was

incorporated in a 45-gene microenvironment panel for the valid-

ation phase (supplementary Figures S2 and S3 and Tables S1–S3,

available at Annals of Oncology online). Moreover, a GSEA

showed a significant enrichment of genes biologically linked with

cytotypes consistent with the high expression of genes in our MF-

, DC- and CD4þ T-cell signatures (supplementary Table S4,

available at Annals of Oncology online), demonstrating that they

were representative of these prognostically relevant cell types.

The 45-gene microenvironment panel stratifies
DLBCL patients on both fresh/frozen- and FFPE-
derived RNA

Based on the expression of the 45 genes of the TME panel, an un-

supervised clustering analysis efficiently stratified cases from the

GSE10846 dataset in three distinct subgroups showing signifi-

cantly different OS (P< 0.0001) (supplementary Figure S4, avail-

able at Annals of Oncology online). Using the NanoString

technology on 175 FFPE biopsy samples of the validation cohort,

the unsupervised hierarchical clustering analysis stratified cases

into high, intermediate, and low gene expression clusters

(Figure 2A) comprising patients with significantly different OS

(Figure 2B) and PFS (Figure 2C). In particular, the cases with

lower gene expression (cluster 3) showed significantly worse sur-

vival (median 5-year OS and PFS of 60.7% and 58.9%, respective-

ly) than those at intermediate (cluster 2, 91.5% and 84.7%) and

higher expression (cluster 1, 83.2% and 73.2%). When stratified

according to the expression of specific cytotype-related genes, the

unsupervised clustering generated subgroups with similar prog-

nostic trend (supplementary Figure S5, available at Annals of

Oncology online). In fact, Kaplan–Meier curves showed signifi-

cantly different OS and PFS among expression clusters of MF-

related genes (supplementary Figure S5A, available at Annals of

Oncology online), whereas DC and CD4þ T-cell signatures identi-

fied subgroups with only significantly different OS (supplemen-

tary Figure S5B–C, available at Annals of Oncology online).

Notably, a Cox multivariate model of OS indicated that the prog-

nostic performance of the gene panel is independent of COO

classification and international prognostic index (IPI) score

(Figure 3A and supplementary Table S5, available at Annals of

Oncology online). Finally, the analytical validity of these results

was also confirmed by their inter-laboratory reproducibility sup-

ported by the analysis of 79 technical replicates using a

NanoString platform placed in a different laboratory (data not

shown).

Integration of TME- and COO-based data from 175 patients in

the validation cohort (supplementary Figure S6, available at

Annals of Oncology online) produced a survival model identifying

three different risk categories. The high-risk category includes

ABC cases belonging to cluster 3, showing the worst outcomes;

the intermediate-risk category comprises ABC patients assigned

to cluster 1 or 2, and GCB or unclassified to cluster 3, with longer

OS and PFS; and the low-risk category containing GCB or unclas-

sified cases belonging to cluster 1 or 2 (Figure 3B). The reliability

of this model was also assessed on 40 ‘real-life’ cases assigned to a

certain TME cluster by a Random-Forest-based model built on

the validation set. Interestingly, the risk categories produced an

efficient survival prediction also for real-life cases (Figure 3C),

which expectedly showed a global worse outcome compared with

clinical trial cases, probably since they lacked the same selection

procedure.

Taken together, these findings indicate that the microenviron-

ment gene panel retains an independent prognostic power that,

in combination with COO, acquires a remarkable capability of

survival prediction, identifying patients at extreme risk within

either the GCB or the unclassified or the ABC subsets.

Potential microenvironment determinants of
DLBCL prognostic categories

By applying GSEA, we found a significant enrichment of the

‘Stromal-1’ signature [4] in cases with higher MF infiltration

[normalized enrichment score (NES)¼ 1.60, false discovery rate

(FDR)¼ 0.06]. Such cases were also enriched in distinctive
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Figure 1. Characteristics of DLBCL patients in the study cohorts and overall study design. (A) Clinical data of patients form multicentric trials
and ‘real-life’ cohort. (B) GEP data from 482 fresh-frozen DLBCL biopsies were analyzed by CIBERSORT to obtain a set of prognostic cytotype-
related genes that were incorporated in a definitive 45-gene TME panel. The prognostic power of the panel was first assessed on 218
selected cases from the in silico cohort. Subsequent validation was carried out by NanoString technology on 175, FFPE samples from clinical
trial and 40 ‘real-life’ patients. In addition, 79 randomly selected cases from the clinical-trial validation cohort were analyzed on a second
NanoString Platform, as technical replicate. Based on the expression matrix from the 175 validation cases, a Random Forest classifier was built
to assign each of the 40 ‘real life’ cases to a certain gene expression cluster and perform survival analysis. Thus, a composite model of survival
prediction was developed by integrating the prognostic contribution of both TME and COO. FFPE, formalin-fixed paraffin embedded; CHT,
chemotherapy; ASCT, autologous stem cell transplantation; COO, cell-of-origin; IPI, international prognostic index; TME, tumor
microenvironment.
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transcriptional programs of fibroblastic reticular cells (FRCs)

and alpha-Smooth Muscle Actin (SMA)-expressing elements

(NES¼ 1.88, FDR¼ 0.01 and NES¼ 2.5, FDR< 10�4, respect-

ively) [17]. Consistently, the cases with higher alpha-SMA ex-

pression showed a significant enrichment of FRC genes

(supplementary Figure S7A, available at Annals of Oncology on-

line), and those with the highest MF infiltration were enriched in

genes implicated in extracellular matrix (ECM) remodeling (sup-

plementary Figure S7B, available at Annals of Oncology online).

We in situ analyzed the expression of proteins encoded by four

fronting genes of the MF signature, namely Fibronectin,

Collagen-I, Laminin, and Collagen-IV. Double-marker immuno-

fluorescence on representative DLBCLs belonging to different

clusters showed high variability in both distribution and intensity

of ECM markers (supplementary Figure S8, available at Annals of

Oncology online). In some cases, Fibronectin and Collagen-I

formed a diffuse interstitial meshwork, while in others they

mainly co-localized at perivascular foci. On the contrary,

Laminin and Collagen-IV distribution varied according to the

microvascular density. Also, the alpha-SMA staining revealed

higher densities of MF infiltration in samples from cases with fa-

vorable outcome (supplementary Figure S8, available at Annals of

Oncology online). Overall, the extreme variability of ECM protein

expression by in situ immunostaining does not support its use as

a reliable assay to surrogate the expression of the relative TME

prognostic genes.

Discussion

In a quite dogmatic view of DLBCL composition, the paucity of

TME suggests that malignant clones grow independently from

microenvironment stimuli [18]. Only few GEP studies [4, 5] in-

dicate that stromal signatures can predict survival, but the clinical
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application of such signatures is restrained by the lack of robust,

reproducible and cost-effective biomarkers. In addition, the

above-mentioned studies were mostly carried out on fresh or fro-

zen samples, which are not available in most patients.

Herein, we applied a computational strategy to reanalyse GEP

from whole-tissue biopsies and resolve in silico the cellular com-

ponents of DLBCL. We found that a prevalence of MFs, DCs, and

CD4 T cells and their gene signatures predict significantly longer

survival after chemoimmunotherapy. From a clinical point of

view, we capitalized GEP data to validate a new risk model that

purely reflects the cellular composition of TME and categorize

DLBCL patients in new COO-independent prognostic sub-

groups. Neither early-stage, nor high-grade ‘double hit’ patients

have been included in our validation cohorts to avoid

potential prognostic biases relying on low tumor burden or mo-

lecular aggressiveness of the disease. This emphasizes that current

COO classification may fail in discriminating subsets of patients

whose prognosis could be better predicted by a combined COO/

microenvironment assessment. We validated a NanoString-

based assay that provides simultaneous COO and TME informa-

tion, and a Random-Forest model to facilitate the assignment of

cases to a certain TME gene expression cluster in the clinical

practice.

From a biological point of view, our evidence raises key ques-

tions on the nature and role of stromal elements in the patho-

physiology of lymph nodes [19]. It is conceivable that cells

recognized by CIBERSORT as MFs belong to a resident pool of

FRCs, as immunologically specialized stromal elements [20].

Consistently, our signature includes genes encoding ECM mol-

ecules, as collagens (COL-1, -3, -4, -5, -6), proteoglycans and

glycoproteins (Lumican, Byglican, Laminin, Fibronectin,

SPARC), matrix metalloproteinases (MMPs), metallopeptidase

inhibitors (TIMP1, TIMP3), adhesion molecules (ALCAM,

AMICA1, Periostin), and regulators (TGFBI). GSEA indicated

a significant enrichment of FRC-related genes involved in ECM

organization in highly MF-infiltrated cases. The ‘Stromal-1’

signature [4] was also found enriched in these cases, suggesting

that a specific pool of stromal cells, not clearly recognizable by

GEP, may functionally influence the DLBCL biology. This is

consistent with the attitude of stromal elements to react to in-

flammatory stimuli and remodel the microarchitecture of

lymph nodes to orchestrate the immune response [17, 21].

Monocyte/macrophage precursors, B and T lymphocytes as

well as other antigen-presenting cells (APCs), including DCs,

are recruited within tumor milieu by gradients of chemokines,

cytokines and growth factors [22] and traffic within the lymph

node along collagen scaffolds mainly regulated by stromal cells

[23, 24]. In turn, fibroblastic and immune cells participate to

the local synthesis of soluble mediators active on APCs, effector

cells and tumor cells themselves [25]. Some of the CD4þ T-cell-

and DC-related genes in our panel, namely ALCAM, AMICA1,

COL4A2, TNFSF13B, and SMAD1, encode activators of T lym-

phocytes and APCs via adhesion and paracrine mechanisms.

Our findings suggest a functional relationship between MFs,

ECM and immune system components in DLBCL, where the

TME heterogeneity reflects unique paracrine and spatially

organized interactions between tumor, mesenchymal and spe-

cialized subsets of immune cells [23]. This crosstalk, which

may involve other lymphoid and myeloid cells as PCs, CD8þ T

cells, NKs, and T-reg contributes to the immune control of the

malignant clone and impacts the efficacy of chemo-

immunotherapy [26, 27].

At a clinical level, the prognostic impact of CD4þ T cells and

DCs in DLBCL has been previously reported [7], emphasizing the

idea that patients with consensual activation of stromal and im-

mune elements benefit from an empowered immune-

surveillance in terms of survival. This study, however, remains

uninformative about whether peculiar quantitative/functional

assets of nontumor cells in lymph nodes precedes or follows

tumor initiation and growth. Also, the role of some ECM pro-

teins, such as SPARC, remains ambiguous since it may exert op-

posite influence on the tumor clone [28]. It controls the

inflammatory milieu by remodeling ECM and its experimental

deficiency promotes lymphomagenesis in vivo [29], suggesting

again that peculiar stromal/immune programs may affect tumor

behavior. Limitations of our study also include its retrospective

nature and the small ‘real-life’ sample size. Further validation of

the proposed model is required on large-scale, prospective

cohorts of patients at different disease stages or selected accord-

ing to the more recent molecular variants of DLBCL [30].

On the other hand, our findings indicate that the assessment

of certain transcriptional programs, as those detected by our

gene panel, may provide more reliable prognostic information

than immunohistochemistry surrogates. We believe that com-

putational approaches decoding ‘big’ genomic data, followed by

proper validation, may capture functional processes linked to

definite cytotypes within TME, and NanoString technology for

gene quantification from FFPE tissues is particularly advanta-

geous in term of feasibility, reproducibility and costs, and wor-

thy of being routinely included in the diagnostic/prognostic

workflow. Finally, although this work does not provide definite

therapeutic targets related to TME, it prompts future investiga-

tions to assess whether our model can be predictive for patients

treated by novel drugs with broad modulatory properties on

TME.
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Avançats’ of the Generalitat de Catalunya.

Disclosure

EC has received research funding and has been an expert testi-

mony from Gilead Sciences, has received honoraria for educa-

tional activities from Janssen, has been advisor for Takeda, and

named inventor on two patents filed by the National Cancer

Institute: ‘Methods for selecting and treating lymphoma types’

licensed to NanoString Technologies, and ‘Evaluation of mantle

cell lymphoma and methods related thereof’. SAP has received

honoraria for educational activities from Takeda. All remaining

authors have declared no conflicts of interest.

References

1. Alizadeh AA, Eisen MB, Davis RE et al. Distinct types of diffuse large B-

cell lymphoma identified by gene expression profiling. Nature 2000;

403(6769): 503–511.

2. Scott DW, Wright GW, Williams PM et al. Determining cell-of-origin

subtypes of diffuse large B-cell lymphoma using gene expression in

formalin-fixed paraffin-embedded tissue. Blood 2014; 123(8):

1214–1217.

3. Rosenwald A, Wright G, Chan WC et al. The use of molecular profiling

to predict survival after chemotherapy for diffuse large-B-cell lymphoma.

N Engl J Med 2002; 346(25): 1937–1947.

4. Lenz G, Wright G, Dave SS et al. Stromal gene signatures in large-B-cell

lymphomas. N Engl J Med 2008; 359(22): 2313–2323.

5. Alizadeh AA, Gentles AJ, Alencar AJ et al. Prediction of survival in diffuse

large B-cell lymphoma based on the expression of 2 genes reflecting

tumor and microenvironment. Blood 2011; 118(5): 1350–1358.

6. Meyer PN, Fu K, Greiner T et al. The stromal cell marker SPARC predicts

for survival in patients with diffuse large B-cell lymphoma treated with

rituximab. Am J Clin Pathol 2011; 135(1): 54–61.

7. Keane C, Gill D, Vari F et al. CD4 þ Tumor infiltrating lymphocytes are

prognostic and independent of R-IPI in patients with DLBCL receiving

R-CHOP chemo-immunotherapy. Am J Hematol 2013; 88(4): 273–276.

8. Abdou AG, Asaad N, Kandil M et al. Significance of stromal-1 and

stromal-2 signatures and biologic prognostic model in diffuse large B-

cell lymphoma. Cancer Biol Med 2017; 14(2): 151.

9. Cardesa-Salzmann TM, Colomo L, Gutierrez G et al. High microvessel

density determines a poor outcome in patients with diffuse large B-cell

lymphoma treated with rituximab plus chemotherapy. Haematologica

2011; 96(7): 996–1001.

10. Newman AM, Liu CL, Green MR et al. Robust enumeration of cell sub-

sets from tissue expression profiles. Nat Methods 2015; 12(5): 453–457.

11. Cortelazzo S, Tarella C, Gianni AM et al. Randomized trial comparing R-

CHOP versus high-dose sequential chemotherapy in high-risk patients

with diffuse large B-cell lymphomas. J Clin Oncol 2016; 34(33):

4015–4022.

12. Chiappella A, Martelli M, Angelucci E et al. Rituximab-dose-dense

chemotherapy with or without high-dose chemotherapy plus autologous

stem-cell transplantation in high-risk diffuse large B-cell lymphoma

(DLCL04): final results of a multicentre, open-label, randomised, con-

trolled, phase 3 study. Lancet Oncol 2017; 18(8): 1076–1088.

13. Subramanian A, Tamayo P, Mootha VK et al. Gene set enrichment ana-

lysis: a knowledge-based approach for interpreting genome-wide expres-

sion profiles. Proc Natl Acad Sci USA 2005; 102(43): 15545–15550.

14. Monti S, Chapuy B, Takeyama K et al. Integrative analysis reveals an

outcome-associated and targetable pattern of p53 and cell cycle deregula-

tion in diffuse large B cell lymphoma. Cancer Cell 2012; 22(3): 359–372.

15. Compagno M, Lim WK, Grunn A et al. Mutations of multiple genes

cause deregulation of NF-jB in diffuse large B-cell lymphoma. Nature

2009; 459(7247): 717–721.

16. Gentles AJ, Newman AM, Liu CL et al. The prognostic landscape of genes

and infiltrating immune cells across human cancers. Nat Med 2015;

21(8): 938–945.

17. Fletcher AL, Acton SE, Knoblich K. Lymph node fibroblastic reticular

cells in health and disease. Nat Rev Immunol 2015; 15(6): 350–361.

18. Scott DW, Gascoyne RD. The tumour microenvironment in B cell lym-

phomas. Nat Rev Cancer 2014; 14(8): 517–534.

19. Fletcher AL, Heng TSP. Lymph node stroma join the cancer support net-

work. Cell Death Differ 2016; 23(12): 1899–1901.

20. Malhotra D, Fletcher AL, Astarita J et al. Transcriptional profiling of

stroma from inflamed and resting lymph nodes defines immunological

hallmarks. Nat Immunol 2012; 13(5): 499–510.

21. Sangaletti S, Chiodoni C, Tripodo C, Colombo MP. The good and bad of

targeting cancer-associated extracellular matrix. Curr Opin Pharmacol

2017; 35: 75–82.

22. Mueller CG, Boix C, Kwan W-H et al. Critical role of monocytes to sup-

port normal B cell and diffuse large B cell lymphoma survival and prolif-

eration. J Leukoc Biol 2007; 82(3): 567–575.

23. Cacciatore M, Guarnotta C, Calvaruso M et al. Microenvironment-cen-

tred dynamics in aggressive B-cell lymphomas. Adv Hematol 2012; 2012:

1–12.

24. von Andrian UH, Mempel TR. Homing and cellular traffic in lymph

nodes. Nat Rev Immunol 2003; 3(11): 867–878.
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