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BACKGROUND: Congenital heart diseases (CHDs) are the most common congenital anomaly. The causes of CHDs are largely 
unknown. Higher prenatal body mass index (BMI), smoking, and alcohol consumption are associated with increased risk of 
CHDs. Whether these are causal is unclear.

METHODS AND RESULTS: Seven European birth cohorts, including 232 390 offspring (2469 CHD cases [1.1%]), were included. 
We applied negative exposure paternal control analyses to explore the intrauterine effects of maternal BMI, smoking, and 
alcohol consumption during pregnancy, on offspring CHDs and CHD severity. We used logistic regression, adjusting for con-
founders and the other parent’s exposure and combined estimates using a fixed-effects meta-analysis. In adjusted analyses, 
maternal overweight (odds ratio [OR], 1.15 [95% CI, 1.01–1.31]) and obesity (OR, 1.12 [95% CI, 0.93–1.36]), compared with nor-
mal weight, were associated with higher odds of CHD, but there was no clear evidence of a linear increase in odds across the 
whole BMI distribution. Associations of paternal overweight, obesity, and mean BMI were similar to the maternal associations. 
Maternal pregnancy smoking was associated with higher odds of CHD (OR, 1.11 [95% CI, 0.97–1.25]) but paternal smoking 
was not (OR, 0.96 [95% CI, 0.85–1.07]). The positive association with maternal smoking appeared to be driven by nonsevere 
CHD cases (OR, 1.22 [95% CI, 1.04–1.44]). Associations with maternal moderate/heavy pregnancy alcohol consumption were 
imprecisely estimated (OR, 1.16 [95% CI, 0.52–2.58]) and similar to those for paternal consumption.

CONCLUSIONS: We found evidence of an intrauterine effect for maternal smoking on offspring CHDs, but no evidence for higher 
maternal BMI or alcohol consumption. Our findings provide further support for the importance of smoking cessation during 
pregnancy.
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Congenital heart diseases (CHDs) are the most 
common congenital anomaly (CA), affecting 6 
to 8 per 1000 live births and 10% of stillbirths, 

and are the leading cause of death from CAs.1 Many 
patients with CHD present with sequela from surgi-
cal intervention and late complications related to the 
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anomaly, resulting in health problems that persist into 
adulthood.2,3 The causes of CHDs are largely un-
known, but intrauterine mechanisms may play a role 
in their underlying pathophysiological characteristics.4 
Identifying modifiable risk factors for CHDs is import-
ant for improving causative understanding and devel-
oping preventive interventions.

Several modifiable maternal characteristics have 
been found to be associated with increased risk 
of CHDs, including maternal prepregnancy/early-
pregnancy body mass index (BMI),5–7 smoking,8 and 

alcohol9 consumption in pregnancy. Whether these 
are causal is unclear. A recent systematic review and 
meta-analysis of the association of BMI with CHDs 
found that risk of CHDs was higher in those whose 
mothers were overweight or obese at the start of 
pregnancy, compared with those who were normal 
weight. Results for underweight mothers were not 
reported,5 but a large cohort study consisting of 
>2  000  000 singletons found no clear association 
for maternal underweight status and CHDs.6 These 
results from conventional multivariable approaches 
may be explained by residual confounding because 
of incomplete identification or adjustment for con-
founders. Maternal active smoking8 and maternal 
exposure to alcohol9 were both associated with off-
spring CHDs in recent meta-analyses. However, 68% 
and 69% of the studies within the meta-analyses (for 
maternal smoking and alcohol, respectively) did not 
adjust for confounders. Therefore, those studies 
showing associations for smoking and alcohol can-
not determine whether these reflect the magnitude of 
a causal effect or are biased by confounding.

Negative control studies are widely used in labora-
tory science and in recent years have become increas-
ingly used to explore causal effects in epidemiology.10 
The idea behind negative control studies is that either 
the exposure or the outcome in the real experiment 
is substituted for a negative control exposure (or out-
come) that is not a plausible risk factor but would have 
similar sources of bias or confounding as in the main 
experiment. In epidemiology, this approach has been 
primarily used for determining the extent to which hy-
pothesized intrauterine and early life exposures might 
be associated with outcomes as a result of residual 
confounding.10,11 Negative parental exposure control 
studies are used for this purpose. This involves com-
paring the confounder-adjusted associations of mater-
nal pregnancy exposures with the offspring outcome 
of interest to similarly adjusted associations of the 
same characteristics (negative controls) in the father. 
The assumptions of this approach are that: (1) mea-
sured and unmeasured confounders influence the 
exposures in the same direction and with a similar 
magnitude in mothers and fathers and (2) there is no 
plausible reason why the exposure in the father would 
affect the offspring outcome (or at a minimum the pa-
ternal association would be much weaker than in the 
mother). In the present study, we are assuming that 
paternal BMI, smoking, and alcohol cannot causally 
influence offspring CHDs through intrauterine mech-
anisms. Under these assumptions, if there is a causal 
intrauterine effect of any of the maternal pregnancy ex-
posures, we would expect to see a maternal-specific 
association, with no (or a much weaker) association 
with the equivalent paternal exposure. Similar asso-
ciations in mothers and fathers would suggest that 

CLINICAL PERSPECTIVE

What Is New?
•	 Previous studies showing associations of higher 

maternal body mass index, smoking, and alco-
hol consumption in pregnancy were not able to 
establish causality.

•	 Using parental negative control analyses, our 
study provides stronger evidence that mater-
nal pregnancy smoking may increase offspring 
congenital heart disease risk via intrauterine 
mechanisms, whereas it does not suggest ma-
ternal overweight or obesity increases risk.

What Are the Clinical Implications?
•	 Emphasizing the potential adverse effect of 

smoking on congenital heart diseases might 
help in supporting women of reproductive age 
not to start smoking and women who are smok-
ing at the start of pregnancy to be encouraged 
to quit.

•	 Understanding the mechanisms through which 
maternal smoking influences congenital heart 
disease risk could identify novel targets for pre-
vention beyond smoking cessation.

Nonstandard Abbreviations and Acronyms

ABCD	 The Amsterdam Born Children and 
Their Development Study

ALSPAC	 Avon Longitudinal Study of Parents 
and Children

BASELINE	 Cork Scope Baseline Study
BiB	 Born in Bradford
CA	 congenital anomaly
DNBC	 Danish National Birth Cohort
MoBa	 Norwegian Mother, Father and Child 

Cohort Study
NINFEA	 Nascita e Infanzia: gli Effetti 

dell’Ambiente (Birth and Childhood: 
Effects of the Environment)
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these are largely driven by residual confounding. It is 
plausible that passive smoking from fathers could in-
fluence offspring outcomes via intrauterine exposure; 
however, we would expect a much weaker associa-
tion for fathers. As proof of concept, maternal smoking 
relates strongly to lower birth weight (a known causal 
intrauterine effect), whereas paternal smoking has a 
much weaker association; and when the 2 are mutu-
ally adjusted, the maternal association remains strong, 
whereas the weak paternal association attenuates to 
the null.10,12

We aimed to explore the causal intrauterine effects 
of maternal pregnancy BMI, smoking, and alcohol on 
CHDs using data from the Horizon 2020 LifeCycle 
project.13 As well as the negative parental control study 
providing scope to explore residual confounding, the 
use of a large existing collaboration of birth cohorts 
adds benefit to this study in comparison to previous 
studies. First, both offspring with and without CHDs 
are from the same underlying populations and have 
been selected for inclusion and assessed in identical 
ways. Second, most studies of risk factors for CHDs 
are case-control studies, and these dominate meta-
analysis results. These have advantages in that they 
have large numbers of CHD cases and hence greater 
statistical power than most cohorts, but they are prone 
to selection bias as response rates in controls are com-
monly low, and in some studies controls are selected 
from hospitals or clinics and do not reflect exposure 
status in the population from which the cases came.14 
Furthermore, case-control studies are susceptible to 
information bias because of differential recall and re-
porting of the exposure between cases and controls.14 
Third, we have harmonized data on all exposures, con-
founders, and outcomes. Fourth, we have large num-
bers, with 232 390 participants in total and 2469 CHD 
cases. Last, the ethos of the LifeCycle collaboration is 
that all studies contribute to each research question 
unless they do not have data on either exposure or 
outcome, meaning publication bias is minimized.

METHODS
Requests to access the data used in this study may 
be sent individually to the included cohorts. We have 
included details on how researchers can access each 
cohort at the end of the article under “data access.” 
Materials supporting the findings of this study are avail-
able from the corresponding author on reasonable 
request.

Inclusion Criteria and Participating 
Cohorts
This study was part of the Horizon2020 LifeCycle 
Project. LifeCycle is a collaboration of largely European 

birth cohorts that aims to determine the impact of early-
life stressors on risk of developing adverse cardiovascu-
lar/metabolic, respiratory, cognitive, and mental health 
outcomes (http://lifec​ycle-proje​ct.eu).13 A LifeCycle 
cohort was eligible for inclusion if it had information 
on CHD in the offspring ascertained by any method 
and data on at least one of the following: (1) moth-
er’s prepregnancy/early-pregnancy BMI, (2) maternal 
smoking during pregnancy, (3) maternal alcohol con-
sumption during pregnancy, or (4) the same exposures 
(1–3) measured in the father at a similar time to their 
pregnant partners. Eligible LifeCycle cohorts could be 
from any geographical area and with participants from 
any ethnic background. In total, 7 cohorts were eligi-
ble, and all participated: ABCD (The Amsterdam Born 
Children and Their Development Study),15 ALSPAC 
(Avon Longitudinal Study of Parents and Children),16,17 
BASELINE (Cork Scope Baseline Study),18 BiB (Born in 
Bradford) study,19 DNBC (Danish National Birth Cohort) 
study,20 MoBa (Norwegian Mother, Father and Child 
Cohort Study),21,22 and NINFEA (Nascita e Infanzia: gli 
Effetti dell’Ambiente [Birth and Childhood: Effects of the 
Environment]) study.23,24 Individual cohort descriptions 
can be found in Data S1. We excluded multiple births 
from the study population because they differ from sin-
gle births for CA outcomes.25,26 Some previous studies 
have excluded infants with any known chromosomal 
or genetic defects on the assumption that modifiable 
risk factors are unlikely to contribute in the presence of 
known causes. We have not made these exclusions in 
our main analyses because it is plausible that CHD in 
children with these complex syndromes is also influ-
enced by the modifiable exposures we explore herein. 
Furthermore, from a public health and clinical perspec-
tive, we believe it is useful to know effects for all CHD 
cases. In additional analyses, we explore whether their 
removal alters our main results.

BMI, Smoking, and Alcohol 
Measurements
We used harmonized LifeCycle data for exposure and 
confounder data, with the exclusion of paternal alco-
hol consumption, which had not been harmonized by 
LifeCycle when we started this project.27 ABCD and 
BASELINE were not part of the core LifeCycle cohorts 
and therefore not part of phase 1 harmonized data that 
we used herein. We harmonized the data for these co-
horts to resemble the harmonized LifeCycle variables. 
Cohort-specific information on methods of data collec-
tion can be found in Table S1.

LifeCycle-harmonized maternal BMI used mea-
sured or self-reported prepregnancy/early-pregnancy 
weight and height. Prepregnancy weight was priori-
tized, and if not available, the earliest pregnancy mea-
sures were used. Paternal BMI was similarly reported 
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(by the father or their pregnant partner) or measured, 
and we prioritized the timing to be prepregnancy or as 
early as possible in their partners pregnancy. BMI was 
used as a continuous variable for the main analyses. 
In cohorts that had >100 CHD cases, we also catego-
rized BMI as underweight (BMI <18.5 kg/m2), normal 
weight (BMI 18.5–<25  kg/m2), overweight (BMI 25–
<30 kg/m2), and obese (BMI ≥30 kg/m2). ALSPAC, BiB 
study, DNBC study, and MoBa contributed to these 
analyses.

We used 2 LifeCycle smoking variables for mater-
nal and paternal smoking at the time of pregnancy: (1) 
smoking in the first trimester (yes/no) where this was 
available, otherwise any smoking during pregnancy 
(yes/no); and (2) categorized into nonsmokers, light 
smokers (<10 cigarettes smoked per day), and heavy 
smokers (≥10 cigarettes per day) throughout the en-
tire pregnancy. Paternal smoking was categorized as 
“any smoking (yes/no)” at the time of their partners 
pregnancy.

We used 2 LifeCycle variables for maternal alcohol 
consumption: (1) binary (yes/no), which like smoking 
prioritized the first trimester if available but was oth-
erwise any alcohol intake during pregnancy; and (2) 
categorized into nondrinkers (none), light drinkers (>0 
and <3  units per week), and moderate/heavy drink-
ers (≥3 units per week) during pregnancy. Two studies 
(ALSPAC and MoBa) had data on paternal alcohol con-
sumption in pregnancy and thus were able to harmo-
nize variables relating to paternal alcohol for this project. 
We generated one variable, categorized as: nondrink-
ers, light drinkers (>0 and <7 units per week), or moder-
ate/heavy drinkers (≥7 units per week) (Data S2).

The rationale for prioritizing maternal pregnancy 
smoking and alcohol during the first trimester is be-
cause fetal cardiac development starts early in preg-
nancy and much of the development occurs in the first 
trimester.28 A total of 47% and 96% of mothers had 
measures specifically in the first trimester for smoking 
and alcohol, respectively.

CHD Outcomes
Information on CHDs was retrieved from a variety of 
sources, depending on the cohort. ALSPAC, BiB study, 
DNBC study, and NINFEA study had International 
Classification of Diseases, Tenth Revision (ICD-10), 
coded data. BASELINE had individual CHD diagnoses 
assigned by a cardiologist based on echocardiogra-
phy. For ABCD and MoBa, we had a nonspecific CHD 
diagnosis (yes/no). Data in ABCD, BASELINE, DNBC 
study, and NINFEA study were restricted to liveborn 
infants, whereas ALSPAC, BIB study, and MoBa in-
cluded stillbirths.

In the ABCD cohort, data on CHDs in liveborn chil-
dren were obtained from 3 different sources: (1) the 

infant questionnaire, which was filled out by the mother 
at an average infant age of 12.9 weeks; (2) the ques-
tionnaire filled out by the mother at an average child 
age of 5.1  years; and (3) clinical data of the Youth 
Health Care Registration. In the ALSPAC cohort, cases 
were obtained from a range of data sources, includ-
ing health record linkage and questionnaire data up 
until age 25 years following European Surveillance of 
Congenital Anomalies guidelines.29 In BASELINE, at 
2 months, mothers were asked of any medical prob-
lems and/or referrals. If a baby had been referred to 
a specialist, he/she was checked by a cardiologist to 
see if he/she had results from an echocardiogram with 
exact diagnoses reported. Further diagnoses up until 
age 12 years were identified through records from the 
echocardiogram. In the BiB study cohort, there were 2 
separate sources to identify CAs. Both sources were 
used in this study: (1) CAs up to 5 years of age, identi-
fied in primary care records by Bishop et al,30 following 
European Surveillance of Congenital Anomalies guide-
lines. ICD-10 codes were mapped to clinical term-V3 
codes before extraction from primary care records. (2) 
Data extracted from the Yorkshire and Humber CA reg-
ister database. Data were ICD-10 coded. All of these 
were confirmed postnatally. In the DNBC study, all di-
agnoses of CAs (according to European Surveillance 
of Congenital Anomalies guide 1.4, sections 3.2 and 
3.3) up until the age of 15 years were extracted from 
the Danish National Patient Register, which is linked 
to the cohort data.31,32 Diagnoses were ICD-10 coded. 
These data were restricted to children born alive. In 
MoBa, information on whether a child had a CHD or 
not was obtained though linkage to the Medical Birth 
Registry of Norway. All maternity units in Norway must 
notify births to the Medical Birth Registry of Norway. In 
the NINFEA study cohort, CHDs were reported in the 
second questionnaire, compiled 6 months after birth. 
Mothers compiled a checklist that included prespec-
ified anomalies. If the child died or had any surgery 
performed in the first 6 months, the cause of death and 
type of surgery were also checked to see if any CA was 
reported. Data were coded using ICD-10 codes by an 
experienced pediatrician and were reassessed by an 
independent physician. Further details of the sources 
of data for CHDs in each cohort are provided in Data 
S3.

In all studies, our main outcome was any CHD. Where 
data allowed (ie, when we had full ICD-10 codes), any 
CHD was defined according to European Surveillance 
of Congenital Anomalies, which excludes isolated pat-
ent ductus arteriosus and peripheral pulmonary artery 
stenosis in preterm births (gestational age, <37 weeks) 
(Table S2). We also categorized cases into severe CHD 
(heterotaxia, conotruncal defect, atrioventricular septal 
defect, anomalous pulmonary venous return, left ven-
tricle outflow tract obstruction, right ventricle outflow 
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tract obstruction, or other complex defects) and the 
remainder as nonsevere CHD (patent ductus arterio-
sus [in full-term infants], valvular pulmonary stenosis, 
ventricular septal defect, atrial septal defects, unspec-
ified septal defects, isolated valve defects, other spec-
ified heart defects, or unspecified heart defects)33,34 
(Table S2).

Confounders
Analyses were adjusted for several confounders 
based on their known or plausible influence on ≥1 
of the maternal pregnancy exposures and on CHD: 
maternal age (all exposures), parity (all exposures), 
ethnicity (all exposures), socioeconomic position (all 
exposures), smoking (for BMI and alcohol analyses), 
and alcohol use (for BMI and smoking analyses). In 
the paternal negative control analyses, confounders 
were similar: fathers’ age (all exposures), number 
of children (all exposures), ethnicity (all exposures), 
socioeconomic position (all exposures), smoking 
(for BMI and alcohol), and alcohol use (for BMI and 
smoking). We also adjusted for offspring sex in all 
adjusted analyses. We used educational attainment 
for both parents’ measures of socioeconomic posi-
tion. Full details of our selection and harmonization of 
confounders are provided in Data S4.

Statistical Analysis
Analyses were conducted in either R (version 3.6.1) 
or Stata (version 16). An analysis plan was written 
and published in October 2019, with any subsequent 
changes and their rationale documented in the pub-
lication.35 All associations between exposures and 
CHDs were performed within participating stud-
ies using logistic regression (binary for main analy-
ses and multinomial for CHD severity analyses). In 
the 2 largest cohorts (DNBC study and MoBa), we 
assessed deviation from linearity in our models in 
the BMI analyses by running our main confounder-
adjusted model with BMI split into fifths. We ran 
regression models with these fifths as 4 indicator 
variables (nonlinear) and compared this model with 
one in which the fifths were treated as a continuous 
(score) variable. We used a likelihood ratio compari-
son to compare these 2 models. All analyses were 
run (1) unadjusted; (2) adjusted for maternal/paternal 
age, socioeconomic position, parity, ethnicity, smok-
ing and/or alcohol (depending on exposure), and off-
spring sex; and (3) adjusted for all confounders (as 
in 2) as well as the other parent’s exposure. In the 
adjusted models, studies were asked to adjust for as 
many of the confounders as possible. All analyses 
were performed with maximal numbers (ie, numbers 
included in each model will vary because of miss-
ing data on exposure/outcome or confounders). In a 

sensitivity analysis, we repeated our main analyses 
using complete-case data to assess whether missing 
data were influencing the results.

For the main negative control analyses (ie, 
where we directly compared maternal with paternal 
exposure-CHD associations), we used multivariable 
logistic regression in which both maternal and pater-
nal exposures were adjusted for the other parent’s 
exposure (model 3 above). This produces a maternal 
association that adjusts for maternal confounders as 
well as the paternal exposure, and similarly a paternal 
association adjusting for paternal confounders and 
the maternal exposure. The rationale for mutually ad-
justing for the other parent’s exposure is that parental 
BMI, smoking, and alcohol may relate to each other 
through assortative mating and/or convergence of 
behaviors that occurs over time in couples.36 Causal 
structural graphs together with simulated data show 
failure to undertake this mutual adjustment will bias 
the negative control analysis results.37 Also, paternal 
exposures may have some intrauterine impact (eg, via 
passive smoking or paternal support for the mother 
to reduce alcohol and have a normal BMI during her 
preconceptual period or in pregnancy).38 Mutual ad-
justment for maternal and paternal confounders was 
necessary for ensuring both parental results were 
fully adjusted. Comparisons between maternal and 
paternal associations from this model were assessed 
by visually comparing the 2 results. In addition, sta-
tistical evidence of any differences was obtained by 
calculating differences in log odds of CHD between 
the fathers’ and mothers’ associations and report of 
the corresponding P value (Pdifference), under the null 
hypothesis that there is no difference between the 
maternal and paternal estimate.

Analyses were conducted separately in each study 
and then meta-analysed using the meta package in 
R.39 All the data used in the present study originated 
from European birth cohorts, with broadly similar meth-
ods, and therefore, we assumed that they were each 
estimating an association from the same underlying 
populations and used a fixed-effects meta-analysis. To 
explore this assumption, differences between studies 
were assessed using I2 and Cochrane Q P values for 
heterogeneity.40

Additional Analyses
We repeated the main and subgroup (by CHD sever-
ity) analyses after excluding infants with any known 
chromosomal/genetic or maternal drug defects. 
Methods of data collection and definition of these 
variables can be found in Table S3. We also repeated 
analyses in mothers only including those with smok-
ing data in the first trimester. Folic acid supplemen-
tation has been shown to lower risk of birth defects 
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and adverse pregnancy outcomes.41,42 We repeated 
the adjusted maternal analyses with additional ad-
justment for first-trimester folic acid supplementation 
(yes/no).

RESULTS
Participant Characteristics
Figures  S1 through S7 show flowcharts designat-
ing the assignment of participants into analysis 
groups for each cohort. In total, 7 cohorts, including 
232 390 offspring with 2469 CHD cases (1.1%), were 
included. The prevalence of CHD was close to 1% in 
most cohorts, with the lowest being in ABCD (0.4%) 
and the highest in DNBC study (1.4%) (Table). The 
Table shows the distributions of maternal and pater-
nal characteristics for each cohort. Mean maternal 
age across the cohorts was broadly similar (all late 
20s to early 30s). Mean BMI was also similar across 
the cohorts, but proportions in different categories 
varied, with the lowest prevalence of prepregnancy/
early-pregnancy obesity seen in NINFEA study (5%) 
and the highest in BiB study (21%). There was also 
variation in maternal smoking and alcohol consump-
tion across the cohorts, with notably high levels of 
both smoking (25% and 26%) and alcohol (55% and 
45%) in ALSPAC and DNBC study, respectively. 
Fathers were generally older than mothers and more 
likely to smoke and drink alcohol, with the overall 
patterns of between-study differences being similar 
to those for the mothers. There were differing lev-
els of missing data in each cohort (summarized in 
Table S4 and also illustrated in cohort-specific flow 
charts [Figures  S1 through S7]). To check whether 
missing data influenced any of our results, we report 
complete-case analysis results for our main analyses 
in the Supplementary Material. Overall, complete-
case results from meta-analyses were comparable 
(Tables S5 through S8). Below, we present our main 
results separated by exposure. We include supple-
mentary results for BMI (Figures  S8 through S20, 
Tables S9 and S10), smoking (Figures S21 through 
S27), and alcohol (Figures  S28 through S32 and 
Table S11) analyses in the Supplementary Material.

BMI and CHDs
In confounder and other parent BMI-adjusted analyses, 
there was no difference in the odds of offspring CHD per 
1-kg/m2 difference in maternal BMI (odds ratio [OR], 1.00; 
95% CI, 0.99–1.02) or paternal mean BMI (OR, 1.01; 95% 
CI, 0.99–1.03) (Pdifference=0.43), with both being close to 
the null (Figure  1A). Unadjusted and confounder-only 
adjusted results did not differ notably from those pre-
sented in Figure 1 (Figure S8). The odds of CHD did not 
clearly increase linearly in mothers or fathers in DNBC 

study or MoBa (Figures S9 and S10). Analyses of con-
tinuously measured BMI with CHD cases separated into 
nonsevere and severe showed similar null associations 
for both mothers and fathers (Figure S11).

In analyses of BMI categories, there were increased 
odds of offspring CHD in overweight and obese moth-
ers and fathers compared with those of a normal BMI, 
with similar magnitudes of association in both parents 
(Pdifference overweight=0.65 and Pdifference obese=0.83) 
(Figure  1B). Underweight mothers had an increased 
odds of offspring CHD, whereas underweight fathers 
had a decreased odds of offspring CHD. Because of 
small numbers of underweight parents, particularly 
fathers, however, results were imprecise, with wide 
CIs, and there was no statistical evidence for between 
parental differences for underweight (Pdifference under-
weight=0.27). Individual study results for BMI catego-
ries are shown in Figures  S15 through S17. Positive 
parental associations of overweight and obesity were 
also observed for both nonsevere (Figure  1C) and 
severe (Figure  1D) CHDs, with similar magnitudes of 
association in mothers and fathers. Individual study re-
sults for BMI categories and CHD severity are shown 
in Figures S18 through S20.

Smoking and CHDs
In confounder and other parental smoking-adjusted 
analyses, maternal smoking in pregnancy was asso-
ciated with increased odds of CHD (OR, 1.11; 95% 
CI, 0.97–1.25), whereas paternal smoking at the time 
of their partners pregnancy did not increase odds 
of offspring CHD (OR, 0.96; 95% CI, 0.85–1.07) 
(Pdifference=0.09) (Figure  2A). When removing off-
spring with a chromosomal/genetic defect, there was 
stronger statistical evidence of a difference between 
maternal and paternal smoking (Pdifference=0.02) 
(Figure  2B). Results for unadjusted analyses were 
consistent with the confounder and mutual par-
ent smoking-adjusted result, whereas confounder-
only analyses were slightly attenuated for maternal 
smoking (Figure S21). Maternal smoking results were 
similar when analyses were restricted to studies with 
confirmed first-trimester smoking (Figure  S22). A 
positive association between maternal smoking and 
offspring CHD was also seen with nonsevere CHDs 
(OR, 1.22; 95% CI, 1.04–1.44), although not with se-
vere CHDs (OR, 0.90; 95% CI, 0.69–1.17) (Figure 2C 
and 2D and Figure S23). When we analyzed maternal 
smoking frequency categories (ie, none, light, and 
heavy smoking), the results did not support an ef-
fect of heaviness over and above what we saw with 
any smoking (Figure S24). The maternal and paternal 
associations for these categories were statistically 
consistent (Pdifference=0.25 and Pdifference=0.38 for light 
and heavy smoking, respectively).
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Figure 1.  Associations between maternal and paternal prepregnancy/early-pregnancy body mass index (BMI) and 
offspring congenital heart disease (CHD).
A, Odds ratios (ORs) of CHD for a 1-unit (1-kg/m2) difference in maternal BMI (top) and paternal BMI (bottom) in each study and 
pooled across studies. B, The pooled (across ALSPAC [Avon Longitudinal Study of Parents and Children], BiB [Born in Bradford] 
study, DNBC [Danish National Birth Cohort] study, and MoBa [Norwegian Mother, Father and Child Cohort Study]) results for maternal 
(top) and paternal (bottom) BMI categories. Results are ORs of CHD in comparison to normal BMI. C and D, ORs of nonsevere CHD 
and severe CHD, respectively, for BMI categories in comparison to normal BMI (pooled across ALSPAC, BiB study, DNBC study, 
and MoBa). All results are adjusted for confounders (depending on cohort: maternal and paternal age, education, ethnicity, smoking, 
alcohol, maternal parity, and offspring sex) as well as the other parent’s BMI. The study-specific results for BMI categories are shown 
in Figures S15 through S20. In D, there were too few cases with paternal BMI data to report results. These analyses are from the 
LifeCycle project, a consortium that brings birth cohorts together and harmonizes individual-level data for their use in research.13 
All LifeCycle studies with eligible data were included in this study. More information on each can be found as follows: ABCD (The 
Amsterdam Born Children and Their Development Study),15 ALSPAC,16,17 BASELINE (Cork Scope Baseline Study),18 BiB study,19 
DNBC study,20 MoBa,21,22 and NINFEA (Nascita e Infanzia: gli Effetti dell’Ambiente [Birth and Childhood: Effects of the Environment]) 
study.23,24
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Alcohol and CHDs
Because of lack of relevant paternal data, we were 
unable to undertake negative control analyses for any 
first-trimester alcohol consumption. Maternal-only 
associations for that exposure are presented herein, 
followed by the negative control analyses for levels of 
alcohol intake at any time in pregnancy. With adjust-
ment for all confounders, any maternal first-trimester 

alcohol consumption was not associated with odds 
of offspring CHD in meta-analyses from 5 cohorts 
(OR, 1.03; 95% CI, 0.94–1.13) (Figure  S28). There 
was a small increase in risk when restricting these 
analyses to nonsevere CHD (OR, 1.07; 95% CI, 0.93–
1.22), although CIs included the null. Associations for 
severe CHD were null (OR, 0.91; 95% CI, 0.73–1.12) 
(Figure S29).

Figure 2.  Associations in each study and pooled across studies for maternal and paternal pregnancy smoking and offspring 
congenital heart disease (CHD).
Maternal first-trimester smoking was prioritized and used where possible. A, Odds ratios (ORs) of any CHD for maternal smoking 
during pregnancy (top) and paternal smoking (bottom). B, ORs of any CHD after removing those with a chromosomal/genetic defect 
from the study population. C and D, ORs of nonsevere CHD and severe CHD, respectively. All results are adjusted for confounders 
(depending on cohort: maternal and paternal age, education, ethnicity, alcohol, maternal parity, and offspring sex) as well as the other 
parent’s smoking. These analyses are from the LifeCycle project, a consortium that brings birth cohorts together and harmonizes 
individual-level data for their use in research.13 All LifeCycle studies with eligible data were included in this study. More information 
on each can be found as follows: ABCD (The Amsterdam Born Children and Their Development Study),15 ALSPAC (Avon Longitudinal 
Study of Parents and Children),16,17 BASELINE (Cork Scope Baseline Study),18 BiB (Born in Bradford) study,19 DNBC (Danish National 
Birth Cohort) study,20 MoBa (Norwegian Mother, Father and Child Cohort Study),21,22 and NINFEA (Nascita e Infanzia: gli Effetti 
dell’Ambiente [Birth and Childhood: Effects of the Environment]) study.23,24
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In confounder and other parental alcohol-adjusted 
analyses, there was weak evidence of an association 
between maternal light alcohol intake and CHDs (OR, 
1.15; 95% CI, 0.90–1.48), which appeared stronger 
than that seen for paternal alcohol (OR, 1.01; 95% CI, 
0.63–1.62), although with no strong statistical support 
for a difference (Pdifference=0.63). Associations for mod-
erate/heavy intake were consistent for maternal and 
paternal alcohol (Pdifference=0.90), with point estimates 
showing weak positive associations, but with wide CIs 
that included the null (Figure 3A and 3B). We did not 
test associations between levels of alcohol intake and 
CHD severity because of small numbers. Because 
of the small number of cohorts having paternal alco-
hol data, we also show confounder-adjusted models 

(without mutual paternal adjustment) for maternal al-
cohol intake (Figure 3C). The point estimate for ma-
ternal light drinking was close to the null and that for 
heavy drinking suggested it resulted in increased risk 
of offspring CHD. However, both of these estimates 
had wide CIs because of relatively few women report-
ing drinking (particularly heavily) during pregnancy. 
Results in unadjusted analyses were unchanged 
(Figure S30).

Between-Study Heterogeneity and 
Additional Analyses
We have included heterogeneity statistics (I2 and 
Pheterogenity) in all figures. Analyses of continuously 

Figure 3.  Associations in each study and pooled across studies for maternal and paternal pregnancy alcohol intake and 
any offspring congenital heart disease (CHD).
A, Confounder and other parent’s alcohol adjusted odds ratios (ORs) of any CHD for maternal light drinking during pregnancy (top) 
and paternal light drinking (bottom). B, Confounder and other parent’s alcohol-adjusted ORs of any CHD for maternal moderate/heavy 
drinking during pregnancy (top) and paternal moderate/heavy drinking (bottom). C, Confounder-adjusted ORs of any CHD for maternal 
light drinking during pregnancy (top) and maternal moderate/heavy drinking (bottom). Confounders (depending on cohort): maternal 
and paternal age, education, ethnicity, smoking, maternal parity, and offspring sex (and other parental alcohol intake in A and B). 
Definitions for maternal/paternal alcohol intake are described in the Methods section. These analyses are from the LifeCycle project, 
a consortium that brings birth cohorts together and harmonizes individual-level data for their use in research.13 All LifeCycle studies 
with eligible data were included in this study. More information on each can be found as follows: ABCD (The Amsterdam Born Children 
and Their Development Study),15 ALSPAC (Avon Longitudinal Study of Parents and Children),16,17 BASELINE (Cork Scope Baseline 
Study),18 BiB (Born in Bradford) study,19 DNBC (Danish National Birth Cohort) study,20 MoBa (Norwegian Mother, Father and Child 
Cohort Study),21,22 and NINFEA (Nascita e Infanzia: gli Effetti dell’Ambiente [Birth and Childhood: Effects of the Environment]) study.23,24
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measured BMI and severe CHDs in additional analyses 
(Figure S14) and BMI analyzed as categories with se-
vere CHDs (Figures S19 and S20) were the only results 
where we found any statistical evidence of heteroge-
neity. Across the remaining analyses for all exposures, 
there was no strong evidence of between-study het-
erogeneity. Removal of those with any known genetic/
chromosomal defects from the study population did 
not notably alter any main or severity subgroup analy-
ses for BMI and alcohol consumption. However, for 
smoking, removal of offspring with a chromosomal/
genetic defect increased the magnitude of the asso-
ciation for maternal smoking and CHDs (OR, 1.15; 95% 
CI, 1.01–1.32), and slightly decreased that for paternal 
smoking (OR, 0.93; 95% CI, 0.83–1.05) (Pdifference=0.02) 
(Figure 2B). Furthermore, the positive association be-
tween maternal smoking and nonsevere CHDs was 
slightly stronger when removing those with chromo-
somal/genetic defects from the study population (OR, 
1.25; 95% CI, 1.05–1.49) (Figure S26). All maternal re-
sults were materially unchanged after additional ad-
justment for folic acid supplementation (Figures  S12, 
S27, and S32).

DISCUSSION
In this large multicohort study, we found evidence that 
maternal pregnancy smoking may increase offspring 
CHD risk via intrauterine mechanisms and that this 
may be driven by a specific effect on nonsevere CHDs. 
We did not find robust evidence to suggest a causal 
intrauterine effect of higher maternal prepregnancy/
early-pregnancy mean BMI or overweight or obesity 
on offspring CHD risk. Nor did we find evidence of an 
intrauterine effect of alcohol consumption on offspring 
CHD risk, although we acknowledge that for alcohol, 
we had less data and limited statistical power. To our 
knowledge, this is the first study to use a parental 
negative control method to explore whether maternal 
exposures have a causal intrauterine effect on off-
spring CHDs or whether associations are explained by 
residual confounding, which would generate a similar 
association for parental exposures.

We found increased odds of offspring CHD in 
mothers who were overweight and obese. This is con-
sistent with the most recent systematic review and 
meta-analysis, which included 2 416 546 participants 
(57 172 with offspring CHD) from 19 studies and re-
ported increased risk of any offspring CHD in women 
who were overweight or obese during pregnancy.5 
However, adjustment for confounders was poor, with 
10 of the 19 included studies not providing information 
on confounder adjustment or not adjusting for any con-
founders. With more stringent confounder adjustment 
and the findings from a negative control study, our re-
sults suggest that the increased risk of offspring CHD 

in overweight and obese mothers is largely the result of 
residual confounding. We also found that mothers who 
were underweight at the start of pregnancy were at 
increased risk of having offspring with CHD, whereas 
underweight in fathers appeared to be protective of 
offspring CHD. There were 9537 underweight mothers 
(4.4%) but only 680 underweight fathers (0.4%) in our 
study population, making the paternal analyses impre-
cise and our negative control analyses lacking in power 
to reliably identify parental differences. The recent sys-
tematic review mentioned above did not report on as-
sociations of underweight with CHDs because too few 
studies looked at this.

A large Swedish linkage study of >2 million single-
ton live born infants (born between 1992 and 2012, 
with 28  628 CHD cases) has explored associations 
with maternal underweight, as well as overweight and 
3 grades of obesity.7 It is difficult to directly compare 
the results from that study with ours as we only present 
results for any CHD (and CHD stratified by severity), 
whereas they only present associations of maternal 
BMI with specific subtypes of CHDs. The fact that we 
lack statistical power in our study to explore associa-
tions with specific subtypes is a limitation. However, 
magnitudes of associations of BMI categories and 
nonsevere CHDs in our study appear to be broadly 
consistent with several nonsevere defects in the large 
Swedish study, including atrial septal defects and iso-
lated valve defects. In their study, risks of offspring 
CHD were similar in underweight compared with nor-
mal weight women for all types of CHD (analyzed indi-
vidually), except for mitral to tricuspid valve defects (14 
cases), pulmonary valve defects (24 cases), and right 
ventricular defects (5 cases), where there was some 
evidence of increased prevalence with underweight. 
However, these estimates were based on small num-
bers and hence imprecise, with CIs including the null. 
Although our findings suggest maternal underweight 
might increase offspring risk of CHDs, we lacked power 
to rule out residual confounding in our negative control 
analyses, and as noted above the large Swedish study 
had limited power to determine precise effects in rela-
tion to maternal underweight for specific types of CHD 
where point estimates suggested potentially important 
magnitudes of increased risk. Other studies that we 
are aware of have not explored associations of mater-
nal underweight. Thus, any possible effect of maternal 
underweight on CHD risk remains unclear. As the prev-
alence of CHD in some low- and middle-income coun-
tries is high,43 and these countries currently experience 
the double burden of undernutrition and overnutrition, 
we would argue that further exploration of any possible 
impact of maternal underweight is warranted.

Consistent with our findings, a recent meta-analysis 
of >8  million participants (137  575 CHD cases) from 
125 studies reported positive associations between 
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maternal pregnancy smoking and offspring CHDs.8 
There was substantial heterogeneity (I2=89%) in their 
pooled results, and only 68% of the included studies 
report adjustment for confounders. The authors also 
report positive associations between maternal passive 
smoking and paternal active smoking with offspring 
CHDs, both of which (somewhat unexpectedly) had 
stronger magnitudes of association than results from 
maternal active smoking. Our results, including the neg-
ative control study, add to the previous research findings 
by providing more robust evidence that these associa-
tions for maternal smoking are unlikely to be explained 
by residual confounding and are potentially causal. 
Other research has shown that pregnancy smoking is a 
risk factor for orofacial clefts.44 The prevalence of CHD 
is around 1% in the general population, as shown in our 
study, yet in those with orofacial clefts, CHD prevalence 
rates of up to 20% have been reported.45 Both the heart 
and the palate develop during early pregnancy, around 
weeks 5 to 9. Therefore, it is plausible that smoking in 
early pregnancy could disturb common biological path-
ways in these conditions. We found that the associa-
tions for maternal smoking were possibly largely driven 
by an effect in nonsevere CHDs, with the association 
strengthening when those with chromosomal or genetic 
defects were removed. Previous research has reported 
positive associations between maternal smoking and 
septal defects, in particular for atrial septal defects,46–48 
which are defined as nonsevere according to the clas-
sification system used in our study. However, caution 
is needed in interpreting results by subgroups based 
on severity. First, one of the largest studies (MoBa) did 
not have information on case severity and so the se-
verity subgroup analyses are based on different partici-
pants and have lower statistical power than in the main 
analyses. Second, even had all studies been included 
in the severity analyses, by definition, subgroup analy-
ses have limited power in comparison to main analyses. 
Third, and more important, caution is required with any 
subgroup analyses as it is common for multiple charac-
teristics to differ between subgroups in addition to the 
subgroup defining feature (herein, CHD severity).

In confounder-adjusted analyses, maternal alcohol 
consumption in the first trimester of pregnancy was not 
associated with offspring CHD. There was some evi-
dence that maternal moderate or heavy alcohol con-
sumption any time in pregnancy was associated with 
increased risk of offspring CHD. Although associations 
between mothers and fathers light, moderate, and 
heavy alcohol consumption, compared with none, were 
statistically consistent, only 2 cohorts (80 627 partici-
pants, 703 with offspring CHD) had alcohol information 
on fathers around the time of their partners pregnancy. 
Associations for fathers in particular were imprecise, 
with wide CIs. Two recent meta-analyses found con-
sistent modest increases in risk of offspring CHD in 

mothers reporting alcohol consumption in pregnancy 
(OR, 1.11 [95% CI, 0.96–1.29]49 and OR, 1.16 [95% CI, 
1.05–1.27]9). Although the first of these concluded “no 
association,” it can be seen that the results for the 2 
are consistent, and the larger sample size of the sec-
ond has increased precision. Of note, the second of 
these studies also explored paternal consumption 
and found increased risk of offspring CHD related to 
fathers’ alcohol consumption (OR, 1.44 [95% CI, 1.19–
1.74]).9 Although the OR for fathers’ consumption sug-
gests a stronger effect, the CIs are wide, and the result 
is statistically consistent with that for mothers’ alcohol 
consumption. As in our study, there were fewer studies 
with data on paternal alcohol consumption around the 
time of their partners pregnancy. Taken together with 
our findings, these suggest that positive associations 
of maternal alcohol consumption with offspring CHD 
may be attributable to residual confounding rather than 
a causal intrauterine effect.

The key strengths of this study are its large sample 
size, the use of a negative paternal exposures control 
study, and the pooling of results from several cohort 
studies that are less prone to selection bias that can 
occur in case-control studies and are not selected on 
the basis of publication, but on being part of an existing 
collaboration. The latter reduces the risk of publication 
bias as studies were included if they had data and not 
on the basis of (published) results. This also allowed us 
to explore replication across studies, and the consis-
tency of findings between studies in our main analyses 
adds confidence to our conclusions.

The use of harmonized data from LifeCycle is a 
strength that limits between-study heterogeneity. 
However, harmonizing data across several studies, as 
we have done in LifeCycle, can mean that some vari-
ables lose detail. Herein, that is particularly relevant for 
the exposure and confounding variables. For example, 
we were not able to explore pack weeks of smoking 
across the entire pregnancy. Simplified confounder 
measurements, such as Western versus non-Western 
for ethnicity, could result in residual confounding if 
more specific ethnic groups have strong influences 
on exposure and outcome. Furthermore, there were 
other confounders that we considered, including type 
1/pre-existing diabetes mellitus and physical activity, 
but had too few numbers (diabetes mellitus) across all 
cohorts or too few studies with data (physical activity) 
to include. However, we aimed to address any form of 
residual confounding in our paternal negative control 
analyses. Under the assumption that adjusted for but 
poorly measured (eg, ethnicity) or unadjusted for (eg, 
physical activity) confounders influence paternal expo-
sures in the same direction and to the same extent as 
in mothers, observing parental consistency of associa-
tion implies that the maternal association is influenced 
by residual confounding.
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We were not able to fully harmonize outcome data, 
with the key differences between studies being the 
extent to which they only included cases that were 
diagnosed antenatally or at birth or whether they in-
cluded cases later in life. MoBa (N=101  975 partici-
pants and N=879 cases) only had cases diagnosed 
antenatally or around the time of birth, with the remain-
ing cohorts having diagnoses beyond antenatal care, 
ranging from 6  months to 25  years. Many previous 
studies have only included cases diagnosed at birth 
or early infancy. They, and the cohorts included herein 
that only have these early life cases, may be biased 
by outcome misclassification (ie, the offspring who 
would have been diagnosed later in life are treated as 
not having CHD). This is an important point for consid-
eration because although most CHDs are identified in 
utero or at birth, many are diagnosed after discharge 
from hospital during childhood or even adulthood.50 
Therefore, it is reassuring that our main results are 
largely consistent across studies. In confounder and 
other parent-adjusted smoking analyses, the weakest 
association was found in the MoBa cohort. It is likely 
that we missed some nonsevere cases in MoBa, which 
were diagnosed later in life. Given that we demonstrate 
the smoking results were largely driven by nonsevere 
CHDs, this could have biased MoBa (and therefore 
meta-analysis) results toward the null.

The negative control analyses assume that fac-
tors that would confound the maternal exposure-
offspring CHD associations would have a similar 
magnitude and direction of confounding for the equiv-
alent paternal associations, irrespective of whether 
the confounders are measured or if measured how 
accurately and precisely they are measured. This is 
likely to be true for paternal negative control expo-
sure studies, as used herein.10,11 Both maternal and 
paternal BMI, smoking, and alcohol consumption 
could have preconceptual effects via influences on 
gametes, including epigenetic changes. Any such 
effects would plausibly differ between mothers and 
fathers, and for the mother would be in addition to 
potential intrauterine effects, such that we may still 
expect stronger maternal associations. Furthermore, 
there is little conclusive evidence of effects of fac-
tors, such as smoking, on gametes that do not 
render them infertile but are sufficient to influence 
embryo development and hence CHDs, as such 
studies are difficult in humans. Heart development 
occurs in utero (specifically in early pregnancy), and 
we would expect passive paternal smoke inhalation 
to expose the fetus to a lower level of exposure than 
active maternal smoking. As proof of concept, pa-
ternal smoking does not associate with offspring 
birth weight or fetal growth parameters (assessed 
by repeated ultrasound), in contrast to maternal 
smoking, which has marked effects.12 It is possible 

that potential differences in misreporting smoking 
and alcohol consumption between mothers and fa-
thers could produce spurious parental differences. 
Pregnant women are likely to underreport whether 
they smoke or drink alcohol and the amount they 
smoke or drink, because of the social stigma of 
these, particularly in recent decades. As the report 
of alcohol and smoking in the LifeCycle cohorts was 
collected early in pregnancy, it is likely to be random 
in relation to an offspring CHD as the vast majority 
would not have been diagnosed. Hence, this under-
reporting would be expected to attenuate any true 
effect of smoking/alcohol on CHD toward the null. 
This misclassification is less likely in fathers. Thus, 
the specific positive association of maternal smoking 
on CHDs and its difference to the paternal associa-
tion may be underestimated.

Finally, only 47% of mothers with smoking data in 
our study had this specifically during the first trimes-
ter. Paternal smoking was defined as smoking around 
the time of pregnancy, with no specific trimester mea-
surements. However, although amount smoked may 
change across pregnancy, it is highly likely that any 
smoking in later trimesters is a strong proxy for smoking 
in the first trimester. More important, we have shown 
that our results using only maternal first-trimester smok-
ing are consistent with our main results. Similarly, pater-
nal smoking at any time during pregnancy is likely to be 
a good proxy for smoking in early pregnancy. However, 
we acknowledge it would be useful to have more de-
tailed data on both parents across all trimesters to ex-
plore whether association magnitudes vary by trimester.

In summary, we found evidence to support a 
causal intrauterine effect of maternal smoking on any 
CHD, particularly with nonsevere CHDs, but did not 
find robust evidence for a causal effect of maternal 
BMI or alcohol on offspring CHD risk. Although every-
one should be encouraged not to smoke, and all clin-
ical guidelines advocate not starting smoking, and if 
women do smoke, to quit before becoming pregnant, 
there are still high rates of smoking in some groups, 
particularly those from deprived backgrounds. In the 
studies included in this article, in 2 contemporary 
cohorts, BASELINE (Ireland), with births occurring 
between 2008 and 2011, and the BiB cohort (United 
Kingdom), with births occurring between 2007 and 
2011, smoking prevalence rates were 25% and 16%, 
respectively. The prevalence in the BiB cohort masks 
the high rate in White British women (33%) who are 
from socioeconomically deprived backgrounds, as 
>50% of births in that cohort are to Pakistani women 
who have low rates of smoking (3%).19 It is possible 
that emphasizing the potential adverse effect on 
CHDs in specific groups might help in supporting 
women of reproductive age not to start smoking and 
women who are smoking at the start of pregnancy to 
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be encouraged to quit. Furthermore, understanding 
the specific mechanisms that link maternal smoking 
to increased offspring CHD risk could identify targets 
for interventions for its prevention.
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Supplementary Methods 

Data S1. Cohort descriptions 

The Amsterdam Born Children and their Development Study (ABCD) 

The following text was adapted from the ABCD cohort profile where full study details are 

described (https://doi.org/10.1093/ije/dyq128)  15:  

Between January 2003 and March 2004, all pregnant women living in Amsterdam were asked to 

participate in the ABCD study during their first prenatal visit to an obstetric care provider (general 

practitioner, midwife or gynaecologist). Altogether, 12 373 women were approached—by estimate, ≥99% 

of the target population. According to Dutch law, all pregnant women, including illegal immigrants and 

asylum-seekers, are entitled to receive prenatal care, which is free of charge if costs are a problem. For 

all of the women approached, the care provider completed a registration form which included personal 

data such as name, address and date of birth. Based on this information, a questionnaire covering socio-

demographic characteristics, obstetric history, lifestyles and psychosocial conditions was sent to the 

pregnant women within 2 weeks, to be filled out at home and returned to the Public Health Service by 

prepaid mail. A reminder was sent 2 weeks later. The questionnaire included an informed consent sheet 

the women could use to grant permission for follow-up of their infants at the age of 3 months and every 

5 years thereafter, and for the perusal of their medical files. Approval for the ABCD study was obtained 

from the Central Committee on Research involving Human Subjects in the Netherlands, the Medical 

Ethical Committees of the participating hospitals, and from the Registration Committee of the 

Municipality of Amsterdam. Written informed consent was obtained from all participating mothers. 

 Of the 12 373 women approached, 8266 women filled out the pregnancy questionnaire (response 

rate: 67%). Of this group, 7050 women granted permission for follow-up (85%) and 7043 women granted 

permission for perusal of her and her child’s medical files (85%). To enhance participation among foreign-

born women, two supportive measures were taken: (i) a Turkish, Arabic or English translation was 

provided to women born in Turkey, Morocco or other non-Dutch-speaking countries and (ii) the possibility 

of completing the questionnaire orally was offered to women who were illiterate or had reading 

difficulties. 

The Avon Longitudinal Study of Parents and Children (ALSPAC) 

ALSPAC is a prospective birth cohort study which was devised to investigate the environmental 

and genetic factors of health and development. Detailed information about the methods and procedures 

of ALSPAC is available elsewhere 16,17,51. 14,541 pregnant women with an expected delivery date of April 

1991 and December 1992, residing in the former region of Avon, UK were eligible to take part. Additional 

enrolment provided a baseline sample of 14,901 participants 51. The study website contains details of all 

the data that is available through a fully searchable data dictionary. Ethical approval for the study was 

obtained from the ALSPAC Ethics and Law Committee and the  Local Research Ethics Committees 

(http://www.bristol.ac.uk/alspac/researchers/research-ethics/). Informed consent for the use of data 

collected via questionnaires and clinics was obtained from participants following the recommendations 

of the ALSPAC Ethics and Law Committee at the time.  
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The Cork SCOPE BASELINE Birth Cohort Study (BASELINE) 

The following text was adapted from the BASELINE cohort profile where full study details are 

described: https://doi.org/10.1093/ije/dyu157 18. 

The study is based in Cork, Ireland. The SCOPE Ireland pregnancy cohort formed the basis of 

recruitment of infants to BASELINE (n = 1537). In 2007, the amalgamation of all three Cork maternity units 

into one centre, Cork University Maternity Hospital (CUMH), provided a unique opportunity to conduct 

research in pregnancy in Cork. CUMH, which is co-located with the Cork University Hospital, is the third 

largest maternity hospital in Ireland, with 8563 deliveries in 2012. As recruitment was regionally based, 

the generalizability of the data may be limited. In 2008, all primiparous women in Cork were invited to 

take part in the Screening for Pregnancy Endpoints (SCOPE) pregnancy cohort. The SCOPE cohort is an 

international collaboration of research groups interested in the study of major adverse outcomes in late 

pregnancy, particularly but not exclusively, pre-eclampsia, fetal growth restriction and spontaneous 

preterm birth8 and as a consequence strict exclusion criteria were applied.9 Detailed maternal, fetal and 

paternal information was obtained antenatally, as well as blood samples at 15 and 20 weeks' gestation, 

see Table 1. All women who participated in the SCOPE study were informed about the birth cohort, and if 

consent was obtained infants were registered to the Cork BASELINE birth cohort. 

The Born in Bradford Cohort (BiB) 

The Born in Bradford study is a population-based prospective birth cohort including 12,453 

women who experienced 13,776 pregnancies between 2007 and 2011. The study is unique in that it has 

almost an equal split between White European and South Asian women, all residing in Bradford, UK. 

Bradford is a city in the North of England with high levels of socioeconomic deprivation, and the cohort 

was started due to a high prevalence of poor child health in the city 52. Full details of the study 

methodology were reported previously 19. The study website provides more information, including 

protocols, questionnaires and information on how researchers can access data and a full list of all available 

data (https://borninbradford.nhs.uk/research/documents-data/). Mothers, and their partners, recruited 

into the study provided detailed interview questionnaire data, measurements, and biological samples. 

They also consented to the linkage of theirs and their child’s data. 

The Danish National Birth Cohort (DNBC) 

The DNBC is a nationwide cohort of pregnant women, recruited from 1996 through 2002 

consisting of 100,415 pregnancies 20. Informed consent was obtained from participants upon enrolment, 

and the study was approved by the Danish Data Protection Agency through the joint notification of the 

Faculty of Health and Medical Sciences at the University of Copenhagen (Sund-2017-09), according to 

Danish regulations. Information on lifestyle and environmental factors potentially associated with 

offspring health was collected through 4 prenatal and postnatal telephone interviews at target ages 

gestational weeks 12 and 30 and child ages 6 and 18 months. The parent-child dyads were then invited 

for follow-up at 7, 11, and 18 years.  

The Norwegian Mother, Father and Child Cohort Study (MoBa) 

MoBa is a nationwide, pregnancy cohort comprising family triads (mother-father-offspring) who 

are followed longitudinally. All pregnant women in Norway who were able to read Norwegian were 
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eligible for participation. The first child was born in October 1999 and the last in July 2009.  Invitations 

were sent to women in 277 702 pregnancies, the participation rate was 41%. The cohort includes more 

than 114 000 children, 95 000 mothers and 75 000 fathers 21,22. Extensive longitudinal data were collected 

using nine questionnaires: three during pregnancy, and then follow-up questionnaires when the children 

were 6 months, 18 months, 36 months, 5 years, 7 years and 8 years of age. In addition, a single 

questionnaire was administered to fathers during gestational weeks 15-18. Data collected include general 

background and health information, including diet and lifestyle, a semi-quantitative food frequency 

questionnaire, information on birth and pregnancy outcomes, and on several aspects of child nutrition 

and development, as well as the physical and mental health of both mother and child. MoBa is linked to 

the Medical Birth Registry of Norway, which provides standardized information about the health of the 

mother during pregnancy, other essential medical information related to the pregnancy and birth, and 

standard post-natal measures of the child. The establishment of MoBa and initial data collection was 

based on a license from the Norwegian Data Protection Agency and approval from The Regional 

Committees for Medical and Health Research Ethics. The MoBa cohort is now based on regulations related 

to the Norwegian Health Registry Act. 

NINFEA study 

 The NINFEA study is internet-based birth cohort established in 2005 in Italy 

(http://www.progettoninfea.it) 23,24,53. The cohort consists of children born to mothers who have access 

to the internet and enough knowledge of Italian to complete online questionnaires. The recruitment was 

conducted actively, through obstetrics clinics, and passively, via internet and the media. A baseline 

questionnaire on general health and exposures before and during pregnancy is completed by mothers at 

enrolment, which may occur at any time during pregnancy. During the period 2005-2016 around 7500 

mothers were recruited. Further follow-up information was obtained with repeated questionnaires 

completed 6 and 18 months after delivery and when children turn 4, 7, 10 and 13 years. The response 

rates for each questionnaire are available at https://www.progettoninfea.it/attachments/70. The study 

was approved by the ethical committee of the San Giovanni Battista Hospital and CTO/CRF/Maria Adelaide 

Hospital (Turin, Italy) (approval N.0048362 and following amendments).
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Table S1.  Study-specific methods for data collection. 

Measurement Study-specific details 
BMI data 

Maternal BMI  ABCD: Women filled out a questionnaire containing questions on sociodemographic characteristics, medical history, 
lifestyle and dietary habits (16 weeks of gestation; IQR 12–20 weeks). BMI was based on pre-pregnancy height and 
weight as reported in the pregnancy questionnaire. 
ALSPAC: In the 2nd pregnancy questionnaire (12 weeks’ gestation) women were asked to report their pre-pregnancy 
weight and height. No definition of pre-pregnancy was provided in the question. Subsequently for the majority of 
women all weight measurements from any time of pregnancy have been extracted from obstetric records (height 
was not routinely measured antenatally in the UK when these women were pregnant). First antenatal clinic 
measurements of weight correlated strongly with the women’s self-report (Pearson correlation = 0.93). 
Baseline: At 15 weeks’ gestation sociodemographic and anthropometric measurements, including objectively 
measured weight and height, were collected. 
BiB: Weight and height (unshod and in light clothing and following a standard protocol) were measured at the 
recruitment assessment. As women were recruited at the oral glucose tolerance test (26-28 weeks of gestation for 
the majority) this would not provide an accurate measure of pre-/early-pregnancy weight and would include fetal 
and amniotic weight and pregnancy related weight gain. All measurements of weight from all antenatal clinics were 
extracted from the obstetric records and pre-/early-pregnancy BMI was calculated using weight from the first 
antenatal clinic (median 12 weeks’ gestation) and height at recruitment (26-28 weeks’ gestation). 
DNBC: Self-reported information on pre-pregnancy weight and height from the first pregnancy interview at around 
16 weeks’ gestation.  
MoBa: Pre-pregnancy weight and height were self-reported during the first interview at week 17 in pregnancy. 
NINFEA: Pre-pregnancy weight and height were self-reported in the baseline questionnaire (completed at any time 
during pregnancy). 

Paternal BMI ABCD: Paternal weight was maternally reported in questionnaire when child was aged 5-6 years (the closest 
timepoint available to pregnancy). Paternal height was maternally reported in the pregnancy questionnaire at 
around 16 weeks’ gestation. 
ALSPAC: Paternal weight and height were self-reported from the first partner questionnaire completed around 18 
weeks’ gestation.  
Baseline: Paternal weight and height were measured around the time of pregnancy.   
BiB: Paternal weight and height were self-reported from the first partner questionnaire mostly completed at 
recruitment (26–28 weeks’ gestation).  
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DNBC: Paternal weight and height were reported by the mother during the first pregnancy interview conducted at 
around 16 weeks’ gestation.  
MoBa: Paternal weight and height were maternally reported by questionnaire at around 18 weeks’ gestation.  
NINFEA:  Paternal weight and height were maternally reported in the baseline questionnaire (completed at any time 
during pregnancy). 

Smoking data 

Maternal smoking ABCD: Asked number of cigarettes per day during pregnancy in first questionnaire (16 weeks of gestation; IQR 12–20 
weeks). Binary variable used any smoking during pregnancy.  
ALSPAC: Asked number of cigarettes per day during pregnancy in questionnaire at around 18 weeks’ gestation. 
Binary variable used any smoking during the first trimester. 
Baseline: Reported in early pregnancy questionnaire around 14 weeks gestation. Binary variable used any smoking 
during the first trimester. Baseline smoking data only used to adjust for BMI analyses. 
BiB: Asked number of cigarettes per day during pregnancy in first questionnaire (26-28 weeks’ gestation). Binary 
variable used any smoking during pregnancy. 
DNBC: Maternal smoking in the first trimester was ascertained from a computer-assisted telephone interview 
conducted at approximately 16 weeks’ gestation. Binary variable used any smoking during the first trimester. 
Smoking heaviness was based on the average number of cigarettes smoked per day reported in interviews 1 and 2. 
MoBa: Smoking habits were assessed from questionnaires sent by mail at 13‐17 and 30 weeks. Binary variable used 
any smoking during pregnancy. 
NINFEA: Smoking habits in the first two trimesters were assessed in the baseline questionnaire (completed any time 
during pregnancy). Binary variable used any smoking during the first trimester. 

Paternal smoking  ABCD: NA  
ALSPAC: Asked about smoking habits within the partner questionnaire during pregnancy at around 18 weeks’ 
gestation. 
Baseline: Maternally reported in pregnancy questionnaire around 14 weeks’ gestation.  
BiB: Asked about smoking habits within partner questionnaire during pregnancy (26-28 weeks’ gestation).  
DNBC: Maternally reported at 16 weeks’ gestation.  
MoBa: Self-reported within first partner questionnaire around 15 weeks’ gestation. 
NINFEA: NA  

Alcohol data 

Maternal alcohol ABCD: Mothers asked how many glasses of alcohol they drunk during first period of pregnancy (16 weeks of 
gestation; IQR 12–20 weeks). Binary variable used any alcohol intake during pregnancy. 
ALSPAC: Self-reported from pregnancy questionnaire at around 18 weeks’ gestation. Binary variable used any alcohol 
intake during the first trimester. 
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Baseline: Reported in early pregnancy questionnaire around 14 weeks gestation. Binary variable used any alcohol 
intake during the first trimester. Baseline alcohol data only used to adjust for BMI analyses. 
BiB: NA 
DNBC: Self-reported at 16 weeks’ gestation. Binary variable used alcohol intake during the first trimester. Drinking 
heaviness was based on the average number of units drank per week reported in interviews 1 and 2. 
MoBa: Assessed via questionnaire around 17 weeks’ gestation. Binary variable used any alcohol intake during the 
first trimester. 
NINFEA: Drinking habits in the first trimester were assessed in the baseline questionnaire (completed at any time 
during pregnancy). Binary variable used any alcohol intake during the first trimester. 

Paternal alcohol ALSPAC: Self-reported within first partner questionnaire at around 18 weeks’ gestation.  
MoBa: Self-reported within first partner questionnaire at around 15 weeks’ gestation. 
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Data S2. Paternal alcohol consumption  

ALSPAC 

We used data from the partners questionnaire which was filled in by partners at around 18 

weeks’ gestation. We used data from questions B18 and B19 from the PB questionnaire 

(http://www.bristol.ac.uk/alspac/researchers/our-data/).  

B18b. How often have you drunk alcoholic drinks during the last 3 months: 1) Never, 2) less than 
once a week, 3) at least once a week, 4) 1-2 glasses every day, 5) 3-9 glasses every day, 6) at least 10 
glasses every day. 

B19b. How many days in the past month did you drink the equivalent of 2 pints of beer, 4 glasses 

of wine or 4 pub measures of spirit? 1) Every day, 2) more than 10 days, 3) 5-10 days, 4) 3-4 days, 5) 1-2 

days, 6) none. 

We coded paternal alcohol consumption as follows: non-drinkers = If answered 1 to B18b; light 
drinkers = answered 5 to B19b; mod/heavy drinkers = answered 1,2,3 or 4 to B19b.   

MoBa 

Question FF244. How often do you drink alcohol now that your partner is pregnant? Response 
options: 1) Approximately 6-7 times per week, 2) Approximately 4-5 times per week, 3) Approximately 2-
3 times per week, 4) Approximately once per week, 5) Approximately 1-3 times per month, 6) Less than 
once per month, 7) Never. 

Using data from FF244, we coded paternal alcohol consumption as follows:  non-drinkers = 
Answered number 7; light drinkers = Answered 4, 5 or 6; mod/heavy drinkers = Answered 1, 2 or 3  
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Data S3. Definition of congenital heart disease (CHD) and other congenital anomalies 

(CAs) 

Here we describe ascertainment of CA cases for each cohort. International Classification of 

Diseases (ICD; version 10) codes were used to define CA cases when possible (see Table S2 above for 

classifications). However, in some cohorts these data were not available. The following cohorts were used 

to define CA cases with ICD codes: ALSPAC, BiB, DNBC, NINFEA.  

ABCD 

The ABCD cohort has previously published research involving CAs 54. The same methods for data 

extraction were used for the present study. Data on CAs were obtained from three different sources: the 

infant questionnaire, which was filled out by the mother at an average infant age of 12.9 weeks (IQR 12.4–

13.4 weeks); the questionnaire filled out by the mother at an average infant age of 5.07 years (IQR 5.04– 

5.13 years), and clinical data of the Youth Health Care Registration (health and development registration 

of all children in the Netherlands, which is mandatory under the law on medical treatment agreement). 

The questionnaires were screened by a researcher, and in the case of missing or unclear answers the 

mothers were contacted. Subsequently, the questionnaires were scanned and transferred to a database 

by a certified company (Scan serv, Nootdorp, the Netherlands). Missing data in the questionnaires could 

be supplemented by data from the Youth Health Care Registration, and in the case of any discrepancy the 

data from the Youth Health Care Registration prevailed. CA data in ABCD was restricted to live-born 

children. 

CAs were categorized as follows: 0 = no defect 1 = congenital malformations of the nervous system 

2 = congenital malformations of eye, ear, face, throat 3 = congenital malformations of the cardiovascular 

system 4 = congenital malformations of the respiratory tract 5 = split lip and/or palate 6 = congenital 

malformations of the digestive tract 7 = congenital malformations of the kidneys, urinary tract, genitalia 

8 = congenital malformations of the musculoskeletal system 9 =neoplasms 10 = other congenital 

malformations 11 = chromosomal defect 12 = monogenic defect 13 = microdeletions and uniparental 

disomy 14 = other syndromes 15 = complex cardiovascular defects 16 = multiple defects of the extremities 

17 = other multiple defects within an organ system 18 = multiple defects (in multiple organ systems) 21 = 

minor defect 22 = unclear/uncertain diagnosis 23 = "don't know which defect" 24 = "not applicable" 25 = 

missing information.  

We coded CHD cases if they were “Yes” for category 3. We coded chromosomal/genetic 

aberrations if “Yes” for any of the following categories: 11, 12, 13, 14.  

ALSPAC 

Case ascertainment of CAs in the ALSPAC cohort has been described in detail in a recently 

published data note 29. Data were combined from multiple sources: NHS records (primary care, paediatric 

cardiology database, data on fetal deaths and local child health services), midwifery and birth records and 

maternal self-report via child-based questionnaires. Each source was coded using ICD-10 codes. By 

combining sources, there would be a greater possibility of capturing all of possible cases within the cohort. 

The majority of cases of CAs were identified by primary care records (79% for any CA and 68% for any 

CHD). We included diagnoses made at any age (from birth up until age 25/26). There were no restrictions 

in cases of CAs in ALSPAC, we included all cases whether live-born or not. However, it is possible that some 
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cases that were terminated earlier in pregnancy were missed due to them never having an NHS number 

and thus not being identified through record linkage. 

BASELINE 

 At 2 months, mothers were asked of any medical problems and/or referrals. If a baby had been 

referred to a specialist, it was checked to see if they had results from an echocardiogram. 

Echocardiograms were checked by a cardiologist. Exact CHD diagnoses were reported based on the echo. 

At 6 months, there was one additional baby that had cardiac surgery and added as a case. If a baby had 

been diagnosed after 6 months, they would have been identified through records on the Echo. Therefore, 

in BASELINE we obtained all CHDs up until ~age 12.  

BiB 

In the BiB cohort, there were two separate sources to identify CAs. Both sources were used in this 

study: (i) CAs up to 5 years of age, identified in GP records by Bishop et al 30 following EUROCAT guidelines. 

ICD-10 codes were mapped to clinical term (CT)-V3 codes prior to extraction from GP records. (ii) Data 

extracted from the Yorkshire and Humber CAs register database. Data were ICD-10 coded. All of these 

were confirmed postnatally. BiB includes data on the birth outcome of each child (live birth, miscarriage, 

still birth). Therefore, diagnoses were not necessarily restricted to live born children. However, there is 

the possibility that some women would have terminated the pregnancy after the 12- or 20-week scans 

which would lead to an under-representation of congenital anomaly cases. 

DNBC 

In the DNBC, all diagnoses of congenital anomalies (according to EUROCAT guide 1.4 section 3.2 

and 3.3) up until the age of 15 years were extracted from the Danish National Patient Register (DNPR) 

which is linked to the cohort data 31,32. Diagnoses were ICD-coded. These data were restricted to children 

born alive.  

MoBa 

Information on whether a child had a CHD or not was obtained though linkage to the Medical 

Birth Registry of Norway (MBRN). All maternity units in Norway must notify births to the MBRN. The 

notification form includes the name and personal identity number of the child and parents, as well as 

information about maternal health before and during pregnancy, and any complications during pregnancy 

or at birth, including the presence of any heart defects. The MBRN contains information on all births and 

pregnancies ended after the 12th week of gestation, including stillbirths and abortions after the 12th 

week, including on heart defects. Heart defects are registered in the MBRN through notifications from 

clinical staff identifying these defects at delivery or any hospital in patient treatments occurring 

immediately after birth until the child is discharged. The medical notification is made at discharge, which 

can be several months after birth. Details of the notified heart defects, such as specific diagnosis or 

treatment are not provided. Whilst most of the heart defects would have been diagnosed at birth it is 

possible that some children were admitted to hospital after delivery for non-specific reasons of for 

diagnoses that at the time were not considered to be related to a heart defect. Therefore, MOBA 

contribute only to analyses of any CHD and we considered diagnosis to have been made between birth 

and 6 months (few would remain in hospital after this length). 
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NINFEA  

Congenital anomalies in the NINFEA cohort were reported in the second questionnaire compiled 

6 months after birth. Mothers compiled a checklist that included pre-specified anomalies (namely 

cryptorchidism (also assessed 18 months after birth), congenital hip dysplasia, cleft palate, spina bifida 

and pyloric stenosis) and anomalies divided by major systems (namely cardiovascular, gastrointestinal, 

genitourinary, musculoskeletal, respiratory and nervous system, and genetic/chromosomal or 

metabolic/endocrine disease). If the mother reported an anomaly from a specific system, the exact name 

of the anomaly was asked. If the child died or had any surgery performed in the first 6 months, the cause 

of death and type of surgery were also checked to see if any congenital anomaly was reported. All 

congenital anomalies were coded using ICD-10 codes by an experienced pediatrician and were reassessed 

by an independent physician. NINFEA included live-born infants only.  

Studies with ICD coded data 

Table S2 shows how cases of CHD were defined in the studies with ICD codes (ALSPAC, BiB, DNBC, NINFEA).  

Table S2. Subcategories of CHD.  

Category  CHDs included/excl ICD codes 

All  Any CHD as defined by EUROCAT* 
Patent ductus arteriosus (PDA) with gestational age (GA) 
< 37 weeks not considered a CHD case. 
Peripheral pulmonary artery stenosis with GA < 37weeks 
not considered as a CHD case . 

Q20-Q25, Q260, Q262-
Q269** 

Severe  Heterotaxia, Conotruncal defect, Atrioventricular septal 
defect, Anomalous pulmonary venous return, Left 
ventricle outflow tract obstruction, Right ventricle 
outflow tract obstruction, Other complex defects 

Q240, Q241, Q206, Q200, 
Q251, Q252, Q253, Q254, 
Q203, Q213, Q201, Q214, 
Q212, Q26, Q262, Q264, 
Q268, Q269, Q234, Q251, 
Q230, Q231, Q221, Q224, 
Q225, Q255, Q204 

Non-severe PDA (in full term infants), valvular pulmonary stenosis, 
ventricular septal defect (VSD), atrial septum defects 
(ASD), unspecified septal defects, isolated valve defects, 
other specified heart defects, unspecified heart defects 

Non-severe cases that are 

All=1 and Severe=0. 

 

* Definitions taken from here: https://eu-rd-platform.jrc.ec.europa.eu/sites/default/files/EUROCAT-Guide-1.4-Section-
3.3.pdf  
**Q250 and Q256 not a case if isolated and GA<37weeks 
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Additional analysis - excluding infants with any known chromosomal/genetic/teratogenic defects 

ABCD, ALSPAC, BiB, DNBC, MoBa and NINFEA were able to contribute to this additional analysis. In 

ALSPAC, BiB, DNBC and NINFEA, we used the ICD codes in Table S3 to exclude cases. In ABCD, there were 

specific categories (described above) which corresponded to chromosomal and genetic anomalies (11 = 

chromosomal defect 12 = monogenic defect 13 = microdeletions and uniparental disomy 14 = other 

syndromes). In MoBa, we used questionnaire data which was maternally reported at 6 months after birth: 

“Is your child suspected of having a syndrome?” and “Is your child suspected of having a chromosomal 

defect?”. 

Table S3. Subcategories of congenital anomalies with a ‘known cause’ used in additional analyses.  

Category ICD-10 Codes 

Teratogenic/genetic syndromes, 
microdeletions and chromosomal 
abnormalities (additional analysis). 

D821, P350-P352, P371, Q619, Q751, Q754, Q771-Q772, 
Q780, Q796, Q85, Q861-Q869, Q87, Q90-Q92, Q930-Q939, 
Q95-Q99 
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Data S4. Confounder data 

By definition a confounder has to cause (or be a plausible cause) of exposure and outcome. The maximum 

number of confounders used in fully adjusted models are listed below. Confounder and other parent 

exposure adjusted models are the same as fully adjusted but with additional adjustment for the other 

parent’s exposure and additional adjustment for maternal parity in paternal models.  

Exposure = BMI: age, education, parity (maternal), ethnicity, smoking, alcohol, offspring sex.  

Exposure = Smoking: age, education, parity (maternal), ethnicity, alcohol, offspring sex. 

Exposure = Alcohol: age, education, parity (maternal), ethnicity, smoking, offspring sex. 

There is evidence that smoking and alcohol influence BMI 55-58. We therefore treated those as 

confounders for the association of maternal/paternal BMI with CHD. Smoking and alcohol are associated 

with each other in most populations but whether one causes the other is unclear. It is possible that most 

of their association is due to socioeconomic and cultural factors. Despite being unclear about whether 

they could be confounders of each other’s effect on CHD (e.g. alcohol a confounder for smoking and vice 

versa) in the final confounder adjusted model we included alcohol as a confounder for smoking and vice 

versa.  

We used maternal/paternal age at birth in complete years. We used educational attainment for 

both parents’ measures of socioeconomic position (SEP). In the harmonized LifeCycle data education has 

been defined according to the international classification (High: Short cycle tertiary, Bachelor, Masters, 

Doctoral or equivalent (ISCED-2011: 5-8, ISCED-97: 5-6) Medium: Upper secondary, Post-secondary non-

tertiary (ISCED-2011: 3-4, ISCED-97: 3-4) Low: No education; early childhood; pre-primary; primary; lower 

secondary or second stage of basic education). Mothers’ parity was based on previous born children 

(previous stillbirths included, abortions excluded) (coded as 0, 1, 2, 3,  4). For ethnicity we used the best 

estimate of the mother’s/father’s ethnic background based on the cohort’s discretion (Western, Non-

western, Mixed). Offspring sex was a binary variable (male/female). In additional analyses, we adjusted 

for folic acid supplementation in fully adjusted maternal models. This was a yes/no variable defined as 

intake of folic acids (folate, vitamin B9) during the period from conception to early pregnancy (12 weeks).  

In NINFEA, due to the smaller sample size, maternal parity and maternal/paternal education were 

categorized as binary variables (parity: nulliparous and multiparous, education: low and medium 

combined together).  

In ALSPAC, BASELINE, DNBC, MoBa and NINFEA we did not adjust for ethnicity in any analyses. 

98% of women were of Western origin in ALSPAC. >98.5% of women in BASELINE were of Western origin. 

Ethnicity in the DNBC is said to be of >99% White European origin with a recent paper reporting their 

DNBC population to be 100% of White origin 59. There were no data available on ethnicity in MoBa, 

however, it is believed that 99-100% are of Western origin. Ethnicity data were not available in NINFEA, 

although, the large majority of mothers (>98%) were born in Europe. Data on paternal country of birth 

was available for approximately half of the cohort and >98% of them were born in Europe.    
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In BiB only ~28% of mothers had harmonized data on alcohol intake during pregnancy, therefore 

this was not included in any models within BiB analyses as an exposure and also as a confounder in BMI 

and smoking models.  

ABCD and BASELINE did not have harmonized LifeCycle data available. We describe methods for 

data harmonization here: 

We used available ABCD data and tried to harmonize it as best as possible to match the LifeCycle 

data. BMI, sex, age, parity and folic acid supplementation were identical variables to the harmonized 

LifeCycle ones. Paternal height was self-reported by the mother and paternal weight was from 11 months 

after pregnancy (the closest timepoint available). We used any pregnancy smoking or drinking (yes/no) 

for the smoking and alcohol variables as there was no trimester specific exposure data. ABCD did not 

contribute to paternal alcohol or smoking analyses as there were no data for these exposures around the 

time of pregnancy. Maternal education was defined as: high (Short cycle tertiary, Bachelor, Masters, 

Doctoral or equivalent (9 or more years)), medium (Upper secondary, Post-secondary non-tertiary (6-9 

years)) or low (No education; early childhood; pre-primary; primary; lower secondary or second stage of 

basic education (<6 years)). Paternal education was from the 11-year questionnaire and split into 3 groups 

as this was the only data available. For ethnicity, we defined Western and non-western as appropriate 

from physiological ethnicity of grandmother’s birth country for maternal ethnicity. Paternal ethnicity was 

reported by the mother and recoded to Western/Non-Western/Mixed. 

 All women were experiencing their first pregnancy in BASELINE; therefore we did not adjust for 

parity in any analyses. BMI, sex, age and smoking were coded the same as the harmonized LifeCycle data. 

Education in BASELINE was binary defined as medium or high. This was left unchanged and used as a 

measure of SEP as in other analyses.  

In the analysis plan, we originally stated that we would treat type-1 diabetes (T1D) as a 

confounder. The rationale for this was that diabetes is a known teratogen for CHDs and could also 

influence pregnancy lifestyle factors through changes in behaviours. However, after exploring the data, 

the prevalence of T1D was low in those cohorts with data (0.2% in ALSPAC, 0.1% in BiB and 0.2% in DNBC 

for maternal T1D) and the other cohorts did not have data on specific diabetes diagnoses. For cohorts 

with T1D data, the number of CHD cases in those with a diagnosis was either zero or less than 10, making 

adjustment not meaningful or impossible through complete separation in the logistic model.  
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Supplementary Results – Tables S4-S11 

Missing data  

Table S4. Summary of missing data in each cohort. 

 
ABCD 

N = 8,131 
ALSPAC 

N = 13,049 
BASELINE 
N = 1,436 

BiB 
N = 12,799 

DNBC 
N = 89,107 

MoBa 
N = 101,975 

NINFEA 
N = 5,893 

Country Netherlands UK RoI UK Denmark Norway Italy 

Recruitment period 2003-2004 1991-1992 2008-2011 2007-2011 1996-2002 1999-2008 2005-2016 

Maternal (n missing (%))        

Age, years 0 2062 (15.8) 0 0 0 181 (0.2) 1 (0.0) 

BMI, kg/m2 789 (9.7) 2079 (15.9) 0 2690 (21.0) 3757 (4.2) 4575 (4.5) 124 (2.1) 

Preg smoking yes/no 14 (0.2) 333 (2.6) 0 1912 (14.9) 2367 (2.7) 933 (0.9) 92 (1.6) 
Preg smoking heaviness - 2350 (18.0) - 1912 (14.9) 1184 (1.3) 390 (0.4) 72 (1.2) 

Preg alcohol yes/no 6 (0.1) 427 (3.3) 43 (3.0) - 2399 (2.7) 19617 (19.2) 50 (0.9) 
Preg alcohol heaviness - 6548 (50.2) - - 758 (0.9) 17539 (17.2) 79 (1.3) 

Parity 0 502 (3.8) 0 470 (3.7) 0 1805 (1.8) 272 (4.6) 

Education 83 (1.0) 1152 (8.8) 9 (0.6) 2750 (21.5) 8451 (9.5) 6963 (6.8) 46 (0.8) 

Ethnicity 14 (0.2) - 0 1906 (14.9) - - - 

Folic acid supp 98 (1.2) 424 (3.2) - - 6510 (7.3) 1805 (1.8) 148 (2.5) 

Paternal (n missing (%))        

Age, years 4378 (53.8) 5488 (42.1) 321 (22.4) 9439 (73.7) 1371 (1.5) 521 (0.5) 2506 (42.5) 

BMI, kg/m2 4542 (55.9) 4973 (38.1) 321 (22.4) 10074 (78.7) 26470 (29.7) 5134 (5.0) 186 (3.2) 

Smoking - 3915 (30.0) 323 (22.5) 9612 (75.1) 4181 (4.7) 171 (0.2) - 

Alcohol - 4844 (37.1) - - - 29553 (28.9) - 

Education 5873 (72.2) 1620 (12.4) 0 4676 (36.5) 10690 (12.0) 5372 (5.3) 138 (2.3) 

Ethnicity  197 (2.4) - 321 (22.4) 9625 (75.2) - - - 

        

Offspring sex  203 (2.5) 0 0 0 0 196 (0.2) 1 (0.0) 
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Sensitivity analysis: complete-case analyses 

Table S5. Comparison between maximal numbers from main analyses presented in the manuscript (black, top rows) and complete case models (red, bottom 

rows). Results are odds ratios (95% CIs) of any offspring CHD per unit difference in BMI. 

Model ABCD ALSPAC BASELINE BiB DNBC MoBa NINFEA Meta-analysis results 

Maternal BMI 
unadjusted 

1.02 (0.94, 1.09) 
N = 7,342 

1.05 (1.00, 1.09) 
N = 10,970 

1.07 (0.92, 1.20) 
N = 1,436 

1.01 (0.97, 1.04) 
N = 10,109 

1.02 (1.01, 1.03) 
N = 85,350 

0.99 (0.98, 1.01) 
N = 97,400 

0.93 (0.83, 1.03) 
N = 5,769 

1.01 (1.00, 1.02) 
N = 218,376 

1.07 (0.95, 1.16) 
N = 3,415 

1.01 (0.93, 1.08) 
N = 6,452 

1.06 (0.87, 1.23) 
N = 1,078 

0.99 (0.89, 1.10) 
N = 1,753 

1.02 (1.00, 1.03) 
N = 55,564 

0.99 (0.97, 1.01) 
N = 73,637 

0.93 (0.83, 1.04) 
N = 5,393 

1.01 (0.99, 1.02) 
N = 147,292 

Maternal BMI 
confounder 

adjusted 

1.04 (0.95, 1.11) 
N = 7,103 

1.05 (0.99, 1.10) 
N = 9,179 

1.08 (0.93, 1.21) 
N = 1,386 

1.02 (0.98, 1.05) 
N = 7,279 

1.02 (1.00, 1.03) 
N = 78,180 

0.99 (0.97, 1.01) 
N = 75,448 

0.94 (0.84, 1.05) 
N = 5,476 

1.01 (1.00, 1.02) 
N = 184,051 

1.05 (0.93, 1.15) 
N = 3,415 

1.01 (0.94, 1.08) 
N = 6,452 

1.06 (0.87, 1.23) 
N = 1,078 

0.98 (0.87, 1.09) 
N = 1,753 

1.01 (1.00, 1.03) 
N = 55,564 

0.99 (0.97, 1.01) 
N = 73,637 

0.95 (0.85, 1.06) 
N = 5,393 

1.01 (0.99, 1.02) 
N = 147,292 

Maternal BMI 
confounder and 

other parent 
BMI adjusted 

1.05 (0.93, 1.15) 
N = 3,415 

1.02 (0.94, 1.10) 
N = 6,452 

1.05 (0.85, 1.23) 
N = 1,078 

0.99 (0.88, 1.09) 
N = 1,753 

1.01 (1.00, 1.03) 
N = 55,564 

0.99 (0.97, 1.01) 
N = 73,637 

0.94 (0.84, 1.06) 
N = 5,393 

1.00 (0.99, 1.02) 
N = 147,292 

1.05 (0.93, 1.15) 
N = 3,415 

1.02 (0.94, 1.10) 
N = 6,452 

1.05 (0.85, 1.23) 
N = 1,078 

0.99 (0.88, 1.09) 
N = 1,753 

1.01 (1.00, 1.03) 
N = 55,564 

0.99 (0.97, 1.01) 
N = 73,637 

0.94 (0.84, 1.06) 
N = 5,393 

1.00 (0.99, 1.02) 
N = 147,292 

Paternal BMI 
unadjusted 

0.99 (0.84, 1.08) 
N = 3,589 

0.99 (0.91, 1.06) 
N = 8,076 

1.07 (0.86, 1.21) 
N = 1,115 

1.03 (0.94, 1.12) 
N = 2,706 

1.02 (1.00, 1.04) 
N = 62,637 

0.99 (0.97, 1.01) 
N = 96,841 

1.02 (0.92, 1.13) 
N = 5,707 

1.01 (0.99, 1.02) 
N = 180,690 

 1.04 (0.88, 1.11) 
N = 1,732 

0.97 (0.86, 1.07) 
N = 5,044 

1.07 (0.86, 1.21) 
N = 1,113 

1.01 (0.89, 1.13) 
N = 1,572 

1.02 (1.00, 1.04) 
N = 53,922 

0.99 (0.96, 1.01) 
N = 67,071 

0.96 (0.81, 1.13) 
N = 3,166 

1.01 (0.99, 1.03) 
N = 133,620 

Paternal BMI 
confounder 

adjusted 

1.03 (0.84, 1.10) 
N = 1,800 

0.96 (0.86, 1.06) 
N = 5,550 

1.06 (0.86, 1.21) 
N = 1,113 

1.04 (0.93, 1.14) 
N = 2,085 

1.02 (1.00, 1.05) 
N = 54,710 

1.00 (0.97, 1.02) 
N = 68,623 

1.03 (0.89, 1.19) 
N = 3,294 

1.01 (1.00, 1.03) 
N = 137,175 

1.03 (0.84, 1.10) 
N = 1,732 

0.97 (0.86, 1.08) 
N = 5,044 

1.06 (0.86, 1.21) 
N = 1,113 

1.04 (0.92, 1.16) 
N = 1,572 

1.02 (1.00, 1.04) 
N = 53,922 

1.00 (0.97, 1.02) 
N = 67,071 

0.96 (0.81, 1.14) 
N = 3,166 

1.01 (1.00, 1.03) 
N = 133,620 

Paternal BMI 
confounder and 

other parent 
BMI adjusted 

1.03 (0.85, 1.10) 
N = 1,732 

0.97 (0.86, 1.08) 
N = 5,044 

1.05 (0.84, 1.21) 
N = 1,113 

1.04 (0.92, 1.15) 
N = 1,572 

1.02 (1.00, 1.04) 
N = 53,922 

1.00 (0.97, 1.02) 
N = 67,071 

0.99 (0.83, 1.18) 
N = 3,166 

1.01 (0.99, 1.03) 
N = 133,620 

1.03 (0.85, 1.11) 
N = 1,732 

0.97 (0.86, 1.08) 
N = 5,044 

1.05 (0.84, 1.21) 
N = 1,113 

1.04 (0.92, 1.15) 
N = 1,572 

1.02 (1.00, 1.04) 
N = 53,922 

1.00 (0.97, 1.02) 
N = 67,071 

(0.99, 0.83, 1.18) 
N = 3,166 

1.01 (0.99, 1.03) 
N = 133,620 

Covariates used for each study in fully adjusted models (mutually adjusted models the same as fully adjusted but with additional adjustment for the other parent’s BMI and parity in paternal models); 
ABCD: Maternal: offspring sex, age, education, parity, ethnicity, smoking, alcohol. Paternal: offspring sex, age, education, ethnicity. 
ALSPAC: Maternal: offspring sex, age, education, parity, smoking, alcohol. Paternal: offspring sex, age, education, smoking, alcohol. 
BASELINE: Maternal: offspring sex, age, education, smoking, alcohol. Paternal: offspring sex, age, smoking. 
BiB: Maternal: offspring sex, age, education, parity, ethnicity, smoking. Paternal: offspring sex, age, education, ethnicity, smoking. 
DNBC: Maternal: offspring sex, age, education, parity, smoking, alcohol. Paternal: offspring sex, age, education, smoking. 
MoBa: Maternal: offspring sex, age, education, parity, smoking, alcohol. Paternal: offspring sex, age, education, smoking, alcohol. 
NINFEA: Maternal: offspring sex, age, education, parity, smoking, alcohol. Paternal: offspring sex, age, education. 
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Table S6. Comparison between maximal numbers (black, top rows) and complete case models (red, bottom rows). Results are odds ratios (95% CIs) of any 

offspring CHD for a BMI category in comparison to normal BMI. Categories: underweight (BMI <18.5 kg/m2), normal weight (BMI 18.5 to <25 kg/m2), overweight 

(BMI 25 to <30 kg/m2) and obese (BMI ≥30 kg/m2). 

Exposure ALSPAC BiB DNBC MoBa Meta-analysis results 

Maternal underweight 
unadjusted 

0.69 (0.26, 1.48) 
N = 10,970 

0.67 (0.17, 0.89) 
N = 10,109 

1.36 (1.05, 1.73) 
N = 85,350 

1.03 (0.70, 1.52) 
N = 97,400 

1.19 (0.97, 1.46) 
N = 203,829 

0.63 (0.15, 1.78) 
N = 6,452 

NA 1.35 (0.95, 1.86) 
N = 55,564 

1.06 (0.66, 1.71) 
N = 73,637 

1.21 (0.92, 1.57) 
N = 135,653 

Maternal underweight 
confounder adjusted 

0.63 (0.19, 1.57) 
N = 9,179 

0.64 (0.10, 2.11) 
N = 7,360 

1.33 (1.01, 1.71) 
N = 79,288 

1.06 (0.66, 1.71) 
N = 75,448 

1.20 (0.96, 1.50) 
N = 171,275 

0.68 (0.16, 1.93) 
N = 6,452 

NA 1.34 (0.94, 1.84) 
N = 55,564 

1.08 (0.67, 1.74) 
N = 73,637 

1.21 (0.93, 1.58) 
N = 135,653 

Maternal underweight 
confounder and other 
parent BMI adjusted 

0.65 (0.15, 1.84) 
N = 6,452 

NA 1.35 (0.95, 1.86) 
N = 55,564 

1.07 (0.67, 1.73) 
N = 73,637 

1.21 (0.93, 1.58) 
N = 135,653 

0.65 (0.15, 1.84) 
N = 6,452 

NA 1.35 (0.95, 1.86) 
N = 55,564 

1.07 (0.67, 1.73) 
N = 73,637 

1.21 (0.93, 1.58) 
N = 135,653 

Maternal overweight 
unadjusted 

1.23 (0.64, 2.20) 
N = 10,970 

1.35 (0.87, 2.08) 
N = 10,109 

1.24 (1.07, 1.42) 
N = 85,350 

1.01 (0.85, 1.20) 
1.02 N = 97,400 

1.15 (1.04, 1.28) 
N = 203,829 

0.71 (0.21, 1.82) 
N = 6,452 

1.46 (0.41, 5.29) 
N = 1,753 

1.28 (1.07, 1.53) 
N = 55,564 

1.04 (0.86, 1.27) 
N = 73,637 

1.16 (1.02, 1.32) 
N = 137,406 

Maternal overweight 
confounder adjusted 

0.85 (0.35, 1.80) 
N = 9,179 

1.34 (0.80, 2.22) 
N = 7,360 

1.23 (1.06, 1.42) 
N = 79,288 

1.06 (0.87, 1.29) 
N = 75,448 

1.17 (1.04, 1.31) 
N = 171,275 

0.72 (0.21, 1.87) 
N = 6,452 

1.45 (0.39, 5.37) 
N = 1,753 

1.26 (1.05, 1.51) 
N = 55,564 

1.04 (0.85, 1.27) 
N = 73,637 

1.15 (1.01, 1.31) 
N = 137,406 

Maternal overweight 
confounder and other 
parent BMI adjusted 

0.77 (0.23, 1.99) 
N = 6,452 

1.46 (0.39, 5.42) 
N = 1,753 

1.24 (1.04, 1.49) 
N = 55,564 

1.05 (0.86, 1.29) 
N = 73,637 

1.15 (1.01, 1.31) 
N = 137,406 

0.77 (0.23, 1.99) 
N = 6,452 

1.46 (0.39, 5.42) 
N = 1,753 

1.24 (1.04, 1.49) 
N = 55,564 

1.05 (0.86, 1.29) 
N = 73,637 

1.15 (1.01, 1.31) 
N = 137,406 

Maternal obesity 
unadjusted 

1.99 (0.95, 3.78) 
N = 10,970 

1.05 (0.62, 1.74) 
N = 10,109 

1.30 (1.06, 1.57) 
N = 85,350 

1.07 (0.85, 1.35) 
N = 97,400 

1.21 (1.05, 1.39) 
N = 203,829 

1.56 (0.46, 4.00) 
N = 6,452 

0.84 (0.12, 3.93) 
N = 1,753 

1.16 (0.88, 1.51) 
N = 55,564 

1.10 (0.83, 1.44) 
N = 73,637 

1.14 (0.94, 1.37) 
N = 137,406 

Maternal obesity 
confounder adjusted 

2.16 (0.93, 4.43) 
N = 9,179 

1.20 (0.66, 2.11) 
N = 7,360 

1.21 (0.97, 1.49) 
N = 79,288 

1.09 (0.83, 1.43) 
N = 75,448 

1.19 (1.02, 1.40) 
N = 171,275 

1.72 (0.50, 4.49) 
N = 6,452 

0.67 (0.10, 3.33) 
N = 1,753 

1.14 (0.86, 1.48) 
N = 55,564 

1.09 (0.83, 1.44) 
N = 73,637 

1.12 (0.93, 1.36) 
N = 137,406 

Maternal obesity 
confounder and other 
parent BMI adjusted 

1.88 (0.55, 4.93) 
N = 6,452 

0.70 (0.09, 3.44) 
N = 1,753 

1.10 (0.83, 1.43) 
N = 55,564 

1.12 (0.85, 1.49) 
N = 73,637 

1.12 (0.93, 1.36) 
N = 137,406 

1.88 (0.55, 4.93) 
N = 6,452 

0.70 (0.09, 3.44) 
N = 1,753 

1.10 (0.83, 1.43) 
N = 55,564 

1.12 (0.85, 1.49) 
N = 73,637 

1.12 (0.93, 1.36) 
N = 137,406 

Paternal underweight 
unadjusted 

NA NA 0.59 (0.10, 1.84) 
N = 62,637 

1.97 (0.73, 5.31) 
N = 96,841 

1.31 (0.58, 2.95) 
N = 159,478 
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NA NA 0.38 (0.02, 1.71) 
N = 53,922 

0.81 (0.11, 5.80) 
N = 67,071 

0.56 (0.14, 2.24) 
N = 120,993 

Paternal underweight 
confounder adjusted 

NA NA 0.36 (0.02, 1.63) 
N = 54,710  

0.82 (0.11, 5.87) 
N = 68,623 

0.54 (0.13, 2.19) 
N = 123,333 

NA NA 0.37 (0.02, 1.67) 
N = 53,922 

0.85 (0.12, 6.09) 
N = 67,071 

0.56 (0.14, 2.26) 
N = 120,993 

Paternal underweight 
confounder and other 
parent BMI adjusted 

NA NA 0.36 (0.02, 1.65) 
N = 53,922 

0.85 (0.12, 6.08) 
N = 67,071 

0.55 (0.14, 2.24) 
N = 120,993 

NA NA 0.36 (0.02, 1.64) 
N = 53,922 

0.85 (0.12, 6.08) 
N = 67,071 

0.55 (0.14, 2.24) 
N = 120,993 

Paternal overweight 
unadjusted 

0.90 (0.53, 1.49) 
N – 8,076 

0.60 (0.18, 1.88) 
N = 2,725 

1.10 (0.95, 1.27) 
N = 62,637 

1.02 (0.88, 1.18) 
N = 96,841 

1.05 (0.95, 1.16) 
N = 159,478 

0.73 (0.32, 1.54) 
N = 5,044 

0.53 (0.11, 2.17) 
N = 1,572 

1.18 (1.01, 1.38) 
N = 53,922 

1.03 (0.86, 1.23) 
N = 67,071 

1.10 (0.98, 1.23) 
N = 127,609 

Paternal overweight 
confounder adjusted 

1.07 (0.37, 3.20) 
N = 5,550 

0.67 (0.17, 2.39) 
N = 2,085 

1.20 (0.95, 1.53) 
N = 54,710 

1.08 (0.90, 1.28) 
N = 68,623 

1.11 (0.97, 1.28) 
N = 130,968 

1.11 (0.33, 3.78) 
N = 5,044 

0.66 (0.13, 2.76) 
N = 1,572 

1.22 (0.97, 1.56) 
N = 53,922 

1.05 (0.88, 1.25) 
N = 67,071 

1.10 (0.96, 1.27) 
N = 127,609 

Paternal overweight 
confounder and other 
parent BMI adjusted 

1.10 (0.33, 3.73)  
N = 5,044 

0.67 (0.13, 2.82) 
N = 1,572 

1.22 (0.96, 1.56) 
N = 53,922 

1.05 (0.88, 1.26) 
N = 67,071 

1.10 (0.96, 1.27) 
N = 127,609 

1.10 (0.33, 3.73) 
N = 5,044 

0.67 (0.13, 2.82) 
N = 1,572 

1.22 (0.96, 1.56) 
N = 53,922 

1.05 (0.88, 1.26) 
N = 67,071 

1.10 (0.96, 1.27) 
N = 127,609 

Paternal obesity 
unadjusted 

1.33 (0.54, 2.81) 
N – 8,076 

1.65 (0.56, 4.83) 
N = 2,725 

1.31 (1.00, 1.67) 
N = 62,637 

1.00 (0.79, 1.37) 
N = 96,841 

1.15 (0.97, 1.37) 
N = 159,478 

1.12 (0.26, 3.31) 
N = 5,044 

1.40 (0.34, 5.31) 
N = 1,572 

1.35 (1.01, 1.76) 
N = 53,922 

0.95 (0.71, 1.25) 
N = 67,071 

1.15 (0.95, 1.40) 
N = 127,609 

Paternal obesity 
confounder adjusted 

2.03 (0.19, 18.64) 
N = 5,550 

1.79 (0.50, 6.16) 
N = 2,085 

1.48 (0.89, 2.48) 
N = 54,710 

1.02 (0.76, 1.37) 
N = 68,623 

1.15 (0.90, 1.47) 
N = 130,968 

2.96 (0.24, 33.50) 
N = 5,044 

1.93 (0.46, 7.70) 
N = 1,572 

1.47 (0.88, 2.49) 
N = 53,922 

1.02 (0.76, 1.37) 
N = 67,071 

1.15 (0.89, 1.48) 
N = 127,609 

Paternal obesity 
confounder and other 
parent BMI adjusted 

2.99 (0.25, 33.86) 
N = 5,044 

1.96 (0.47, 7.78) 
N = 1,572 

1.46 (0.87, 2.46) 
N = 53,922 

1.03 (0.76, 1.39) 
N = 67,071 

1.16 (0.90, 1.50) 
N = 127,609 

2.99 (0.25, 33.86) 
N = 5,044 

1.96 (0.47, 7.78) 
N = 1,572 

1.46 (0.87, 2.46) 
N = 53,922 

1.03 (0.76, 1.39) 
N = 67,071 

1.16 (0.90, 1.50) 
N = 127,609 

Covariates used for each study in fully adjusted models (mutually adjusted models the same as fully adjusted but with additional adjustment for the other parent’s BMI and parity in paternal models); 
ABCD: Maternal: offspring sex, age, education, parity, ethnicity, smoking, alcohol. Paternal: offspring sex, age, education, ethnicity. 
ALSPAC: Maternal: offspring sex, age, education, parity, smoking, alcohol. Paternal: offspring sex, age, education, smoking, alcohol. 
BASELINE: Maternal: offspring sex, age, education, smoking, alcohol. Paternal: offspring sex, age, smoking. 
BiB: Maternal: offspring sex, age, education, parity, ethnicity, smoking. Paternal: offspring sex, age, education, ethnicity, smoking. 
DNBC: Maternal: offspring sex, age, education, parity, smoking, alcohol. Paternal: offspring sex, age, education, smoking. 
MoBa: Maternal: offspring sex, age, education, parity, smoking, alcohol. Paternal: offspring sex, age, education, smoking, alcohol. 
NINFEA: Maternal: offspring sex, age, education, parity, smoking, alcohol. Paternal: offspring sex, age, education. 
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Table S7. Comparison between maximal numbers (black, top rows) and complete case models (red, bottom rows). Results are odds ratios (95% CIs) of any 

offspring CHD for smoking during pregnancy. 

Model ABCD ALSPAC BiB DNBC MoBa NINFEA Meta-analysis results 

Maternal smoking 
unadjusted 

2.06 (0.77, 4.65) 
N = 8,117 

1.23 (0.78, 1.87) 
N = 12,716 

0.89 (0.53, 1.42) 
N = 10,887 

1.11 (0.98, 1.26) 
N = 86,740 

1.07 (0.86, 1.34) 
N = 101,042 

0.77 (0.18, 3.21) 
N = 5,801 

1.11 (1.00, 1.23) 
N = 225,303 

2.04 (0.76, 4.62) 
N = 7,824 

1.40 (0.71, 2.56) 
N = 7,626 

1.62 (0.52, 4.20) 
N = 2,624 

1.10 (0.96, 1.26) 
N = 78,229 

1.03 (0.78, 1.37) 
N = 77,266 

0.79 (0.19, 3.29) 
N = 5,527 

1.11 (0.99, 1.25) 
N = 179,096 

Maternal smoking 
confounder adjusted 

2.02 (0.73, (4.77) 
N = 7,824 

1.22 (0.69, 2.06) 
N = 10,217 

0.93 (0.50, 1.60) 
N = 9,646 

1.05 (0.91, 1.20) 
N = 80,571 

1.02 (0.77, 1.36) 
N = 77,311 

0.92 (0.22, 3.96) 
N = 5,527 

1.06 (0.94, 1.18) 
N = 191,096 

2.02 (0.73, (4.77) 
N = 7,824 

1.31 (0.65, 2.46) 
N = 7,626 

2.09 (0.64, 5.84) 
N = 2,624 

1.07 (0.93, 1.23) 
N = 78,229 

1.02 (0.77, 1.37) 
N = 77,266 

0.92 (0.22, 3.96) 
N = 5,527 

1.09 (0.97, 1.23) 
N = 179,096 

Maternal smoking 
confounder and other 

parent smoking adjusted 

- 1.27 (0.61, 2.50) 
N = 7,626 

1.77 (0.51, 5.36) 
N = 2,624 

1.11 (0.96, 1.28) 
N = 79,000 

1.05 (0.78, 1.41) 
N = 77,266 

- 1.11 (0.97, 1.25) 
N = 166,516 

- 1.27 (0.61, 2.50) 
N = 7,626 

1.77 (0.51, 5.36) 
N = 2,624 

1.13 (0.98, 1.30) 
N = 78,229 

1.05 (0.78, 1.41) 
N = 77,266 

- 1.12 (0.99, 1.28) 
N = 165,745 

Paternal smoking 
unadjusted 

- 1.29 (0.79, 2.10) 
N = 9,134 

1.20 (0.50, 2.66) 
N = 3,187 

0.95 (0.84, 1.08) 
N = 84,926 

0.96 (0.82, 1.11) 
N = 101,804 

- 0.97 (0.88, 1.06) 
N = 198,421 

- 1.28 (0.68, 2.35) 
N = 6,182 

1.46 (0.54, 3.73) 
N = 2,373 

0.96 (0.84, 1.10) 
N = 77,477 

1.00 (0.83, 1.20) 
N = 70,018 

- 0.99 (0.89, 1.10) 
N = 156,050 

Paternal smoking 
confounder adjusted 

- 1.17 (0.61, 2.19) 
N = 6,308 

1.43 (0.51, 3.76) 
N = 2,424 

0.95 (0.83, 1.08) 
N = 77,526 

1.05 (0.87, 1.26) 
N = 70,766 

- 0.99 (0.89, 1.10) 
N = 157,024 

- 1.23 (0.64, 2.30) 
N = 6,182 

1.51 (0.53, 4.06) 
N = 2,373 

0.95 (0.83, 1.08) 
N = 77,477 

1.05 (0.87, 1.27) 
N = 70,018 

- 0.99 (0.89, 1.10) 
N = 156,050 

Paternal smoking 
confounder and other 
parent BMI adjusted 

- 1.14 (0.56, 2.23) 
N = 6,182 

1.18 (0.38, 3.41) 
N = 2,373 

0.90 (0.79, 1.04) 
N = 77,499 

1.04 (0.85, 1.26) 
N = 70,018 

- 0.96 (0.85, 1.07) 
N = 156,072 

- 1.14 (0.64, 2.30) 
N = 6,182 

1.18 (0.38, 3.41) 
N = 2,373 

0.91 (0.79, 1.04) 
N = 77,477 

1.04 (0.85, 1.26) 
N = 70,018 

- 0.96 (0.86, 1.07) 
N = 156,050 

Covariates used for each study in fully adjusted models (mutually adjusted models the same as fully adjusted but with additional adjustment for the other parent’s smoking); 
ABCD: Maternal: offspring sex, age, education, parity, ethnicity, alcohol.  
ALSPAC: Maternal: offspring sex, age, education, parity, alcohol. Paternal: offspring sex, age, education, alcohol. 
BiB: Maternal: offspring sex, age, education, parity, ethnicity. Paternal: offspring sex, age, education, ethnicity. 
DNBC: Maternal: offspring sex, age, education, parity, alcohol. Paternal: offspring sex, age, education. 
MoBa: Maternal: offspring sex, age, education, parity, alcohol. Paternal: offspring sex, age, education, alcohol. 
NINFEA: Maternal: offspring sex, age, education, parity, alcohol. 
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Table S8. Comparison between maximal numbers (black, top rows) and complete case models (red, bottom rows). Results are odds ratios (95% CIs) of any 

offspring CHD for alcohol intake during pregnancy in comparison to non-drinkers. 

Model ABCD ALSPAC DNBC MoBa NINFEA Meta-analysis results 

Maternal alcohol (yes/no) 
unadjusted 

1.38 (0.61, 2.85) 
N = 8,125 

1.20 (0.81, 1.80) 
N = 12,622 

1.00 (0.89, 1.12) 
N = 86,708 

1.04 (0.88, 1.23) 
N = 82,358 

1.20 (0.57, 2.51) 
N = 5,843 

1.03 (0.94, 1.12) 
N = 195,656 

1.36 (0.60, 2.81) 
N = 7,824 

1.18 (0.56, 2.55) 
N = 4,585 

1.00 (0.89, 1.13) 
N = 79,648 

1.06 (0.86, 1.31) 
N = 51,006 

1.19 (0.57, 2.49) 
N = 5,527 

1.03 (0.93, 1.14) 
N = 148,590 

Maternal alcohol (yes/no) 
confounder adjusted 

1.17 (0.50, 2.56) 
N = 7,824 

1.24 (0.78, 2.01) 
N = 10,217 

1.01 (0.90, 1.14) 
N = 80,571 

1.03 (0.86, 1.23) 
N = 77,311 

1.18 (0.56, 2.49) 
N = 5,527 

1.03 (0.94, 1.13) 
N = 181,450 

1.17 (0.50, 2.56) 
N = 7,824 

1.20 (0.56, 2.63) 
N = 4,585 

1.01 (0.89, 1.14) 
N = 79,648 

1.06 (0.85, 1.31) 
N = 51,066 

1.18 (0.56, 2.49) 
N = 5,527 

1.03 (0.93, 1.14) 
N = 148,590 

Maternal light drinking 
unadjusted 

- 0.93 (0.52, 1.67) 
N = 6,501 

0.92 (0.82, 1.03) 
N = 88,349 

1.10 (0.88, 1.36) 
N = 84,436 

- 0.96 (0.87, 1.06) 
N = 179,286 

- 1.27 (0.58, 2.93) 
N = 4,585 

0.93 (0.82, 1.05) 
N = 79,648 

1.24 (0.94, 1.63) 
N = 51,006 

- 0.98 (0.88, 1.09) 
N = 135,239 

Maternal light drinking 
confounder adjusted 

- 0.92 (0.48, 1.78) 
N = 5,797 

0.95 (0.85, 1.08) 
N = 80,214 

1.13 (0.90, 1.41) 
N = 79,695 

- 0.99 (0.89, 1.10) 
N = 165,706 

- 1.35 (0.61, 3.14) 
N = 4,585 

0.94 (0.83, 1.06) 
N = 79,648 

1.22 (0.92, 1.61) 
N = 51,006 

- 0.99 (0.88, 1.10) 
N = 135,239 

Maternal light drinking 
confounder and other 

parent alcohol adjusted 

- 1.40 (0.62, 3.27) 
N = 4,585 

- 1.13 (0.87, 1.47) 
N = 59,571 

- 1.15 (0.90, 1.48) 
N = 64,156 

- 1.40 (0.62, 3.27) 
N = 4,585 

- 1.19 (0.90, 1.57) 
N = 51,006 

- 1.21 (0.93, 1.57) 
N = 55,591 

Maternal mod/heavy 
drinking unadjusted 

- 0.67 (0.22, 1.65) 
N = 6,501 

1.14 (0.87, 1.48) 
N = 88,349 

1.85 (0.92, 3.73) 
N = 84,436 

- 1.17 (0.92, 1.49) 
N = 179,286 

- 0.92 (0.21, 3.01) 
N = 4,585 

1.19 (0.89, 1.56) 
N = 79,648 

1.77 (0.66, 4.78) 
N = 51,006 

- 1.21 (0.93, 1.58) 
N = 135,239 

Maternal mod/heavy 
drinking confounder 

adjusted 

- 0.64 (0.18, 1.75) 
N = 5,797 

1.21 (0.90, 1.58) 
N = 80,214 

1.47 (0.65, 3.32) 
N = 79,695 

- 1.19 (0.92, 1.54) 
N = 165,706 

- 0.89 (0.20, 2.98) 

N = 4,585 

1.19 (0.89, 1.57) 

N = 79,648 

1.73 (0.64, 4.69) 

N = 51,006 

- 1.21 (0.93, 1.58) 

N = 135,239 

Maternal mod/heavy 
drinking confounder and 

other parent alcohol 
adjusted 

- 0.94 (2.06, 3.19) 
N = 4,585 

- 1.31 (0.48, 3.56) 
N = 59,571 

- 1.16 (0.52, 2.58) 
N = 64,156 

- 0.94 (2.06, 3.19) 
N = 4,585 

- 1.57 (0.58, 4.27) 
N = 51,006 

- 1.30 (0.59, 2.89) 
N = 55,591 

Paternal light drinking 
unadjusted 

- 0.90 (0.36, 3.02) 
N = 8,205 

- 0.90 (0.61, 1.32) 
N = 72,422 

- 0.90 (0.63, 1.29) 
N = 80,627 

- 1.90 (0.39, 34.09) 
N = 5,228 

- 1.01 (0.62, 1.65) 
N = 58,847 

- 1.05 (0.65, 1.68) 
N = 64,075 

Paternal light drinking 
confounder adjusted 

- 2.11 (0.44, 37.99) 
N = 5,346 

- 0.86 (0.58, 1.28) 
N = 70,766  

- 0.89 (0.60, 1.31) 
N = 76,112 

- 2.04 (0.42, 36.80) 
N = 5,228 

- 0.97 (0.60, 1.58) 
N = 58,847 

- 1.01 (0.63, 1.63) 
N = 64,075 
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Paternal light drinking 
confounder and other 

parent alcohol adjusted 

 1.77 (0.36, 32.20) 
N = 5,316 

- 0.97 (0.63, 1.62) 
N = 58,847 

 1.01 (0.63, 1.62) 
N = 64,163 

- 1.74 (0.35, 31.60) 
N = 5,228 

- 0.97 (0.60, 1.59) 
N = 58,847 

- 1.01 (0.62, 1.62) 
N = 64,075 

Paternal mod/heavy 
drinking unadjusted 

- 0.86 (0.34, 2.93) 
N = 8,205 

- 1.11 (0.73, 1.70) 
N = 72,422 

- 1.08 (0.73, 1.59) 
N = 80,627 

- 1.83 (0.37, 33.05) 
N = 5,228 

- 1.28 (0.76, 2,17) 
N = 58,847 

- 1.31 (0.79, 2.18) 
N = 64,075 

Paternal mod/heavy 
drinking confounder 

adjusted 

- 2.00 (0.40, 36.05) 
N = 5,346 

- 1.07 (0.69, 1.66) 
N = 70,766 

- 1.10 (0.72, 1.69) 
N = 76,112 

- 1.94 (0.39, 35.05) 
N = 5,228 

- 1.20 (0.71, 2.04) 
N = 58,847 

- 1.24 (0.74, 2.07) 
N = 64,075 

Paternal mod/heavy 
drinking confounder and 

other parent alcohol 
adjusted 

- 1.72 (0.34, 31.20) 
N = 5,316 

- 1.21 (0.71, 2.05) 
N = 58,847 

- 1.23 (0.74, 2.06) 
N = 64,163 

- 1.70 (0.34, 30.83) 
N = 5,228 

- 1.21 (0.71, 2.05) 
N = 58,847 

- 1.23 (0.74, 2.06) 
N = 64,075 

Covariates used for each study in fully adjusted models (mutually adjusted models the same as fully adjusted but with additional adjustment for the other parent’s alcohol intake); 
ABCD: Maternal: offspring sex, age, education, parity, ethnicity, smoking.  
ALSPAC: Maternal: offspring sex, age, education, parity, smoking. Paternal: offspring sex, age, education, smoking. 
DNBC: Maternal: offspring sex, age, education, parity, smoking.  
MoBa: Maternal: offspring sex, age, education, parity, smoking. Paternal: offspring sex, age, education, smoking. 
NINFEA: Maternal: offspring sex, age, education, parity, ethnicity, smoking. 
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Supplementary Tables S9-S11 

Table S9. Meta-analysis results from 4 cohorts (ALSPAC, BiB, DNBC, MoBa) for associations between BMI categories and CHDs with and without removing 

chromosomal/genetic defects from the study population. Results reported as odds ratios for CHD for parental underweight, overweight or obesity in comparison 

to parental normal weight.  

Model Main analysis 
Outcome = CHD 

Additional analysis 
Outcome = CHD with chromo/gen defects removed from study population 

Confounder adjusted 

M-Underweight: 1.20 (0.96, 1.50) 
P-Underweight: 0.54 (0.13, 2.19) 

M- Underweight: 1.16 (0.90, 1.48) 
P-Underweight: 0.67 (0.16, 2.70) 

M-Overweight: 1.17 (1.04, 1.31) 
P-Overweight: 1.11 (0.97, 1.28) 

M-Overweight: 1.20 (1.06, 1.35) 
P-Overweight: 1.09 (0.94, 1.27) 

M-Obesity: 1.19 (1.02, 1.40) 
P-Obesity: 1.15 (0.90, 1.47) 

M-Obesity: 1.21 (1.02, 1.44) 
P-Obesity: 1.19 (0.91, 1.58) 

Confounder and other parent BMI 
adjusted 

M-Underweight: 1.21 (0.93, 1.58) 
P-Underweight: 0.55 (0.14, 2.24) 

M-Underweight: 1.22 (0.90, 1.63) 
P-Underweight: 0.67 (0.17, 2.72) 

M-Overweight: 1.15 (1.01, 1.31) 
P-Overweight: 1.10 (0.96, 1.27) 

M-Overweight: 1.20 (1.04, 1.38) 
P-Overweight: 1.08 (0.93, 1.27) 

M-Obesity: 1.12 (0.93, 1.36) 
P-Obesity: 1.16 (0.90, 1.50) 

M-Obesity: 1.15 (0.93, 1.42) 
P-Obesity: 1.20 (0.90, 1.59) 

M = maternal 
P = paternal 
^ICD codes used to remove these cases from the population can be found in Table S3. 

 

Table S10. Meta-analysis results from 3 cohorts (ALSPAC, BiB and DNBC) for associations between BMI categories and CHD severity with and without removing 

chromosomal/genetic defects from the study population. Results reported as odds ratios for CHD for parental underweight, overweight or obesity in comparison 

to parental normal weight. 

Model Outcome = Non-severe CHD Outcome = Non-severe CHD 
(excluding chromo/gen defects)^ 

Outcome = Severe CHD Outcome = Severe CHD 
(excluding chromo/gen defects)^ 

Confounder 
adjusted 

M-Underweight: 1.24 (0.91, 1.68) 
P-Underweight: 0.49 (0.07, 3.56) 

M- Underweight: 1.32 (0.95, 1.83) 
P-Underweight: 0.55 (0.07, 4.10) 

M-Underweight: 1.25 (0.79, 1.97) 
P-Underweight: * 

M- Underweight: 1.27 (0.75, 2.16) 
P-Underweight: * 

M-Overweight: 1.24 (1.05, 1.47) 
P-Overweight: 1.16 (0.89, 1.51) 

M-Overweight: 1.27 (1.06, 1.52) 
P-Overweight: 1.09 (0.82, 1.45) 

M-Overweight: 1.19 (0.93, 1.53) 
P-Overweight: 1.19 (0.77, 1.84) 

M-Overweight: 1.29 (0.98, 1.70) 
P-Overweight: 1.09 (0.66, 1.79) 

M-Obesity: 1.36 (1.08, 1.71) 
P-Obesity: 1.49 (0.86, 2.59) 

M-Obesity: 1.36 (1.06, 1.74) 
P-Obesity: 1.51 (0.83, 2.74) 

M-Obesity: 1.07 (0.73, 1.56) 
P-Obesity: 1.65 (0.71, 3.87) 

M-Obesity: 1.12 (0.74, 1.71) 
P-Obesity: 1.58 (0.60, 4.19) 

Confounder 
and other 

parent BMI 
adjusted 

M-Underweight: 1.34 (0.92, 1.93) 
P-Underweight: 0.48 (0.07, 3.54) 

M-Underweight: 1.41 (0.95, 2.09) 
P-Underweight: 0.56 (0.08, 4.10) 

M-Underweight: 1.16 (0.61, 2.22) 
P-Underweight: * 

M-Underweight: 1.42 (0.69, 2.94) 
P-Underweight: * 

M-Overweight: 1.29 (1.05, 1.58) 
P-Overweight: 1.22 (0.93, 1.59) 

M-Overweight: 1.33 (1.07, 1.66) 
P-Overweight: 1.13 (0.84, 1.51) 

M-Overweight: 1.11 (0.78, 1.57) 
P-Overweight: 1.13 (0.72, 1.77) 

M-Overweight: 1.39 (0.95, 2.02) 
P-Overweight: 0.97 (0.58, 1.62) 

M-Obesity: 1.14 (0.84, 1.55) 
P-Obesity: 1.61 (0.91, 2.84) 

M-Obesity: 1.19 (0.85, 1.66) 
P-Obesity: 1.57 (0.84, 2.91) 

M-Obesity: 1.17 (0.71, 1.93) 
P-Obesity: 1.36 (0.56, 3.32) 

M-Obesity: 1.31 (0.74, 2.32) 
P-Obesity: 1.17 (0.42, 3.28) 

M = maternal 
P = paternal 
^ICD codes used to remove these cases from the population can be found in Table S3. 
* = not enough data to compute results. 
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Table S11. Meta-analysis results for associations between alcohol intake and CHDs after removing chromosomal/genetic defects from the study population. 

Results reported as odds ratios and 95% confidence intervals for CHD in comparison to non-drinkers.   

Model Main analysis 
Outcome = CHD 

Additional analysis 
Outcome = CHD with chromo/gen removed from study population 

Confounder adjusted 

M – y/n: 1.03 (0.93, 1.13) M – y/n: 1.04 (0.94, 1.15) 

M – light: 0.99 (0.89, 1.10) 
P – light: 0.89 (0.60, 1.31) 

M – light: 0.95 (0.85, 1.07) 
P – light: 1.13 (0.69, 1.87) 

M – mod/heavy: 1.19 (0.92, 1.54) 
P – mod/heavy: 1.10 (0.72, 1.69) 

M – mod/heavy: 1.24 (0.94, 1.63) 
P – mod/heavy: 1.36 (0.79, 2.34) 

Confounder and other parent 
BMI adjusted 

M – light: 1.15 (0.90, 1.48) 
P – light: 1.01 (0.63, 1.62) 

M – 1.17 (0.88, 1.55) 
P – light: 1.21 (0.68, 2.16) 

M – mod/heavy: 1.16 (0.52, 2.58) 
P – mod/heavy: 1.23 (0.74, 2.06) 

M – mod/heavy: 1.20 (0.52, 3.17) 
P – mod/heavy: 1.52 (0.82, 2.80) 

M = maternal 
P = paternal 
y/n = alcohol as a binary variable, yes or no.  
Estimates from yes/no analyses derived from 5 cohorts (ABCD, ALSPAC, DNBC, MoBa, NINFEA). 
Estimates from maternal light and mod/heavy drinking analyses derived from ALSPAC, DNBC and MoBa in fully adjusted results, but only ALSPAC and MoBa in paternal and mutually adjusted 
results. 
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Supplementary Results – Figures S1-S32 

 

Participant flow charts for each cohort 

 

 

Figure S1. Study flow chart illustrating participant selection in the ABCD cohort. 
D

ow
nloaded from

 http://ahajournals.org by on Septem
ber 3, 2021



  Taylor et al Supplementary Material 

 26 

 

Figure S2. Study flow chart illustrating participant selection in the ALSPAC cohort. 
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Figure S3. Study flow chart illustrating participant selection in the BASELINE cohort. We included 1436 

participants in our study (Stream 1). Adapted from: https://doi.org/10.1093/ije/dyu157 
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Figure S4. Study flow chart illustrating participant selection in the BiB cohort. 
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Figure S5. Study flow chart illustrating participant selection in the DNBC cohort. 
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Figure S6. Study flow chart illustrating participant selection in the MoBa cohort. MBR = Medical birth 

registry. 
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Figure S7. Study flow chart illustrating participant selection in the NINFEA cohort.
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BMI analyses – Supplementary Figures 

• Figure S8. Main analysis associations between parental BMI as a continuous measurement in kg/m2 (maternal 

top, paternal bottom) and offspring congenital heart disease. 

• Figure S9. Confounder adjusted associations between maternal BMI split into fifths and offspring CHDs in the 

DNBC (A) and MoBa (B). 

• Figure S10. Confounder adjusted associations between paternal BMI split into fifths and offspring CHDs in the 

DNBC (A) and MoBa (B). 

• Figure S11. Linear associations between parental BMI and offspring CHD severity. 

• Figure S12. Linear associations between maternal BMI and offspring congenital heart disease with additional 

adjustment of folic acid supplementation. 

• Figure S13. Linear associations between parental BMI and offspring congenital heart disease with 

chromosomal/genetic defects removed from the study population. 

• Figure S14. Linear associations between parental BMI and offspring CHD severity with cases of 

chromosomal/genetic defects removed from the study population. 

• Figure S15. Meta-analysis results for unadjusted BMI categories using World Health Organization cut-offs with 

normal BMI as the reference. 

• Figure S16. Meta-analysis results for confounder adjusted BMI categories using World Health Organization cut-

offs with normal BMI as the reference. 

• Figure S17. Meta-analysis results for confounder and other parent BMI adjusted BMI categories using World 

Health Organization cut-offs with normal BMI as the reference.   

• Figure S18. Meta-analysis results for unadjusted BMI categories using World Health Organization cut-offs with 

normal BMI as the reference. 

• Figure S19. Meta-analysis results for confounder adjusted BMI categories using World Health Organization cut-

offs with normal BMI as the reference. 

• Figure S20. Meta-analysis results for confounder and other parent BMI adjusted BMI categories using World 

Health Organization cut-offs with normal BMI as the reference.   
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Figure S8. Main analysis associations between parental BMI as a continuous measurement in kg/m2 (maternal top, paternal bottom) and offspring congenital heart 

disease. Panel A results are unadjusted, panel B results are fully adjusted for all confounders and panel C results are adjusted for all confounders as well as other 

parent’s BMI. Confounders: ABCD: parental age, education, parity, ethnicity, smoking, alcohol, offspring sex; ALSPAC: parental age, education, parity, smoking, 

alcohol, offspring sex; BASELINE: parental age, education, smoking, alcohol, offspring sex BiB: parental age, education, parity, ethnicity, smoking, offspring sex; 

DNBC:, parental age, education, parity, smoking, alcohol, offspring sex; MoBa: parental age, education, parity, smoking, alcohol, offspring sex; NINFEA: parental 

age, education, parity, smoking, alcohol, offspring sex. 
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Figures S9 and S10 show the odds ratios of CHD by fifths of the BMI distribution for mothers and fathers respectively in 

DNBC and MoBa. Whilst there was statistical evidence for a linear trend in DNBC mothers (p-value for per fifth increase = 

0.05) the graph shows this was driven by increased risk only in the highest fifth, with the 2nd, 3rd and 4th fifth (compared 

to the first) consistent with the null. In MoBa mothers there was no clear pattern with some evidence that the 4th 

compared to the 1st fifth was associated with lower risk with the 3 other categories being consistent with the null (p-value 

for linear trend in MoBa = 0.22). Whilst the p-values for the likelihood ratio comparing the linear model with the category 

model (0.03 and 0.09, for DNBC and MoBa mothers, respectfully) provide statistical support for the category model in 

each, this is based on just one of the fifths. Results for the fathers are broadly consistent with those for the mothers, and 

overall, these results are consistent with no association of maternal or paternal mean BMI with offspring CHD risk. 

 

Figure S9. Confounder adjusted associations between maternal BMI split into fifths and offspring CHDs in the DNBC (A) 

and MoBa (B). Results are odds ratios and 95% CIs for maternal BMI quintile and offspring CHD in comparison to BMI 

quintile 1.  
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Figure S10. Confounder adjusted associations between paternal BMI split into fifths and offspring CHDs in the DNBC (A) 

and MoBa (B). Results are odds ratios and 95% CIs for paternal BMI quintile and offspring CHD in comparison to BMI 

quintile 1.  
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Figure S11. Linear associations (top (A&B): confounder adjusted, bottom (C&D): confounder and other parent BMI 

adjusted) between parental BMI and offspring non-severe congenital heart disease (left) and severe congenital heart 

disease (right). Definitions for CHD subtypes can be found in Table S2.  
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Figure S12. Linear associations between maternal BMI and offspring congenital heart disease. Results are fully adjusted 

for all confounders (top) and all confounders plus additional adjustment for folic acid supplementation during weeks 0-

12 of pregnancy (bottom). 
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Figure S13. Additional analysis: linear associations between parental BMI and offspring congenital heart disease with 

chromosomal/genetic defects removed from the study population. A is adjusted for all confounders, and B is adjusted for 

all confounders and the other parent’s BMI. The rationale here is to see if estimates differ when we remove offspring from 

the population with an anomaly associated with a pre-specified cause such as a genetic, chromosomal or teratogenic 

aberration. ICD codes used to remove these cases from the population can be found in Table S3. For comparison the 

pooled associations from main analyses (without removal of genetic/chromo disorders) were: 1.01 (1.00, 1.02) & 1.01 

(0.99, 1.02) for maternal (top graphs, left and right respectively) and 1.01 (1.00, 1.03) & 1.01 (0.99, 1.03) for paternal 

(bottom graphs left and right respectively).  
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Figure S14. Linear associations (top (A&B): confounder adjusted, bottom (C&D): confounder and other parent BMI 

adjusted) between parental BMI and offspring non-severe congenital heart disease (left) and severe congenital heart 

disease (right) with cases of chromosomal/genetic defects removed from the study population. Definitions for CHD 

subtypes can be found in Table S2.  
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BMI analyses using World Health Organization (WHO) categories 

In this section, we present meta-analysis results from the WHO BMI analyses. All Odds ratios should be interpreted as an 

increase/decrease odds of CHD for a maternal/paternal BMI category in comparison to normal weight. The BMI categories 

are: underweight (BMI <18.5 kg/m2), normal weight (BMI 18.5 to <25 kg/m2, reference range), overweight (BMI 25 to <30 

kg/m2) and obesity (BMI ≥30 kg/m2).  

We present fully adjusted (adjusted for all confounders) and mutually adjusted (adjusted for all confounders plus other 

parents’ exposure) models. ALSPAC, BiB, DNBC and MoBa contributed to these analyses. Covariates adjusted for by each 

study are:  

• ALSPAC - parental age, education, parity, smoking, alcohol, offspring sex 

• BiB - parental age, education, parity, ethnicity, smoking, offspring sex 

• DNBC – parental age, education, parity, smoking, alcohol, offspring sex 

• MoBa -  parental age, education, parity, smoking, alcohol, offspring sex 
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Figure S15. Meta-analysis results for unadjusted BMI categories using World Health Organization cut-offs with normal 

BMI as the reference. Outcome = any CHD in the offspring. 
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Figure S16. Meta-analysis results for confounder adjusted BMI categories using World Health Organization cut-offs with 

normal BMI as the reference. Outcome = any CHD in the offspring. 
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Figure S17. Meta-analysis results for confounder and other parent BMI adjusted BMI categories using World Health 

Organization cut-offs with normal BMI as the reference.  Outcome = any CHD in the offspring.
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Figure S18. Meta-analysis results for unadjusted BMI categories using World Health Organization cut-offs with normal 

BMI as the reference. Outcome = non-severe CHDs (left) and severe CHDs (right). Ns represent total numbers included in 

the non-severe/severe analyses presented.
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Figure S19. Meta-analysis results for confounder adjusted BMI categories using World Health Organization cut-offs with 

normal BMI as the reference. Outcome = non-severe CHDs (left) and severe CHDs (right). Ns represent total numbers 

included in the non-severe/severe analyses presented. 
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Figure S20. Meta-analysis results for confounder and other parent BMI adjusted BMI categories using World Health 

Organization cut-offs with normal BMI as the reference.  Outcome = non-severe CHDs (left) and severe CHDs (right). Ns 

represent total numbers included in the non-severe/severe analyses presented. 
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Smoking analyses – Supplementary Figures 

• Figure S21. Main analysis associations between parental smoking (maternal top, paternal bottom) and offspring 

congenital heart disease. 

• Figure S22. Showing the smoking results in those cohorts that had confirmed data on maternal first trimester 

smoking. 

• Figure S23. Unadjusted and confounder adjusted results for the smoking and CHD severity analyses presented in 

the main manuscript Figure 2. 

• Figure S24. Associations between parental smoking heaviness and offspring congenital heart disease. 

• Figure S25. Associations between parental smoking and offspring congenital heart disease with 

chromosomal/genetic defects removed from the study population. 

• Figure S26. Smoking and CHD severity results with chromosomal/genetic defects removed from the study 

population.  

• Figure S27. Associations between maternal smoking and offspring congenital heart disease with additional 

adjustment for folic acid supplementation. 
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Figure S21. Main analysis associations between parental smoking (maternal top, paternal bottom) and offspring congenital heart disease. Panel A results are 

unadjusted, B results are fully adjusted for all confounders and C results are adjusted for all confounders as well as other parent’s smoking. Confounders: ABCD: 

parental age, education, parity, ethnicity, alcohol, offspring sex; ALSPAC: parental age, education, parity, alcohol, offspring sex; BiB: parental age, education, 

parity, ethnicity, offspring sex; DNBC:, parental age, education, parity, alcohol, offspring sex; MoBa: parental age, education, parity, alcohol, offspring sex; 

NINFEA: parental age, education, parity, alcohol, offspring sex.
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Figure S22. Showing the smoking results in those cohorts that had confirmed data on maternal first trimester smoking. Panel A results are unadjusted, B results 

are fully adjusted for all confounders and C results are adjusted for all confounders as well as other parent’s smoking. Confounders: ALSPAC: parental age, 

education, parity, alcohol, offspring sex; DNBC:, parental age, education, parity, alcohol, offspring sex; NINFEA: parental age, education, parity, alcohol, offspring 

sex. 
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Figure S23. Unadjusted (A & B) and confounder adjusted (C &D) results for the smoking and CHD severity analyses presented in the main manuscript Figure 2. 
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Figure S24. Associations between parental smoking heaviness (top (A, B & C): maternal, bottom (D, E & F): paternal) and offspring congenital heart disease. 

Results are unadjusted (left), adjusted for all confounders (middle) as well as all confounders and other parents smoking (right). Smoking categorized as none 

(non-smoker), light (< 10 cigarettes smoked per day during pregnancy) and heavy (≥ 10 cigarettes per day). Results presented as odds ratios and 95% confidence 

intervals for offspring CHD in comparison to non-smokers.  
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Figure S25. Additional analysis: Associations between parental smoking and offspring congenital heart disease with chromosomal/genetic defects removed from 

the study population. The plots on the top half (A &B) are for smoking yes/no analyses and the plots on the bottom half (C & D) are for smoking heaviness 

analyses.  The rationale here is to see if estimates differ when we remove offspring from the population with an anomaly associated with a pre-specified cause 

such as a genetic, chromosomal or teratogenic aberration. ICD codes used to remove these cases from the population can be found in Table S3.  
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Figure S26. Smoking and CHD severity results with chromosomal/genetic defects removed from the study population.  
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Figure S27. Associations between maternal smoking and offspring congenital heart disease. Results are fully adjusted for all confounders and all confounders 

plus additional adjustment for folic acid supplementation during weeks 0-12 of pregnancy. Panel A shows the results for the yes/no smoking analyses and panels 

B and C show results for the smoking heaviness analyses.  
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Alcohol analyses - Supplementary Figures 

• Figure S28. Associations between maternal alcohol consumption in the first trimester and 

offspring congenital heart disease. 

• Figure S29. Confounder adjusted associations between maternal alcohol consumption during 

the first trimester and offspring non-severe congenital heart disease and severe congenital heart 

disease. 

• Figure S30. Associations between parental alcohol intake and offspring congenital heart disease 

(all models). 

• Figure S31. Confounder adjusted associations between maternal alcohol consumption during 

the first trimester and offspring non-severe congenital heart disease and severe congenital heart 

disease with chromosomal/genetic defects removed from the study population. 

• Figure S32. Associations between maternal drinking during the first trimester and offspring 

congenital heart disease with additional adjustment for folic acid supplementation. 

 

 

 

 

 

 

 

D
ow

nloaded from
 http://ahajournals.org by on Septem

ber 3, 2021



  Taylor et al Supplementary Material 

 56 

 

Figure S28. Associations between maternal alcohol consumption in the first trimester and offspring 

congenital heart disease. *ABCD did not have trimester-specific data, therefore analyses presented for 

ABCD are any alcohol consumption during pregnancy. Results are adjusted for all confounders. 

Confounders: ABCD: parental age, education, parity, ethnicity, smoking, offspring sex; ALSPAC: parental 

age, education, parity, smoking, offspring sex; DNBC: parental age, education, parity, smoking, offspring 

sex; MoBa: parental age, education, parity, smoking, offspring sex; NINFEA: parental age, education, 

parity, smoking, offspring sex. 
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Figure S29. Confounder adjusted associations between maternal alcohol consumption during the first 

trimester and offspring non-severe congenital heart disease (A) and severe congenital heart disease (B). 

Definitions for CHD subtypes can be found in Table S2. 
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Figure S30. Associations (top (A, B & C): maternal, bottom (D, E & F): paternal) between parental alcohol intake and offspring congenital heart disease. Results 

are unadjusted (left), adjusted for all confounders (middle) as well as all confounders and other parents smoking (right). Maternal alcohol intake categorized as 

none (non-drinker), light (< 3 units per week during pregnancy) and moderate/heavy (≥ 3 units per week during pregnancy). Paternal alcohol intake categorized 

as none (non-drinker), light (< 7 units per week during pregnancy) and moderate/heavy (≥ 7 units per week during pregnancy). Results presented as odds ratios 

and 95% confidence intervals for offspring CHD in comparison to non-drinkers.
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Figure S31. Confounder adjusted associations between maternal alcohol consumption during the first 

trimester and offspring non-severe congenital heart disease (A) and severe congenital heart disease (B) 

with chromosomal/genetic defects removed from the study population. Definitions for CHD subtypes 

can be found in Table S2.
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Figure S32. Associations between maternal drinking during the first trimester and offspring congenital 

heart disease. Results are adjusted for all confounders (top) and all confounders plus additional 

adjustment for folic acid supplementation during weeks 0-12 of pregnancy (bottom). Results are for first 

trimester drinking or any drinking during pregnancy where trimester data were not available (denoted by 

*).
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